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 multi-objective approach for the motion planning of redundant manipulators
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b s t r a c t

inematic redundancy occurs when a manipulator possesses more degrees of freedom than those
quired to execute a given task. Several kinematic techniques for redundant manipulators control the
ipper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with
predictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and,

oreover, often there are multiple optimization objectives that can conflict between them. Unlike single
timization, where one attempts to find the best solution, in multi-objective optimization there is no

ngle solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant
bots remains an important area of research and more efficient optimization algorithms are needed.
is paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a
ulti-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a
ulti-objective genetic algorithm to control the joint positions. Simulations for manipulators with three
four rotational joints, considering the optimization of two objectives in a workspace without and with
stacles are developed. The results reveal that it is possible to choose several solutions from the Pareto
timal front according to the importance of each individual objective.
ulti-objective genetic algorithms 
rajectory planning
. Introduction

Kinematic redundancy occurs when a manipulator possesses
ore degrees of freedom than the required to execute a given

ask. In this case the inverse kinematics admits an infinite num-
er of solutions, and a criterion to select one of them is required.
ost of the research on redundancy deals with the use of these

xtra degrees of freedom and is referred to in the literature as the
esolution of redundancy [1].

A class of techniques for solving the kinematics of redundant
anipulators that was suggested controls the end-effector indi-

ectly, through the rates at which the joints are driven, using
he pseudo-inverse of the Jacobian (see, for instance, [2]). The
seudo-inverse of the Jacobian matrix guarantees an optimal
econstruction of the desired end-effector velocity – in the least-
quares sense – with the minimum-norm joint velocity. However,
ven though the joint velocities are instantaneously minimized,

here is no guarantee that the kinematic singularities are avoided
3]. Moreover, this method has the generally undesirable property
hat repetitive end-effector motions do not necessarily yield
repetitive joint motions. Klein and Huang [4] were the first to
observe this phenomenon for the case of the pseudo-inverse
control of a planar three-link manipulator. Baillieul [5] proposed a
modified Jacobian matrix called the extended Jacobian matrix. The
extended Jacobian is a square matrix that contains the additional
information necessary to optimize a certain function. The inverse
kinematic solutions are obtained through the inverse of the
extended Jacobian. The algorithms, based on the computation of
the extended Jacobian matrix, have a major advantage over the
pseudo-inverse techniques, because they are locally cyclic [6]. A
large volume of research has been produced in the last few years
in this topic [7–10]. For example, Zhang et al. [11] solve the joint
angle drift problem by means of a dual-neural-network based
quadratic-programming approach.

One optimization method that is gaining popularity for solv-
ing complex problems in robotics is the Genetic Algorithm (GA)
approach. GAs are population-based stochastic and global search
methods. Their performance is superior to that revealed by classi-
cal optimization techniques [12] and has been used successfully in
robot path planning.

GAs was first introduced in robot motion planning by Parker
et al. [13] that used GAs to position the end-effector of a robot at

a target location, while minimizing the largest joint displacement.
This method has some shortcomings, such as the lack of precision
and is affected by the values of the weights. Arakawa et al. [14]
developed a virus-evolutionary GA with subpopulations (VEGAS)
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http://www.sciencedirect.com/science/journal/15684946
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or the trajectory generation, composed of a host population and
virus population that minimizes total energy. The operators of

rossover, mutation, virus infection and selection are executed
n each subpopulation independently. Kubota et al. [15] studied

hierarchical trajectory planning using a virus-evolutionary GA
nd running simultaneously two processes. One process calculates
ome manipulator collision-free positions and the other generates
collision-free trajectory by combining these intermediate posi-

ions. de la Cueva and Ramos [16] proposed a GA for planning
aths without collisions for two robots, both redundant and non-
edundant, sharing the same workspace. The GA works directly
ver the task space adopting the direct kinematics. Each robot is
ssociated with one population and each string of a population
epresents a complete robot path. Nishimura et al. [17] devel-
ped a motion planning method using an artificial potential field
nd a GA for a hyper-redundant manipulator whose workspace
ncludes several obstacles. The motion planning is divided into
wo sub problems. The first is the “Path planning” that generates

trajectory leading the tip of manipulator to the goal without
ollisions, using the artificial potential field concept. The second
onsists in the “Collision-free sequence generation” that generates
sequence of movements by which distinct parts of the manipula-

or can avoid collisions with the obstacles. McAvoy and Sangolola
18] proposed an approach with GAs for optimal point-to-point

otion planning of kinematically redundant manipulators. Their
pproach combines B-spline curves with GAs, for obtaining the
ptimal solution. Peng and Wei [19] presented the ASAGA trajec-
ory planning method of redundant manipulators by combining a
tochastic search algorithm (simulated annealing algorithm) and a
A. In the ASAGA the selection, crossover and mutation operators
re adjusted by using an adaptive mechanism based on the fitness
alue. Zhang et al. [20] developed an algorithm to solve the inverse
inematics of a flexible macro–micro manipulator system which
ombines a GA and a neural network. Pires et al. [21] proposed
multi-objective GA, when considering up to five simultaneous

bjectives, to generate manipulator trajectories and for obstacle
voidance. Castillo et al. [22] applied single-objective and multi-
bjective GAs to the problem of offline point-to-point autonomous
obile robot path planning. The multi-objective problem, solved

ased on Pareto optimality, optimizes two criteria: the length and
he difficulty of the path. Saravanan et al. [23] used NSGA-II and

ODE to obtain optimal trajectory planning in the presence of
bstacles for an industrial robot. To select the best optimal solution
rom the Pareto optimal front two methods are used: normalized
eighted objective functions and average fitness factor method.

n the first, the multiple objective functions are combined into
ne scalar value using a weight vector. In the second, a fitness
actor is calculated for each objective function and the solution
hat has the highest average fitness factor value is selected. Sar-
vanan et al. [24] applied MOGA, NSGA-II and MODE to obtain
ptimum geometrical dimensions of three types of robot grip-
er mechanisms. We can find considerable information in the
ork of Masehian and Sedighizadeh [25] that made a chronolog-

cal review of classic and heuristic approaches in robot motion
lanning.

In this paper, we propose a modified multi-objective GA to solve
he inverse kinematics of redundant manipulators, while consider-
ng the problems of repeatability, precision and obstacles in the

orkspace. Having these ideas in mind, the paper is organized
s follows. Sections 2 and 3 introduce the fundamentals of the
inematics of redundant manipulators and the main concepts sup-
orting the GAs, adopted in the rest of the paper. Based in these

oncepts, Section 4 presents the new closed-loop multi-objective
A (CLMOGA) and the open-loop GA (OLGA). Section 5 analyzes

he simulation results in a workspace without and with obstacles.
inally, Section 6 draws the main conclusions.
2. Kinematics of redundant manipulators

We consider a manipulator with n degrees of freedom whose
joint variables are denoted by q = [q1, q2, . . ., qn]T. We assume that
the class of tasks we are interested in can be described by m vari-
ables, x = [x1, x2, . . ., xm]T, m < n, and that the relation between q and
x is given by the direct kinematics:

x = f (q) (1)

The differential kinematics was introduced by Whitney [26] that
proposed the use of differential relationships to solve for the joint
motion from the Cartesian trajectory of the end-effector. Differen-
tiating (1) with respect to time yields:

ẋ = J(q)q̇ (2)

where ẋ ∈Rm, q̇ ∈Rn, and J(q) = ∂f (q)/∂q ∈Rm×n. Hence, it is pos-
sible to calculate a path q(t) in terms of a prescribed trajectory x(t)
in the operational space.

Eq. (2) can be inverted to provide a solution in terms of the joint
velocities:

q̇ = J#(q)ẋ (3)

where J# is the Moore–Penrose generalized inverse of the Jacobian
J [2,27].

When the manipulator is redundant, m < n, the Jacobian J is not
a square matrix. In order to obtain a square matrix, we will define
in Section 4 an extended Jacobian matrix, J+ ∈Rn×n.

In the closed-loop pseudo-inverse (CLP) method the joint
positions can be computed through the time integration of the
expression:

�q = J#(q) �x (4)

where �x = xr − x and xr is the vector of reference (desired) position
in the operational space. Nevertheless, in a previous study, address-
ing the CLP method [28], it was concluded that this method leads
to unpredictable, not repeatable, arm configurations and reveals
properties resembling those that occur in chaotic systems. As a
consequence, the motion in joint space becomes unpredictable for
subsequent cycles.

3. Genetic algorithms

GAs constitute a popular heuristic approach to multi-objective
design and optimization [29]. GAs are a method for solving both
constrained and unconstrained optimization problems, based on
the mechanics of natural genetics and selection that was first intro-
duced by Holland [30]. A GA allows a population composed of many
individuals to evolve under specified selection rules to a state that
maximizes the fitness function. The GA modifies repeatedly the
population of individuals (possible solutions). At each step, the GA
selects individuals at random, from the current population, to be
parents, and uses them to produce the offspring for the next gener-
ation. Over successive generations, the population evolves towards
an optimal solution. The GAs can be applied to solve a variety of
optimization problems that are not well suited for standard opti-
mization algorithms, including problems in which the objective
function is discontinuous, not differentiable, stochastic, or is highly
nonlinear.

The GA operates with a population of chromosomes normally
randomly initialized. The GA uses two operators to generate

new solution from existing ones: crossover and mutation. In the
crossover operator, generally two chromosomes (the parents) are
combined together to form new chromosomes (the offspring). The
mutation operator introduces random changes into characteristics
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f chromosomes and reintroduces genetic diversity into the
opulation.

.1. Multi-objective optimization

In many applications the fitness function involves multiple,
ften conflicting, objectives. Unlike single objective optimization,
here one attempts to find the best solution, in multi-objective

ptimization there is usually no single solution that is optimum
ith respect to all objectives. There are two general approaches to
ulti-objective optimization [29]. One is to combine the individ-

al objectives into a single composite function, or to move all but
ne objective to the constraint set. In both cases, an optimization
ethod would return a single solution rather than a set of solutions

hat can be examined for trade-offs. The second general approach
s to determine an entire set of Pareto optimal solutions or a repre-
entative subset. Consequently, there is one set of optimal solutions
nown as the Pareto-optimal set, the set of non-dominated solu-
ions that represents the trade-off between the objectives. Without
dditional information, all these solutions are equally satisfactory,
n the sense that no improvement can be achieved in one objective

ithout the degradation in, at least, one of the remaining objectives.
If all objective functions are for minimization, a feasible solution

1 dominates another feasible solution s2 (s1 � s2) in the Pareto-
ptimality sense if, and only if, s1 performs better in at least one
bjective and, at least, as good as s2 in the rest:

1 � s2 ⇔ ∀ˇ ∈ {1, . . . , nobj} : fˇ(s1)

≤ fˇ(s2) and ∃� ∈ {1, . . . , nobj} :

f�(s1) < f�(s2) (5)

here nobj is the number of objective functions f. If none of the two
easible solutions, s1 and s2, dominates the other, then they are said
o be non-dominated. A solution is classified to be Pareto-optimal
f it is non-dominated by any other solution in the solution space:

1 is Pareto-optiomal ⇔ s2 ∈ S : s2 � s1 (6)

here S is the solution space.
Generally, multi-objective GAs differ based on their fitness

ssignment procedure, elitism, or diversification approaches [29].
he first multi-objective GA was proposed by Schaffer [31] that
onsidered the extension of the simple GA to accommodate vector-
alued fitness measures, denoted as Vector Evaluated Genetic
lgorithm (VEGA). Since then, other researchers developed new
ethods, such as Multi-objective Genetic Algorithm (MOGA) [32],
iched Pareto Genetic Algorithm (NPGA) [33], Strength Pareto
volutionary Algorithm (SPEA) [34], Fast Non-dominated Sort-
ng Genetic Algorithm (NSGA-II) [35], Dynamic Multi-objective
volutionary Algorithm (DMOEA) [36], Multi-objective differential
volution (MODE) [37], and several others [38,39].

In this paper, it is adopted the NSGA-II where the crowded tour-
ament selection and the crowding distance operators are replaced
y the MaxiMin sorting scheme, which will be described in the
equel.

.2. NSGA-II

The NSGA-II is a procedure for finding multiple Pareto opti-
al solutions that uses an elite-preserving mechanism. Moreover,
SGA-II uses a fast non-dominated sorting procedure and adopts
n explicit diversity preserving mechanism.
Initially, at generation T = 0, a random parent population P(T), of
ize nP = N, is created. The population is sorted based on the non-
omination. Each solution is assigned to a fitness equal to its non-
omination level. Then, the operators of crossover and mutation
are applied to create an offspring population Q(T), of size nQ = N.
Thereafter, in generation T, the following procedure is applied. First,
a combined population R(T) = P(T) ∪ Q(T), of size nR = 2N, is formed.
Then, non-dominated fronts F1, F2, . . ., Fk, are identified in the pop-
ulation R(T), where F1 is the best non-dominated set, F2 is the
second best non-dominated set, and so on. The new parent pop-
ulation P(T + 1), is filled starting from solutions in F1, then F2, and
so on, until the size exceeds nP = N. To choose exactly nP = N ele-
ments in P(T + 1), the solutions of the last accepted front are sorted
in descending order according to a crowded comparison criterion
(a measure of density of solutions in the neighborhood) and the
first best individuals needed to complete the parent population
are selected. After, the new population P(T + 1) is used for selec-
tion, crossover and mutation to create a new offspring population
Q(T + 1), of size nQ = N. It is used a tournament selection based on
the crowding distance to select parents from P(T + 1).

3.3. MaxiMin sorting scheme

The MaxiMin sorting scheme [40] is a modified version for the
elitist selection operator used in NSGA-II. The crowding distance
method is replaced by a MaxiMin technique leading to more uni-
formly distributed solutions than those achieved by the original
crowding distance sorting scheme.

Similarly to the NSGA-II, the new parent population P(T + 1) is
filled starting from solutions in F1, then F2, and so on, until the size
exceeds nP = N. To choose exactly nP = N solutions in P(T + 1), a max-
imum function is called to select the solutions of the last accepted
front. To do this, the distance between each non-dominated solu-
tion and the set of solutions already selected in the new population
P(T + 1) is evaluated. The solution, whose distance to the set is
greater, is selected. Every time a solution enters to the population
P(T + 1) the fitness of non-dominated solutions is reevaluated. This
process continues until the population size is nP = N.

3.4. Preferences in multi-objective evolutionary optimization

Many situations and problems in real world commonly involve
the optimization of two or more conflicting objectives at once. A
consequence of this state of affairs is that it is not possible to reach
an optimal solution with respect to all the objectives evaluated
individually. A solution that is better with respect to one objec-
tive requires normally a compromise with respect to the other
objectives.

From a practical point of view the user needs only one solu-
tion; therefore, choosing a particular solution for implementation
is the remaining decision-making task. Thus, the final solution of
a multi-objective optimization problem results not only from the
optimization process, but also from the decision process. Incor-
porating preference information in Evolutionary Multi-objective
Optimization Algorithms (EMOA) can help with the problem of
the exponential explosion of the number of solutions required for
approximating the entire Pareto front as the number of objectives
grows. Preference information can be used to concentrate on a
small region of the Pareto front, while the EMO algorithms are used
to find solutions in such a small region [41]. Usually, a decision is
made based on the preferences of the decision-maker. Such prefer-
ences can be incorporated before, during, or after the optimization
takes place. Rachmawati and Srinivasn [42] classified these algo-
rithms as a priori, interactive and a posteriori methods, respectively.

A priori methods involve preference specification before the
optimization process takes place. A popular approach to specify

the decision-maker preferences in an a priori method is to form a
weighted sum or some other scalarization of the multiple objec-
tives, creating in this way a single-objective function to optimize,
or by converting the objectives into restrictions imposed on the



o
p
n
t
b

o
a
T
e
t

o
fi
s
t

d
s
F
T
g
o
t
f
p
d
a
a
P
g
b
e
m
t
o
s
a
a
t
f
[
a
t
e
p
t
s
m
o
t
d
t
r
R
i
a
s
T
t
t
a
p
a

a

ptimization problem. However, this normally addresses another
roblem since the chosen alternative may be highly sensitive to the
ature of scalarization used [43]. Moreover, for problems with more
han three objectives, the process of specifying the right parameters
ecomes very difficult as the number of objectives increases.

Interactive methods allow preference specification during the
ptimization process, generating, in this way, better alternative
ccordingly with the information received from the decision maker.
he interactive approaches allow decision makers to alter param-
ters during the search and effectively influencing the direction of
he search.

A posteriori methods involve preference specification after the
ptimization process. Thus, the effort must be developed towards
nding a set of well distributed Pareto-optimal solutions, by con-
idering all objectives to be important. The decision maker must
hen use high-level information to select his preferred solution.

A considerable number of papers appeared in the literature
efining methodologies that allow the incorporation of the deci-
ion maker’s preferences into the search procedure. Fonseca and
leming [32] used MOGA with interactive goal attainment method.
here are two kinds of parameters in that method, namely: the
oal vector and the weight coefficient for each objective, all
f them specified by the designer before starting the optimiza-
ion. Jin and Sendhoff [44] developed a method for converting
uzzy preferences into interval-based weights, which are incor-
orated in the EMOA using random weighted aggregation and
ynamic weighted aggregation techniques [45]. The method is
ble to find a number of solutions instead of a single one, given
set of fuzzy preferences over different objectives. Cvetkovic and
armee [46] used a method where the decision maker adopts lin-
uistic variables and modifiers to define the relative importance
etween two objectives that are transformed into a fuzzy pref-
rence matrix to establish an order between the objectives. The
ethod is integrated into multi-objective optimization methods

hat use weights: weighted sum-based method, weighted Pareto
ptimization, weighted coevolutionary optimization, and weighted
cenario and constraint handling. Ishibuchi et al. [47] implemented
hybrid algorithm of NSGA-II to incorporate a priori information

bout the decision’s maker preference into EMOAs, modifying only
he parent selection phase of NSGA-II. It is adopted a scalarizing
unction defined by the given preference information. Ferreira et al.
48] proposed a methodology, based on a weight stress function
pproach, to select a single solution (or a set of solutions) from
he set of non-dominated solutions, taking into account the pref-
rences of the decision-maker. Kao and Jacobson [49] studied the
roblem of post-optimality selection by providing a framework
o obtain a preferred subset of solutions from a very large set of
olutions. A value function represents the preferences of a decision-
aker across the objective functions. The subset of preferred Pareto

ptimal solutions can be calculated by solving a discrete optimiza-
ion problem, PPOSP, which allows the decision-maker to obtain a
esirable subset of size N, based on threshold values for each objec-
ive function. Deb and Gupta [50] developed an EMOA to find the
obust optimal frontier instead of the global Pareto-optimal front.
obustness is a measure of the sensitivity of a solution performance

n objective functions against perturbations in the decision vari-
bles. Thus, robustness of a solution means the insensitivity of that
olution when disturbance or noise existed in decision variables.
wo measures of robustness are presented: in the first approach,
he original objective functions are replaced by the mean effec-
ive objective values computed at a point; in the second approach,

constraint limiting the change in function values due to local

erturbations, is added, to the original objectives. Other research
pproaches can also be found in [51–55].

In this paper, the decision maker preferences are incorporated
posteriori.
4. Proposed method for robot trajectory control

In this section we formulate a new method for the robot tra-
jectory control of a redundant planar manipulator in periodic
trajectories. The proposed method combines the CLP method with
an EMOA, namely the closed-loop multi-objective genetic algo-
rithm (CLMOGA).

With the CLMOGA the joint positions can be calculated using the
closed-loop structure. With this algorithm the configurations for
a given instant t are calculated using the configurations obtained
at the instant t − �t, where �t is the sampling time. The inverse
kinematics is solved without the use of the pseudo-inverse matrix.
For this purpose, the Jacobian matrix is extended in order to form
a square matrix.

The algorithm aims finding a set of non-dominated solutions
to the inverse kinematics, when considering two objectives simul-
taneously. From this set is then selected the solution that satisfies
certain criteria predefined by the user. This is an a posteriori method.

In order to find an initial robot joint configuration it is used a
simple GA to be defined in Section 4.2. This method denoted as
OLGA-Open Loop Genetic Algorithm adopts the direct kinematics.

4.1. The CLMOGA formulation

The CLMOGA takes advantage of the closed-loop structure with-
out requiring the calculation of the pseudo-inverse. The CLMOGA
uses an extended Jacobian matrix, J̄ ∈Rn×n, and an extended vector,
�x ∈Rn, as a strategy to obtain the joint configurations for a given
end-effector position.

The matrices J̄ and �x take the form:

J =
[

J
J∗

]
�x =

[
�x
�x∗

]
(7)

where J ∈Rm×n is the Jacobian of a n-link planar manipulator (i.e.,
m = 2). The Jacobian J has a recursive nature according with the
expression:

J =

⎡
⎢⎢⎢⎢⎣

−
n∑

k=1

lkS1...k · · · −lnS1...n

n∑
k=1

lkC1...k · · · lnC1...n

⎤
⎥⎥⎥⎥⎦ (8)

where li is the length of link i, qi. . .k = qi + . . . + qk, Si. . .k = sin(qi. . .k)
and Ci. . .k = cos (qi. . .k), i, k ∈N, and

�x =
[

�x1
�x2

]
(9)

The matrices J∗ ∈R(n−m)×n and �x∗ ∈ Rn−m can be calculated
using expressions:

J∗ =
[

j(m+1)1 · · · j(m+1)n
· · · jik · · ·
jn1 · · · jnn

]
�x∗ =

⎡
⎢⎢⎢⎢⎢⎣

�xm+1
...
�xi
...

�xn

⎤
⎥⎥⎥⎥⎥⎦ (10)

where the matrix elements jik and �xi, i = m + 1, . . ., n and k = 1, . . ., n,
are values generated by the GA in the intervals [jmin, jmax] and
[�xmin, �xmax].

The joint positions, using the square matrix J̄, are computed

through the time integration of the joint velocities given by the
expressions:

�q = (J̄)
−1

�x (11)
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Fig. 1. Diagram o

The CLMOGA procedure is shown in Fig. 1, where xp is the vector
f reference (desired) position in the operational space and xr is a
ector representing the current position of the end-effecter in the
perational space.

The algorithm begins by calculating the values of J and �x
sing expressions (8) and (9). The generation counter is initial-

zed with T = 0 and an initial population of chromosomes, P(T) = [(J*,
x*)(T,1), . . ., (J*, �x*)(T,N)], with dimension nP = N, is constructed

andomly. For each element i of the population in generation T, the

orresponding extended matrices, (J̄)
(T,i)

and (�x)
(T,i)

, i = 1, . . ., N,
sing expressions (7) are calculated. Then the inverse matrix,

(J̄))
(T,i)

, is calculated and the corresponding values (�q)(T,i) and
(T,i) obtained using expressions:

�q)(T,i) = ((J+)−1)
(T,i)

(�x)
(T,i)

, i = 1, . . . , N (12)

nd

(T,i) = �q(T,i) + q0, i = 1, . . . , N (13)

The population is sorted based on the non-dominance of solu-
ions. After that it is adopted a binary tournament selection. The
elected strings are randomly grouped together into pairs and a
rossover point is randomly selected for each one of the n − m lines
f the parent. Then crossover is performed among pairs, generating
new offspring population Q(T = 0) of size nQ = N. Finally, the muta-

ion operator is used so that one variable value is replaced with a
ew random one. The population Q(T = 0) is then evaluated. There-
fter, we use the following algorithm in every generation until the

aximum number of generations defined by the user is reached.

irst, a combined population R(T), of size nR = 2N, is formed using
opulations P(T) and Q(T) and then the population R(T) is classi-
ed using the MaxiMin sorting scheme. The new parent population
LMOGA method.

P(T + 1) is filled by choosing N solutions from R(T). The new popula-
tion P(T + 1) is used for selection, crossover and mutation to create
a new offspring population Q(T + 1) of size nQ = N.

When the stopping criteria is satisfied, the new configuration for
the joint positions is selected. At this stage it is necessary to use a
priori information, provided by the user, to select a solution among
the set of non-dominated solutions obtained by the algorithm. This
method will be described in Section 4.1.3.

4.1.1. Representation in the CLMOGA
Each chromosome (string) is implemented by a matrix of

nV(n − m) × (n + 1) values (genes), accordingly to expression (10).
For the generation T, the pth chromosome of the population is
represented as:[

(J∗)(T,p)
... (�x∗)(T,p)

]
(14)

where

(J∗)(T,p) =
[

j(T,p)
ik

]
∈R(n−m)×n (15)

and

(�x∗)(T,p) =
[

�x(T,p)
i

]
∈Rn−m (16)

4.1.2. Objective functions
In order to make the inverse kinematics repetitive, the following

objective function minimizes the joint displacement between the

current joint position and the initial joint position:

f1 = q̇T q̇ +
(

q − q0

�t

)T (
q − q0

�t

)
(17)
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here q and q0 represents the current and the initial joint config-
rations, respectively, and �t is the step time increment.

In order to minimize the positional error, Xe, between the
nd-effector desired position and the obtained final position, it is
onsidered the following objective function:

2 = Xe =
√

(xr1 − xf 1)2 + (xr2 − xf 2)2 (18)

here xr = (xr1, xr2) and xf = (xf1, xf2) are vectors representing the
nd-effector reference (desired) position and the obtained position,
espectively.

.1.3. Decision making methodology
The adopted methodology selects a solution from the Pareto

et after the search process has been performed. Therefore, this
onstitutes an a posteriori method.

Suppose that the Pareto front obtained has M elements. First,
ach one of the objective functions f� is normalized to have the
ame range, leading to function z�, ˇ = 1, . . ., nobj, i.e., zˇ ∈ [0, 1],
hrough the expression:

ˇ,� = fˇ,� − fˇ,min

fˇ,max − fˇ,min
, ˇ = 1, . . . , nobj; � = 1, . . . , M (19)

here fˇ,� , fˇ,min and fˇ,max are the actual, the minimum and the
aximum values for the objective function fˇ. Then, the multi-

le objectives are aggregated into a scalar objective through the
xpression:

� = w1z1,� + . . . + wnobj
znobj,� , � = 1, . . . , M (20)

here w1, . . . , wnobj
denotes a weighting factors and

∑nobj
ˇ=1wˇ = 1.

hese weights reflect the importance of each objective upon the
nal result and must be provided by the user in advance.

The element that has the minimum value g� is the selected
olution.

.2. The OLGA formulation

The OLGA trajectory planning adopts a simple open-loop struc-
ure. An initial population of strings P(T) = [q(T,1), q(T,2), . . ., q(T,N)],
ith dimension nP = N, is constructed at random and the search is

arried out among this population. Each chromosome is defined
hrough an array of nV = n values, qi, i = 1, . . ., n, represented as
oating-point numbers initialized in the range [qmin, qmax]. For the
eneration T, the pth chromosome of the population is represented
s:

(T,p) =
(

q(T,p)
1 , . . . , q(T,p)

n

)
(21)

The end-effector position, x(T,p), for each configuration, q(T,p), is
asily calculated using the direct kinematics:

(T,p) = f
(

q(T,p)
)

(22)

The three different operators used in the GA are reproduction,
rossover and mutation. In what respecting the reproduction oper-
tor, the successive generations of new strings are reproduced on
he basis of their fitness function. In this case, it is used a rank
eighting to select the strings from the old to the new popula-

ion. For the crossover operator, the strings are randomly grouped
nto pairs. Single crossover is then performed among pairs. Finally,
or the mutation operator, one variable value is replaced with a
ew random one. The first chromosome is not mutated due to the

doption of elitism.

The fitness function is defined based on the positional error of
he end-effector; therefore, the GA minimizes the function f2, given
y (18).
5. Simulation results

In this section we start by analyzing the performance of the
CLMOGA for a free workspace and, in a second phase, we study
the effect of including several types of obstacles in the working
environment.

Without lacking of generality, in the following experiments are
adopted arms having identical link lengths, l1 = l2 = . . . = ln.

The experiments consist in the analysis of the kinematic per-
formance of a planar manipulator with n = {3, 4} rotational joints,
denoted as nR-robot, that is required to repeat a circular motion
in the operational space with frequency ω0 = 7.0 rad s−1, centre

at r = (x1
2 + x2

2)
1/2

, radius � = 0.5 and a step time increment of
�t = 10−3 s. The goal here is to position the end-effector of the nR-
robot at a target location while minimizing the joint angle drift
using the fitness function f1 in Eq. (12), the positional error of the
end-effector using the fitness function f2 represented in (13), while
avoiding the obstacles, if these exist in the workspace. The ini-
tial joint configuration is obtained using the OLGA with the fitness
function f presented in (18).

The average of the positional error for nC cycles is given by the
expression:

Xe = 1
k

k∑
i=1

Xe (23)

where k is the number of sampling points and is defined as:

k = T ′

�t
nC (24)

where T′ = 2�/ω0 is the period (in seconds) of time to complete a
cycle, �t is the sampling time (in seconds) and nC is the number of
cycles to be executed.

The average of the total joint displacement between the initial
joint configuration and the final joint configuration, Q̄e, for the nR-
robot is given by the expression:

Q e = 1
n

√√√√ n∑
i=1

(q0i − qfi)
2 (25)

where q0i denotes the initial joint configuration (t = 0.0), qfi repre-
sents the final configuration after nC cycles (t = k�t), for joint i, and
n is the total number of joints.

The CLMOGA adopts crossover and mutation probabilities of
pc = 0.5 and pm = 0.5, respectively, the string population is nP = {200,
400} for n = {3, 4} rotational joints, respectively, and the results are
obtained for nG = 200 consecutive generations. Each variable value,
jik and �xi, i = 1, . . ., n − m, k = 1, . . ., n, is initialized in the range
[−1.0, 1.0].

The OLGA adopts crossover and mutation probabilities of pc = 0.5
and pm = 0.5, respectively, a string population of np = 1600 and the
results are obtained for nG = 200 consecutive generations. Each vari-
able value, qi, i = 1, . . ., n, is initialized in the range [−2�, 2�].

5.1. The CLMOGA performance in a workspace without obstacles

The average of the positional error, X̄e, and the average of the
total joint displacement, Q̄e, for n = {3, 4} rotational joints, nC = 2
cycles, radial distance r = {0.7, 2.0} and weight w ∈ [0.0, 1.0], with a
step increment of �w = 0.1, are depicted in Tables 1 and 2, respec-
tively.
We observe that, in general, the positional error is worst and the
drift in the joint positions is better the higher the value of w.

The positional error is, in general, good, revealing that the
CLMOGA leads to good precision in the task of positioning the



Table 1
Average of the positional error, X̄e, after nC = 2 cycles for n = {3, 4}, w ∈ [0.0, 1.0] and
(a) r = 0.7; (b) r = 2.0.

X̄e

w 3R 4R

(a)
0.0 3.36E−06 3.44E−07
0.1 4.06E−06 2.22E−06
0.2 5.56E−06 3.47E−06
0.3 6.55E−06 6.15E−06
0.4 7.00E−06 7.62E−06
0.5 7.35E−06 9.27E−06
0.6 7.35E−06 9.73E−06
0.7 7.36E−06 1.00E−05
0.8 7.36E−06 1.02E−05
0.9 7.36E−06 1.03E−05
1.0 7.36E−06 1.03E−05
(b)
0.0 3.53E−06 3.31E−06
0.1 4.00E−06 5.22E−06
0.2 4.01E−06 5.44E−06
0.3 4.02E−06 5.61E−06
0.4 4.02E−06 5.74E−06
0.5 4.03E−06 5.76E−06
0.6 4.06E−06 5.75E−06
0.7 4.06E−06 5.74E−06
0.8 4.06E−06 5.73E−06

e
t
t
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d
g
d
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Table 3
Average of the positional error, X̄e, in a workspace of two obstacles, after nC = 2 cycles
for n = {3, 4}, w ∈ [0.0, 1.0] and (a) r = 0.7; (b) r = 2.0.

X̄e

w 3R 4R

(a)
0.0 2.59E−06 7.73E−07
0.1 4.65E−06 2.00E−06
0.2 5.73E−06 2.71E−06
0.3 6.57E−06 6.05E−06
0.4 7.01E−06 7.41E−06
0.5 7.34E−06 8.80E−06
0.6 7.34E−06 9.20E−06
0.7 7.34E−06 9.66E−06
0.8 7.34E−06 9.86E−06
0.9 7.34E−06 9.99E−06
1.0 7.34E−06 1.00E−05
(b)
0.0 3.05E−06 3.29E−06
0.1 3.29E−06 3.53E−06
0.2 3.37E−06 3.56E−06
0.3 3.39E−06 3.58E−06
0.4 3.41E−06 3.59E−06
0.5 3.41E−06 3.59E−06
0.6 3.42E−06 3.58E−06
0.7 3.42E−06 3.58E−06
0.8 3.42E−06 3.57E−06
0.9 4.06E−06 5.72E−06
1.0 4.06E−06 5.71E−06

nd-effecter at the target position. The largest variation between
he minimum, X̄emin , and the maximum, X̄emax , for the average of
he positional error occurs for n = 4 and r = 0.7 when X̄emin = 3E − 07
nd X̄emax = 1E − 05.

On the other side, the drift in the joint positions has a significant
ecrease as the value of w becomes higher. For small values of w we
et a large drift in the joint positions, but for high values of w the
rift is relatively small suggesting that the joint configurations are

epetitive, which was confirmed by analyzing the joint waveforms.

So, different strategies in the selection of the solution from the
areto front lead to different types of solutions. For example, if we

able 2
verage of the joint displacement, Q̄e, after nC = 2 cycles for n = {3, 4}, w ∈ [0.0, 1.0]
nd (a) r = 0.7; (b) r = 2.0.

Q̄e

w 3R 4R

(a)
0.0 5.18E−01 2.16E−01
0.1 3.14E−02 1.69E−02
0.2 8.62E−03 5.86E−03
0.3 4.99E−03 3.80E−03
0.4 2.29E−03 4.33E−03
0.5 1.32E−03 5.02E−03
0.6 8.40E−04 2.74E−03
0.7 5.39E−04 2.51E−03
0.8 3.60E−04 2.85E−03
0.9 2.56E−04 6.94E−04
1.0 2.27E−04 1.43E−04
(b)
0.0 8.97E−02 4.13E−02
0.1 3.33E−04 4.42E−03
0.2 6.43E−04 1.88E−03
0.3 5.40E−04 1.25E−03
0.4 4.16E−04 8.24E−04
0.5 3.12E−04 5.61E−04
0.6 2.48E−04 3.95E−04
0.7 1.99E−04 2.76E−04
0.8 1.68E−04 2.08E−04
0.9 1.51E−04 1.69E−04
1.0 1.46E−04 1.57E−04
0.9 3.42E−06 3.58E−06
1.0 3.42E−06 3.57E−06

select either w = 0.0 or w = 1.0 for n = 4 and r = 0.7, we get clearly
different results for the repeatability as we can see in Fig. 2, where
successive robot configurations during nC = 2 cycles are depicted.
Fig. 3 shows the time evolution of the corresponding joint positions.
Moreover, the average of the positional error is X̄e = 3E − 07 for
w = 0.0 and X̄e = 1E − 05 for w = 1.0. Between these extreme opti-
mal solutions several others were found, for different values of w,
that have an intermediate behaviour and which can be selected
according with the importance of each objective given by function
g� .

Because for each simulation we have k Pareto fronts, it is impos-
sible to represent all the fronts. However, in Figs. 4 and 5 are
represented the Pareto fronts obtained for t = {0.001, 0.002}, w = 0.0
and r = {0.7, 2.0}, respectively, where the points a and b represent
the best solutions found for the f1 and f2 objectives, respectively. In
general, all the Pareto fronts have np points but it is verified that,
when the manipulator has n = 4 rotational joints, the diversity of
the solution front for r = 0.7 is not as good as it occurs for r = 2.0.
This result reveals that, as expected, it is more difficult to find good
solutions that satisfy the criterion of repeatability and precision
simultaneously when the radial distance is r = 0.7.

5.2. The CLMOGA performance in a workspace with obstacles

This section presents the results of the CLMOGA when consider-
ing two obstacles in the workspace. For a given joint configuration,
when some part of the manipulator is inside an obstacle, the
CLMOGA rejects the configuration and generates a new chromo-
some.

For the case of r = 0.7 are adopted obstacles consisting of a cir-
cle with centre at (1.4, 0.5) and radius 0.2, and one rectangle, with
upper left and lower right corners with coordinates (0.3, 1.7) and
(0.8, 1.3), respectively. For r = 2.0 are considered the obstacles rep-
resented by one circle with centre at (1.6, 0.6) and radius 0.2, and
one rectangle, with upper left and lower right corners with coordi-

nates (0.4, 1.0) and (0.9, 0.6), respectively.

Tables 3 and 4 depict the average of the positional error, X̄e,
and the average of the total joint displacement, Q̄e, for n = {3, 4}



Fig. 2. Successive robot configurations during nC = 2 cycles for n = 4, r = 0.7 and w = {0.0, 1.0}.
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Fig. 3. The 4R-robot joint positions versus tim

otational joints, nC = 2 cycles, radial distance r = {0.7, 2.0}, weight
∈ [0.0, 1.0] and an increment of �w = 0.1.
We observe that, in general, the positional error becomes higher

nd the drift in the joint positions results smaller the higher the
alue of w.
The positional error is good, revealing that the CLMOGA leads
o good precision in the task of positioning the end-effecter at
he target position while avoiding the obstacles in the workspace,
hichever the value of w.
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ing nC = 2 cycles for r = 0.7 and w = {0.0, 1.0}.

On the other hand, the drift in the joint positions has,
in general, a significant diminishing when the value of w
increases.

Fig. 6 depicts successive robot configurations for n = 4, r = 0.7 and
w = {0.0, 1.0}, during nC = 2 cycles. As we can see, the results are

clearly different for the repeatability in the joint position. Fig. 7
shows the time evolution of the corresponding joint positions.
Moreover, the average of the positional error is X̄e = 8E − 07 for
w = 0.0 and X̄e = E − 05 for w = 1.0.
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In Figs. 8 and 9 are represented the Pareto fronts obtained for
= {0.001, 0.002}, w = 0.0 and r = {0.7, 2.0}, respectively. The points a
nd b represent the best solutions found for the f1 and f2 objectives,

espectively. Similarly to what was verified for a workspace without
bstacles, in general, for n = 4, all the Pareto fronts have np solutions.
oreover, the diversity of the solution front for r = 0.7 is not as

ood as it is for r = 2.0. This result reveals that, it is more difficult
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Fig. 7. The 4R-robot joint positions versus time in a workspace of tw
stacles during nC = 2 cycles for n = 4, r = 0.7 and w = {0.0, 1.0}.

to find good solutions that satisfy the criterion of repeatability and
precision simultaneously when the radial distance is r = 0.7, with or
without obstacles in the workspace.
Therefore, the results are consistent with those of the previ-
ous section and that the presence of obstacles does not present an
additional complexity for the CLMOGA to reach a good solution in
accordance to the user preferences.
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o obstacles during nC = 2 cycles for r = 0.7 and w = {0.0, 1.0}.
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Fig. 8. The Pareto fronts obtained for the 4R-robot for t = {0.001, 0.002}, w = 0.0 and r = 0.7.
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Fig. 9. The Pareto fronts obtained for the 4R-rob

Table 4
Average of the joint displacement, Q̄e, in a workspace of two obstacles, after nC = 2
cycles for n = {3, 4}, w ∈ [0.0, 1.0] and (a) r = 0.7; (b) r = 2.0.

Q̄e

w 3R 4R

(a)
0.0 3.82E−01 2.00E−01
0.1 2.85E−02 1.26E−02
0.2 5.90E−03 4.23E−03
0.3 3.18E−03 5.55E−03
0.4 1.60E−03 3.03E−03
0.5 9.83E−04 5.95E−03
0.6 6.47E−04 5.21E−03
0.7 4.48E−04 2.49E−03
0.8 3.23E−04 3.99E−03
0.9 2.66E−04 5.83E−04
1.0 2.51E−04 1.34E−04
(b)
0.0 1.05E−01 4.43E−02
0.1 1.20E−02 9.62E−03
0.2 4.99E−03 4.06E−03
0.3 2.60E−03 2.91E−03
0.4 1.49E−03 1.24E−03
0.5 9.26E−04 5.63E−04
0.6 6.00E−04 5.54E−04
0.7 3.86E−04 3.70E−04
0.8 2.48E−04 2.27E−04

6

w

0.9 1.63E−04 1.33E−04
1.0 1.35E−04 9.28E−05
. Conclusions

A CLMOGA that combines the CLP with a multi-objective GA
as presented. It was used the NSGA-II, where the crowding
1

ot for t = {0.001, 0.002}, w = 0.0 and r = 2.0.

distance method adopted in the NSGA-II, is replaced by the
MaxiMin sorting scheme. Two criteria were selected: the joint dis-
placement, between the current joint position and the initial joint
position, and the positional error between the desired final position
and the obtained final position. The proposed methodology selects
a solution from the Pareto set after the search process has been
performed. First, each one of the objective functions is normalized
to have the same range and then the multiple objectives are
aggregated into a scalar objective using a weighting factor. The
element that has the minimum value is the selected solution.

Several experiments were developed to study the performance
of the CLMOGA when the manipulator is required to repeat a
circular motion in the operational space, while satisfying the opti-
mization criteria, in a workspace without and with obstacles.

The results show that the CLMOGA gives good results in the
perspective of the positional error. For small values of the weighting
factor w we get a large drift in the joint positions; however, for
high values of w the drift is considerable inferior making the joint
configurations repetitive. Between the extreme optimal solutions
several others were found, for different values of w, that have an
intermediate behaviour and which can be selected according with
the importance of each objective.

The Pareto optimal fronts have a large number of solutions but,
the diversity of the fronts, is in general better for the radial dis-
tance r = 2.0. For r = 0.7 and n = 4 rotational joints the results reveal
that it is more difficult to find good solutions that satisfy the crite-
rion of repeatability and precision simultaneously. Finally, it is also

shown that the presence of obstacles does not present an additional
complexity for the CLMOGA.

Some final words about the pros and cons of the proposed
methodology. The first observation is that the CLMOGA requires a
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onsiderable computational effort and, therefore, further research
s necessary for implementing real-time algorithms. The second
spect is the number and type of objective functions, since expres-
ions considering power, torque and energy may also be useful in
efining new optimization criteria.
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