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1. If we suppose that
(L4 ™A+ eV (1 4 eV L = 28T VIAG, (1)
and

(1— e ™) (1 — e 3TV (1 — ™mV) ... = 21 V2 (2)

then G,, and g, can always be expressed as roots of algebraical equations when n is any
rational number. For we know that

1 1

(1+q)(1+¢*)(1+¢) ... =28¢7 (kk') T2 (3)

and

1

2%q24k_712k/%. (4)

(1-¢)(1-¢*)1-4°)--
Now the relation between the moduli £ and [, which makes

K L
"SI
where n = r/s,r and s being positive integers, is expressed by the modular equation of the
rsth degree. If we suppose that k =1’ k' =1, so that K = L', K/ = L, then
q= e—7rL’/L _ e—ﬂ\/ﬁ
and the corresponding value of £ may be found by the solution of an algebraical equation.
From (1), (2), (3) and (4) it may easily be deduced that

G4n = 2%gnGn7 (5)
Gn = Gl/m 1/gn = 94/n;> (6)
88 8 1

I shall consider only integral values of n. It follows from (7) that we need consider only one
of G, or g, for any given value of n; and from (5) that we may suppose n not divisible by
4. It is most convenient to consider g, when n is even, and G, when n is odd.
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2. Suppose then that n is odd. The values of GG, and g9, are got from the same modular
equation. For example, let us take the modular equation of the 5th degree, viz.

"+ ()" =2 - ) g

L

iu=(1+q)(1+¢)1+¢")-

where

=

2

and L
21g2iv = (14+¢°)(1 +¢®°)1 +¢*)---

By changing ¢ to —¢ the above equation may also be written as

(- () -2 i) g

L

u=(1-¢q)(1—-¢)1—¢")

where )
21q
and L
21g%10 = (1-¢°)(1 - ¢)(1 - ¢*)---
If we put ¢ = e~™/V5 in (8), so that u = G% and v = (G5, and hence u = v, we see that
vt vt =1,

Hence

1
1 1 !
v — +\/5, G = ( —1-2\/5) '

/2
Similarly, by putting ¢ = e 7T\/;, so that u = g2 and v = g1, and hence u = 1/v, we see
that ’

Hence

g 1+V5 1+5
- , 2.

Similarly it can be shewn that

Gy = <1+\/§>3, 918:(\/§+\/§)%7

V2
G <5+8\/ﬁ N <\/1_78—3)7

g4 = 3

<7+\/ﬁ (m—l)
T + - s
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and so on.
3. In order to obtain approximations for = we take logarithms of (1) and (2). Thus

T=23 log(ﬁ Gn)

B

T=21o (ﬁ 7 (1)
T log (21 gn)

approximately, the error being nearly %e_”\/ﬁ in both cases. These equations may also
be written as

VM =23, VM =21, (11)

In those cases in which G2 and ¢}? are simple quadratic surds we may use the forms

L L

(G + G, (957 +9,")7,
instead of G, and g, for we have
97112 _ %G%W\/ﬁ o §e—%7r\/ﬁ

approximately, and so
g}Lz +g;12 _ leén\/ﬁ + Ee—%w\/ﬁ

8 2 ’
approximately, so that
2 _
= log{8(g,° + 9, *)}, (12)

the error being about %e_“\/ﬁ, which is of the same order as the error in the formulae (10).
The formula (12) often leads to simpler results. Thus the second of formulee (10) gives

™IS/ = 91 gy

or
e1™18 = 10/2 + 8V/3.
But if we use the formula (12), or

eV = 9 (g2 4 g 12)s,

n

we get a simpler form, viz.

e%”m = 2V7.

4. The values of go,, and G,, are obtained from the same equation. The approximation by
means of go, is preferable to that by G, for the following reasons.



Modular equations and approximations to m 29

(a) It is more accurate. Thus the error when we use Ggs contains a factor e ™V6% whereas
that when we use gi39 contains a factor e~V 130,

(b) For many values of n, ga, is simpler in form than G,; thus

9130 = {(2 +/5) (%) },

ee{59) () ({5

(c¢) For many values of n, go, involves quadratic surds only, even when G,, is a root of
an equation of higher order. Thus Gag, Gaog, G31 are roots of cubic equations, G47, Grg are
those of quintic equations, and G7; is that of a septic equation, while g4¢, 958, 962, go4, 9142
and gi58 are all expressible by quadratic surds.

while

5. Since G, and g, can be expressed as roots of algebraical equations with rational coeffi-
cients, the same is true of G2* or g2*. So let us suppose that

1= ag,* —bg, ™"+,

or
2= a—bg® 4 -
But we know that

Gde ™V g2t = 1 — 24e7 ™V 4 2762V —
64924 = ™" — 24 + 276"V — ... |
64a — 64bg; 2t 4 - = ™V — 24 + 276"V — ...

64a — 4096be ™V 4 ... = ™ _ 24 1 276V ...
that is
€™ = (64a + 24) — (4096 + 276)e" ™V 4 ... (13)

Similarly, if
1=aG; 2 — bG8 4 -

then

€™V = (64a — 24) — (4096b + 276)e ™"V 4 ... (14)
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From (13) and (14) we can find whether ¢™™ is very nearly an integer for given values of
n, and ascertain also the number of 9’s or 0’s in the decimal part. But if G,, and g, be
simple quadratic surds we may work independently as follows. We have, for example,

g2z = \/ (1 +2).
Hence
64938 = €™V — 244276 V2 ...
6oy, = 4096e~ V2 4 ...
so that
64928 + g52Y) = ™V _ 24 1 4372V 4 = 64{(1 + V2)'2 + (1 — V2)12}.
Hence
™22 — 9508951.9982 .
Again
Gar = (6 +/37)1,
64G% = V3T L 24 4+ 276 VT 4.
064Gy = 4096~V ...
so that
6U(GH + G57") = 7 424 4 4372¢7F = 64{(6 + VD) + (6 - VD)),
Hence

™37 — 199148647.999978 . . . .

<5+\/E>
gss = 4| [ —— |,

Similarly, from

2
we obtain
5 29 . 5 29 2
_ + _
64(g2 + gs2) = ™V — 24 44372 VB 4. =64 <TV> +<Tv>
Hence

™58 — 24591257751.99999982 .
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6. I have calculated the values of G,, and g, for a large number of values of n. Many of
these results are equivalent to results given by Weber; for example,

34+4/13 1++5
Gls = 5 Gm=—5—,

% = ©2+V5)(3+V10), Gi =6+ V37,

1
. TiH@+VT) 5429
49 = 5

- bl 958 2

s B+VH+V2)
di0 = 5 )

{C57) ()
o )
|

—~

— N

Grz3 =

13 ++/97 5497
8 i 8 ’
+5)(3 +V10),

(
G2 — é(g 4 VID(VE + VI (VT 4 VID)B + V3),

and so on. I have also many results not given by Weber. I give a complete table of new

results. In Weber’s notation, G,, = 2_if{\/(—n)} and g, = 2_%f1{\/(—n)}.
TABLE 1

g+ — = {1+ VD) 0 +5vD),

962

o - (AN )

V (V2 +V3)(TV2 + 3VI1)S {J (”8\/@) +J <\/3_21>}

2
Y66
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Gy = (V4 VI (“fﬁ)é N <6+fﬁ> +J (Hjﬁ)}
W) 0]

=

G2 — {%(ﬁ +V11)(8 +3V7)}

G, - (2v3 +2)§
(2v3-2)s -

g0 = {2+VB)(VE+VE)}s {J <3+4\/€> +J <\/€4_ 1)}’

gor + g—; :%{\/(7+\/§)+\/(7+5\/§)},

gos + i:%{ﬁ-l- (14 4+ 4V14)},

g8

= o (2] (20T

2 2

1 \s
G + PWE
121 G121 { 3\/_> }

G = 3\[ (11 — 3y/11)5{ 3\/—+3\f 4)3 + (3V/I1 — 3V/3 — 4)3} — ]}

gi126 = (ﬁ;ﬁ>(\/6+ﬁ)é{d<3+4\/§>+d<\/§41)} |
gy = (3\/§—;—\/ﬁ>(78\/§+23\/ﬁ)é % {J <5+42\/6> +J <1+42\/€>}’

Grr = 1<3+\/ﬁ>4(2¢§+\/ﬁ)é{3i+ (4+V3)}
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2 _
G145

2
9154

9158

g198

Gaos =

)

(
W

7+9\/_

[ (&)

RS

33+9\/ﬁ>}3

il

(13+2\/ﬁ

4

9158

V(1 +vV2)(4V2 + V/33)8 {J (

3v/5 + V41

ol

2

— = —{\/ 9+2) + \/(17+13\/§)},

) |

1 >§+<1 1
3v3 3
1

9+ v33
)

(2 +5)(5 +29) 17 + /145 9 ++/145
2 8 + 8 '
_a1 1 1 7 1
2712 54‘7{ <Z>—(28)6}],

9

It

7441
8

)l
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2
G213

Ga2s

9238

Gagg

2
G301
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4

A ()
() ()
NCSRES)!

) 2+ v3)5{y/(4 + VI5) + 157},

(53 + VI (59”m>6

4

() ()
)
(o (P (22 oy (2)

N{17+\/1_7+17i(5+\/ﬁ)}+J{1+\/ﬁ+17i(5+\/ﬁ)}r

<1+\/3

16 16

{<s+3ﬁ> (—mﬁ; 5m> }

A )
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g3io = <1+2\/5> (1+ﬂ){J<7+im>+J<3+im>},

Gz = %(6 +V3T)5(TV3 + 2\@)%{\/(7+ 2V/3) + \/(3 +2V3)},

G363 = 2T52t, where
200 — 1{(4 +V/33) + /(11 + 2v/33)}
—t{1+4/(11+2v33)} —1=0

L) 2 VT (T HAVT 34+ v7) + (6V7)4
Gz2141 = (W)@%—ﬁﬁ{ 2( )}{ ( )+ ( )1}
(3+V7) = (6V7)1

o) [ )
Gl = J{“f ><M'§r>}<5\/5+2\/3—1>é
)
- {=)
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g522 =

2
G553

9630

o

|

\/_+\/_J1+

v

feam. |
)(5\/_+11f N(g”\f

5429
2

1+\/5> 10+\/ﬁ}

105+\/W>}

J (96+11\/E

3+5
2

4

(=)

RS

143 + 161/79

(e

)}

1

V15 +2>

()

Sl

4

1

)(16+\/ﬁ)éd{(4+\/ﬁ)<

{
[
[

\/_+f+4>

8

X{\

X{\

(
(

18+3r> J(

22 + 3v/51
4

==
9+2@>}
6+r> J<10+4x/5—1>}

)}

)}
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2

= =)

Girr = J {(2 +/3)(6 + V/37) <ﬁ+ ﬁ) }(246f7+ 107V/37)8

N { 43+ 15V7 + (8 + 3v7)1/ (10v/7) }
X
8

+J {35+15ﬁ+(8+3ﬁ) (1oﬁ)} }
8 )

Goosy = J {(3+\/ﬁ)(5+3\/§) <H+m>}

2

6817 + 321\/45 )

g
L) ()
{2 (=)

Glos = (2+\/5)J{(3+\/?)<7+2m>}<73\/329\/@>4
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{ (119+7\/@> J(muW@)}
x — 5 " 8

743 + 41/329 751 + 414/329
AU ()]

7. Hence we deduce the following approximate formulae

TABLE 11

2\/?7 67r\/22/12 —9 + \/57 eiﬂ'\/% — 20\/§_’_ 16\/6,

12(4 + V17), e2™V30 = 144(147 + 104v/2)

84 1326, emV/2 =2 E VY +\/\§/@7

60v/35 + 96v/14, 1™V — 300v/3 + 208V/6,

1+4/(3+2v5)

. e1™102 — 800/3 4+ 196+/51,
V2

12(323 + 40v/65), e™V19/12 — (2/2 4+ v/10)(3 + V/10),
12 {(2+\/5)(3+x/ﬁ)}

NE V2
ilo 10 + 112 N 10 +7v2
e 4 T )
12

% log{(2v2 + v10)(3 + v10)},

12

NeT log[i(ii +V5)(2 4+ V2){(5 + 2V10) + 1/ (61 + 201/10)}],

3
2 g {(5 i \/E> (5v/29 + 11V6)

522 V2
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9+ 3v6 5+3V6

The last five formula are correct to 15, 16, 18, 22 and 31 places of decimals respectively.

8. Thus we have seen how to approximate to m by means of logarithms of surds. I shall
now shew how to obtain approximations in terms of surds only. If

K L
KT
we have
ndk dl

LEPK2  2L2°
But, by means of the modular equation connecting k and [, we can express dk/dl as an al-
gebraic function of k, a function moreover in which all coefficients which occur are algebraic
numbers. Again,

_ ! _ !
e WK/K’ n_ e 7TL/L’

q= qa =

T T O ST <kk> <5> (15)

(L= @M - g1 - gy NI YL

Differentiating this equation logarithmically, and using the formula

dg __w%q
dk  2kkR2K?2’

we see that

2n 4n 2 4
q 2q q 2q
1—24 )y —1—24
n{ (1—q2"+1—q4"+ >} { <1—q2+1—q4+ >}

= 22AK),  (16)

where A(k) denotes an algebraic function of the special class described above. I shall use
the letter A generally to denote a function of this type.
Now, if we put &k =1" and k¥’ =1 in (16), we have

1 2
n{1_24<62”\/ﬁ—1+e47T\/ﬁ_1+“'>}

_{1_24<e2”/\/15—1+e4”/\/25—1+.”>}:<§>2A(k). (17)

39
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The algebraic function A(k) of course assumes a purely numerical form when we substitute
the value of k deduced from the modular equation. But by substituting k =" and k¥’ = [
in (15) we have

nie—w\/ﬁ/m(l o e—27r\/ﬁ)(1 o e—47r\/ﬁ)(1 o e—67r\/ﬁ) L
— e—ﬂ/(12x/ﬁ)(1 _ 6—27r/x/ﬁ)(1 _ 6—47r/\/ﬁ)(1 _ e—GW/x/ﬁ) .

Differentiating the above equation logarithmically we have

1 2
n{1_24<e27r\/ﬁ_1+e47r\/ﬁ_1+'”>}

1 2 6/n
+{1_24<e27r/x/ﬁ—1+e4ﬂ/ﬁ—1+'”>}_T' (18)

Now, adding (17) and (18), we have

3 1 2 K\?

But it is known that

3 5 2K \°
1—24( T +>:<—> (1 — 2k2),

1+q¢ 1+¢ 1+

so that

1 3 K\?
1—-24 + + ) == A(k). 20
<e“\/ﬁ+1 e3™/n 41 > <7T> (k) (20)

Hence, dividing (19) by (20), we have

3 1 2
1_W—\/ﬁ_24<e2”ﬁ—1+64ﬂﬁ—1+”‘)

1 3
1—24<6Wﬁ+1+63m+1+m>

~ R, (21)

where R can always be expressed in radicals if n is any rational number. Hence we have

3
TESONG

nearly, the error being about 8we™™V"(ry/n — 3).

(22)

m =

9. We may get a still closer approximation from the following results. It is known that

=00 3 2r 4
r°q 2K 9,19
1+ 240 E —_— = — 1—k%k
+ gt 1 _q27. ( T > ( )7
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and also that

=00 5 2r 6
r°q 2K 2 1 9.
1—-504 = — 1 —-2K°)(1 4+ =k°K"7).

Z;“ﬂ% <W>< )L+ SkET)

Hence, from (19), we see that

3 r=00 r =00 7,3
1———-24 _ 1424 —_—
{ m/n ;e%r\/ﬁ—l}{ * Ozezm’\/ﬁ—l}

r=1
, T=00 7"5
where R’ can always be expressed in radicals for any rational value of n. Hence
3
(1—R)yn’

nearly, the error being about 247(107y/n — 31)e=2"™V7"
It will be seen that the error in (24) is much less than that in (22), if n is at all large.

(24)

m =

10. In order to find R and R’ the series in (16) must be calculated in finite terms. I shall
give the final results for a few values of n.

Table I1I

q:

f) = L,

4K L
f@3) = = (1+kl+KT),

) = TEE IR,

17/
f(5) = —47IT{2L(3+l<:l+l<:’l’)\/<71 +kl2+ v >

fm = PRy ey,
i

f(11) = %;QG+M+HH+¢%D+¢WM—¢%MML

41
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4K L

J15) = {1+ (kD)1 + (K1) 1} — {1+ Kl + KT},
fan = ‘ff 441+ K1 + K1) + 168(kl + K'I! — kK1)
—102(1 — kI — K')(4kK' 1) — 192(4kK'11')3 Y},

f(19) = 245 L {(L+ Kkl +KV)+ (k) + /(KT) — \/(kK'I')},
F(23) = 4;’:} (L1(1 + kL + K1) — 16(4kK 1Y S {1+ /(D) + /(FT)} — 20(4kK 1) 3],
f(31) = 127§L 3(1 + kL + k') + 4{/(El) + /(K'I") + /(kK'1I")}

—ARK )T {1 + (k)5 + (KT)7}],
735) = AV + VT - R

+ (kR 5 {1 — /(KD — VTP

Thus the sum of the series (19) can be found in finite terms, when n = 2,3,4,5,...,
from the equations in Table III. We can use the same table to find the sum of (19) when
n=29,2549,...; but then we have also to use the equation

3 1 2 3
2_1-2
T <e27r—1+e47r—1+66”—1+ )7

which is got by putting k = k' = 1/v/2 and n = 1 in (18).
Similarly we can find the sum of (19) when n = 21,33,57,93, ..., by combining the values
of f(3) and f(7), f(3) and f(11), and so on, obtained from Table III.

11. The errors in (22) and (24) being about
8re ™" (wy/n —3), 24w(10m/n — 31)e 2™V,

we cannot expect a high degree of approximation for small values of n. Thus, if we put
n=17,9,16, and 25 in (24), we get

19

— = 3.14180...

T 7 3.14180. . .,
7 V3
—[1+X2) = 3.14162...
3< + 5) ’

%< 7 > 3.14159274 . ..,
80 \ 7 —3v2
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63 (174 15V5
25 \ 7+ 15V5

) = 3.14159265380. ..,

while

T = 3.14159265358 . . . .

But if we put n = 25 in (22), we get only

9 9
/2 =3.14164. ...
5+\/;

12. Another curious approximation to 7 is

, 192\ 1
9+ | =3.14159265262. ..

This value was obtained empirically, and it has no connection with the preceding theory.

The actual value of 7, which I have used for purposes of calculation, is

355 (1 .0003

— | 1= ——= ) =3.141592 43 ...
113 3533> 3.1415926535897943 . . .,

which is greater than 7 by about 10715, This is obtained by simply taking the reciprocal
of 1 — (1137/355).

In this connection it may be interesting to note the following simple geometrical construc-
tions for m. The first merely gives the ordinary value 355/113. The second gives the value

(92 + 192/22)% mentioned above.

(1) Let AB (Fig.1) be a diameter of a circle whose centre is O. Bisect AO at M and trisect
OB at T. Draw TP perpendicular to AB and meeting the circumference at P. Draw a
chord BQ equal to PT and join AQ. Draw OS and TR parallel to BQ and meeting AQ
at S and R respectively. Draw a chord AD equal to AS and a tangent AC = RS. Join
BC,BD, and CD; cut off BE = BM, and draw E X, parallel to CD, meeting BC' at X.

43
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Fig. 1.

Then the square on BX is very nearly equz?l to the area of the circle, the error being less
than a tenth of an inch when the diameter is 40 miles long.

(2) Let AB (Fig.2) be a diameter of a circle whose centre is O. Bisect the arc ACB at C
and trisect AO at T. Join BC and cut off from it CM and M N equal to AT. Join AM
and AN and cut off from the latter AP equal to AM. Through P draw PQ parallel to M N
and meeting AM at Q). Join OQ and through T draw T'R, parallel to OQ and meeting AQ
at R. Draw AS perpendicular to AO and equal to AR, and join OS.

Fig. 2.

Then the mean proportional between OS and OB will be very nearly equal to a sixth of
the circumference, the error being less than a twelfth of an inch when the diameter is 8000
miles long.
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13. T shall conclude this paper by giving a few series for 1/7.
It is known that, when k < 1/v/2,

2K\ 2 0N L 13\
<T> =1+ <§> (2kK")" + <ﬂ> (2KE)* 4 - -+ (25)
Hence we have

(1= ) - 1)

(o) o Y o () e} o

Differentiating both sides in (26) logarithmically with respect to k, we can easily shew that

2 4 6
q 2q 3q
1—-24
(1—q2+1—q4+1—qGJr )
2 1 ’ N2 1-3 ’ N4

But it follows from (19) that, when ¢ = e~™" n being a rational number, the left-hand
side of (27) can be expressed in the form

2K\* B

(22

7r T
where A and B are algebraic numbers expressible by surds. Combining (25) and (27) in
such a way as to eliminate the term (2K/7)?, we are left with a series for 1/7. Thus, for

example,
4 TN B 1) 19135\
T 4\ 2 42\2-4 43\2-4-6 '

1
(4= ™52k = 3), (28)
16 o 47 (1) 89 (1:3)\* 131 (1.3.5\
T 64\2 642 \2-4 643 \2-4-6 '
1
(q=e ™7 2Kk = 2) (29)

3 B 8
¥:(5¢5—1)+747\/§4+29 <%> <*/52 1)

45
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642 2-4 2

[q = e_”\/ﬁ,Qk‘k‘/ = L <@>] : (30)

+89\/3+59 <1.3>3<\/5—1>16+...,

8 2

here 5v/5 — 1,47v/5 4 29,89y/5 + 59, ... are in arithmetical progression.

14. The ordinary modular equations express the relations which hold between k and [
when nK'/K = L'/L, or ¢" = Q, where

—nK' /K —nL'/L
q:6ﬂ- /7 QZeﬂ-/7

1\ , [(1-3\*,
K_1—|—<§> k+<ﬁ> g

There are corresponding theories in which ¢ is replaced by one or other of the functions

_wK{\/?/K17q2 _ e—27rKé/(K2\/§)7q3 _ e—szg/K37

Q1 =e
where
1-3 5, 1-3-5-7, 1-3-5-7-9-11 4
K = 1+ 42/<:—|— 2.5 k™ + 25212 B>+
1.2, 1-2:4.5, 1-2.4.5.7-8
K2 = 1+ 32 + 32.62 + 32.62.92 K+
1-5 1-5-7-11 1-5-7-11-13-17
K — 2 4 kﬁ
’ TV T e T T T e s *
From these theories we can deduce further series for 1/, such as
27 112 (2 1-31-42-5 2\
k) JRES | Gty () IS ) Sy 31
4 * 233(27)+ 2-43-63-6(27) T (31)
15v/3 112/ 4 1-31-42-5( 4 \?
—— =44+371-== | — MN———— — 32
2 * 233(125)+ 2'43-63-6<125> T (32)
5v5 115 [ 4 1-31-75-11 ( 4 \?
VO 14122 (— ) + 23 — 33
2V/3 * 266(125>+ 2-46-126-12 <125> T (33)
85v/85 115 (4)° 1-31-75-11 (4\°
=8+ 1dl-—= | — 274 — 34
187v/3 * 266(85) TSI 126 12 <85> ’ (34)
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-2 + —_— (35)

4 3 2311-3 431-31-3-5-7
T 2 232 42 2024 42.82

4 3 31 11-3 5 1-31-3-5-7 (36)
m/3 4 3-432 42 0 32.452.4 42.82 ’
4_2 28811-3 5481.31.3.5.7 (37)
T 18 1832 42  1852.4 42.82 '
4 41 68 11-3 1329 1-31-3-5-7 (38)
/5 T2 5-7232 42 52.7252.4 42.82 ’
41123 2258311-3 440431-31-3-5-7 (30)
882 8823 2 42 8820 2.4 42.82 ’
2V/3 911-3 171-31-3-5-7
T T 40
T TooE Ty e T (40)
I _ 1, 1113 211-31.3.5:7 (1)
oryv/2 9 932 42 952.4 42.82 ’
1 _3+4311-3+83ﬁ1-3'5-7+ (42)
3mv3 49 4932 42 4952.4 42.82 '
2__ 19 20911:3 5791:31:3:5:7 (43)
aVI1 99 0 9932 42 1 9952.4 42.82 ’
I _ 1103  2749311-3  538831-31-3.5.7 (44)
o2 992 996 2 42 9910 2.4 42.82

In all these series the first factors in each term form an arithmetical progression; e.g. 2,
17, 32, 47, ..., in (31), and 4, 37, 70, 103, ... , in (32). The first two series belong to the
theory of g2, the next two to that of g3, as the rest to that of ¢.

The last series (44) is extremely rapidly convergent. Thus, taking only the first term, we

see that
1103

gg7 = 11253953678 ...,

=.11253953951 . ...

1
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15. In concluding this paper I have to remark that the series

2 4 6
q 2q 3q
1—24
<1—q2+1—q4+1—<16Jr )

which has been discussed in §§ 8-13, is very closely connected with the perimeter of an
ellipse whose eccentricity is k. For, if a and b be the semi-major and the semi-minor axes,
it is known that

1., 12.3 , 12.3%2.5 4
p:27m{1—2—2k: —22‘42]{7 _22-44-62k — b (45)

where p is the perimeter and k the eccentricity. It can easily be seen from (45) that

dK
=dak?{K + k— . 4
p— i { K+ K5} (46)

But, taking the equation
1 1
g (1= ¢*)(1—¢")(1 —¢%)--- = (2kk)5 /(K /),

and differentiating both sides logarithmically with respect to k, and combining the result
with (46) in such a way as to eliminate dK/dk, we can shew that

4a 1 q> 2¢*
P= g K2(1+k’2)+(§ﬂ)2{1—24<1_q2+1_q4+--- . (47)

But we have shewn already that the right-hand side of(47) can be expressed in terms of
K if ¢ = e"™™ where n is any rational number. It can also be shewn that K can be
expressed in terms of I'-functions if ¢ be of the forms e™™", e~™V2 and e"m\/g, where n is
rational. Thus, for example, we have

k=sinT, — g=e,
o {2+ 201,
k=tanZ, — q=c V2
p=ay/(%) F(§)+F(§) )
. q:e_: 3{7r(8) F(s)} (48)
=) {(1+8) 58 +258).
b—tan?Z,  g=e 2
o= (a0 {3+ 1)



Modular equations and approximations to m

and so on.

16. The following approximations for p were obtained empirically:

p=mn[3(a+0b) — /{(a+3b)(3a+b)} + €, (49)

where € is about ak'?/1048576;

p=md(a+b)+ b e (50)
10(a + b) + /(a2 + 14ab + b2) ’

where € is about 3ak?"/68719476736.
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