A proof of Bertrand's postulate

Journal of the Indian Mathematical Society, XI, 1919, 181 – 182

1. Landau in his $Handbuch$, pp. $89 - 92$, gives a proof of a theorem the truth of which was conjectured by Bertrand: namely that there is at least one prime p such that $x < p \leq 2x$, if $x \geq 1$. Landau's proof is substantially the same as that given by Tschebyschef. The following is a much simpler one.

Let $\nu(x)$ denote the sum of the logarithms of all the primes not exceeding x and let

$$
\Psi(x) = \nu(x) + \nu(x^{\frac{1}{2}}) + \nu(x^{\frac{1}{3}}) + \cdots,
$$
\n(1)

$$
\log[x]! = \Psi(x) + \Psi(\frac{1}{2}x) + \Psi(\frac{1}{3}x) + \cdots,
$$
 (2)

where $[x]$ denotes as usual the greatest integer in x. From (1) we have

$$
\Psi(x) - 2\Psi(\sqrt{x}) = \nu(x) - \nu(x^{\frac{1}{2}}) + \nu(x^{\frac{1}{3}}) - \cdots,
$$
\n(3)

and from (2)

$$
\log[x]! - 2\log[\frac{1}{2}x]! = \Psi(x) - \Psi(\frac{1}{2}x) + \Psi(\frac{1}{3}x) - \cdots.
$$
 (4)

Now remembering that $\nu(x)$ and $\Psi(x)$ are steadily increasing functions, we find from (3) and (4) that

$$
\Psi(x) - 2\Psi(\sqrt{x}) \le \nu(x) \le \Psi(x); \tag{5}
$$

and

$$
\Psi(x) - \Psi(\frac{1}{2}x) \le \log[x]! - 2\log[\frac{1}{2}x]! \le \Psi(x) - \Psi(\frac{1}{2}x) + \Psi(\frac{1}{3}x). \tag{6}
$$

But it is easy to see that

$$
\log \Gamma(x) - 2 \log \Gamma(\frac{1}{2}x + \frac{1}{2}) \le \log[x]! - 2 \log[\frac{1}{2}x]!
$$

$$
\le \log \Gamma(x + 1) - 2 \log \Gamma(\frac{1}{2}x + \frac{1}{2}). \tag{7}
$$

Now using Stirling's approximation we deduce from (7) that

$$
\log[x]! - 2\log[\frac{1}{2}x]! < \frac{3}{4}x, \text{ if } x > 0; \tag{8}
$$

and

$$
\log[x]! - 2\log[\frac{1}{2}x]! > \frac{2}{3}x, \text{ if } x > 300. \tag{9}
$$

It follows from (6) , (8) and (9) that

$$
\Psi(x) - \Psi(\frac{1}{2}x) < \frac{3}{4}x, \text{ if } x > 0; \tag{10}
$$

and

$$
\Psi(x) - \Psi(\frac{1}{2}x) + \Psi(\frac{1}{3}x) > \frac{2}{3}x, \text{ if } x > 300. \tag{11}
$$

Now changing x to $\frac{1}{2}x, \frac{1}{4}x, \frac{1}{8}x, \ldots$ in (10) and adding up all the results, we obtain

$$
\Psi(x) < \frac{3}{2}x, \text{ if } x > 0.
$$
\n
$$
(12)
$$

Again we have

$$
\Psi(x) - \Psi(\frac{1}{2}x) + \Psi(\frac{1}{3}x) \le \nu(x) + 2\Psi(\sqrt{x}) - \nu(\frac{1}{2}x) + \Psi(\frac{1}{3}x) \n< \nu(x) - \nu(\frac{1}{2}x) + \frac{1}{2}x + 3\sqrt{x},
$$
\n(13)

in virtue of (5) and (12) . It follows from (11) and (13) that

$$
\nu(x) - \nu(\frac{1}{2}x) > \frac{1}{6}x - 3\sqrt{x}, \text{ if } x > 300. \tag{14}
$$

But it is obvious that $\frac{1}{6}x - 3\sqrt{x} \ge 0$, if $x \ge 324$. Hence

$$
\nu(2x) - \nu(x) > 0, \text{ if } x \ge 162. \tag{15}
$$

In other words there is at least one prime between x and $2x$ if $x \ge 162$. Thus Bertrand's Postulate is proved for all values of x not less than 162; and, by actual verification, we find that it is true for smaller values.

2. Let $\pi(x)$ denote the number of primes not exceeding x. Then, since $\pi(x) - \pi(\frac{1}{2})$ $(\frac{1}{2}x)$ is the number of primes between x and $\frac{1}{2}x$, and $\nu(x) - \nu(\frac{1}{2})$ $\frac{1}{2}x$) is the sum of logarithms of primes between x and $\frac{1}{2}x$, it is obvious that

$$
\nu(x) - \nu(\frac{1}{2}x) \le \{\pi(x) - \pi(\frac{1}{2}x)\} \log x,\tag{16}
$$

for all values of x . It follows from (14) and (16) that

$$
\pi(x) - \pi(\frac{1}{2}x) > \frac{1}{\log x} (\frac{1}{6}x - 3\sqrt{x}), \text{ if } x > 300. \tag{17}
$$

From this we easily deduce that

$$
\pi(x) - \pi(\frac{1}{2}x) \ge 1, 2, 3, 4, 5, \dots, \text{ if } x \ge 2, 11, 17, 29, 41, \dots,
$$
\n(18)

respectively.