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1. Landau in his Handbuch, pp. 89 – 92, gives a proof of a theorem the truth of which was
conjectured by Bertrand: namely that there is at least one prime p such that x < p ≤ 2x,
if x ≥ 1. Landau’s proof is substantially the same as that given by Tschebyschef. The
following is a much simpler one.
Let ν(x) denote the sum of the logarithms of all the primes not exceeding x and let
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where [x] denotes as usual the greatest integer in x.
From (1) we have
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and from (2)
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Now remembering that ν(x) and Ψ(x) are steadily increasing functions, we find from (3)
and (4) that
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But it is easy to see that
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Now using Stirling’s approximation we deduce from (7) that
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4
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and
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x]! > 2

3
x, if x > 300. (9)
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It follows from (6), (8) and (9) that
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and
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Now changing x to 1
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4
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8
x, . . . in (10) and adding up all the results, we obtain
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2
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Again we have
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in virtue of (5) and (12).
It follows from (11) and (13) that
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But it is obvious that 1

6
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x ≥ 0, if x ≥ 324. Hence

ν(2x)− ν(x) > 0, if x ≥ 162. (15)

In other words there is at least one prime between x and 2x if x ≥ 162. Thus Bertrand’s
Postulate is proved for all values of x not less than 162; and, by actual verification, we find
that it is true for smaller values.

2. Let π(x) denote the number of primes not exceeding x. Then, since π(x)−π(1
2
x) is the
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2
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for all values of x. It follows from (14) and (16) that
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From this we easily deduce that

π(x)− π(1
2
x) ≥ 1, 2, 3, 4, 5, . . . , if x ≥ 2, 11, 17, 29, 41, . . . , (18)

respectively.


