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Technological change has revolutionized the way financial assets are traded. Back office improve-

ments can support vastly increased trading volume. Retail investors place orders via computer

rather than speaking to a broker on the phone. Trading floors have largely been replaced by

electronic trading platforms (Jain (2005)).

The nature of order execution has changed dramatically as well, as many market partici-

pants now employ algorithmic trading (AT), commonly defined as the use of computer algorithms

to manage the trading process. From a starting point near zero about ten years ago, AT is now

thought to be responsible for 1

3
of trading volume in the U.S and is expected to account for perhaps

half of trading volume by 2010.1 The intense activity generated by algorithms threatens to over-

whelm exchanges and market data providers,2 forcing significant upgrades to their infrastructures.

Before algorithmic trading took hold, a pension fund manager who wanted to buy 30,000

shares of IBM might hire a broker-dealer to search for a counterparty to execute the entire quantity

at once in a block trade. Alternatively, that institutional investor might have hired a New York

Stock Exchange (NYSE) floor broker to go stand at the IBM post and quietly “work” the order, us-

ing his judgment and discretion to buy a little bit here and there over the course of the trading day

to keep from driving the IBM share price up too far. As trading became more electronic, it became

easier and cheaper to replicate that floor trader with a computer program doing algorithmic trading

(see Hendershott and Moulton (2007) for evidence on the decline in NYSE floor broker activity).

Now virtually every large broker-dealer offers a suite of algorithms to its institutional customers to

help them execute orders in a single stock, in pairs of stocks, or in baskets of stocks. Algorithms

typically determine the timing, price, and quantity of orders, dynamically monitoring market con-

ditions across different securities and trading venues, reducing market impact by optimally (and

sometimes randomly) breaking large orders into smaller pieces, and closely tracking benchmarks

such as the volume-weighted average price (VWAP) over the execution interval. As they pursue a

desired position, these algorithms often use a mix of active and passive strategies, employing both

limit orders and marketable orders. Thus, at times they function as liquidity demanders, and at

times these algorithms supply liquidity.

Many observers think of algorithms from the standpoint of this institutional buy-side

investor.3 But there are other important users of algorithms. Some hedge funds and broker-dealers

supply liquidity using algorithms, competing with designated market-makers and other liquidity

suppliers. For assets that trade on multiple venues, liquidity demanders often use smart order

routers to determine where to send a marketable order. All of these are also forms of algorithmic

trading.4

1See “Ahead of the Tape-Algorithmic Trading,” Economist, June 23, 2007.
2See “Dodgy Tickers-Stock Exchanges,” Economist, March 10, 2007.
3See, for example, Domowitz and Yegerman (2005).
4Algorithms can also be used to formulate trading decisions and strategies as well as implement them. There are

clearly feedback effects between the portfolio strategy side and the execution side. For example, algorithmic execution
could be the difference in making a trading-intensive algorithmic portfolio strategy feasible. Our data reflect counts
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As AT has grown rapidly over the past ten years or so, liquidity in world equity markets

has also dramatically improved. Based on these two coincident trends, it is tempting to conclude

that algorithmic trading is at least partially responsible. But it is not at all obvious a priori that

AT and liquidity should be positively related. If algorithms are cheaper and/or better at supplying

liquidity, then AT may result in more competition in liquidity provision, thereby lowering the cost

of immediacy. However, the effects could go the other way if algorithms are used mainly to demand

liquidity. Limit order submitters grant a trading option to others, and if algorithms make liquidity

demanders better able to identify and pick off an in-the-money trading option, then the cost of

providing the trading option increases, and spreads must widen to compensate. In fact, AT could

actually lead to an unproductive arms race, where liquidity suppliers and liquidity demanders both

invest in better algorithms to try to take advantage of the other side, with measured liquidity the

unintended victim.

In this paper, we attempt to gauge empirically the relationship between algorithmic trading

and liquidity. We use a normalized measure of NYSE electronic message traffic as a proxy for

algorithmic trading. This message traffic includes electronic order submissions, cancellations, and

trade reports. Because we normalize by trading volume, variation in our AT measure is for the most

part driven by variation in limit order submissions and cancellations. This means that our measure

is mainly picking up variation in algorithmic liquidity supply. This liquidity supply is likely coming

both from proprietary traders making markets algorithmically and from buy-side institutions that

are submitting limit orders as part of “slice and dice” algorithms.

AT’s effect on liquidity is assessed using two empirical approaches. First, panel regressions

are used to establish that time-series increases in algorithmic trading are associated with more

liquid markets. While AT and liquidity move in the same direction during our sample period, it

is certainly possible that the relationship is not causal. Thus, the panel regressions are mostly a

warmup for the main part of the paper, where we study an important exogenous event that increases

the amount of algorithmic trading in some stocks but not others. To establish causality, we use the

start of autoquoting on the NYSE as an exogenous instrument for algorithmic trading. Previously,

specialists were responsible for manually disseminating the inside quote. This was replaced in early

2003 by a new automated quote whenever there was a change to the NYSE limit order book. This

market structure change provides quicker feedback to traders and algorithms and results in more

electronic message traffic. The change was also phased in for different stocks at different times,

and we take advantage of this non-synchronicity to cleanly identify the effects.

We find that algorithmic trading does in fact improve liquidity for large-cap stocks. Quoted

and effective spreads narrow under autoquote. The narrower spreads are a result of a sharp decline

in adverse selection, or equivalently a decrease in the amount of price discovery associated with

trades. There are no significant effects for smaller-cap stocks, but our instrument is weaker there,

of actual orders submitted and canceled, so we focus on the execution side of algorithms.
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so the problem may be a lack of statistical power.

Surprisingly, we find that algorithmic trading increases realized spreads and other mea-

sures of liquidity supplier revenues. This is surprising because we initially expected that if AT

improved liquidity, the mechanism would be competition between liquidity providers. However,

the evidence clearly indicates that liquidity suppliers are capturing some of the surplus for them-

selves. To help make sense of this counter-intuitive result, we introduce the generalized Roll model

developed in Hasbrouck (2007), modified to allow algorithmic liquidity supply. The model matches

up with all our empirical findings. In particular, it shows that liquidity supplier revenues depend

on the degree of competition between the marginal liquidity suppliers. To put it starkly, in a world

without algorithms, liquidity supplier revenues depend on the degree of competition between liquid-

ity supplier humans. In a world with algorithms, liquidity supplier revenues depend on the degree

of competition between algorithms. Our results suggest that, at least immediately following the

start of autoquote, there could have been less competition between the best algorithms, perhaps

because new algorithms require considerable investment and time-to-build.

The paper proceeds as follows. Section 1 discusses related literature. Section 2 describes

our data and analyzes algorithmic trading and its impact from 2001 through 2005. Section 3 exam-

ines algorithmic trading and liquidity surrounding the NYSE’s staggered introduction of autoquote

in 2003. Section 4 discusses and interprets the results, and Section 5 concludes.

1 Related literature

There are very few academic papers that address algorithmic trading directly, and none that tackle

the broader effects of algorithmic trading on overall market quality. For example, Engle, Russell,

and Ferstenberg (2007) use execution data from Morgan Stanley algorithms to study the tradeoffs

between algorithm aggressiveness and the mean and dispersion of execution cost. Domowitz and

Yegerman (2005) study execution costs of ITG buy-side clients, comparing results from different

algorithm providers.

However, there are several strands of academic literature that touch related topics. Most

models take the traditional view that one set of traders provides liquidity via quotes or limit orders

and another set of traders initiates a trade to take that liquidity – for either informational or

liquidity/hedging reasons. Many assume that liquidity suppliers are perfectly competitive, e.g.,

Glosten (1994). Glosten (1989) models a monopolistic liquidity supplier, while Biais, Martimort,

and Rochet (2000) allow for an arbitrary number of symmetric competing liquidity suppliers and

find that liquidity suppliers’ rents decline as the number increases. Our initial expectation is that

AT facilitate the entry of additional liquidity suppliers, and reduce their overall rents.
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The development and adoption of AT also involves strategic considerations. While algo-

rithms have low marginal costs, there may be substantial development costs, and it may be costly

to optimize the algorithms’ parameters for each security. The need to recover these costs should

lead to the adoption of algorithmic trading at times and in securities where the returns to adoption

are highest (see Reinganum (1989) for a review of innovation and technology adoption).

As discussed briefly in the introduction, liquidity supply involves posting firm commit-

ments to trade. These standing orders provide free trading options to other traders. Using stan-

dard option pricing techniques, Copeland and Galai (1983) value the cost of the option granted by

liquidity suppliers. The arrival of public information renders existing orders stale and can move

the trading option into the money. Foucault, Roëll, and Sandas (2003) study the equilibrium level

of effort that liquidity suppliers should expend in monitoring the market to avoid this risk. Black

(1995) proposes to minimize picking-off risk with a new limit order type that is indexed to the over-

all market. Algorithms enable this kind of monitoring and adjustment of limit orders in response

to public information. In fact, in recent work, Rosu (2006) develops a model that implicitly recog-

nizes these technological advances and simply assumes limit orders can be constantly adjusted. In

general, if AT reduces the cost of the free trading option implicit in limit orders, then measures of

adverse selection should decrease with AT. If some users of AT are better at avoiding being picked

off, they can impose adverse selection costs on other liquidity suppliers (similar to the mechanism

in Rock (1990)) and even drive other liquidity suppliers out.

AT may also be used by traders who are trying to passively accumulate or liquidate a large

position. There are a few papers that derive optimal dynamic execution strategies for such traders.

For example, Bertsimas and Lo (1998) find that, in the presence of temporary price impacts and

conditional on completing the entire transaction by a fixed date, orders are optimally broken into

pieces so as to minimize cost. Almgren and Chriss (2000) extend this by considering the risk that

arises from breaking up orders and slowly executing them. Obizhaeva and Wang (2005) optimize

assuming that liquidity does not replenish immediately after it is taken but only gradually over

time. Many brokers build models with such considerations into their AT products that they sell to

their clients. On the empirical side, Keim and Madhavan (1995) provide evidence that large orders

are broken up, and Chan and Lakonishok (1995) study institutional orders that are worked over

multiple days.

For each component of the larger transaction, a trader (or algorithm) must choose the

type and aggressiveness of the order. Cohen et al. (1981) and Harris (1998) focus on the simplest

static choice: market order versus limit order. If a trader chooses a non-marketable limit order,

the aggressiveness of the order is determined by its limit price (Griffiths et al. (2000) and Ranaldo

(2004)). Lo, MacKinlay, and Zhang (2002) find that execution times are very sensitive to the choice

of limit price. If limit orders do not execute, traders can cancel them and resubmit them with more

aggressive prices. A short time between submission and cancellation suggests the presence of AT,
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and in fact Hasbrouck and Saar (2007) find that a large number of limit orders are cancelled within

two seconds on the Inet trading platform (which is now Nasdaq’s trading mechanism).

2 Data and full sample analysis

To study the relationship between algorithmic trading and liquidity, we start with a monthly panel

of NYSE common stocks. We limit ourselves to the post-decimalization regime because the change

to a one penny minimum tick was a structural break that substantially altered the entire trading

landscape, including liquidity metrics and order submission strategies. The sample extends for

almost five years, beginning in February 2001 and ending in December 2005. We start with a

sample of all NYSE common stocks that can be matched across the NYSE’s Trade and Quotes

(TAQ) and the CRSP databases and retain the stocks that are present throughout the whole

sample period (in order to maintain a balanced panel). Stocks with an average share price of less

than $5 are removed from the sample, as are stocks with an average share price of more than $1,000.

The resulting sample comprises 943 common stocks.

Stocks are sorted into quintiles based on market capitalization. Quintile 1 refers to large-

cap stocks and quintile 5 corresponds to small-cap stocks. All variables used in the analysis are

99.9% winsorized (that is, values smaller than the 0.05% quantile are set equal to that quantile,

and values larger than the 99.95% quantile are set equal to that quantile).

2.1 Proxies for algorithmic trading

We cannot directly observe whether a particular order is generated by a computer algorithm. For

cost and speed reasons, most algorithms do not rely on human intermediaries but instead generate

orders that are sent electronically to a trading venue. Thus, the rate of electronic message traffic can

be used as a proxy for the amount of algorithmic trading taking place. This proxy is commonly used

by market participants, including consultants Aite Group and Tabb Group, as well as exchanges

and other market venues.5

For example, in discussing market venue capacity limits following an episode of heavy

trading volume in February 2007, a Securities Industry News report quotes Nasdaq SVP of Nasdaq

transaction services Brian Hyndman, who noted that exchanges have dealt with massive increases

in message traffic over the past five to six years, coinciding with algorithmic growth.

“It used to be one-to-one,” Hyndman said. “Then you’d see a customer send ten orders

5See, for example, Jonathan Keehner, “Massive surge in quotes, electronic messages may paralyse US market,”
http://www.livemint.com/2007/06/14005055/Massive-surge-in-quotes-elect.html, June 14, 2007.
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that would result in only one execution. That’s because the black box would cancel a

lot of the orders. We’ve seen that rise from 20- to 30- to 50-to-one. The amount of

orders in the marketplace increased exponentially.”6

In the case of the NYSE, electronic message traffic includes order submissions, cancella-

tions, and trade reports that are handled by the NYSE’s SuperDOT system and captured in the

NYSE’s System Order Data (SOD) database. The electronic message traffic measure for the NYSE

excludes all specialist quoting, as well as all orders that are sent manually to the floor and are

handled by a floor broker.

[insert Figure 1]

As suggested by the quote above, an important issue is whether and how to normalize the

message traffic numbers. The top half of Figure 1 shows the evolution of message traffic over time.

We focus on the largest-cap quintile of stocks, as these constitute the vast bulk of stock market

capitalization and trading activity. Immediately after decimalization at the start of 2001, the

average large-cap stock sees about 35 messages per minute during the trading day. There are a few

bumps along the way, but by the end of 2005, there are an average of about 250 messages per minute

(more than 4 messages per second!) for these same large-cap stocks. We could, of course, simply

use the raw message traffic numbers, but there has been a marked increase in trading volume over

the same interval, and without normalization a raw message traffic measure may just be capturing

the increase in trading rather than the change in the nature of trading. Therefore, we normalize

by calculating for each stock each month the number of electronic messages per $1,000 of trading

volume. This normalized measure still rises rapidly over the five-year sample, while measures of

market liquidity such as proportional spreads have declined sharply but appear to asymptote near

the end of the sample (see, for example, the average quoted spreads in the top half of Figure 2),

which occurs as more and more stocks are quoted with the minimum spread of $0.01. Since we are

essentially regressing spreads on algorithmic trading measures, we want both measures to have this

same general shape over time. Thus, our preferred measure is just the negative reciprocal of the

messages per dollar traded. Specifically, algo tradit is calculated as the negative of trading volume

(in thousands of dollars) divided by the number of electronic messages. However, our results are

virtually the same when we normalize by the number of trades or use raw message traffic numbers.

The results are also the same when we use the number of cancellations rather than the number of

messages to construct the algorithmic trading measure.

The time-series evolution of algo tradit is displayed in the bottom half of Figure 1. For

the largest-cap quintile, there is about $7,000 of trading volume per electronic message at the

6See Shane Kite, “Reacting to market break, NYSE and Nasdaq act on capacity,” Securities Industry News, March
12, 2007.
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beginning of the sample in 2001, decreasing dramatically to about $1,100 of trading volume per

electronic message by the end of 2005. Over time, smaller-cap stocks display similar time-series

patterns. Cross-sectionally, there is a positive monotonic relationship between market cap and

trading volume per message. In general, we focus more on time-series behavior rather than the

cross-sectional patterns.

It is worth noting that our algorithmic trading proxies may also capture changes in trading

strategies. For example, messages and algo tradit will increase if the same market participants use

algorithms but modify their trading or execution strategies so that those algorithms submit and

cancel orders more often. Similarly, the measure will increase if existing algorithms are modified

to “slice and dice” large orders into smaller pieces. This is useful, as we want to capture increases

in the intensity of order submissions and cancellations by existing algorithmic traders, as well as

the increase in the fraction of market participants employing algorithms in trading.

2.2 Summary statistics

[insert Table 1]

Table 1 contains means by quintile and within-stock standard deviations for all of the

variables used in the analysis. We measure liquidity using quoted half-spreads, effective half-

spreads, 5-minute realized spreads, and 5-minute price impacts, all of which are measured as share-

weighted averages and expressed in basis points as a proportion of the prevailing midpoint. The

effective spread is the difference between an estimate of the true value of the security (the midpoint

of the bid and ask) and the actual transaction price. For the tth trade in stock j, the proportional

effective half-spread (espreadjt) is defined as:

espreadjt = qjt(pjt − mjt)/mjt, (1)

where qjt is an indicator variable that equals +1 for buyer-initiated trades and −1 for seller-initiated

trades, pjt is the trade price, and mjt is the quote midpoint prevailing at the time of the trade.

We follow the standard trade-signing approach of Lee and Ready (1991) and use contemporaneous

quotes to sign trades and calculate effective spreads (see Bessembinder (2003), for example). For

each stock each day, we use all NYSE trades and quotes to calculate quoted and effective spreads

for each reported transaction and calculate a share-weighted average across all trades that day. For

each month we calculate the simple average across days. We also measure quoted depth at the

time of each transaction and report share-weighted averages measured in thousands of dollars. For

example, the mean effective half-spread of 3.67 basis points for stocks in the largest-cap quintile

corresponds to a half-spread of 1.68 cents (or a whole spread of 3.36 cents) on a stock with the
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mean share price of $45.90.

[insert Figure 2]

The figures show quite clearly that, over time, algorithmic trading is gradually increasing

while liquidity is gradually improving. Figure 1 shows that algorithmic trading increases almost

monotonically. The spread measures in Figure 2 are not nearly as monotonic, with illiquidity

spikes in both 2001 and 2002 that correspond to sharp stock market declines. Nevertheless, one is

tempted to conclude that these two trends are related. The analysis to come investigates exactly

this relationship using formal econometric tools rather than casual armchair empiricism.

2.3 Correlations

[insert Table 2]

We begin with Table 2, which uses our monthly panel to provide a set of univariate correlations

between spreads, algorithmic trading variables, volume, volatility, and share price variables. It is

interesting to note that the cross-sectional (between) correlation between spreads and algo tradit is

positive. This matches the cross-quintile evidence in Figure 1 and Figure 2. This is clearly driven

by the cross-section of volume because the correlation with raw message traffic is strongly negative.

Perhaps there is a fixed component to message traffic, in that a certain amount of message traffic

is required for price discovery regardless of how much trading occurs, giving rise to the positive

cross-sectional correlation between spreads and algo tradit. While there is undoubtedly value to

further analyzing the causes and effects of cross-sectional variability in algorithmic trading, we focus

hereafter on within-stock correlations, because we want to understand the impact of the change in

algorithmic trading over time.

The within-stock correlation between quoted spreads and algorithmic trading is negative

and significant. This is a contemporaneous correlation, and we do not have anything yet to say

about causality. But it appears that, stock by stock in the panel, algorithmic trading is high when

spreads are narrow. We also find that algorithmic trading is negatively correlated with volatility,

where volatility is measured as the standard deviation of daily midpoint returns for a given month.

2.4 Panel regressions

To confirm that these univariate correlations are robust, we specify regressions for our monthly

panel that are of the form:

Lit = αi + γt + βAit + δXit + εit, (2)
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where Lit is a liquidity measure (quoted spread, effective spread, or quoted depth) for stock i in

month t, Ait is the algorithmic trading measure algo tradit, and Xit is a vector of control variables,

including trading volume, return volatility, inverse price, and log market cap. Firm fixed effects are

always included (αi); results are always reported with and without calendar fixed effects (γt). We

estimate separate regressions for each of the market-cap quintiles, and standard errors are robust

to general cross-section and time-series heteroskedasticity and within-group autocorrelation (see

Arellano and Bond (1991)).

[insert Table 3]

The results are in Table 3 Panel A, and they are qualitatively consistent across the size

quintiles. The sign of the algorithmic trading coefficient depends on whether time dummies are

included. When there are no calendar fixed effects, the regression is identified using only within-

stock variation. Here the results match the univariate within-stock correlations: the coefficient

on algo tradit is negative and significant, indicating that an increase in algorithmic trading is

associated with narrower quoted or effective spreads. When time dummies are added, changes

to common market-wide liquidity factors are removed, and the regression is identified using only

idiosyncratic changes in liquidity. Interestingly, the coefficient on algo tradit changes sign in this

case. This does not cast doubt on our other results; it implies only that algorithmic trading and

idiosyncratic liquidity are negatively related. However, it does suggest that the positive time-series

association within a given stock between liquidity and algorithmic trading is driven by changes in

market-wide common liquidity factors.

If spreads narrow when algorithmic trading increases, it is natural to decompose the spread

along the lines of Glosten (1987) to determine whether the narrower spread means less revenue for

liquidity providers, smaller gross losses to liquidity demanders, or both. We estimate revenue to

liquidity providers using the 5-minute realized spread. The proportional realized spread for the tth

transaction in stock j is defined as:

rspreadjt = qjt(pjt − mj,t+5min)/mjt, (3)

where pjt is the trade price, qjt is the buy-sell indicator (+1 for buys, −1 for sells), mjt is the

midpoint prevailing at the time of the tth trade, and mj,t+5min is the quote midpoint five minutes

after the tth trade (the price at which the liquidity provider is assumed able to close her position).

We measure gross losses to liquidity demanders due to adverse selection using the 5-minute

price impact of a trade (adv selectionjt), defined using the same variables as:

adv selectionjt = qjt(mj,t+5min − mjt)/mjt. (4)
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Note that there is an arithmetic identity relating the realized spread, the adverse selection

(price impact), and the effective spread espreadjt:

espreadjt = rspreadjt + adv selectionjt. (5)

For these spread components, we estimate panel regressions of the same form as before,

and the results are in Panel B of Table 3. Again we report results with and without calendar fixed

effects, but we focus on the results without time dummies. Both realized spreads (espreadjt) and

price impacts (adv selectionjt) are negatively associated with algorithmic trading. More algorith-

mic trading is associated with narrower effective spreads, and these narrower spreads imply lower

revenue per trade for the liquidity provider as well as smaller gross losses to liquidity demanders.

But the relative contributions of the two components are very different. Most of the narrowed

spread is due to a decline in adverse selection losses to liquidity demanders. Depending on the

size quintile being studied, 75% to 90% of the narrowed spread is due to a smaller price impact.

We discuss this in considerable detail below, but we suspect that while manually submitted limit

orders are eventually picked off by informed traders, algorithms are better able to avoid some of

these informed traders by a so-called “cancel and replace” of the stale limit order.

So far, all we have identified are time-series associations between algorithmic trading

and liquidity. We cannot yet say anything about the direction of causality. It is certainly easier

to tell a story that goes in the standard direction. For example, algorithmic trading could be

providing competition in liquidity provision, thereby improving liquidity. But algorithmic trading

is an endogenous choice variable that depends on liquidity, among other parameters. Liquidity is

also endogenous and depends on a variety of factors, including the technological and other costs

incurred by liquidity providers. Sorting out causality requires an exogenous instrument, and the

next section introduces the IV analysis that lies at the heart of the paper.

3 Autoquote

As a result of the reduction of the minimum tick to a penny in early 2001 as part of decimalization,

the depth at the inside quote shrank dramatically. In October 2002, the NYSE proposed that a

“liquidity quote” for each stock be displayed along with the best bid and offer. The NYSE liquidity

quote was designed to provide more information about expressed trading interest at prices outside

of the best bid and offer (it was also designed to recapture some of the block trading business that

the NYSE had lost to upstairs markets and to algorithms). A liquidity quote was to be a firm bid

and offer for substantial size, typically at least 15,000 shares, accessible immediately via a new type
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of market order called Institutional Xpress.7

At the time of the liquidity quote proposal, specialists were responsible for manually

disseminating the inside quote.8 Clerks at the specialist posts on the floor of the exchange were

typing rapidly and continuously from open to close and still were barely keeping up with order

matching, trade reporting, and quote updating. In order to ease this capacity constraint and

free up specialists and clerks to manage a liquidity quote, the exchange proposed to allow the

inside quote to be disseminated automatically. Under NYSE Rule 60, display book software would

“autoquote” the NYSE’s highest bid or lowest offer whenever there was a change to the limit order

book via SuperDOT. This would happen when a better-priced order arrived, when the inside quote

was traded with in whole or in part, or when the size of the inside quote changed.

Note that the specialist’s structural advantages were otherwise unaffected by this change.

A specialist could still disseminate a manual quote at any time in order to reflect his own trading

interest or that of floor traders. Specialists continued to execute most trades manually, and they

could still participate in those trades subject to the unchanged NYSE rules. NYSE market share

remains unchanged at about 80% around the adoption of autoquote.

[insert Figure 5]

In early 2003, the liquidity quote proposal became enmeshed in a dispute over property

rights between the exchange and data vendors such as Bloomberg. The SEC eventually issued a

stay delaying the implementation of the liquidity quote, and the liquidity quote did not become

operational until June 13, 2003. Meanwhile, the NYSE began to phase in the liquidity quote and

autoquote software on January 29, 2003, starting with 6 active, large-cap stocks. During the next

two months, over 200 additional stocks were phased in at various dates, and all remaining NYSE

stocks were phased in on May 27, 2003. Figure 5 provides some additional details on the phase-in

process. The rollout order was determined in late 2002. Early stocks tended to be active large-

cap stocks, because the NYSE felt that these stocks would benefit most from the liquidity quote.

Beyond that criterion, conversations with those involved at the NYSE indicate that early phase-

in stocks were chosen mainly because the specialist assigned to that stock was receptive to new

technology. The evidence supports this claim: other than size and trading activity, early phase-in

stocks are not significantly correlated with any of the other observables.

Because liquidity quotes were not yet accessible or widely disseminated during this phase-

in period, the only change to market structure from January to May 2003 was the non-synchronous

addition of autoquote, making this an ideal exogenous event for study. In fact, even when liquidity

7For more details, the NYSE proposal is contained in Securities Exchange Act Release No. 47091 (December 23,
2002), 68 FR 133.

8There was one main exception. If a new or cancelled SuperDOT limit order would change the inside quote, the
“Quote Assist” feature of NYSE DisplayBook software automatically disseminated an updated quote after 30 seconds
if the specialist had not already done so.
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quotes became firm in June 2003, they had little impact on trading. Only a handful of large

orders ever used the Institutional Xpress order type, mainly because the spread was typically quite

large relative to what could be negotiated in the upstairs market. Most of the information in the

liquidity quote was already available to traders and algorithms via NYSE’s Openbook product,

which provided periodic snapshots of the NYSE limit order book (see Boehmer, Saar, and Yu

(2005) for an analysis of the introduction of OpenBook). Ultimately, liquidity quotes were deemed

an unsuccessful innovation and were abandoned in July 2005. But the autoquote feature stayed in

place.

For algorithmic traders, autoquote was an important innovation, because it provided much

more immediate feedback about the potential terms of trade. Autoquote allowed algorithmic liq-

uidity suppliers to, say, quickly notice an abnormally wide inside quote and provide liquidity ac-

cordingly via a limit order. Algorithmic liquidity demanders could quickly access this quote via

a conventional market or marketable limit order or by using the NYSE Direct+ facility, which

provided automatic execution for limit orders of 1,099 shares or less against the exchange’s dissem-

inated quote.

3.1 Autoquote sample

To study the effects of autoquote, we build a daily panel for NYSE common stocks. The sample

begins on December 2, 2002, which is approximately two months before the autoquote phase-in

begins, and it extends through July 31, 2003, about two months after the last batch of NYSE

stocks moves to the autoquote regime. For consistency, we start with the same share price filters

as before: stocks with an average share price of less than $5 or more than $1000 are removed. To

make our various autoquote analyses comparable, we use the same sample of stocks throughout

this section. The Hasbrouck (1991a, 1991b) decomposition (discussed below in section 3.3.2) has

the most severe data requirements, so we retain all stocks that have at least 21 trades per day for

each day in the eight-month sample period. This leaves 1,082 stocks in the sample.

Stocks are then sorted into quintiles based on market capitalization. Quintile 1 refers to

large-cap stocks and quintile 5 corresponds to small-cap stocks. All variables used in the analysis

are 99.9% winsorized (that is, values smaller than the 0.05% quantile are set equal to that quantile,

and values larger than the 99.95% quantile are set equal to that quantile).

3.2 Autoquote results

[insert Table 4]
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Autoquote clearly leads to greater use of algorithms. Message traffic increases by about 50% in the

most active quintile of stocks as autoquote is phased in (see Figure 5); it is certainly hard to imagine

that autoquote would change the behavior of humans by anything close to this magnitude. The

daily within-stock orrelation between message traffic and the autoquote dummy reported in Table 4

is 0.08. Correlations are higher for large-cap stocks, consistent with the conventional wisdom that

algorithmic trading was more effective at the time for active, liquid stocks. Table 4 also shows

that there is also a significant positive correlation between the autoquote dummy and our preferred

measure of algorithmic trading algo tradit, which is the negative of dollar volume (in hundreds)

per electronic message. This plus the exogenous phase-in makes the introduction of autoquote an

ideal instrument for assessing the impact of algorithmic liquidity suppliers.9

Within-stock correlations in Table 4 also show that after the introduction of autoquote

turnover is higher, volatility is lower, and share prices are higher. However, we have no intention of

ascribing these results to autoquote. These results likely reflect the fact that the market rose during

the early part of 2003 for unrelated reasons, and they highlight the importance of the staggered

introduction of autoquote for cleanly identifying the effect of the market structure change. By

including time dummies in the panel specification, we can use non-autoquoted stocks as controls,

comparing phased-in autoquoted stocks to not-yet-autoquoted stocks. The time dummies also

absorb potential nonstationarity in the time series.10

Our principal goal is to understand the effects of algorithmic liquidity supply on market

quality, and so we use the autoquote dummy as an instrument for algorithmic trading in a panel

regression framework. Our main instrumental variables specification is a daily panel of 1,082 NYSE

stocks over the eight-month sample period spanning the staggered implementation of autoquote.

The dependent variable is one of five liquidity measures: the quoted (half) spread, the effective

half-spread, the 5-minute realized spread, or the 5-minute price impact of a given trade, all of

which are share-volume weighted and measured in basis points, or the quoted depth in thousands

of dollars. We have fixed effects for each stock as well as time dummies, and we include share

turnover, volatility (measured as the standard deviation of daily midquote returns in percent), the

inverse of share price, and the log of market cap as control variables. Results are virtually identical

if we exclude these control variables. Based on anecdotal information that algorithmic trading

was relatively more important for active large-cap stocks during this time period, we estimate this

specification separately for each market-cap quintile.

[insert Table 5]

9In the IV regression tables (Tables 5-7), we report F statistics that reject the null that the instruments do not
enter the first stage regression. We are therefore not concerned about the “weak instruments problem,” also because
our F statistics range from 5.88 to 7.32 and Bound, Jaeger, and Baker (1995, p.446) mention that “F statistics close
to 1 should be cause for concern.”

10In the IV regression tables (Tables 5-7), we test for any remaining nonstationarity in the residuals through
Dickey-Fuller tests. We reject the null of nonstationarity in all cases.
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The results are reported in Panel A of Table 5, and the most reliable effects are in

larger stocks. For large-cap stocks (quintiles 1 and 2), the autoquote instrument shows that an

increase in algorithmic liquidity supply narrows both the quoted and effective spread. To interpret

the estimated coefficient on the algorithmic trading variable, recall that the algorithmic trading

measure algo tradit is the negative of dollar volume per electronic message, measured in hundreds

of dollars, while the spread is measured in basis points. Thus, the IV estimate of -0.52 on the

algorithmic trading variable for quintile 1 means that an increase in algorithmic trading from the

whole-sample mean of $2,634 of volume per message implies that quoted spreads narrow by 0.52

basis points. Over the whole five-year sample interval, the average within-stock standard deviation

for algo tradit is 11.2 or $1,120, so a unit standard deviation change in our algorithmic trading

measure is associated with a 5.82 basis point change in proportional spreads.

In the spirit of an event study, we also estimate an analogous non-IV panel regression

with the autoquote dummy directly on the right-hand side. We do not report the complete results,

but quoted and effective spreads are reliably narrower for the three largest quintiles. For quintile

1, quoted spreads are 0.50 basis points smaller (t = -9.18) after the autoquote introduction, and

effective spreads are 0.17 basis points smaller (t = -4.33). Effective spreads narrow even more for

quintiles 2 and 3 (0.21 and 0.23 basis points, respectively).

The IV estimate on algo tradit is statistically indistinguishable from zero for quintiles 3

through 5. This could be a statistical power issue. Figure 5 shows that most small-cap stocks were

phased-in at the very end, reducing the non-synchronicity needed for econometric identification.

Perhaps as a result, the autoquote instrument is only weakly correlated with algorithmic trading in

these quintiles. Alternatively, it could be that algorithms are less commonly used in these smaller

stocks, in which case the introduction of autoquote might have little or no effect on these stocks’

market quality.

Quoted depth also declines with autoquote. One might worry that the narrower quoted

spread simply reflects the smaller quoted quantity, casting doubt on whether liquidity actually

improves after autoquote is introduced. Here, a calibration exercise is useful. The results for

quintile 1 indicate that a one-unit increase in algorithmic trading reduces the quoted spread by

10% (the average quoted spread from Table 1 is 5.31 basis points). The same change reduces the

quoted depth by about 4%, based on an average quoted depth of about $92,000. A small liquidity

demander is unaffected by the depth reduction and is unambiguously better off with the narrower

spread. Consider now a larger liquidity demander who is affected by the depth reduction. She

pays 10% less on 96% of her order, and as long as she pays less than a 240% wider spread on the

remaining 4% of her order, she is better off overall. Based on the $45.90 average share price for

this quintile, the average 5.31 basis point quoted spread translates to 2.4 cents. For these stocks, it

seems extremely unlikely that the last 4% of her trade executes at a spread of more than 8.3 cents.

Most likely this last 4% would execute one cent wider. This makes it quite clear that the depth
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reduction is small relative to the narrowing of the spread.

3.3 Decomposition of the spread improvement

As discussed earlier in the paper, narrower effective spreads imply either less revenue per trade

for liquidity providers, smaller gross losses to liquidity demanders, or both. In Table 5 Panel B,

we decompose effective spreads into a realized spread component and an adverse selection or price

impact component in order to understand the source or sources of the improvement in liquidity

under autoquote. IV regressions are repeated using each component of the spread.

The results are somewhat surprising. For quintiles 1 through 3 (large and medium-cap

stocks), the realized spread actually increases significantly after autoquote, indicating that liquidity

providers are earning greater net revenues. These greater revenues are offset by a larger decline

in price impacts, implying that liquidity providers are losing far less to liquidity demanders after

autoquote. As before, nothing is significant for the two smallest-cap quintiles.

We describe these results as surprising because they do not match our priors going into the

analysis. We thought that if autoquote improved liquidity, it would be because algorithmic liquidity

suppliers were low-cost providers who suddenly became better able to compete with the specialist

and the floor under autoquote, and thereby improving overall liquidity by reducing aggregate

liquidity provider revenues. Instead, it appears that liquidity providers in aggregate were able to

capture some of the surplus created by autoquote.

[insert Table 6]

Which liquidity providers benefit? We do not have any trade-by-trade data on the identity

of our liquidity providers, but we do know specialist participation rates for each stock each day, so we

can see whether autoquote changed the specialist’s liquidity provision market share. We conduct

an IV regression with the specialist participation rate on the left-hand side, and the results in

Table 6 confirm that, at least for the large-cap quintile of stocks, specialists appear to participate

less under autoquote, suggesting that it is other liquidity providers who capture the surplus created

by autoquote.

Table 6 also puts a number of other non-spread variables on the LHS of the IV specification.

The most interesting is trade size. At least for the two largest quintiles, the autoquote instrument

confirms most observers’ strong suspicions that the increase in algorithmic trading is one of the

causes of smaller average trade sizes in recent years.
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3.3.1 Lin-Sanger-Booth decomposition

The decomposition of the effective spread introduced above has the advantage of being simple, but

it also has distinct disadvantages. In particular, it chooses an arbitrary time point in the future

(five minutes in this case) and implicitly ignores other trades that might have happened in that

five-minute time period. Lin, Sanger, and Booth (Lin, Sanger, and Booth (1995)) develop a spread

decomposition model that is estimated trade by trade and accounts for order flow persistence (the

empirical fact, first noted by Hasbrouck and Ho (1987), that buyer-initiated trades tend to follow

buyer-initiated trades).11 Let

δ = Prob[qt+1 = 1|qt = 1] = Prob[qt+1 = −1|qt = −1] (6)

be the probability of a continuation (a buy followed by a buy or a sell followed by a sell). Further

suppose that the change in the market-maker’s quote midpoint following a trade is given by:

mt+1 − mt = λtqt. (7)

The dollar effective half-spread st = qt(pt − mt) and is assumed constant for simplicity. If there

is persistence in order flow, the expected transaction price at time t + 1 does not equal mt+1 but

instead is:

Et(pt+1) = δ(mt + qt(λt + st)) + (1 − δ)(mt + qt(λt − st)

= mt + qt(λt + (2δ − 1)st). (8)

This expression shows how far prices are expected to permanently move against the market-maker.

While the market-maker earns st initially, in expectation he then loses λt + (2δ − 1)st due to

adverse selection and order persistence, respectively. Note that this reduces to Glosten (1987)

if δ = 0.5 so that order flow is independent over time. We can identify the adverse selection

component λ by regressing midpoint changes on the buy-sell indicator, and we can identify the

order persistence parameter with a first-order autoregression on qt. The remaining portion of the

effective spread is revenue for the market maker, referred to by LSB as the fixed component of

the spread. Thus, spreads are decomposed into three separate components: a fixed component

associated with temporary price changes, an adverse selection component, and a component due

to order flow persistence. The fixed, temporary component continues to reflect the net revenues

11See Barclay and Hendershott (2004) for discussion of how the Lin, Sanger, and Booth spread decomposition
relates to other spread decomposition models.
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to liquidity suppliers after accounting for losses to (the now persistent) liquidity demanders. The

adverse selection component captures the immediate gross losses to the current liquidity demander,

while the order flow persistence component captures the expected gross losses to those demanding

liquidity in the same direction in the near future. We estimate the model and calculate components

of the effective spread for each sample stock each day.

[insert Figure 6]

For each of the market-cap quintiles, the three panels of Figure 6 show how the three LSB

spread components evolve over the whole 2001 to 2005 sample period. There are no consistent

trends in the fixed component: around the implementation of autoquote, there is an increase for

the smallest quintile, but this increase does not extend to the other quintiles. In contrast, the

adverse selection component falls sharply during the implementation of autoquote in the first half

of 2003. This is true across all five quintiles, and the change appears to be permanent. Beginning

in the second half of 2002 and continuing to the end of 2005, there is also a steady decline in the

order persistence component of the spread. This suggests less persistence, which could indicate

that over this period algorithms and human traders both become more adept at concealing their

order flow patterns, perhaps by using mixed order submission strategies that sometimes demand

liquidity and sometimes supply it.

[insert Table 7]

As discussed above, we are fortunate and do not need to hang our hats on these time-series

declines. The staggered introduction of autoquote allows us to take out all market-wide effects and

focus on cross-sectional differences between the stocks that implement autoquote early vs. the

stocks that implement autoquote later on. As we did for the simpler decomposition, we can put

any one of the LSB spread components on the LHS of our IV specification to determine the sources

of the liquidity improvement when there is more algorithmic trading. The results are in Panel A

of Table 7 and are quite consistent with the earlier decomposition. For the largest two quintiles,

autoquote (and the resulting increases in algorithmic trading) are associated with an increase in

the fixed component of the spread, and a decrease in the adverse selection component and the order

persistence component. The drop in the adverse selection component is economically quite large.

During the autoquote sample period, the within standard deviation in our algorithmic trading

variable is 4.54, so a one standard deviation increase in algorithmic trading during this sample

period leads to an estimated change in the adverse selection component equal to 4.54 ∗ −0.26, or

about a 1.2 basis point narrowing of the adverse selection component. This is quite substantial,

given that the adverse selection component for the biggest quintile is only about 2 basis points on

average out of an overall 3.62 basis point effective half-spread. The coefficients on the other two
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components are of similar magnitude, indicating similar economic importance. As in the earlier

decomposition, there are no significant effects for the smaller-cap quintiles.

3.3.2 Hasbrouck decomposition

While the Lin-Sanger-Booth model begins to consider persistence in order flow, it implicitly limits

the form of that persistence to an AR(1) process. Hasbrouck (1991a, 1991b) introduces a VAR-

based model that makes almost no structural assumptions about the nature of information or order

flow, but instead infers the nature of information and trading from the observed sequence of prices

and orders. In this framework, all stock price moves end up assigned to one of two categories: they

are either associated or unassociated with a recent trade. Though the model does not make any

structural assumptions about the nature of information, we usually refer to price moves as private

information-based if they are associated with a recent trade. Price moves that are orthogonal to

recent trade arrivals are sometimes considered based on “public information” (examples of this

interpretation include Jones, Kaul, and Lipson (1994) and Barclay and Hendershott (2003)).

To separate price moves into trade-related and trade-unrelated components, we construct

a VAR with two equations: the first describes the trade-by-trade evolution of the quote midpoint,

while the second equation describes the persistence of order flow. Continuing our earlier notation,

define qjt to be the buy-sell indicator for trade t in stock j (+1 for buys, - 1 for sells), and define

rjt to be the log return based on the quote midpoint of stock j from trade t − 1 to trade t. The

VAR picks up order flow dependence out to 10 lags:

rt =
10∑
i=1

αirt−i +
10∑
i=0

βiqt−i + εrt, (9)

qt =
10∑
i=1

γirt−i +
10∑
i=1

φiqt−i + εqt, (10)

where the stock subscripts j are suppressed from here on. The VAR is inverted to get the VMA

representation:

yt =

[
rt

qt

]
= θ(L)εt =

[
a(L) b(L)

c(L) d(L)

][
εrt

εqt

]
, (11)

where a(L), b(L), c(L), and d(L) are lag polynomial operators. The permanent effect on price of

an innovation et is given by a(L)εrt + b(L)εqt , and because we include contemporaneous qt in the

return equation, cov(εrt, εqt) = 0 and the variance of this random-walk component can be written

18



as:

σ2
w = (

∞∑
i=0

ai)
2σ2

r + (
∞∑
i=0

bi)
2σ2

q , (12)

where the second term captures the component of price discovery that is related to trade, and

the first term captures price changes that are unrelated to trading (sometimes referred to as public

information). As discussed in Hasbrouck (1991a, 1991b), this method is robust to price discreteness,

lagged adjustment to information, and lagged adjustment to trades.

[insert Figure 7]

The VAR and the trade-related and non-trade-related standard deviations are estimated

for each stock each day. We calculate monthly averages for each quintile during the autoquote

sample period and graph these in Figure 7. The most striking feature of the graph is the decline in

the trade-related standard deviation, while the non-trade-related standard deviations do not change

much as autoquote is introduced. This indicates that under autoquote much more information is

being incorporated into prices without trade, consistent with the results in Boulatov and George

(2007) when informed traders compete via limit orders.

While these time-series effects appear large, again we prefer to identify the effect using the

staggered autoquote instrument. The IV panel regression is estimated first with the daily trade-

related standard deviation as the dependent variable. We then repeat using the non-trade-related

standard deviation on the left-hand side. The panel regressions continue to include stock fixed

effects, calendar dummies, and the same set of control variables.

The results can be found in Panel B of Table 7, and at least for the two larges quintiles

they confirm that the time-series graphs are not spurious. Consistent with other methodologies,

we do not find consistently reliable effects for the three smallest-cap quintiles.

When a large-cap stock adopts autoquote and experiences an exogenous increase in algo-

rithmic trading, there is much less trade-correlated price discovery, and much more price discovery

that is uncorrelated with trading. We discuss this further below, but it seems likely that algorithms

are responding quickly to order flow information and price moves of this and other stocks, thereby

updating quotes to prevent them from becoming stale and being picked off.

Based on our estimates, algorithmic trading has an economically important effect on the

nature of price discovery. During the autoquote sample period, the within standard deviation in

our algorithmic trading variable is 4.54, so a one standard deviation increase in algorithmic trading

during this sample period leads to an estimated change in trade-correlated price discovery equal

to 4.54 ∗ −0.22, or almost exactly a 1 basis point reduction in the standard deviation of trade-

correlated returns. Figure 7 shows that this is the same order of magnitude as the actual level of

trade-correlated standard deviations measured from trade to trade, so this is indeed a substantial
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change in how prices are updated to reflect new information over time.

4 Discussion and interpretation

To help make sense of our counter-intuitive results (particularly the realized spread or temporary

component results), we turn next to a very simple generalized Roll model that is a slight variation

on one developed in Hasbrouck (2007). Though the model is quite simple, it provides a useful

framework for thinking about algorithmic trading and delivers a number of empirical predictions,

all of which match our empirical results.

4.1 A generalized Roll model

The “game” has two periods, each with an i.i.d. innovation in the efficient price:

mt = mt−1 + wt, (13)

where wt ∈ {ε,−ε} , each with probability 0.5. The game features three stages:

- At t = 0, risk-neutral humans can submit a bid and ask quote and, given full competition,

the first one arriving bids her reservation price.

- At t = 1, humans can buy the information w1 at cost c. If they buy the information, they

can submit a new limit order.

- At t = 2, two informed liquidity demanders arrive, one with a positive private value associated

with a trade, +θ, the other with a negative private value, -θ.

We assume that 2c > θ, i.e., the cost of “observing” information for humans is sufficiently

high that they do not update their quotes. The technical assumption ε > θ ensures that trade

occurs only if there is non-zero private information at t = 2, and that only one of the two arriving

liquidity demanders transacts in that case.
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There are four equally likely paths through the binomial tree: uu, ud, du, and dd, where

u represents a positive increment of ε to the fundamental value and d is a negative increment. In

equilibrium, humans do not buy the w1 information and update the quote at t = 1, since they have

to quote so far away from the efficient price to make up for c that neither liquidity demander will

transact at that quote (as 2c > θ). Given that they do not acquire the w1 information, humans

protect themselves by setting the bid price equal to m0 − 2ε and the ask price equal to m0 + 2ε.

One of the liquidity demanders trades at t = 2 if the path is either uu or dd; the quote providers

break even. If the path is ud or du, then there is no trade, because the liquidity demander’s private

value is too small relative to the spread.

Clearly, under these assumptions all price changes are associated with order flow, and

there is no public information component.

4.1.1 The model with algorithmic trading

muu
2

mu
1

mud
2m0

A0 A1

B0

B1

θ

Now we introduce an algorithm that can buy the w1 information at zero cost (c = 0).

The results at t = 0 remain unchanged. At t = 1, the algorithm optimally issues a new quote. To

illustrate the idea, suppose w1 > 0. The algorithm knows that it is the only liquidity provider in

possession of w1, and so it puts in a new bid equal to m0 − θ. If w2 > 0 as well, then a transaction
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takes place at the original ask of m0 + 2ε. If w2 < 0, then a liquidity demander will hit the

algorithm’s bid. This bid is below the efficient price, so there will eventually be a reversal, and

there is a temporary component in prices. Contrariwise, if w1 < 0, the algorithm places a new ask

at m0 + θ, which is traded with if it turns out that w2 > 0.

In the presence of algorithmic trading, part of the change in the efficient price is revealed

through a quote update without trade. Public information now accounts for a portion of price

discovery, and imputed revenue to liquidity suppliers is now positive. Thus, the model can explain

even the surprising empirical findings on realized spreads and trade-correlated price moves. The

model also delivers narrower quoted spreads and more frequent trades, both of which are also

observed in the data.

To deliver an increase in realized spread, it is important in the model that competition

between algorithms be less vigorous than the competition between humans. This seems plausible

in reality as well. As autoquote was implemented in 2003, the extant algorithms might have found

themselves with a distinct competitive advantage in trading in response to the increased information

flow, given that new algorithms take considerable time to build and test.

What kind of information can algorithms efficiently observe? There are probably many

answers, but it is hard to tell, given the general opacity practiced by algorithm providers and users.

Nevertheless, we suspect that two kinds of information are of first-order importance. First, we

think algorithms can easily take into account common factor price information and adjust trading

and quoting accordingly. For example, if there is upward shock to the S&P futures price, an

algorithmic liquidity supplier in IBM that currently represents the inside offer may decide to cancel

its existing sell order before it is picked off by an index arbitrageur or another trade, replace the

sell order with a higher-priced ask. Shocks to other stocks in the same industry could cause similar

reactions from algorithms. Second, some algorithms are designed to sniff out other algorithms

or otherwise identify order flow and other information patterns in the data. For example, if an

algorithm identifies a sequence of buys in the data and concludes that more buys are coming, an

algorithmic liquidity supplier might adjust its ask price upward. Information in newswires can even

be parsed electronically in order to adjust trading algorithms.12

4.2 Alternative explanations

Up to now, we have focused on the algorithmic trading channel, but it is important to consider

whether a more mechanical explanation might account for our autoquote results. What might we

expect if autoquote simply makes quotes less stale and has no other effects? It turns out that if

this is the only effect of autoquote, we would expect to see effective spreads widen once autoquote

12See, “Ahead of the Tape-Algorithmic Trading,” Economist, June 23, 2007.
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is turned on.

To see this, let at and bt be the ask and bid prices at time t, and assume this quote is

disseminated by the specialist. Limit orders arrive or are cancelled, and at a later time t′, at′ and

bt′ are the best ask and bid prices. Assume that at′ and bt′ are disseminated only after the adoption

of autoquote; otherwise, the econometrician identifies at and bt as the ask and bid in effect at time

t′.

To simplify the exposition, assume that the ask side of the book changes (at �= at′) while

the bid side of the book remains unchanged (bt = bt′). Symmetric arguments apply for changes

to the bid side of the book alone, and the results also hold when both the bid and the ask change

between t and t′.

There are two possibilities for the change in the inside ask. If the time t inside ask is

cancelled, then at′ > at. If instead a new sell order arrives at time t′ that would improve the

inside quote, then at′ < at. Overall, if cancels are more common than improvements, then prior

to the adoption of autoquote the disseminated quoted spread is artificially narrow, and autoquote

should be associated with a widening of quoted spreads. However, we find the reverse. Autoquote

is associated with a narrowing of the quoted spread, so we focus hereafter on the arrival of new

orders at time t′ that improve the existing time t quote. Prior to autoquote, we continue to observe

the old, wider quote (at, bt) at time t′. Under autoquote, the new, narrower quote (at′ , bt) is

disseminated at time t′.

Let mt′ = 1/2(at′ + bt′) be the midquote at time t′. Under autoquote, we see the true

state of the order book, and if a trade at time t′ occurs at price pt′ (at either the bid price bt′ or

the ask price at′), assume that the effective half-spread st′ = qt′(pt′ - mt′) is correctly measured.

In contrast, before the adoption of autoquote the observed midquote at time t′ is mt = 1/2(at +

bt), which is stale. Because we focus on the arrival of a sell order that improves the ask, mt′ < mt,

which means that in the absence of autoquote the observed quote midpoint is biased upwards.

Define the measured effective spread pre-autoquote as st′,pre = qt′(pt′ - mt).

Thus, the change in the measured effective spread under autoquote is the difference st′ -

st′,pre = qt′ (mt - mt′) = qt′ (at - at′)/2. The term in parentheses is positive, since the arriving

sell order improves the quote by lowering the ask price, so the effective spread declines under

autoquote if and only if E(qt′) < 0. But this cannot be the case as long as the demand for

immediacy is downward sloping in the price of immediacy. To say it another way, a better ask price

should on average draw in a marketable buy order, which implies E(qt′) > 0. Thus, if autoquote is

simply displaying quotes that were previously undisseminated, the result should be a widening of

the effective spread under autoquote.

Note that there is an implicit assumption in the above analysis that without autoquote,

the difference between the true midquote mt′ and the disseminated midquote mt does not affect
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qt′ , the sign of the trade. The trade sign can indeed be affected if the new ask price at′ is below the

disseminated midquote mt. In this case both the true ask and bid prices are below the disseminated

midquote, and with the right choice of parameter values effective spreads could be mechanically

narrower under autoquote. However, this scenario seems unlikely to dominate. First, it is quite

likely that the specialist would disseminate an updated quote if an incoming limit order crosses

the midquote in this way, as the new quoted spread would be less than half as wide as the old

quoted spread. Second, if this scenario were empirically important, the resulting trade-signing

errors would bias downward the pre-autoquote estimates of the adverse selection component of the

spread, because future price changes would be less correlated with trade signs. In this scenario,

we would expect to see an increase in adverse selection with the elimination of stale quotes under

autoquote. This is the opposite of our findings in Tables 5 and 7.

To summarize, a mechanical increase in quote disseminations would almost surely work

against us, widening the effective spread. Thus, the elimination of stale quotes is unlikely to be the

source of our results.

5 Conclusions

The declining costs of technology have led to its widespread adoption throughout financial indus-

tries. The resulting technological change has revolutionized financial markets and the way financial

assets are traded. Many institutions now trade via algorithms, and we study whether algorithmic

trading at the NYSE improves liquidity. Using panel regressions over the five years following deci-

malization, we establish that time-series increases in algorithmic trading are associated with more

liquid markets. To establish causality we use the staggered introduction of a structural change

at the NYSE (autoquoting) as an exogenous instrument for algorithmic trading. We demonstrate

that increased algorithmic trading lowers adverse selection and decreases the amount of price dis-

covery that is correlated with trading. These results suggest that algorithmic trading lowers the

costs of trading and increases the informativeness of quotes and prices. Surprisingly, the revenues

to liquidity suppliers also increase with algorithmic trading. This is consistent with algorithmic

liquidity suppliers having market power as they introduce their algorithms.

We have not studied it here, but it seems likely that algorithmic trading can also improve

linkages between markets, generating positive spillover effects in these other markets. For example,

when computer-driven trading is made easier, stock index futures and underlying share prices are

likely to track each other more closely. Similarly, liquidity and price efficiency in equity options

probably improves as the underlying share price becomes more informative.

One caveat is in order, however. Our overall sample period covers a period of generally

rising stock prices, and stock markets are fairly quiescent during the 2003 introduction of autoquote.
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While we do control for share price levels and volatility in our empirical work, it remains an open

question whether algorithmic trading and algorithmic liquidity supply are equally beneficial in more

turbulent or declining markets. Like Nasdaq market makers refusing to answer their phones during

the 1987 stock market crash, algorithmic liquidity suppliers may simply turn off their machines

when markets spike downward. With access to the right data, 2007 and 2008 stock markets could

prove to be a useful laboratory for such an investigation.

Finally, our results have important implications for both regulators and designers of trad-

ing platforms. For example, the U.S. Securities and Exchange Commission’s Regulation NMS

(SEC (2005)) is designed to increase competition among liquidity suppliers. Our results highlight

the importance of algorithmic liquidity suppliers and the benefits of ensuring vigorous competition

between them. Of course, markets need not leave this problem to the regulator. Trading venues

can attract these algorithms by lowering development and implementation costs. For example,

exchanges and other trading platforms can calculate useful information and metrics to be fed into

algorithms, distributing them at low cost. A market can also allow algorithmic traders to co-locate

their servers in the market’s data center. Finally, offering additional order types, such as pegged

orders, can lessen the infrastructure pressures that algorithms impose.
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Foucault, T., A. Roëll, and P. Sandas. 2003. “Market Making with Costly Monitoring: An

Analysis of the SOES Controversy.” Review of Financial Studies 16:345–384.

Glosten, L. 1994. “Is the Electronic Limit Order Book Inevitable?” Journal of Finance 49:1127–

1161.

Glosten, L.R. 1987. “Estimating the Components of the Bid-Ask Spread.” Journal of Finance

42:1293–1307.

. 1989. “Insider Trading, Liquidity, and the Role of the Monopolist Specialist.” Journal of

Business 62:211–235.

Griffiths, M., B. Smith, D.A. Turnbull, and R. White. 2000. “The Costs and Determinants of

Order Aggressiveness.” Journal of Financial Economics 56:65–88.

Harris, L. 1998. “Optimal Dynamic Order Submission Strategies in Some Stylized Trading

Problems.” Financial Markets, Institutions, and Instruments 7:1–76.

Hasbrouck, J. 1991a. “Measuring the Information Content of Stock Trades.” Journal of Finance

46:179–207.

. 1991b. “The Summary Informativeness of Stock Trades: An Econometric Analysis.”

Review of Financial Studies 4:571–595.

. 2007. Empirical Market Microstructure. New York: Oxford University Press.

Hasbrouck, J., and T. Ho. 1987. “Order Arrival, Quote Behavior and the Return Generating

Process.” Journal of Finance 42:1035–1048.

Hasbrouck, J., and G. Saar. 2007. “Technology and Liquidity Provision: The Blurring of Tradi-

tional Definitions.” Technical Report, New York University.

Hendershott, T., and P. Moulton. 2007. “The Shrinking New York Stock Exchange Floor and the

Hybrid Market.” Technical Report, UC Berkeley.

Jain, P.K. 2005. “Financial Market Design and the Equity Premium: Electronic versus Floor

Trading.” Journal of Finance 60:2955–2985.

Jones, C.M., G. Kaul, and M.L. Lipson. 1994. “Information, Trading, and Volatility.” Journal of

Financial Economics 36:127–154.

Keim, D., and A. Madhavan. 1995. “Anatomy of the Trading Process: Empirical Evidence on the

Behavior of Institutional Traders.” Journal of Financial Economics 37:371–398.

Lee, C., and M. Ready. 1991. “Inferring Trade Direction from Intraday Data.” Journal of Finance

46:733–746.

27



Lin, J.C., G. Sanger, and G.G. Booth. 1995. “Trade Size and Components of the Bid-Ask Spread.”

Review of Financial Studies 8:1153–1183.

Lo, W.A., A.C. MacKinlay, and J. Zhang. 2002. “Econometric Models of Limit-Order Executions.”

Journal of Financial Economics 65:31–71.

Obizhaeva, A., and J. Wang. 2005. “Optimal Trading Strategy and Supply/Demand Dynamics.”

Technical Report, MIT.

Ranaldo, A. 2004. “Order Aggressiveness in Limit Order Book Markets.” Journal of Financial

Markets 7:53–74.

Reinganum, J. 1989. “The timing of innovation: Research, development, and diffusion.” Tech-

nical Report, appeared in Handbook of Industrial Organization, page 849-908, edited by R.

Schmalensee and R. Willig, Elsevier Publishing, The Netherlands.

Rock, K. 1990. “The Specialist’s Order Book and Price Anomalies.” Technical Report, Harvard

University.

Rosu, I. 2006. “A Dynamic Model of the Limit Order Book.” Technical Report, University of

Chicago.

SEC. 2005. Regulation NMS, http://www.sec.gov/rules/final/34-51808.pdf.

28



T
a
b
le

1
:

S
u
m

m
a
r
y

S
ta

ti
st

ic
s

(9
4
3
*
5
9

st
o
c
k
*
m

o
n
th

)

T
h
is

ta
b
le

p
re

se
n
ts

su
m

m
ar

y
st

at
is

ti
cs

on
ou

r
d
at

as
et

,
w

h
ic

h
co

m
b
in

es
T
A

Q
,

C
R

S
P
,

an
d

th
e

N
Y

S
E

S
y
st

em
O

rd
er

D
at

a
d
at

ab
as

e.
W

e
cr

ea
te

a
b
al

an
ce

d
p
an

el
th

at
co

n
si

st
s

of
m

on
th

ly
d
at

a
on

94
3

st
o
ck

s
fr

om
F
eb

ru
ar

y
20

01
th

ro
u
gh

D
ec

em
b
er

20
05

.
S
to

ck
s

ar
e

so
rt

ed
in

to
q
u
in

ti
le

s
b
as

ed
on

m
ar

k
et

ca
p
it

al
iz

at
io

n
,
w

h
er

e
q
u
in

ti
le

1
co

n
ta

in
s

la
rg

e-
ca

p
st

o
ck

s.
A

ll
va

ri
ab

le
s

ar
e

99
.9

%
w

in
so

ri
ze

d
.

va
ri

a
b
le

d
es

cr
ip

ti
o
n

(u
n
it

s)
so

u
rc

e
m

ea
n

Q
1

m
ea

n
Q

2
m

ea
n

Q
3

m
ea

n
Q

4
m

ea
n

Q
5

st
.

d
ev

.
w

i-
th

in
a

qs
p
re

a
d

it
sh

a
re

-v
o
lu

m
e-

w
ei

gh
te

d
q
u
ot

ed
h
al

f
sp

re
ad

(b
p
s)

T
A

Q
5
.3

1
7
.3

3
9
.4

7
1
2
.9

2
2
2
.4

4
8
.4

0
qd

ep
th

it
sh

a
re

-v
o
lu

m
e-

w
ei

gh
te

d
d
ep

th
($

1,
00

0)
T
A

Q
9
2
.3

7
5
2
.9

3
3
8
.6

2
2
8
.6

9
1
9
.4

3
2
1
.8

8
es

p
re

a
d

it
sh

a
re

-v
o
lu

m
e-

w
ei

gh
te

d
eff

ec
ti

v
e

h
al

f
sp

re
ad

(b
p
s)

T
A

Q
3
.6

7
5
.1

9
6
.7

9
9
.4

0
1
6
.1

6
6
.4

2
rs

p
re

a
d

it
sh

a
re

-v
o
lu

m
e-

w
ei

gh
te

d
re

al
iz

ed
h
al

f
sp

re
ad

,
5m

in
(b

p
s)

T
A

Q
0
.9

6
1
.2

4
1
.5

6
2
.1

9
4
.9

5
2
.8

2

a
d
v

se
le

ct
io

n
it

sh
ar

e-
v
o
lu

m
e-

w
ei

gh
te

d
ad

v
er

se
se

le
ct

io
n

co
m

p
o-

n
en

t
h
a
lf

sp
re

ad
,
5
m

in
,
“e

ff
ec

ti
v
e-

re
al

iz
ed

”
(b

p
s)

T
A

Q
2
.7

1
3
.9

6
5
.2

3
7
.2

2
1
1
.2

1
5
.0

2

m
es

sa
g
es

it
#

el
ec

tr
o
n
ic

m
es

sa
g
es

p
er

m
in

u
te

i.
e.

p
ro

x
y

fo
r

al
-

g
o
ri

th
m

ic
a
ct

iv
it
y

(/
m

in
u
te

)
N

Y
S
E

1
3
1
.9

9
7
1
.7

0
4
3
.4

6
2
8
.8

6
1
5
.8

4
4
3
.7

9

a
lg

o
tr

a
d

it
d
o
ll
a
r

v
o
lu

m
e

p
er

el
ec

tr
on

ic
m

es
sa

ge
ti

m
es

(-
1)

to
p
ro

x
y

fo
r

a
lg

o
ri

th
m

ic
tr

a
d
in

g
($

1
0
0
)

T
A

Q
/
N

Y
S
E

-2
6.

34
-1

5.
22

-1
0.

88
-8

.3
8

-5
.9

5
11

.2
0

d
ol

la
r

v
ol

u
m

e i
t

av
er

a
g
e

d
a
il
y

v
ol

u
m

e
($

m
io

)
T
A

Q
1
1
2
.1

3
3
1
.7

0
1
3
.8

5
7
.0

3
2
.8

2
2
3
.1

8
tr

a
d
es

it
#

tr
ad

es
p
er

m
in

u
te

(/
m

in
u
te

)
T
A

Q
5
.8

4
3
.1

9
2
.0

2
1
.4

3
0
.8

0
1
.2

8
sh

a
re

tu
rn

ov
er

it
(a

n
n
u
a
li
ze

d
)

sh
a
re

tu
rn

ov
er

T
A

Q
/
C

R
S
P

1
.0

2
1
.4

8
1
.4

6
1
.4

4
1
.2

2
0
.6

9
v
ol

a
ti

li
ty

it
v
o
la

ti
li
ty

d
a
il
y

m
id

q
u
o
te

re
tu

rn
s

(%
)

C
R

S
P

1
.7

5
1
.9

5
1
.9

6
2
.1

6
2
.5

4
1
.0

1
p
ri

ce
it

d
a
il
y

cl
o
si

n
g

p
ri

ce
($

)
C

R
S
P

4
5
.9

0
3
8
.6

0
3
3
.0

9
2
7
.9

8
2
0
.6

2
9
.5

3
m

a
rk

et
ca

p
it

sh
a
re

s
o
u
ts

ta
n
d
in

g
ti

m
es

p
ri

ce
($

b
ln

)
C

R
S
P

3
6
.7

5
5
.4

8
2
.3

0
1
.1

7
0
.5

3
5
.0

9
tr

a
d
e

si
z
e i

t
tr

a
d
e

si
ze

($
1
,0

0
0
)

T
A

Q
4
6
.5

2
2
4
.9

5
1
6
.9

7
1
2
.2

5
8
.3

2
1
1
.5

2
sp

ec
ia

li
st

p
a
rt

ic
ip

it
sp

ec
ia

li
st

p
ar

ti
ci

p
at

io
n

ra
te

(%
)

N
Y

S
E

1
2
.4

2
1
2
.1

9
1
2
.2

8
1
3
.1

6
1
5
.1

5
4
.4

2
#

ob
se

rv
at

io
n
s:

94
3*

59
(s

to
ck

*m
on

th
)

a
:

B
as

ed
on

th
e

d
ev

ia
ti

on
s

fr
om

ti
m

e
m

ea
n
s

i.
e.

x
∗ i,

t
=

x
i,

t
−

x
i
.



Table 2: Overall, Between, and Within Correlations

This table presents the overall, between, and within correlations for some variables in our sample, which
contains monthly observations from February 2001 through December 2005. For variable definitions, we refer
to Table 1.

messa−
gesit

algo
tradit

share
turnoverit

vola-
tilityit

1/priceit ln mar−
ket capit

qspreadit ρ(overall) -0.43* 0.10* -0.14* 0.54* 0.74* -0.57*
ρ(between) -0.51* 0.51* -0.09* 0.65* 0.83* -0.68*
ρ(within) -0.33* -0.23* -0.20* 0.48* 0.63* -0.59*

messagesit ρ(overall) -0.08* 0.13* -0.20* -0.24* 0.72*
ρ(between) -0.87* 0.08* -0.17* -0.32* 0.90*
ρ(within) 0.63* 0.19* -0.24* -0.13* 0.43*

algo tradit ρ(overall) -0.12* -0.12* 0.24* -0.52*
ρ(between) -0.11* 0.19* 0.36* -0.86*
ρ(within) -0.14* -0.28* 0.12* 0.02*

share turnoverit ρ(overall) 0.35* -0.07* -0.07*
ρ(between) 0.44* -0.03* -0.13*
ρ(within) 0.31* -0.12* 0.15*

volatilityit ρ(overall) 0.47* -0.29*
ρ(between) 0.72* -0.41*
ρ(within) 0.30* -0.33*

1/priceit ρ(overall) -0.44*
ρ(between) -0.45*
ρ(within) -0.66*

a: Based on the time means i.e. xi = 1

T

∑T

t=1
xi,t.

b: Based on the deviations from time means i.e. x∗

i,t = xi,t − xi.

*: Significant at a 95% level.
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Table 4: Overall, Between, and Within Correlations Autoquote Analysis

This table presents the overall, between, and within correlations for the variables used in the autoquote
analysis. It is based on daily observations in the period when autoquote was phased in, i.e. December
2, 2002, through July 31, 2003. For variable definitions, we refer to Table 1. We exploit the exogenous
autoquote dummy (0 before the autoquote introduction, 1 after) to instrument for algo tradit in order to
identify causality from algo tradit to our liquidity measures. In the IV estimation, we exclude identification
off of a time trend (by adding time dummies) and thus solely rely on the nonsynchronous introduction of
autoquote (see Figure 5). Before we report the IV estimation results in subsequent tables, this table reports
correlations between the instrument (auto quoteit) and the endogenous variable (algo tradit) after removing
the time trend.

messa−
gesit

algo
tradit

share
turnoverit

vola-
tilityit

1/priceit ln mar−
ket capit

Panel A: Overall, between, and within correlation after removing the time trend
auto quoteit ρ(overall) 0.15* -0.05* 0.02* 0.03* 0.02* 0.10*

ρ(between) 0.23* -0.16* 0.06 0.09* 0.04 0.18*
ρ(within) 0.08* 0.03* -0.01* 0.00 0.01* -0.01*

Panel B: Within correlation by quintile after removing the time trend
auto quoteit Q1 ρ(within) 0.15* 0.03* 0.01* -0.00 0.03* -0.03*
auto quoteit Q2 ρ(within) 0.03* 0.04* -0.01* 0.00 -0.02* 0.01*
auto quoteit Q3 ρ(within) 0.05* 0.03* 0.00 -0.00 0.01 -0.02*
auto quoteit Q4 ρ(within) 0.01* 0.00 -0.00 -0.00 -0.01 0.01
auto quoteit Q5 ρ(within) -0.00 0.03* -0.02* 0.00 0.05* -0.04*
a: Based on the time means i.e. xi = 1

T

∑T

t=1
xi,t.

b: Based on the deviations from time means i.e. x∗

i,t = xi,t − xi.

*: Significant at a 95% level.
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Table 6: Effect of AT on Nonspread Variables: Nonsynchronous Autoquote
Introduction as Instrumental Variable

This table regresses nonspread variables on our algorithmic trading proxy. It is based on daily observations

in the period when autoquote was phased in, i.e. December 2, 2002, through July 31, 2003. We use the

exogenous nonsynchronous autoquote introduction to instrument for the endogenous algo tradit to identify

causality from algorithmic trading to these nonspread variables. We estimate

Mit = αi + γt + βAit + εit

where Mit is a nonspread variable for stock i on day t, and Ait is the algorithmic trading measure. We always
include fixed effects and time dummies. We regress by quintile and report t-values based on standard errors
that are robust to general cross-section and time-series heteroskedasticity and within-group autocorrelation
(see Arellano and Bond (1991)).

Coefficient on algo tradit

Q1 Q2 Q3 Q4 Q5
time
dum-
mies

DF test
statistica

share turnoverit 0.04 -0.07* 0.01 -0.20 -0.36** Yes -272.3**
(1.03) (-1.77) (0.07) (-0.26) (-2.89)

tradesit 0.58** -0.01 -0.01 -0.51 -0.15** Yes -245.7**
(2.60) (-0.23) (-0.15) (-0.33) (-2.60)

trade sizeit -2.04** -0.80** -0.33 2.26 -0.22 Yes -261.6**
(-4.63) (-3.23) (-0.69) (0.20) (-0.60)

specialist participit -0.59** -0.23 -0.92 -13.19 -1.89** Yes -259.4**
(-2.22) (-1.24) (-1.43) (-0.29) (-2.02)

#observations: 1082*167 (stock*day)
F test statistic of hypothesis that instruments do not enter first stage regression: 5.88
(F (5, 179607)), p-value: 0.0000
*/**: Significant at a 95%/99% level.
a: We report the Dickey-Fuller test statistic based on the residuals in order to diagnose nonstationarity. A
significant test statistic rejects the null that the series contains a unit root, i.e. it rejects nonstationarity.
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Figure 1: These graphs depict (i) the number of (electronic) messages per minute and (ii)
our proxy for algorithmic trading, which is defined as the negative of trading volume (in
thousands of dollars) divided by the number of messages. The graphs are done by market-
cap quintile, where Q1 is the large-cap quintile.
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Figure 2: These graphs depict (i) quoted half spread, (ii) quoted depth, and (iii) effective
spread. All spread measures are share-volume weighted averages. The graphs are done by
market-cap quintile, where Q1 is the large-cap quintile.
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Figure 3: These graphs depict the two components of the effective spread: (i) realized spread
and (ii) the adverse selection component, i.e. the (permanend) price impact. The spread
decomposition is based on the 5 minute delayed spread midpoint. The graphs are done by
market-cap quintile, where Q1 is the large-cap quintile.



20
02

20
03

20
04

20
05

20
06

102030405060708090
tr

a
d

e_
si

ze
it

 (
tr

ad
e 

si
ze

 (
$1

,0
00

))
Q

1
Q

3
Q

5

Q
2

Q
4

95
%

 c
on

f.
 in

te
rv

al
 

20
02

20
03

20
04

20
05

20
06

123456789
tr

a
d

es
it

 (
#t

ra
de

s 
pe

r 
m

in
ut

e 
(/

m
in

ut
e)

)
Q

1
Q

3
Q

5

Q
2

Q
4

95
%

 c
on

f.
 in

te
rv

al
 

20
02

20
03

20
04

20
05

20
06

25507510
0

12
5

d
o

ll
a

r_
vo

lu
m

e it
 (

av
er

ag
e 

da
ily

 v
ol

um
e 

($
m

io
))

Q
1

Q
3

Q
5

Q
2

Q
4

95
%

 c
on

f.
 in

te
rv

al
 

20
02

20
03

20
04

20
05

20
06

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

vo
la

ti
li

ty
it

 (
vo

la
til

ity
 d

ai
ly

 m
id

qu
ot

e 
re

tu
rn

s 
(%

))
Q

1
Q

3
Q

5

Q
2

Q
4

95
%

 c
on

f.
 in

te
rv

al
 

F
ig

u
re

4
:

T
h
es

e
g
ra

p
h
s

d
ep

ic
t

(i
)

tr
a
d
e

si
ze

,
(i

i)
th

e
n
u
m

b
er

o
f

tr
a
d
es

p
er

m
in

u
te

,
(i

ii
)

d
a
il
y

d
o
ll
a
r

v
o
lu

m
e,

a
n
d

(i
v
)

d
a
il
y

m
id

q
u
o
te

re
tu

rn
v
o
la

ti
li
ty

.
T

h
e

g
ra

p
h
s

a
re

d
o
n
e

b
y

m
a
rk

et
-c

a
p

q
u
in

ti
le

,
w

h
er

e
Q

1
is

th
e

la
rg

e-
ca

p
q
u
in

ti
le

.



0 20 40 60 80 100 120 140 160

25

50

75

100

125

150

175

200

↓ 12/2/02 start of sample

↓ 1/29/03 first stocks to Autoquote

↑ 5/27/03 last stocks to Autoquote

7/31/03 end of sample ↓↓ 12/2/02 start of sample

↓ 1/29/03 first stocks to Autoquote

↑ 5/27/03 last stocks to Autoquote

7/31/03 end of sample ↓↓ 12/2/02 start of sample

↓ 1/29/03 first stocks to Autoquote

↑ 5/27/03 last stocks to Autoquote

7/31/03 end of sample ↓↓ 12/2/02 start of sample

↓ 1/29/03 first stocks to Autoquote

↑ 5/27/03 last stocks to Autoquote

7/31/03 end of sample ↓↓ 12/2/02 start of sample

↓ 1/29/03 first stocks to Autoquote

↑ 5/27/03 last stocks to Autoquote

7/31/03 end of sample ↓

#stocks that trade in Autoquote
Q1
Q3
Q5

Q2
Q4

Figure 5: This graph depicts the staggered introduction of autoquote on the NYSE. It
graphs the number of stocks in each market-cap quintile that are autoquoted at a given
time. Quintile 1 contains large-cap stocks.
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Figure 6: These graphs depict the three components of a Lin-Sanger-Booth spread decom-
position, which accounts for order persistence. It identifies a fixed (transitory) component
(LSB95 fixedit), an adverse selection component (LSB95 adv selit), and a component due
to order persistence (LSB95 order persistit) (see Section 3.3.1 and Lin, Sanger, and Booth
(1995) for details). The graphs are done by market-cap quintile, where Q1 is the large-cap
quintile.
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Figure 7: These graphs depict a VAR-based Hasbrouck decomposition of the permanent

price change in between transactions into a trade-related (stdev tradecorr compit) and trade-
unrelated (stdev nontradecorr compit) component (see Section 3.3.2 and Hasbrouck (1991a,
1991b) for details). The graph depicts the autoquote sample period which runs from De-
cember 2002 through July 2003. The graphs are done by market-cap quintile, where Q1 is
the large-cap quintile.
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