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In recent years, there has been a significant increase

in the incidence of human fungal infections (60). A

number of factors have been implicated with this

increase, but it is generally accepted that the main

influences relate to the more widespread provision of

new medical practices, such as immunosuppressive

therapy and use of broad spectrum antibiotics, and

invasive surgical procedures such as solid organ or

bone marrow transplantation. Infections may either

be superficial, affecting the skin, hair, nails and

mucosal membranes, or systemic, involving major

body organs (95). The risk of systemic infection ap-

pears to be enhanced in cases where the individual is

already colonized by Candida (71). With regard to

superficial mucosal infections, the continued spread

of HIV infection (29) and the more extensive use of

inhaled steroids (36) have also played significant

roles.

Of the fungi regarded as human pathogens, mem-

bers of the genus Candida are amongst the most

frequently recovered from disease. The Candida

genus is a taxomomic grouping that was originally

used to define �yeast-like� organisms that were not

considered to have a sexual reproductive life cycle.

Candida contains over 350 heterogeneous species,

but only a minority of these have been implicated in

human disease (Table 1). Infections caused by Can-

dida are collectively referred to in the plural as can-

didoses (singular candidosis) or candidiases (singular

candidiasis). Both terms are used in the literature

although candidosis is preferred to candidiasis by

many due to the �-osis� part of the word being con-

sistent with the nomenclature used for other fungal

infections.

Of the Candida species isolated from humans,

Candida albicans is the most prevalent in both health

and disease. It is generally accepted that commensal

carriage of this species occurs in approximately 50%

of individuals (81, 107), although figures do vary

depending on the population examined. Mycological

studies have shown that C. albicans represents over

80% of isolates from all forms of human candidosis

(85). However, the so-called non-Candida albicans

Candida species are increasingly recognized as

important agents of human infection (41, 46, 55, 72).

The apparently increased involvement of non-Can-

dida albicans Candida species in human candidoses

may partly relate to improvements in diagnostic

methods, such as the use of primary agars with the

ability to differentiate species, and the introduction

of molecular techniques in the routine diagnosis of

fungaemia (64). However, the increased prevalence of

non-Candida albicans Candida species in disease

could also be a reflection of the inherently higher

level of antifungal drug resistance in some non-

Candida albicans Candida species (39) compared

with C. albicans, as this would promote their persis-

tence, possibly to the detriment of C. albicans, in

mixed-species infections treated with traditional

antifungal agents.

Candidoses have been recognized throughout hu-

man history and are often described as being �dis-

eases of the diseased�, reflecting the opportunistic

pathogenic nature of Candida. Whilst Candida spe-

cies are generally regarded as harmless members of

the healthy commensal microflora of humans,

infection can arise if a colonized individual becomes

immunocompromised.

Candida species have been encountered in a wide

spectrum of diseases, and almost all human body

organs can become infected (79). Systemic infections

are rare, but are serious when they do occur, with
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mortality rates of up to 60% (22, 62). The incidence of

systemic fungal infection has increased in recent

decades, although exact figures are difficult to

ascertain as most are only diagnosed following au-

topsy. However, in the past 10 years, a fivefold in-

crease in candidaemia has been reported (14), and

the current incidence of candidaemia per 1,000

admissions in Europe ranges from 0.17 to 20

depending on the country and patient group studied

(60). Particularly susceptible patients are those

suffering from leukaemia or recipients of haemato-

poietic stem cell transplants (i.e. bone marrow

transplants) (85). However, the vast majority of

infections remain superficial, affecting moist muco-

sal membranes, particularly of the vagina and oral

cavity (Fig. 1). More recently, it has been suggested

that Candida species may be causative agents in

some diseases of the mouth other than candidosis,

including oral cancer (109), burning mouth syn-

drome (102), taste disorders (98) and endodontic

disease (74), although the basis of these associations

remains uncertain.

There is little evidence for yeast involvement in

periodontal disease, with bacterial species such as

Porphyromonas gingivalis, Tannerella forsythia and

Aggregatibacter actinomycetemcomitans being the

most frequently associated periodontal pathogens

(54). There have been some reports in the literature

linking the presence of Candida with the clinical

condition of linear gingival erythema that is occa-

sionally seen in HIV-infected patients (40, 119).

However, a causative role for Candida has not been

Table 1. Candida species associated with human
infection

Candida species* Reference

Candida albicans (11)

Candida dubliniensis (114)

Candida parapsilosis (115)

Candida tropicalis (41)

Candida glabrata (63)

Candida kefyr

(pseudotropicalis)

(23)

Candida lusitaniae (6)

Candida krusei (104)

Candida guilliermondii (71)

Candida utilis (44)

Candida lipolytica (108)

Candida famata (56)

Candida haemulonii (52)

Candida rugosa (113)

*The list is an indication of the typical Candida species that have been asso-
ciated with human infection but is not intended to be comprehensive of all
pathogenic species.

A

C

B

D

Fig. 1. Clinical presentation of

primary oral candidosis: (A) pseudo-

membranous candidosis, (B) acute

erythematous candidosis, (C) chron-

ic hyperplastic candidosis, and (D)

chronic erythematous candidosis.
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confirmed and the condition is rarely observed today,

possibly due to the frequent use of systemic anti-

fungal agents in these patients.

Interestingly, whilst the microflora of peri-

implantitis resembles that of chronic periodontitis,

Candida has been recovered from 55% of peri-im-

plant lesions and appears to be absent at healthy

implant sites (61). However, the aetiological

involvement of Candida in peri-implantitis requires

further longitudinal studies.

Virulence factors of Candida

Infection models of candidosis in animals suggest

that C. albicans is the most pathogenic species, and

in vitro investigations indicate that it also expresses

higher levels of putative virulence factors compared

with other Candida species. Several potential viru-

lence factors have been proposed in the pathoge-

nicity of Candida species (Table 2), with adhesion to

host surfaces, secretion of proteinases and hyphal

formation apparently the most significant.

Adherence of Candida to host surfaces

Adherence of Candida to host surfaces is required for

initial colonization and contributes to persistence of

the organism within the host. Candida cells adhere to

several host cell types, including epithelial, endothe-

lial and phagocytic cells. Among the many adhesins

expressed by C. albicans, agglutinin-like sequence

proteins have been implicated in pathogenesis and

biofilm formation (78). These cell wall-bound adhe-

sins bind to diverse mammalian peptide ligands,

causing cellular aggregation through homotypic

adhesion, and also co-aggregate with other microbial

pathogens to mediate polymicrobial infections.

Candida can adhere to the surface of medical devices,

in particular denture acrylic and silicone soft liners,

which often promotes biofilm formation.

Secretion of hydrolytic enzymes by
Candida

Candida species secrete several hydrolytic enzymes

associated with pathogenicity, including secreted

aspartyl proteinases, phospholipases, lipases, phos-

phomonoesterase and hexosaminidase (80). Of these

enzymes, the secreted aspartyl proteinases have at-

tracted most interest and are widely considered to be

central to the development of Candida infection. In

contrast with other types of proteinases, secreted

aspartyl proteinases show proteolytic activity only

under acid conditions (pH < 4.0). Importantly for

oral infection, the environment under a removable

denture is acidic, which provides conditions suitable

for both production and activity of secreted aspartyl

proteinases. Secreted aspartyl proteinases are only

produced by certain Candida species, with C. albi-

cans secreting nine distinct aspartyl proteinases,

often at much higher levels compared with other

species. Interestingly, strains of C. albicans isolated

from clinically apparent oral candidosis have been

Table 2. Virulence factors associated with Candida and oral candidosis

Virulence factor Effect

Adherence to host surfaces Promotes retention in the mouth

• Relative cell-surface hydrophobicity • Non-specific adherence process

• Cell surface adhesin molecules • Specific adherence mechanisms

Evasion of host defence mechanisms Promotes retention in the mouth

• High-frequency phenotypic switching • Antigenic modification through frequent cell-surface changes

• Hyphal development • impairs phagocytosis

• Secreted aspartyl proteinase production • Secretory IgA destruction

• Binding of complement molecules • Antigenic masking

Invasion and destruction of host tissue Enhances pathogenicity

• Hyphal development • Promotes invasion of oral epithelium

• Secreted aspartyl proteinase production • Host cell and extracellular matrix damage

• Phospholipase production • Damage to host cells
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shown to produce higher levels of secreted aspartyl

proteinases compared with strains obtained from

carriers with no mucosal signs (58). These findings

suggest that strains of C. albicans that are actively

involved in candidosis could be inherently more vir-

ulent than commensal strains, possibly by being able

to upregulate secreted aspartyl proteinase gene

expression. In contrast, there is no conclusive evi-

dence that proteinase activity is always associated

with infection, and this probably reflects the multi-

factorial nature of Candida infections (80). Phos-

pholipases hydrolyse one or more ester linkages of

glycerophospholipids. Phospholipase activity has

been demonstrated for many fungal pathogens,

including Candida species. It has been reported that

the phospholipase activity is enhanced when hyphae

are in direct contact with host tissue.

Morphological transition of Candida

Candida species, in particular C. albicans, can exhibit

morphological alternation from yeast, pseudohyphal

and hyphal forms, depending on environmental

conditions. Hyphae are believed to play an important

role in tissue and biomaterial invasion, and in vitro

research has shown that C. albicans hyphal mutants

and non-C. albicans strains lacking hyphal formation

exhibit lower ability to invade tissue compared with

wild-type C. albicans strains (50). Candida hyphae

also demonstrate increased adherence properties (53,

80, 103) and greater resistance to phagocytosis com-

pared with yeast. Thus hyphal formation is consid-

ered to be significant to the pathogenicity of Candida.

Candida biofilms and infection

Biofilms can be defined as communities of microor-

ganisms, often attached to a surface and encased

within an extracellular polysaccharide matrix that is

produced by the microorganisms (25). The biofilm

state is the preferred mode of growth of microor-

ganisms in natural environments (24), and recent

reports have linked biofilms with over 65% of hos-

pital-acquired infections (28, 51). It has also been

suggested that Candida strains with a high ability to

form biofilms are generally more virulent than others

(79, 104). The explanation for this is likely to be

multifactorial and relate to the differences observed

between biofilm cells and their free-living or plank-

tonic counterparts. Indeed, it is now known that

significant phenotypic differences occur between

biofilm and planktonic lifestyles (8, 28, 73, 91, 92).

Perhaps the most important of these are those factors

that relate to the promotion, persistence and viru-

lence of the organisms within the host environment.

A recent investigation of candidaemia highlighted the

importance of biofilms in infection, with higher

mortality rates evident when a Candida biofilm was

present (116).

In the oral cavity, not only will adherent biofilm

cells be protected from the normal mechanical

flushing action of saliva and gingival crevicular fluid,

but the biofilm itself is a defensive barrier against

penetration of host immune factors and adminis-

tered antimicrobials (43, 121). Candida biofilms were

first shown to exhibit resistance to antifungals by

Hawser & Douglas (43), and this has been reported by

numerous other researchers since (19, 92). The exact

mechanism of biofilm resistance to antifungals

remains unclear, but it is probably multifactorial. The

extracellular polysaccharide of the biofilm could

serve as an inhibitor to diffusion of an antimicrobial

agent or ionically bind the drug as it diffuses through

the biofilm, thereby effectively reducing its �bio-

availability� (3, 8). A feature of multilayered biofilms is

the reduced activity and growth rates of cells that are

in areas of limited exposure to required gases and

nutrients, and it could readily be envisaged how these

cells would be less susceptible to an antimicrobial

that relies on inhibiting biochemical pathways asso-

ciated with actively growing cells. These cells could

represent the �persister cells� that have been sug-

gested to be the resistant phenotype within a biofilm

community (59). Conversely, other studies have

demonstrated that biofilm resistance mechanisms

are actually not completely dependent on changes in

growth rates (7), and may be the result of upregula-

tion of particular genes by biofilm cells. Indeed, the

genes encoding ATP-binding cassette (ABC) trans-

porter proteins that are particularly associated with

azole drug resistance by efflux pump mechanisms in

C. albicans have been shown to be upregulated in

biofilms (69, 73).

Involvement of Candida biofilms in human infec-

tion is well recognized, particularly when occurring

on biomaterials used for implantable medical devices

(Fig. 2). Away from the oral cavity, biofilms of Can-

dida on the silicone rubber of artificial voice box

prostheses in laryngectomized patients have been

identified as a major cause of their failure. Urinary

tract infection by Candida in catheterized patients is

associated with biofilm formation on the inner lumen

of the catheter, and other infections including those

of prosthetic heart valves and replacement joints

have also been linked with Candida biofilms (18, 49,

96). Candida colonization of intravascular catheters
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is a major cause of catheter-related infections, and

has the highest associated mortality rate of such

infection (26). Candidal biofilm formation within

haemodialysis and peritoneal dialysis catheters is

frequent, with up to 20% infected (90). Such biofilms

are responsible for candidaemia or Candida perito-

nitis in patients receiving these treatments.

In terms of oral candidosis, the presence of an oral

prosthesis, most frequently an upper denture, is a

major predisposing factor for oral candidosis

(Table 3). Candida are highly adherent to polymeth-

ylacrylate, which is the base material of dentures, and

recent studies have demonstrated that Candida can

also exploit the presence of microfissures and cracks

within the material, thus facilitating retention and

biofilm promotion (120). An increased surface

roughness will also similarly aid colonization of the

denture by Candida. The formation of biofilms on

denture surfaces is promoted by poor oral hygiene,

and practices such as failure to remove the denture

whilst sleeping and poor denture cleansing are

strongly associated with denture biofilms. Further-

more, the abiotic surface of the denture means that

the ability to remove adherent microbes through self-

renewal of surface layers does not occur as would be

encountered on living mucosa. In addition, the static

conditions with respect to lack of salivary flow under

the fitting surface of the denture are also a contrib-

utory factor for biofilm formation, as mechanical

removal of microorganisms by the flushing action of

saliva is limited.

The form of oral candidosis that is most directly

associated with a Candida biofilm is chronic ery-

thematous candidosis, where colonization of the

denture surface in the form of a biofilm is an integral

component of the infection. In chronic erythematous

candidosis, the fitting surface of the denture acts as a

reservoir of infectious Candida cells, which, given

their close proximity to the palatal mucosal surface,

are suitably positioned to cause local infection. Nor-

mally the mucosal surface provides an effective bar-

rier to infection; however, an ill-fitting denture may

cause frictional irritation of the palatal mucosa and

this facilitates invasion of Candida into the superfi-

cial layers of the epithelium. On occasions, a denture

soft liner may be used to cushion the hard acrylic

material of the denture against the mucosa. The soft

liner serves to reduce friction and irritation, and to

distribute the load exerted by the denture on the

mucosa. Unfortunately, silicone rubber (the most

frequently employed material for soft liners) is also a

surface that Candida can readily colonize and

actually invade (16). Therefore, even when use of a

silicone rubber soft liner has improved the fit of a

denture, the clinical signs of denture stomatitis may

not always disappear. This is particularly the case for

patients whose denture cleansing regimens are poor.

In such instances, maintenance of oral hygiene is

vital, and antifungal agents might be considered as

an adjunct in the management strategy. There have

been attempts to incorporate antifungal agents di-

rectly into the soft liner material, but difficulties in

maintaining an adequate release of the agent over

sufficiently long periods have frequently been

encountered (38).

Fig. 2. Scanning electron micros-

copy of Candida biofilms formed on

silicone rubber surfaces for 48 h.

The scale bar in the images corre-

sponds to 10 lm. Original magnifi-

cation, · 5,000.

Table 3. Local and systemic host factors with associated
oral candidosis

Predisposing host factor Reference

Local host factor

Wearing dentures (17)

Steroid inhaler use (36, 37)

Reduced salivary flow (89)

Nutrition (100)

Systemic host factors

Extremes of age (124)

Endocrine disorders,

e.g. diabetes

(111)

Immunosuppression (29)

Receipt of broad-

spectrum antibiotics

(112)
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The wearing of a denture is also a predisposing

factor to other forms of oral candidosis, such as

hyperplastic candidosis and angular cheilitis (2).

Whilst these types of oral candidosis occur at sites

away from the denture biofilm, it is probable that the

increase in Candida numbers resulting from the

presence of a denture is a major contributory factor

in these infections (1).

Most natural host surfaces such as the oral mucosa

have major advantages compared with implanted

biomaterials and other non-shedding surfaces in

preventing Candida colonization and biofilm forma-

tion. Clearly, the innate immune response of the host

will be effective within the oral mucosa, and, as

previously mentioned, the fact that the oral epithe-

lium is continually replenished means that, in order

to colonize the oral mucosa, Candida must be pres-

ent in the mouth in sufficient numbers and with a

high enough growth rate to allow their continued

persistence. In healthy individuals, candidal biofilms

are therefore not generally seen on the palatal or

buccal mucosa, although low-level colonization will

be detected in cases of commensal carriage. In the

event of host debilitation causing an ecological shift

in favour of Candida growth, candidal biofilms may

develop on the mucosa itself (Fig. 3) (27). Indeed, in

cases of pseudomembranous candidosis and hyper-

plastic candidosis, multilayered growth of Candida

adhering to the mucosal surface can be seen using

histological staining methods applied to either

mucosa smears or biopsy sections (Fig. 4).

Candida biofilm formation

As described above, the presence of Candida biofilms

can play a significant role in clinical infection be-

cause of their resilience and resistance to normal host

removal mechanisms and also antimicrobial therapy.

In order to adequately treat and prevent these

infections, it is therefore first necessary to understand

the processes involved in candidal biofilm formation

and growth, which could then lead to the identifica-

tion of suitable targets for therapy.

Candida biofilm formation and infection is a

staged process comprising (i) adherence to the sur-

face, (ii) colonization, proliferation and invasion, and

(iii) detachment of biofilm cells to promote coloni-

zation and infection of distal sites. Altered gene

expression accompanies development of the biofilm,

and such changes can be detected soon after initial

attachment to the surface (75). In the case of

C. albicans, biofilm formation has been reported to

be associated with the upregulation of genes involved

in adherence (such as agglutinin-like sequence genes

and hyphal wall protein 1; Hwp1) (78) and also those

genes involved in amino acid biosynthesis and

metabolism (126).

The initial stage of adhesion of Candida to host

surfaces occurs through the combined effects of

C. glabrata C. tropicalis  

Fig. 3. Confocal laser scanning

microscopy images of (A) Candida

glabrata and (B) Candida tropicalis

colonizing and invading human oral

epithelium after 24 h incubation.

Candida yeast and filaments are

shown in red, and the nuclei of the

epithelial cells appear blue.

Fig. 4. Periodic acid Schiff-stained tissue section of

chronic hyperplastic candidosis showing tissue invading

Candida hyphae (purple-stained filaments).
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non-specific and specific adherence mechanisms.

One key non-specific force in adhesion is the

hydrophobic attraction of candidal surface molecules

to the intended site of attachment. Normally the

surface of a biomaterial will become rapidly coated in

proteinaceous components derived from condition-

ing fluids such as the constituents of saliva. Together

with electrostatic forces, a net attraction will be

generated that brings about the necessary close

proximity between the microorganism and the sur-

face to allow specific adhesion mechanisms to occur,

and several specific Candida adhesin molecules and

host receptors have been described. In the case of

Candida, it is usually the yeast form that is involved

in initial adherence (24).

Once a firm attachment of the yeast to the surface

has become established through specific adhesins

and host receptors, proliferation of Candida may

occur, with growth of the yeast and generation of

filamentous extensions. It is believed that ultimately,

hyphae provide the greatest component of the bio-

film biomass, with the yeast providing a base layer for

their attachment. In vitro studies using confocal laser

scanning microscopy analysis of C. albicans biofilm

formation on reconstituted human oral epithelium

have shown the importance of hyphal production in

the invasion process (13, 67). Cross-linking between

hyphal extensions mediated by interaction of Hwp1

and agglutinin-like sequence surface proteins (78)

might provide additional stability to the biofilm

structure. Candida species produce extracellular

polysaccharide to varying degrees, with large quan-

tities present in biofilms of C. albicans and lower

amounts for Candida glabrata (83). The extracellular

polysaccharide matrix produced by C. albicans bio-

films, whilst composed primarily of carbohydrates,

also includes proteins, hexosamine, phosphorus and

uronic acid (4, 8).

The extent of Candida proliferation is determined

by many factors, including the ability of the host to

elicit innate defensive mechanisms, the inherent

competition for nutrients and space provided by

other members of the oral microflora, and regulation

of biofilm formation by the Candida cells themselves.

There is now clear evidence for the presence of cell-

to-cell signalling molecules in bacterial biofilms that

serve as biofilm density-dependent regulators. These

chemicals are frequently termed �quorum sensing

molecules�, and include the acyl homoserine lactones

and small peptide regulators produced by Gram-

negative and Gram-positive bacteria, respectively.

The role of quorum sensing molecules in biofilms is

to regulate expression of a variety of genes that can

coordinate not only growth rate, but biofilm detach-

ment, virulence, antimicrobial resistance and even

induction of host cytokines. In the case of Candida

biofilms, two quorum sensing molecules have been

described, namely, farnesol (3,7,11-trimethyl-2,6,10-

dodecatriene-1-ol) and tyrosol (2-[4-hydroxyphenyl]

ethanol), and the concentration and effects of these

molecules on biofilms has been found to be time-

dependent. The recognition of farnesol production by

Candida was the first description of a quorum sens-

ing molecule in a eukaryotic system. Farnesol has

been shown to be an inhibitor of hyphal development

in C. albicans (47, 92, 106), and its accumulation in

mature biofilms is thought to be responsible for

inducing the release or detachment of yeast from the

biofilm (77). Recently, it was reported that C. albicans

also secretes dodecanol, which is a chemical inhibitor

of the yeast-to-hyphal transition (68). In contrast,

tyrosol appears to be an accelerator of candidal fila-

mentation under suitable conditions (21, 47), and

plays an important role in proliferation of the fila-

mentous form after the adherence phase and through

to intermediate biofilm stages (5).

Clinical presentation of oral
candidosis

Oral candidosis is not a single clinical entity, but is

recognized to occur as four distinct primary forms.

These include two transient types, namely pseudo-

membranous candidosis and acute erythematous

candidosis, and two persistent forms, termed chronic

erythematous candidosis and chronic hyperplastic

candidosis. In addition, the long-term immunosup-

pressive state associated with HIV infection ⁄ AIDS

and the more widespread administration of immu-

nosuppressive drugs has resulted in a prolonged form

of pseudomembranous candidosis, which may be re-

ferred to as chronic. Candida has also been implicated

in angular cheilitis and median rhomboid glossitis.

Each type of infection is associated with characteristic

clinical signs and symptoms that are influenced by a

range of predisposing factors (Table 3).

Pseudomembranous candidosis

Pseudomembranous candidosis is synonymous with

the term �oral thrush�, and is reported in neonates

and the elderly at rates of 5–10% (101). The infection

is characterized by the presence of superficial white

plaques that are easily removed by gentle rubbing of

the lesion (Fig. 1A) (99). The ability to remove these
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plaques is a diagnostic feature that differentiates

pseudomembranous candidosis from other forms of

white patch lesions of the oral mucosa. Histological

examination of the plaques reveals fungal elements

in the form of yeast and filamentous forms, together

with epithelial cells.

Acute erythematous candidosis

This condition is often referred to as �antibiotic sore

mouth�, as it tends to develop following a reduction

in the levels of the bacterial component of the oral

microflora after the receipt of broad-spectrum anti-

biotics. A decrease in bacterial numbers results in

reduced microbial competition for Candida in terms

of nutrition and adherence sites. The clinical signs

and symptoms of acute erythematous candidosis are

therefore a direct consequence of an ecological shift

in the normal homeostatic balance of the microbial

community. Acute erythematous candidosis presents

as a painful reddened lesion, and although the palate

or buccal mucosa may be involved, the most com-

mon site of infection is the dorsum of the tongue

(Fig. 1B). Cessation of antibiotic therapy results in a

return to normal levels of bacteria, which subse-

quently resolves the candidosis without intervention.

Concomitant use of steroid therapy, particularly in

inhaler form, is an additional contributing factor, as

this can create a localized area of immune suppres-

sion within the mucosa that permits overgrowth of

Candida.

Chronic hyperplastic candidosis

This form of candidosis characteristically presents as

a thickened white plaque, most frequently at the

commissure region of the mouth or on the dorsum

of the tongue (Fig. 1C). Of particular concern with

this form of infection is the potential for the devel-

opment of squamous cell carcinoma at lesional

sites, although the role of Candida in the process of

malignant change remains unclear (109, 122). Two

clinical types of hyperplastic candidosis have been

described based on the appearance of the lesion.

Homogeneous hyperplastic candidosis is described

as having smooth white lesions that are notably

distinct from those of heterogeneous hyperplastic

candidosis in which areas of erythema occur

resulting in a nodular, speckled appearance. It has

been suggested that heterogeneous lesions have a

greater likelihood of malignant transformation (12,

94). In contrast to pseudomembranous candidosis,

the white patch lesions of hyperplastic candidosis

do not rub off with gentle rubbing. Hyperplastic

candidosis can only be diagnosed by histopatho-

logical examination of lesional biopsy material,

which reveals candidal hyphae invading the epithe-

lium and an underlying chronic inflammatory cell

infiltrate (125). Uncertainty remains over whether

candidal invasion is the primarily ecological factor

of hyperplastic candidosis, or whether Candida

infection is secondary to the formation of an altered

epithelium. Almost all patients with hyperplastic

candidosis are smokers.

Chronic erythematous candidosis

Commonly known as Candida-associated denture

stomatitis, chronic erythematous candidosis presents

as a reddening of the mucosa beneath the fitting

surface of a denture (Fig. 1D). The infection may

develop under any acrylic denture or intra-oral

appliance, but is almost exclusively encountered on

palatal tissues. Principle host factors associated with

this condition are inadequate oral hygiene, failure to

remove dentures whilst sleeping, or poor denture fit

(32). Chronic erythematous candidosis is the most

prevalent form of oral candidosis, with up to 75% of

denture wearers having clinical signs of this condi-

tion, although the sufferer is often unaware of the

presence of infection (9).

Angular cheilitis

This condition presents as erythematous lesions at

one or more, or usually both of the angles of the

mouth. In addition to Candida, the spectrum of

microorganisms recovered from this condition

includes Staphylococcus aureus and streptococcal

species, either alone or in combination. Therefore,

the exact role that Candida itself plays in angular

cheilitis remains uncertain (110). Often, angular

cheilitis involving Candida occurs in patients with a

pre-existing primary form of oral candidosis, most

frequently chronic erythematous candidosis. The in-

creased level of Candida within the mouth of such

patients is most likely to be the major contributing

factor.

Other oral candidoses

Median rhomboid glossitis is a chronic mucosal

condition that, as its name implies, characteristically

presents as a symmetrically shaped lesion on the

midline of the dorsum of the tongue. Candida can

often be recovered from the surface of the lesion, has
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and is thus implicated in the aetiology. Furthermore,

resolution of the condition following provision of

systemic antifungal therapy supports the role of

Candida in the infection. As with other forms of oral

candidosis, tobacco smoking and steroid inhaler use

are recognized predisposing factors.

Chronic mucocutaneous candidosis is a rare

condition in which a range of chronic Candida

infections of mucous membranes, skin and nails are

encountered. The principle predisposing factor for

chronic mucocutaneous candidosis is congenital

impaired cellular immunity against Candida.

Management of oral candidosis

Principles of treatment

Successful management of patients with oral candi-

dosis requires identification, and where possible

correction, of the specific underlying predisposing

factors in an individual patient. Without this recog-

nition, subsequent treatment using antifungal

therapy may only result in the temporary relief of

infection, with relapses inevitably following. Instruc-

tions should be provided on appropriate oral hygiene

practices. Use of steroid inhalers should be coupled

with rinsing the mouth with water after administra-

tion. All patients should be advised on the importance

of reduction or cessation of any smoking habits. As

described below, oral hygiene practices are also

essential in removal of candidal biofilms on host

surfaces and oral prostheses.

Any identified nutritional deficiency should be

corrected, and advice provided on dietary habits such

as appropriate carbohydrate intake. However, despite

these interventions, situations arise in which the

underlying cause cannot be resolved, such as HIV

infection or immunosuppressive therapy following

organ or bone marrow transplant. In these circum-

stances, treatment of oral candidosis is based on the

use of antifungal therapy. Details on antifungal

agents are provided below, and Table 4 shows the

typical antifungal drugs and the treatment regimes

used specifically for oral candidosis.

Antifungal agents

Relatively few antifungal drugs are available when

compared to the range of antibiotics that have been

produced, which probably reflects both the relatively

recent recognition of the importance of fungal

infections in humans and the difficulty involved in

developing an agent with activity against a eukaryotic

cell type without problems of associated host cell

toxicity. Antifungal drugs are classified according to

their mode of action: (i) disruption of fungal cell

membranes, as seen with the polyene antifungals

(nystatin and amphotericin), (ii) inhibition of ergos-

terol synthesis, exemplified by the azole group of

antifungals (fluconazole and itraconazole), (iii) inhi-

bition of b-1,3-D-glucan synthesis (echinocandin

antifungals), and (iv) induction of incorrect RNA

synthesis and interference with DNA replication

(5-fluorocytosine).

Polyene antifungals exert their fungicidal activity

by inducing cell membrane porosity following

interaction with the ergosterol component of the

membrane, with the subsequent effect of loss of

cytoplasmic content. Polyenes have a broad spec-

trum of antifungal activity, but, due to their poor

absorption through the gut, their use in treatment of

oral candidosis is extremely limited. However, in view

of the fact that these agents are not absorbed, their

safety profile is good. A specific role for the topical

use of these agents is in cream format for the treat-

ment of chronic erythematous candidosis. Despite

wide use over several decades, the actual incidence of

resistance of Candida to polyenes is rare, but can

sometimes arise through a reduction in the ergosterol

content of cell membranes (105).

Azole antifungals are fungistatic through interfer-

ence with the fungal enzyme lanosterol demethylase,

which is a key enzyme in the biosynthesis of ergos-

terol. Both fluconazole and itraconazole are well ab-

sorbed through the gut, which means that oral

administration is an effective means of systemic

delivery. Furthermore, the effects of fluconazole in

the oral cavity are enhanced as it is secreted in saliva

at levels equivalent to those achieved in the blood.

Fluconazole is the agent of first choice for all forms of

oral candidosis apart from chronic erythematous

candidosis. The clinical effectiveness of agents that

can only be delivered topically, such as amphotericin

or nystatin, is limited due to problems in maintaining

sufficient levels of drug at the site of infection. The

taste of topical agents stimulates salivary secretion,

which rapidly dilutes and removes the antifungal

agent from the mouth. In view of this, their clinical

use is limited. Fluconazole has a good safety profile

when given systemically, with few contra-indications

or side effects. Important interactions occur with

coumarin anticoagulants and sulfonylurea antidia-

betic agents. Acquired resistance to azole antifungals

has emerged in recent years, and certain Candida

species are also inherently resistant to these agents.
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Several mechanisms of azole resistance have been

reported including (i) an alteration in the chemical

structure of the demethylase enzyme, (ii) removal of

the azole from the cell by multidrug transporter

pumps, and (iii) compensation by other sterol syn-

thesis enzymes in membrane biosynthesis. Even in

the absence of a defined resistance mechanism, the

in vitro susceptibility of a given Candida strain often

does not correlate with the subsequent clinical out-

come for patients with oral candidosis. One possible

explanation for this could relate to the phenotypic

differences described above for planktonic and bio-

film cultured cells, as it is the former that are most

frequently used for in vitro antifungal susceptibility

testing.

Management of candidal biofilms

As described previously, the presence of candidal

biofilms reduces the likelihood of removal of organ-

isms by host defence mechanisms and antifungal

agents. Thus appropriate management of biofilms is

essential. There is no single approach that can be

used to specifically counter candidal biofilms, and a

variety of mechanical and chemical methods to im-

prove oral hygiene are generally adopted. Ideally an

�anti-biofilm� approach will prevent development of

the biofilm in the first instance, as well as being

effective against established biofilms.

Standard oral hygiene practices including tooth-

brushing and the use of mouthwashes are important

Table 4. Recommended antifungal agents for treatment of oral candidosis

PMC AEC CEC CHC Typical adult dose

Topical

administration

Nystatin Yes one lozenge:

100,000 units

q.i.d. · 7–14 days

Suspension: 500,000

units by rinse and

swallow q.i.d. · 7–

14 days

Amphotericin Yes one lozenge (10 mg)

q.i.d. · 10–15 days

Miconazole Yes Oral gel (24 mg ⁄
ml); 5–10 ml q.i.d. ·

7–14 days

Clotrimazole Yes one lozenge (10 mg)

five times per day ·
7–14 days

Systemic

administration

Ketoconazole Yes Yes Yes 200–400 mg ⁄ day ·
7–14 days

Fluconazole Yes Yes Yes 100 mg ⁄ day · 7–

14 days

Itraconazole Yes Yes Yes 200 mg (20 ml) sus-

pension by rinse and

swallow without

food q.i.d. · 7–

14 days 200 mg ⁄
day (capsules taken

with food) · 2–

4 weeks

PMC, pseudomembranous candidosis; AEC, acute erythematous candidosis; CEC, chronic erythematous candidosis; CHC, chronic hyperplastic candidosis. q.i.d.,
four times per day.
Other antifungal agents are available and these may be more frequently used in hospitalized patients.
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tools in oral biofilm removal. Toothbrushing offers a

physical means to combat biofilms (97), but may be

limited to accessible sites within the oral cavity and

can have deleterious effects on acrylic denture sur-

faces if abrasive toothpastes are used. In such cases,

the resulting roughened acrylic surface could, in

theory, be more conducive to subsequent biofilm

formation. It has been suggested that mechanical

toothbrushing may offer an advantage over manual

toothbrushing by having an additional physical

influence on biofilms at sites inaccessible to the

toothbrush bristles, such as interproximal regions.

Potential benefits of sonication include possible

cavitation of surrounding fluids and generation of

shear forces, which then disrupt the biofilm, although

its clinical value remains uncertain (45). The poten-

tial antifungal effects of such shear forces on Candida

are as yet not known. Nevertheless, as dental plaque

contains yeast, toothbrushing will serve to reduce the

level of Candida in the mouth and also maintain

normal levels of mucosal resistance to fungal infec-

tions, which can otherwise be reduced with deterio-

ration in oral hygiene.

A wide variety of mouthwashes have been found

to have anti-candidal activity, including chlorhexi-

dine gluconate, trichlosan and those incorporating

essential oils. Chlorhexidine is a cationic chlor-

ophenyl bisbiguanide and is perhaps the most fre-

quently used mouthwash. Chlorhexidine exhibits a

broad spectrum of antimicrobial activity that

encompasses Candida species (66). It is believed to

bind to negatively charged Candida surfaces, and

induces a loss of structural integrity, decreases

adherence capability and disrupts the cell wall.

Chlorhexidine’s anti-candidal properties are also

retained against Candida that is adhered to acrylic

surfaces (88), and is therefore of value in the treat-

ment of chronic erythematous candidosis. Studies

have shown that 0.2% chlorhexidine gluconate

mouth rinses exhibit clinical benefit in the treat-

ment of acute erythematous and pseudomembra-

nous candidosis (15, 30). However, there are reports

of reduced efficacy of nystatin when used in com-

bination with chlorhexidine gluconate, and therefore

it is often advocated that nystatin treatment be

delayed for 30 min after use of chlorhexidine

mouthwash. The reason for the reduced efficacy has

been proposed to be due to the formation of a low

solubility chlorhexidine-nystatin salt that is less

effective as an antibiotic agent (10).

Essential oil mouthwashes containing a range of

natural plant extracts, including thymol, eucalyptol,

bioflavanoids and tea tree (Melaleuca alternifola) oil

derivatives, have also been shown to have direct

bactericidal and anticandidal activity in vitro (33,

82). It is thought that essential oil mouthwashes kill

microorganisms by cell membrane disruption and

enzyme inhibition (34, 57). As with traditional

antifungal agents, however, the effectiveness of

natural antimicrobials on established biofilms in

the oral cavity is less certain, with incomplete

penetration by the agents being reported (76). The

clinical efficacy of this category of mouthwashes

has been studied, but largely against plaque bac-

teria (35, 84), and therefore the clinical benefits of

these agents in treating oral candidosis remain to

be established.

One of the main problems associated with eradi-

cating a biofilm from a biomaterial implanted within

the body is the difficulty of access for biofilm removal

or biomaterial replacement. Often the latter is the

only option available for the management of infec-

tion of certain indwelling catheters and artificial

voice box devices. With regard to dentures, their

replacement or removal for thorough cleaning is a

relatively easy option. It is essential that dentures are

removed during sleep and ideally immersed in a

suitable antimicrobial cleansing agent. The mouth

rinses described above can all be used, but as the

denture is no longer in contact with the host tissues,

other chemically harsher cleansers such alkaline and

neutral peroxide-type cleansers, hypochlorite, tetra-

sodium EDTA and acidic solutions may also be em-

ployed. Often these agents are used to soak dentures

for a defined time period in an immersion bath,

thereby allowing the cleansing agent to access areas

that are inaccessible by brushing. Prior to use, the

dentures are then rinsed in water to remove the

treatment agent. Furthermore, water at high tem-

peratures may also be incorporated into the cleaning

regime, and the added value of microwaving

water-immersed dentures in the treatment of denture

stomatitis has also been reported (123). Regular

microwaving of dentures, where temperatures

approach 100 �C, has been shown to have no adverse

affect on the hardness of the denture resins, although

increased surface roughness was noted (65).

Future strategies for management of
candidal biofilms

One strategy that has been the focus of recent

research is to actually modify the surfaces of

biomaterials so that they are less prone to coloniza-

tion by microorganisms, including Candida (86, 87).

Approaches have included pre-coating biomaterials

260

Williams et al.



such as silicone rubber or denture acrylic with

chemicals such as silanes, chlorhexidine, histatins

and other surface-modifying groups (20, 87, 88).

In addition, thin-film polymer formulations with

incorporated antifungals (nystatin or amphotericin)

have also recently been shown to inhibit C. albicans

biofilm growth on denture materials (93). Such

approaches will clearly have value in combating

biofilm formation on indwelling medical devices that

are not readily accessible for cleaning and physical

removal of the biofilm, e.g. artificial voice prostheses

(31).

In the future, it may be possible to exploit quorum

sensing molecules to disrupt biofilms as they devel-

op, and it has already been shown that farnesol has

deleterious effects on Candida biofilms, causing

structural instability, even for mature biofilms (48,

92).

Reducing the candidal load within the oral cavity

through the use of probiotic agents is also a consid-

eration. Probiotics are live microorganisms that,

when administered in adequate amounts, confer a

health benefit on the host (70). The concept behind

their use in treatment of oral candidosis would be to

provide microbiological pressure in the local envi-

ronment, either through competition for adherence

sites and nutrients or by creating an environment

that is not conducive to the growth of Candida. There

would also appear to be beneficial effects induced by

probiotics through immune modulation. Previous

studies have used bacterial species such as Strepto-

coccus thermophilus and Lactobacillus bulgaricus to

treat biofilms on indwelling voice prostheses (117,

118), and more recently, in the form of cheeses

containing probiotic organisms, to reduce Candida

load in the oral cavity (42). However, the long-term

ability of probiotics to modulate the normal micro-

flora remains unknown.

Conclusion

Biofilm formation is now a well-recognized phe-

nomenon, and there is clear evidence demonstrating

the importance of this life style in human infection.

Candida is adept at forming biofilms on a range of

surfaces, including natural host tissues and bioma-

terials frequently used in medical devices. Such bio-

films are linked to both systemic and superficial

forms of candidosis in humans. New techniques

including confocal laser scanning microscopy and

molecular analysis tools are enabling elucidation of

the control mechanisms underlying biofilm forma-

tion. By increasing our knowledge of candidal biofilm

formation, potential therapeutic targets may well be

identified that can be used as additional therapies,

alongside standard oral hygiene practices, in pre-

venting oral candidosis.
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90. Ramage G, Martı́nez JP, López-Ribot JL. Candida biofilms

on implanted biomaterials: a clinically significant prob-

lem. FEMS Yeast Res 2006: 6: 979–986.

91. Ramage G, Saville PS, Thomas PD, López-Ribot JL. Can-
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