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Abstract

This paper presents a hybrid genetic algorithm for the Job Shop Scheduling problem. 
The chromosome representation of the problem is based on random keys. The schedules 
are constructed using a priority rule in which the priorities are defined by the genetic 
algorithm. Schedules are constructed using a procedure that generates parameterized 
active schedules. After a schedule is obtained a local search heuristic is applied to 
improve the solution. The approach is tested on a set of standard instances taken from 
the literature and compared with other approaches. The computation results validate the 
effectiveness of the proposed algorithm.
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1. Introduction

The job shop scheduling problem (JSP), may be described as follows: given n jobs, each
composed of several operations that must be processed on m machines. Each operation
uses one of the m machines for a fixed duration. Each machine can process at most one
operation at a time and once an operation initiates processing on a given machine it
must complete processing on that machine without interruption. The operations of a
given job have to be processed in a given order. The problem consists in finding a
schedule of the operations on the machines, taking into account the precedence
constraints, that minimizes the makespan (Cmax), that is, the finish time of the last
operation completed in the schedule.

Let J = {0, 1, …, n, n+1} denote the set of operations to be scheduled and M = {1,..., m}
the set of machines. The operations 0 and n+1 are dummy, have no duration and
represent the initial and final operations. The operations are interrelated by two kinds of
constraints. First, the precedence constraints, which force each operation j to be
scheduled after all predecessor operations, Pj, are completed. Second, operation j can
only be scheduled if the machine it requires is idle. Further, let dj denote the (fixed)
duration (processing time) of operation j.

Let Fj represent the finish time of operation j. A schedule can be represented by a vector
of finish times (F1, , Fm, ... , Fn+1). Let A(t) be the set of operations being processed at
time t, and let rj,m = 1 if operation j requires machine m to be processed and rj,m = 0
otherwise.

The conceptual model of the JSP can be described the following way:

Minimize Fn+1 (Cmax) (1)

Subject to:

1, ... , 1 ;k j j jF F d j n k P≤ − = + ∈ (2)

,
( )

1 ; 0j m
j A t

r m M t
∈

≤ ∈ ≥∑ (3)

0 1, ... , 1jF j n≥ = + . (4)

The objective function (1) minimizes the finish time of operation n+1 (the last 
operation), and therefore minimizes the makespan. Constraints (2) impose the 
precedence relations between operations and constraints (3) state that one machine can 
only process one operation at a time. Finally (4) forces the finish times to be non-
negative.

The JSP is amongst the hardest combinatorial optimization problems. The JSP is NP-
hard (Lenstra and Rinnooy Kan, 1979), and has also proven to be computationally 
challenging.



Historically JSP has been primarily treated using the following approaches:
• Exact methods: Giffler and Thompson (1960), Brucker et al. (1994) and

Williamson et al. (1997);
• Branch and bound: Lageweg et al. (1977), Carlier and Pinson (1989, 1990),

Applegate and Cook (1991) and Sabuncuoglu and Bayiz (1999). Carlier and
Pinson (1989) have been successful in solving the notorious 10×10 instance of
Fisher and Thompson proposed in 1963 and only solved twenty years later;

• Heuristic procedures based on priority rules: French (1982), Gray and
Hoesada (1991) and Gonçalves and Mendes (1994);

• Shifting bottleneck: Adams et al. (1988).

Problems of dimension 15×15 are still considered to be beyond the reach of today's
exact methods. Over the last decade, a growing number of metaheuristic procedures
have been presented to solve hard optimization problems:

• Simulated Annealing: Laarhoven et al. (1992) and Lourenço (1995);
• Tabu Search: Taillard (1994), Lourenço and Zwijnenburg (1996) and

Nowicki and Smutnicki (1996);
• Genetic Algorithms: Davis (1985), Storer et al. (1992), Aarts et al. (1994),

Croce et al. (1995), Dorndorf et al. (1995), Gonçalves and Beirão (1999) and
Oliveira (2000).

Additionally, some researchers have developed local search procedures: Lourenço 
(1995), Vaessens et al. (1996), Lourenço and Zwijnenburg (1996) and Nowicki and 
Smutnicki (1996). Surveys of heuristic methods for the JSP are given in Pinson (1995), 
Vaessens et al. (1996) and Cheng et al. (1999).

A comprehensive survey of job shop scheduling techniques can be found in Jain and 
Meeran (1999). Recently Wang and Zheng (2001) developed a hybrid optimization 
strategy for JSP, Binato et al. (2002) present a greedy randomized adaptive search 
procedure (GRASP) for JSP and Aiex et al. (2003) introduced a parallel GRASP with 
path-relinking for JSP.

In this paper, we present a new hybrid genetic algorithm for the job shop scheduling 
problem. The remainder of the paper is organized as follows. In Section 2, we present 
the different classes of schedules. In Section 3, we present our approach to solve the job 
shop scheduling problem: genetic algorithm, schedule generation procedure, and local 
search procedure. Section 4 reports the computational results and the conclusions are 
made in Section 5.

2 Parameterized Active Schedules

The optimal schedule is in the set of all active schedules. However, the set of active 
schedules is usually very large and contains many schedules with relatively large delay 
times, and therefore with poor quality in terms of makespan. In order to reduce the 
solution space we used the concept of parameterized active schedules (Gonçalves and 
Beirão (1999)).



The basic idea of parameterized active schedules consists in controlling the delay times
that each operation is allowed. By controlling the maximum delay time allowed, one
can reduce or increase the solution space. A maximum delay time equal to zero is
equivalent to restricting the solution space to non-delay schedules and a maximum delay
time equal to infinity is equivalent to allow active schedules.

Figure 1 illustrates where the set of parameterized active schedules is located relative to
the class of semi-active, active, and non-delay schedules.

Semi-Actives

Actives

Non-Delay

Delay Time 1 Delay Time 2

Semi-Actives

Actives

Non-Delay

Parametrized Actives

Delay Time 2 > Delay Time 1

Figure 1 – Parameterized active schedules.

Section 3.3 presents a detailed pseudo-code procedure to generate parameterized active
schedules.

3. New Approach

The new approach combines a genetic algorithm, a schedule generator procedure that
generates parameterized active schedules and a local search procedure.

The genetic algorithm is responsible for evolving the chromosomes which represent the
priorities of the operations and delay times. For each chromosome the following three
phases are applied:

• Decoding of priorities and delay times. This phase is responsible for
transforming the chromosome supplied by the genetic algorithm into the
priorities of the operations and the delay times.

• Schedule Generation. This phase makes use of the priorities and the delay times
defined in the first phase and constructs parameterized active schedules.

• Schedule Improvement. This phase makes use of a local search procedure to
improve the solution obtained in the schedule generation phase.

After a schedule is obtained the corresponding quality (makespan, smaller is better) is 
feedback to the genetic algorithm. Figure 2 illustrates the sequence of steps applied to 
each chromosome generated by the genetic algorithm.
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Figure 2 – Architecture of the new approach.

Details about each of these phases will be presented in the next sections.

3.1 Genetic Algorithm

Genetic algorithms are adaptive methods, which may be used to solve search and 
optimization problems (Beasley et al. (1993)). They are based on the genetic process of 
biological organisms. Over many generations, natural populations evolve according to 
the principles of natural selection, i.e. survival of the fittest, first clearly stated by 
Charles Darwin in The Origin of Species. By mimicking this process, genetic algorithms 
are able to evolve solutions to real world problems, if they have been suitably encoded.

Before a genetic algorithm can be run, a suitable encoding (or representation) for the 
problem must be devised. A fitness function is also required, which assigns a figure of 
merit to each encoded solution. During the run, parents must be selected for 
reproduction, and recombined to generate offspring (see Figure 3).

It is assumed that a potential solution to a problem may be represented as a set of 
parameters. These parameters (known as genes) are joined together to form a string of 
values (chromosome). In genetic terminology, the set of parameters represented by a  
particular chromosome is referred to as an individual. The fitness of an individual 
depends on its chromosome and is evaluated by the fitness function.

The individuals, during the reproductive phase, are selected from the population and 
recombined, producing offspring, which comprise the next generation. Parents are 
randomly selected from the population using a scheme, which favors fitter individuals. 
Having selected two parents, their chromosomes are recombined, typically using



mechanisms of crossover and mutation. Mutation is usually applied to some individuals,
to guarantee population diversity.

____________________________________________________________________
Genetic Algorithm
{

Generate initial population Pt
Evaluate population Pt
While stopping criteria not satisfied Repeat
{

Select elements from Pt to copy into Pt+l
Crossover elements of Pt and put into Pt+l
Mutation elements of Pt and put into Pt+l
Evaluate new population Pt+l
Pt = Pt+l

}
}
_____________________________________________________________________

Figure 3 - A standard genetic algorithm.

3.1.1 Chromosome Representation and Decoding

The genetic algorithm described in this paper uses a random key alphabet U(0,1) and an
evolutionary strategy identical to the one proposed by Bean (1994). The important
feature of random keys is that all offspring formed by crossover are feasible solutions.
This is accomplished by moving much of the feasibility issue into the objective function
evaluation. If any random key vector can be interpreted as a feasible solution, then any
crossover vector is also feasible. Through the dynamics of the genetic algorithm, the
system learns the relationship between random key vectors and solutions with good
objective function values.

A chromosome represents a solution to the problem and is encoded as a vector of
random keys (random numbers). Each solution chromosome is made of 2n genes where
n is the number of operations.

Chromosome = (genel , gene2 , ..., genen , gene n+1 , ... , gene 2n )

The first n genes are used as operations priorities, i.e.

Priorityj = Genej .

The genes between n+1 and 2n are used to determine the delay times used when 
scheduling an operation. The delay time used by each scheduling iteration g, Delayg , is 
calculated by the following expression:

Delayg = geneg × 1.5 × MaxDur ,

where MaxDur is the maximum duration of all operations. The factor 1.5 was obtained 
after experimenting with values between 1.0 and 2.0 in increments of 0.1. The value 
giving the best results was chosen.



3.1.2 Evolutionary Strategy

To breed good solutions, the random key vector population is operated upon by a
genetic algorithm. There are many variations of genetic algorithms obtained by altering
the reproduction, crossover, and mutation operators. The reproduction and crossover
operators determine which parents will have offspring, and how genetic material is
exchanged between the parents to create those offspring. Mutation allows for random
alteration of genetic material. Reproduction and crossover operators tend to increase the
quality of the populations and force convergence. Mutation opposes convergence and
replaces genetic material lost during reproduction and crossover.

Reproduction is accomplished by first copying some of the best individuals from one
generation to the next, in what is called an elitist strategy (Goldberg (1989)). The
advantage of an elitist strategy over traditional probabilistic reproduction is that the best
solution is monotonically improving from one generation to the next. The potential
downside is population convergence to a local minimum. This can, however, be
overcome by high mutation rates as described below.

Parameterized uniform crossovers (Spears and DeJong (1991)) are employed in place of
the traditional one-point or two-point crossover. After two parents are chosen randomly
from the full, old population (including chromosomes copied to the next generation in
the elitist pass), at each gene we toss a biased coin to select which parent will contribute
the allele. Figure 4 presents an example of the crossover operator. It assumes that a coin
toss of heads selects the gene from the first parent, a tails chooses the gene from the
second parent, and that the probability of tossing a heads is for example 0.7 (this value
is determined empirically). Figure 4 shows one potential crossover outcome:

Coin toss H H T H T

Parent 1 0.57 0.93 0.36 0.12 0.78

Parent 2 0.46 0.35 0.59 0.89 0.23

Offspring 0.57 0.93 0.59 0.12 0.23

Figure 4  - Example of Parameterized Uniform crossover.

Rather than the traditional gene-by-gene mutation with very small probability at each 
generation, one or more new members of the population are randomly generated from 
the same distribution as the original population. This process prevents premature 
convergence of the population, like in a mutation operator, and leads to a simple 
statement of convergence.

Figure 5 depicts the transitional process between two consecutive generations.
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Figure 5- Transitional process between consecutive generations.

3.2 Schedule Generation Procedure

The procedure used to construct parameterized active schedules is based on a
scheduling generation scheme that does time incrementing. For each iteration g, there is
a scheduling time tg. The active set comprises all operations which are active at tg, i.e.

{ }|g j j g jA j J F d t F= ∈ − ≤ < . The remaining machine capacity at tg is given by

,( ) 1
g

m g j m
j A

RMC t r
∈

= − ∑ . Sg comprises all operations which have been scheduled up

to iteration g, and Fg comprises the finish times of the operations in Sg. Let Delayg be
the delay time associated with iteration g, and let Eg comprise all operations which are
precedence feasible in the interval [tg , tg + Delayg ], i.e.

{ }1\ | ( )g g i g g jE j J S F t Delay i P−= ∈ ≤ + ∈ .

The algorithmic description of the scheduling generation scheme used to generate 
parameterized active schedules is given by pseudo-code shown in Figure 6.



Initialization: { } { } { }1 0 01, 0, 0 , 0 , 0 , (0) 1 ( )= = = = = = ∈0 mg t A S RD m MŦ

while 1gS n< + repeat
{

Update gE
while Eg ≠ {} repeat
{

Select operation with highest priority

{ }* argmax
g

j
j E

j PRIORITY
∈

=

Calculate earliest finish time (in terms of precedence only)
{ }* *max

ji P ij j
EF F d∈= +

Calculate the earliest finish time (in terms of precedence and capacity)

{
}

* * * *

* * *

,

,

min , | ( ) ,

0 , ,

τ

τ

 = ∈ − ∞ ∩ ≤ 

 > ∈ + + 

g mj j j j m

j m j j

F t EF d F r RMC

r t t d d

Update { }*
1g gS S j−= ∪ , { }*g g-1 j

F= ∪Ŧ Ŧ
Iteration increment: g = g+1

Update * * * * ,, , ( ) | , , | 0 ∈ − ∈ > g g m j j j j mA E RD t t F d F m M r
}
Determine the time associated with iteration g

{ }1 1min |g g gt t t t− −= ∈ >Ŧ
}

Figure 6 - Pseudo-code used to construct parameterized active schedules.

The makespan of the solution is given by the maximum finish time of all predecessors
operations of operation n+1, i.e. { }lPln FMaxF

n 11 +∈+ = .

The basic idea of parametrized active schedules is incorporated in the selection step of
the procedure,

{ }* argmax
g

j
j E

j PRIORITY
∈

= .

The set Eg is responsible for forcing the selection to be made only amongst operations
which will not cause a delay smaller or equal to the maximum allowed delay. Figure 7
illustrates the selection step.
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Figure 7  - Eligible operations for different types of schedules.

3.3 Local Search Procedure

Since there is no guarantee that the schedule obtained in the construction phase is 
locally optimal with respect to the local neighborhood being adopted, local search may 
be applied to attempt to decrease the makespan. We employ the two exchange local 
search, based on the disjunctive graph model of Roy and Sussmann (1964) and the 
neighborhood of Nowicki and Smutnicki (1996).

The local search procedure begins by identifying the critical path in the solution 
obtained by the schedule generation procedure. Any operation on the critical path is 
called a critical operation. It is possible to decompose the critical path into a number of 
blocks where a block is a maximal sequence of adjacent critical operations that require 
the same machine.

In this paper, we use the approach of Nowicki and Smutnicki (1996) (see Figure 8). In 
this approach, if a job predecessor and a machine predecessor of a critical operation are 
also critical, then choose the predecessor (from among these two alternatives) which 
appears first in the operation sequence. The critical path thus gives rise to the following 
neighborhood of moves. Given b blocks, if 1 <  l  <  b, then swap only the last two and 
first two block operations. Otherwise, if l = 1 (b) swap only the last (first) two block 
operations (see Figure 8). In the case where the first and/or last block contains only two 
operations, these operations are swapped. If a block contains only one operation, then 
no swap is made.



M1 6.1 2.3 1.2 3.1 4.3 5.3 7.4

M2 1.1 4.2 5.2 2.2 6.3 3.2 7.2

M3 5.1 6.2 7.3 3.4 2.4 1.4 4.4

M4 4.1 2.1 7.1 5.4 6.4 1.3 3.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

M1 6.1 2.3 1.2 3.1 4.3 5.3 7.4

M2 1.1 4.2 5.2 2.2 6.3 3.2 7.2

M3 5.1 6.2 7.3 3.4 2.4 1.4 4.4

M4 4.1 2.1 7.1 5.4 6.4 1.3 3.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Current Solution

Critical path, critical blocks and possible operations swaps

Figure 8 – Neighborhood of Nowicki and Smutnicki (1996).

If the swap improves the makespan, it is accepted. Otherwise, the swap is undone. Once
a swap is accepted, the critical path may change and a new critical path must be
identified. If no swap of first or last operations in any block of critical path improves the
makespan, the local search ends.



The algorithmic description of the Local Search Procedure is given in the  pseudo-code
shown in Figure 9.

Local_Search ( CurrentSolution )

do
{

CurrentSolutionUpdated = False

Determine the critical path and all critical blocks of CurrentSolution

while Unprocessed blocks and not CurrentSolutionUpdated do
{

if not First Critical Block then

NewSolution := Swap first two operations of block in CurrentSolution

if Makespan ( NewSolution )  <   Makespan ( CurrentSolution ) then
CurrentSolution = NewSolution
CurrentSolutionUpdated = true

endif
endif

if not Last Critical Block and not CurrentSolutionUpdated then

NewSolution = Swap last two operations of block in CurrentSolution

if Makespan ( NewSolution )  <  Makespan ( CurrentSolution ) then
CurrentSolution = NewSolution
CurrentSolutionUpdated = true

endif
endif

}
}
until CurrentSolutionUpdated = false

return CurrentSolution

Figure 9 – Pseudo-code for the local search procedure.

Example
We consider a problem with 2 jobs and 2 operations to be scheduled in 2 machines,
Table 1 presents the respective data.

Table 1 – Example data.
Job 1 Job 2

Operation
Sequence

Machine Processing
Time

Operation
Number

Operation
Sequence

Machine Processing
Time

Operation
Number

1st 2 4 1 1st 1 1 3
2nd 1 2 2 2nd 2 3 4



Below we present the details of the approach assuming the genetic algorithm supplied
the following chromosome:

Chromosome = ( 0.20 , 0.22 , 0.10 , 0.90 , 0.14 , 0.24 , 0.25 , 0.70 )

Decoding

As mentioned in section 3.1.1 the first 4 genes are used as operations priorities and last
4 genes are used to determine the delay times for each scheduling iteration g, Delayg.
Table 2 summarizes the results of the decoding calculations.

Table 2 – Priorities and delay times.
Operation/ Iteration 

j / g PRIORITYj Delayg

1 0.20 0.84
2 0.22 1.44
3 0.25 1.50
4 0.90 4.20

Schedule Generation

The schedule is generated using the schedule generation procedure given in section 3.2
and the priorities and delay times presented in table 2. The detailed calculations follow.

Initialization

{ } { } { }1 0 00, 0 , 0 , 0= = = =t A S0Ŧ

( ) =mRD t t
1 2 3 4 5 6 7 8 9 10 >10

1 1 1 1 1 1 1 1 1 1 1 1m 2 1 1 1 1 1 1 1 1 1 1 1

Iteration g = 1

Update { } { }0\ | 0 0.84 ( ) 1, 3= ∈ ≤ + ∈ =1 i jE j J S F i P

Select operation with highest priority: { }* argmax 0.20 , 0.25 3
∈

= =
1j E

j

Calculate earliest finish time (in terms of precedence only): 0 1 1= + =3FMC
Calculate the earliest finish time (in terms of precedence and capacity): 0 1 1= + =3F
Update { } { } { } { }1 0 3 0 3 0 , 3= ∪ = ∪ =S S

Update { } { } { } { }1 0 1 0 1 0 , 1= ∪ = ∪ =Ŧ Ŧ
Increment iteration counter g = 1 + 1 = 2

The partial schedule after iteration g = 1 is illustrated in Figure 10.



m = 1 3

m = 2
1 2 3 4 5 6 7 8 9 10 11

t
Figure 10 – Partial schedule after operation 3 scheduled.

Iteration g = 2

Update { }2 3=A , { } { }2 1\ | 0 1.44 ( ) 1, 4= ∈ ≤ + ∈ =i jE j J S F i P
( ) =mRD t t

1 2 3 4 5 6 7 8 9 10 >10
1 0 1 1 1 1 1 1 1 1 1 1m 2 1 1 1 1 1 1 1 1 1 1 1

Select operation with highest priority { }* argmax 0.20 , 0.90 4
∈

= =
2j E

j

Calculate earliest finish time (in terms of precedence only): 1 3 4= + =4FMC
Calculate the earliest finish time (in terms of precedence and capacity): 1 3 4= + =4F
Update { } { } { } { }4 0 , 3 4 0 , 3 , 4= ∪ = ∪ =2 1S S

Update { } { } { } { }2 4 0 , 1 4 0 , 1 , 4= ∪ = ∪ =1Ŧ Ŧ
Increment iteration counter g =  2 + 1 = 3

The partial schedule after iteration g = 2 is illustrated in Figure 11.
m = 1 3

m = 2 4
1 2 3 4 5 6 7 8 9 10 11

t
Figure 11 – Partial schedule after operation 4 scheduled.

Iteration g = 3
Update { }3 3=A , { } { }\ | 0 1.50 ( ) 1= ∈ ≤ + ∈ =3 2 i jE j J S F i P

( ) =mRD t t
1 2 3 4 5 6 7 8 9 10 >10

1 0 1 1 1 1 1 1 1 1 1 1m 2 1 0 0 0 1 1 1 1 1 1 1

Select operation with highest priority: { }
3

* argmax 0.20 1
∈

= =
j E

j

Calculate earliest finish time (in terms of precedence only): 0 4 4= + =1FMC
Calculate the earliest finish time (in terms of precedence and capacity): 4 4 8= + =1F
Update { } { } { } { }3 1 0,3,4 1 0,1,3,4= ∪ = ∪ =2S S

Update { } { } { } { }2 8 0,1,4 8 0,1, 4,8= ∪ = ∪ =3Ŧ Ŧ
Increment iteration counter g = 3 + 1 = 4



The partial schedule after iteration g = 3 is illustrated in Figure 12.

m = 1 3

m = 2 4 1
1 2 3 4 5 6 7 8 9 10 11

t
Figure 12 – Partial schedule after operation 13 scheduled.

Iteration g = 4
Update { }4 3=A , { } { }\ | 0 4.20 ( )= ∈ ≤ + ∈ =4 3 i jE j J S F i P

( ) =mRD t t
1 2 3 4 5 6 7 8 9 10 >10

1 0 1 1 1 1 1 1 1 1 1 1m 2 1 0 0 0 0 0 0 0 1 1 1

Determine the time associated with iteration g = 4 until {}gE ≠

{ }min 1, 4 ,8 1= =4t

Update { } { }\ | 1 4.20 ( )= ∈ ≤ + ∈ =4 3 i jE j J S F i P

{ }min 4 ,8 4= =4t

Update { } { }\ | 4 4.20 ( ) 2= ∈ ≤ + ∈ =4 3 i jE j J S F i P

Select operation with highest priority: { } { }
4

* argmax 0.22 2
∈

= =
j E

j

Calculate earliest finish time (in terms of precedence only): 8 2 10= + =2FMC
Calculate the earliest finish time (in terms of precedence and capacity): 8 2 10= + =2F
Update { } { } { } { }4 3 2 0,1,3,4 2 0,1,2 ,3, 4= ∪ = ∪ =S S

Update { } { } { } { }4 10 0,1,4,8 10 0,1, 4,8,10= ∪ = ∪ =3Ŧ Ŧ
Increment iteration counter g = 4 + 1 = 5

The partial schedule after iteration g = 4 is illustrated in Figure 13.
m = 1 3 2

m = 2 4 1
1 2 3 4 5 6 7 8 9 10 11

t
Figure 13 – Partial schedule after operation 2 scheduled.

After this iteration the schedule is completed and we can compute the corresponding
makespan as

{ }max 8 , 10 10Makespan = =



Local Search Procedure

The local search procedure begins by identifying the critical path in the solution
obtained by the schedule generation procedure, Figure 13. The critical path is defined
by operations 3-4-1-2 has only the critical block 4-1 in machine 2. If we swap
operations 4 and 1 we obtain a better schedule with a makespan of 8, see Figure 14.

m = 1 3 2

m = 2 1 4
1 2 3 4 5 6 7 8 9 10 11

t

Figure 14 – Schedule after the swap of operations 1 and 4.

The critical path corresponding to the schedule in Figure 14 is defined by operations
3-1-4 and contains only the critical block 1-4 in machine 2. Swapping operations 1 and
4 leads to a schedule with a makespan of 10 which is worse than 8 and so we stop the
local search procedure.

4. Computational Results

To illustrate the effectiveness of the algorithm described in this paper, we consider 43
instances from two classes of standard JSP test problems: Fischer and Thompson (1963)
instances FT06, FT10, FT20, and Lawrence (1984) instances LA01 to LA40.

The proposed algorithm is compared with the following algorithms:

Problem And Heuristic Space
• Storer et al. (1992)

Genetic Algorithms
• Aarts et al. (1994)
• Croce et al (1995)
• Dorndorf et al. (1995)
• Gonçalves and Beirão (1999)

GRASP
• Binato et al. (2002)
• Aiex et al. (2001)

Hybrid Genetic and Simulate Annealing
• Wang and Zheng (2001)

Tabu Search
• Nowicki and Smutnicki (1996)



The experiments were performed using the following configuration:

Population Size: The number of chromosomes in the population equals twice
the number of operations in the problem.

Crossover: The probability of tossing heads is equal to 0.7.

Selection: The top 10% from the previous population chromosomes
are copied to the next generation.

Mutation: The bottom 20% of the population chromosomes are
replaced with randomly generated chromosomes.

Fitness: Makespan (to minimize)

Seeds: 20

Stopping Criteria: After 400 generations.

The algorithm was implemented in Visual Basic 6.0 and the tests were run on a
computer with a 1.333 GHz AMD Thunderbird CPU on the MS Windows Me operating
system.

Table 3 summarizes the experimental results.  It lists problem name, problem dimension
(number of jobs × number of operations), the best known solution (BKS), the solution
obtained by our algorithm (HGA) using parameterized active schedules (HGA-Param.
Active), non-delay schedules (HGA-Non-delay) and active schedules (HGA-Active)
and the solution obtained by each of the other algorithms. The non-delay and the active
schedules were obtained by making the delay of each operation equal to 0 and ∞
respectively.



Table 3 - Experimental results.
HGA Dorndorf & Pesch Aarts et al.

Inst. Size BKS
Param.
Active

Non-
Delay Active Wang Aiex Binato Nowicki Gonçalves Croce SBGA SBGA Storer

and
Zheng et al. et al.

and
Smutnicki

and
Beirão et al.. P-GA (40) (60) GLS1 GLS2 et al.

(2001) (2003) (2002) (1996) (1999) (1995) (1995) (1995) (1995) (1994) (1994) (1992)

FT06 6x6 55 55 55 55 55 55 55 55 55 -

FT10 10x10 930 930 951 945 930 930 938 930 936 946 960 935 945 952

FT20 20x5 1165 1165 1178 1173 1165 1165 1169 1165 1177 1178 1249 1165 1167

LA01 10x5 666 666 666 666 666 666 666 666 666 666 666 666 666 666 666

LA02 10x5 655 655 665 655 655 655 655 666 666 681 666 668 659

LA03 10x5 597 597 604 603 597 604 597 597 666 620 604 613 609

LA04 10x5 590 590 590 598 590 590 590 590 - 620 590 599 594

LA05 10x5 593 593 593 593 593 593 593 593 - 593 593 593 593

LA06 15x5 926 926 926 926 926 926 926 926 926 926 926 926 926 926

LA07 15x5 890 890 890 890 890 890 890 890 - 890 890 890 890

LA08 15x5 863 863 863 863 863 863 863 863 - 863 863 863 863

LA09 15x5 951 951 951 951 951 951 951 951 - 951 951 951 951

LA10 15x5 958 958 958 958 958 958 958 958 - 958 958 958 958

LA11 20x5 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222

LA12 20x5 1039 1039 1039 1039 1039 1039 1039 1039 - 1039 1039 1039 1039

LA13 20x5 1150 1150 1150 1150 1150 1150 1150 1150 - 1150 1150 1150 1150

LA14 20x5 1292 1292 1292 1292 1292 1292 1292 1292 - 1292 1292 1292 1292

LA15 20x5 1207 1207 1207 1207 1207 1207 1207 1207 - 1237 1207 1207 1207

LA16 10x10 945 945 973 947 945 945 946 945 977 979 1008 961 961 977 977 981

LA17 10x10 784 784 792 784 784 784 784 787 - 809 787 784 791 791 794

LA18 10x10 848 848 855 848 848 848 848 848 - 916 848 848 856 858 860

LA19 10x10 842 842 851 852 842 842 842 857 - 880 863 848 863 859 860

LA20 10x10 902 907 926 912 902 907 902 910 - 928 911 910 913 916

LA21 15x10 1046 1046 1079 1074 1058 1057 1091 1047 1047 1097 1139 1074 1074 1084 1085

LA22 15x10 927 935 950 962 927 960 927 936 - 998 935 936 954 944

LA23 15x10 1032 1032 1032 1032 1032 1032 1032 1032 - 1072 1032 1032 1032 1032

LA24 15x10 935 953 970 955 954 978 939 955 - 1014 960 957 970 981

LA25 15x10 977 986 1013 1014 984 1028 977 1004 - 1014 1008 1007 1016 1010

LA26 20x10 1218 1218 1218 1237 1218 1218 1271 1218 1218 1231 1278 1219 1218 1240 1236

LA27 20x10 1235 1256 1282 1280 1269 1320 1236 1260 - 1378 1272 1269 1308 1300

LA28 20x10 1216 1232 1250 1250 1225 1293 1216 1241 - 1327 1240 1241 1281 1265

LA29 20x10 1157 1196 1206 1226 1203 1293 1160 1190 - 1336 1204 1210 1290 1260

LA30 20x10 1355 1355 1355 1355 1355 1368 1355 1356 - 1411 1355 1355 1402 1386

LA31 30x10 1784 1784 1784 1784 1784 1784 1784 1784 1784 1784 - 1784 1784

LA32 30x10 1850 1850 1850 1850 1850 1850 1850 1850 - - 1850 1850

LA33 30x10 1719 1719 1719 1719 1719 1719 1719 1719 - - 1719 1719

LA34 30x10 1721 1721 1721 1721 1721 1753 1721 1730 - - 1737 1730

LA35 30x10 1888 1888 1888 1888 1888 1888 1888 1888 - - 1894 1890

LA36 15x15 1268 1279 1303 1313 1292 1287 1334 1268 1305 1305 1373 1317 1317 1324 1311 1305

LA37 15x15 1397 1408 1437 1444 1410 1457 1407 1441 - 1498 1484 1446 1449 1450 1458

LA38 15x15 1196 1219 1252 1228 1218 1267 1196 1248 - 1296 1251 1241 1285 1283 1239

LA39 15x15 1233 1246 1250 1265 1248 1290 1233 1264 - 1351 1282 1277 1279 1279 1258

LA40 15x15 1222 1241 1252 1246 1244 1259 1229 1252 - 1321 1274 1252 1273 1260 1258



The total computational time (in seconds) for each problem and for 400 generations of
the genetic algorithm and the percentage time spent evolving the population,
constructing the schedules and in the local search are presented in Table 4.

Table 4 – Computational times.
% Time

Instance Size Total Time
(s)

Evolutionary
Process

Schedule
Construction

Local
Search

FT06 6x6 13 3.66% 50.65% 45.69%
FT10 10x10 292 3.18% 40.21% 56.60%
FT20 20x5 204 5.07% 54.66% 40.27%
LA01 10x5 37 5.45% 62.01% 32.54%
LA02 10x5 51 5.97% 64.25% 29.78%
LA03 10x5 39 13.26% 48.53% 38.21%
LA04 10x5 42 3.44% 57.13% 39.43%
LA05 10x5 32 13.64% 57.79% 28.58%
LA06 15x5 99 5.96% 61.85% 32.19%
LA07 15x5 86 7.14% 59.61% 33.24%
LA08 15x5 99 4.51% 61.41% 34.08%
LA09 15x5 94 6.36% 65.09% 28.55%
LA10 15x5 91 5.90% 63.67% 30.43%
LA11 20x5 197 4.15% 60.94% 34.91%
LA12 20x5 201 4.03% 59.91% 36.06%
LA13 20x5 189 3.27% 62.39% 34.34%
LA14 20x5 187 4.47% 63.61% 31.92%
LA15 20x5 187 5.30% 58.67% 36.03%
LA16 10x10 232 3.19% 48.21% 48.60%
LA17 10x10 216 4.16% 49.41% 46.43%
LA18 10x10 219 4.19% 48.51% 47.29%
LA19 10x10 235 3.42% 44.53% 52.06%
LA20 10x10 235 4.03% 49.14% 46.83%
LA21 15x10 602 3.17% 45.14% 51.69%
LA22 15x10 629 3.29% 45.53% 51.18%
LA23 15x10 594 3.39% 51.89% 44.72%
LA24 15x10 578 2.99% 46.04% 50.97%
LA25 15x10 609 3.93% 49.85% 46.22%
LA26 20x10 1 388 2.52% 44.54% 52.94%
LA27 20x10 1 251 2.42% 44.21% 53.37%
LA28 20x10 1 267 2.36% 42.77% 54.87%
LA29 20x10 1 350 2.38% 42.13% 55.49%
LA30 20x10 1 260 2.89% 44.60% 52.52%
LA31 30x10 3 745 1.71% 41.92% 56.37%
LA32 30x10 3 741 1.72% 44.44% 53.85%
LA33 30x10 3 637 1.84% 45.09% 53.07%
LA34 30x10 3 615 1.75% 45.40% 52.85%
LA35 30x10 3 716 1.76% 42.70% 55.54%
LA36 15x15 1 826 2.11% 42.97% 54.92%
LA37 15x15 1 860 2.03% 40.60% 57.38%
LA38 15x15 1 859 2.17% 39.40% 58.42%
LA39 15x15 1 869 1.97% 39.88% 58.15%
LA40 15x15 2 185 1.57% 32.98% 65.45%



Table 5 shows the number of instances solved (NIS), and the average relative deviation
(ARD), with respect to the BKS. The ARD was calculated for the Hybrid Genetic
Algorithm (HGA with parametrized active schedules), and for the other algorithms
(OA). The last column (Improvement), presents the reduction in ARD obtained by the
genetic algorithm with respect to each of the other algorithms.

Table 5 – Average Relative Deviation to the BKS.

Algorithm NIS ARD Improvement

OA HGA HGA
Problem and Heuristic Space

Storer et al. (1992) 11 2.44% 0.56% 1.88 %    
Genetic Algorithms

Aarts et al. (1994) - GLS1 42 1.97% 0.40% 1.57 %  
Aarts et al. (1994) - GLS2 42 1.71% 0.40% 1.31 %  
Croce et al (1995) 12 2.37% 0.07% 2.30 %    
Dorndorf et al. (1995) - PGA 37 4.61% 0.46% 4.15 %     
Dorndorf et al. (1995) - SBGA (40) 35 1.42% 0.48% 0.94 %     
Dorndorf et al. (1995) - SBGA (60) 20 1.94% 0.84% 1.10 %     
Gonçalves and Beirão (1999) 43 0.90% 0.39% 0.51 %     

GRASP
Binato et al. (2002) 43 1.77% 0.39% 1.38 %     
Aiex et al. (2001) 43 0.43% 0.39% 0.04 %     

Hybrid Genetic and Simulated Annealing
Wang and Zheng (2001) 11 0.28% 0.08% 0.20 %     

Tabu Search
Nowicki and Smutnicki (1996) 43 0.05 % 0.39% -0.34 %

Overall, we solved 43 instances with HGA and obtained an ARD of 0.39%. The HGA 
obtained the best-known solution for 31 instances, i.e. in 72% of problem instances. 
HGA presented an improvement with respect to almost all others algorithms, the 
exception being the tabu search algorithm of Nowicki and Smutnicki that had better 
performance, mainly in the 15×15 problems. 

5. Conclusions

This paper presents a hybrid genetic algorithm for the Job Shop Scheduling problem. 
The chromosome representation of the problem is based on random keys. The schedules 
are constructed using a priority rule in which the priorities are defined by the genetic 
algorithm. Schedules are constructed using a procedure that generates parameterized 
active schedules. After a schedule is obtained, a local search heuristic is applied to 
improve the solution. The approach is tested on a set of 43 standard instances taken 
from the literature and compared with 12 other approaches. The computational results 
show that the algorithm produced optimal or near-optimal solutions on all instances 
tested. Overall, the algorithm produced solutions with an average relative deviation of 
0.39% to the best known solution.



6. Further Research

We believe the idea of parameterized active schedules could also be applied to the 
resource constrained project scheduling problem with success.
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