Sign Manifesto

Pierre Deligne and Daniel S. Freed

§1. Standard mathematical conventions
s We apply the sign rule relentlessly.

This means that when passing from ordinary algebra to Z/2-graded, or super,
algebra we pick up a sign {—1)!%'*" when permuting homogeneous elements a, b of
parity |al,|b|. Structure maps (multiplications, Lie brackets, inner products, ... )
are even.

For example, consider a graded complex vector space V' = V9@V, A hermitian
inner product {-,-} satisfies, among other properties,

(1) (v, v2) = (1)l 2l (g, ), v, v2 € V homogeneous.

and from the evenness of the inner product it follows that V° is orthogonal to V.
From (1) we deduce that {v, v} is real for v even and pure imaginary for v odd. The
adjoint T* of a homogeneous linear operator T: V — V is characterized by

(2) (T, v2) = (1)1 or, Ton).
Skew-adjoint operators form a super Lie algebra.
o Symmetry groups act on the left.

For example, if g is a Lie algebra, then an action of g on a vector space V is
a homomorphism g — End(V). Brackets are preserved. On the other hand, an
action of g on a manifold M is an antihomomerphism g — VectorFields(M). The
reversal of sign comes from the rule {f = Ed—t exp(t£)* f and the fact that f+— u*f
is a right action of diffeomorphisms (u) on functions (f).

§2. Choices

o A hermitian inner product on a complez vector space V' is conjugate
linear in the first variable:

(3) {Av, dova) = MAz(v,ve), A €C, vneV

o IfV=VO@ V! is a super Hilbert space, then
(4) —i{v,v) 2 0, veVh
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o We pass from self-adjoint operators to skew-adjoint operators using
multiplication by —i:

(5) T self-adjoint —— —iT skew-adjoini.

o The Loreniz metric g on n dimensional Minkowski space has sig-
nature (1,n — 1):

(6) Signature(g) = + — - — -+

e The quantum hamiltonian H is minus the operator which corre-
sponds to infinitesimal lime translation:

(7) H = —Po.

§3. Rationale

The first choice (3} is not the usual one in mathematics, but it has its mer-
its. For exainple, since linear operators act on the left, it makes sense to have the
commuting scalar multiplication act on the right. In mathematics we do follow
this convention for modules over noncommutative rings. With right scalar muiti-
plication (3) reads: (viA1,vahg) = A1 {v1, v2)Ae. We do not adopt this convention
for scalar multiplication, but do adopt (3). Physicists like (3) in view of Dirac’s
notation ‘{v;|T|vz)’ for ‘(v), Twe)’. Comment: In computations it is often more
convenient and safer to work with a bilinear form rather than a sesquilinear form,
and so to write the sesquilinear inner product as ‘{77, ve)’.

From a mathematical point of view it is more natural to quantize with skew-
adjoint operators, since they form a Lie algebra. We use (5) to convert to self-
adjoint operators, whose real eigenvalues correspond to physical measurements.

The sign choice in (6) leads to the usual bosonic lagrangian (20) with a plus
sign in front of the kinetic energy.

In (7) we assume that time translation is a symmetry of a quantum theory, so
that the infinitesimal generator is represented by a self-adjoint operator Py on the
quantum (super}Hilbert space. The minus sign gives the standard answer for the
hamiltonian of a classical free particle.

t4, Notation

Throughout i = +/—1.
Let M denote n dimensional affine Minkowski space with associated vector
space of translations V and future timelike cone & C V. We fix linear coordi-

nates z°,...,2""! with respect to which the metric is

(8) 9 = Guv dz* @ dz™ = (dz®) — .- — (dz™")?,
and the cone is

(9) C={z:{z,z)>0and z° > 0}.

Let {e,} be the corresponding basis of ¥V and §, the corresponding vector field
on M. The standard density on M is

(10) x| = |dz® ... dz""}.



SIGN MANIFESTO 359

Let S be a real spin representation. Fix a basis {f°} of S and dual basis {fa}
of §*. Then there are symmetric pairings

mhsess —Vv

(11) 2

rrses —V.
We write

T a Sl 3
(12) (f fb) abCu

P(fe, fb) = THate,,

where as usual we sum over repeated indices if one is upstairs and the other is
downstairs. We raise and lower indices vsing the metric. The pairings (11) are
assumed to satisfy the Clifford relation

(13) THebly 4 TVeTh, = 2#¥ 67
and the positivity condition
(14) I(s*,sYelC for all " € 5™,

For v € C°, the form {v,T'(s*,s*)) is then positive definite. From (13} and (14) it
follows that

(15) I(s,s)eC forall s € S.

In a classical field theory we work with a space of fields F, where f € F is
some sort of function on M. An infinitesimal symmetry is a vector field £ on F
which preserves the lagrangian in a certain sense. Corresponding to £ is a Noether
current Je, which is a twisted (n — 1)-form on M. The Noether charge (¢ is the
integral of J¢ over a time slice. We usually consider the current and charge only on
the space of classical solutions M, which carries a closed 9-form w. The infinitesimal
symmetry and Noether charge are related by

(16) dQe = —uE)w.
For (M, w) symplectic, (16) can be rewritten
(17) §f =1{Qe f}

for f a function on M.
Quantization is, in principle, a map

(18) Q—Q
from functions on M to operators on a complex Hilbert space H. We assume
(19) Q=0q,

so that real functions map to self-adjoint operators.

Let P, be infinitesimal translation in the Poincaré algebra and @, the odd gen-
erator of the supersymmetry algebra.! Let Pp, Q. be the corresponding quantum
operators.

1The notational conflict between the supersymmetry generator and the Noether charge is too
ingrained to corrvect.
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§5. Consequences of §2 on other signs

o The kinetic lagrangian for a scalar field p: M — R is

(20) L= %[dqﬂz |d"z| = %gwama,,qs \d™z].

The sign of this term is a consequence of (6); it is the main rationale for prefer-
ring (6) over the other choice.

e Suppose V = V@ V! is a graded hermitian vector space and T an
odd skew-adjoint operator. Then

(21) {7, T] = 0.
Observe from (2), (3) and (4) that an odd skew-adjoint operator has eigenvalues
on the line i~1/2R c C.
o The bracket in the supersymmetry algebra is
(22) [Qaa Qb] = —Ql—'ﬁpr
Because we use left group actions, upon quantization we expect a homomorphism

from the supersymmetry algebra to skew-adjoint operators. Using (5) we see that
the sign in (22) leads to

(23) [~Qa, =iQs] = —2T%(=iF).

Setting a = b we see from (21) that -21"‘;;‘13# > 0 for all a. From (14) we see that
I'4, P, has nonnegative norm in V. Except possibly in dimension 2, the positive
cone generated by {I'¥, P,}, includes Py, and so the sign choice in (22) renders the
hamiltonian nonnegative {rather than nonpositive), in view of (7).

e The vector field épﬂ on F corresponding to infinitesimal transla-
tion P, is

(24) éP,,f = _a.uf, f e .F.

This follows since a diffeomorphism ¢: M — M acts on functions by (¢~1)*.

o If g is a Lie algebra of infinitesimal symmetries, then the vector
fields €5 (A € g) on the space of fields F satisfy

(25) [5/\1 ) ‘5)\2] = _‘E[/\;,Az]'

e The Noether currents satisfy®

(26) {j/\] sj)\Q} = _j[/\l,/\zl'
e The Noether charges satisfy
(27) {@xr, @xn} = —Q ag)
o The quantum operators satisfy
(28) [=iQa,, —iQ),] = —iQr 2a)-

2The bracketing operation on Noether currents is defined in [I-Classical Fields, §2.6].
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Equations (25)—(27) follow from the fact that g — VectorFields(F) is an antiho-
morphism and the standard equations for Poisson brackets which follow from (16}.
Equation (28) says that g — End () is a homomorphism to skew-adjoint operators,
where we use (5).

e The self-adjoint quantum operators Q1,Q2 which correspond to
classical functions ¢, Q2 on M satisfy

(29) (@1,Q2) = —ih{Q1,Q2}" modulo O(R?).
To the extent that (29) holds exactly, it says that the map
=

to skew-adjoint operators is an antihomorphism. The sign in (30) is dictated by (5).
The desire to have an antthomomorphism is dictated by (27) and (28), and this
determines the sign in (29).

o The Schridinger equation for the evolution of a state ¥ is

(31) %—‘f = %Hw

Evolution through time t for a stetic hamiltonian Hise

The sign follows from (7) and (5).

itH /R

o Let ¢, be odd parameters and £; the even wector field on F
corresponding to nfQ),. Then

(32) 1, &) = 2T duf,  fEF

To see this, observe from (22) that in the abstract supersymmetry algebra we have
(33) (7 Qa, 15Qs] = 273 M35, P

Then (32) foltows from (25) and (24); the minus signs in these two equations cancel.

o If ¥, %, are complex classical odd quantities, then complex conju-
gation satisfies

(34) e =P Yo

This is a consequence of the sign rule if we assume that 1 — 3 is a +-operation and
%, (super)commutes with ¥;. (A * operation satisfies (ab)* = (—1)letltl p*g* ) No-
tice that the classical statement (34) is consistent with the quantum statement (19),
since the adjoint operation on linear operators is also a * operation. Notice that
the product of real commuting odd quantities is real.

s The kinetic lagrangian for a spinor field ¥: M — § is
(38) L= 2o lds] = ST pad,s ld"al.
o The kinetic lagrangian for a dual spinor field A\: M — 5 is

1
(36) L=z APA|d x| = érg‘b,\aau)\b |d™z).
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The spinor fields are odd. In view of {34), the lagrangians (35) and (36} are real,
as they must be in Minkowski space. It is easiest to check the sign in classical
mechanics (n = 1). Then from (35) we deduce® the classical Poisson bracket

(37) {9} =-1.

Upon quantization we know the corresponding operators satisfy (29). The sign
in (37) is compatible with (21), and this means that the sign in (35} is correct.

o The energy-momentum tensor is minus the Noether current of P,.
The supercurrent is minus the Noether current of QJ,.

This is a definition and follows by superPoincaré invariance from the definition (7) of
the hamiltonian. It means that the charges computed from the energy-momentum
tensor are energy and minus momentum.

§6. Differential forms

o When computing with differential forms on superspace, we usc @
bigraded point of view.?

Objects have a “cohomological” degree, corresponding to a classical (that is, non-
super) degree, and a parity. The permutation of objects of parity pi,p2 and co-
homological degree d;,ds introduces two signs: a classical sign (—1)492 and an
additional factor (—1)P1P2,

o On RP19 with coordinates t!,.. . t?,8%,...689 we have the following
table of parities and cohomological degrees:

quantity type parity (Z/2Z) coh deg (Z)
tH even coordinate 0
a¢ odd coordinate 1
/o, (3/0tH) even vector field o -1
o/86%, (3/06%) odd vector field 1 -1
Lie(&) Lie derivative »(£) o
dt# | e{dt*) even 1-form 0 1
d6?, e(dé?) odd 1-form 1 1
ared?g berezinian ¢ (med 2)
|dPt| 90 density q (mod 2) 0
e(&r) .. L(£1) dPL 96 integral form Y p(&) + ¢ (mod 2) p—r
&) .. {E1) |dPE| 498 integral density S plé&:) + g (mod 2) -7

e For X a (super)manifold the canonical pairing of vectors and I-
forms is written with the vector on the left.

Therefore, by the sign rule, for a tangent vector £ and a 1-form o there is a sign®
when passing from the canonical pairing «(€)er to (~1)PEP(@q(£), where p is the
parity.

3See Problem FP2 of [I-Homework] for a Jerivation.
4See the appendix to Chapter 1 of [[-Supersymmetry).
53ee (I-Supersymmetry, §3.3].
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e For integration over odd variables we have

/dﬂ f=1
/d@de‘ 0'9? = /d92 (/dal 91) 8% =1.

o For any vector field & we have the Cartan formule
(38) Lie(£) = [d, «(£)]-

Both sides of (38) act on differential or integral forms.

§7. Miscellaneous signs

o Let X be a smooth manifold, £ a vector field on X, v, the one-
parameter group of diffeomorphisms generated, and T a tensor
field. Then

: d o d
(39) Lie(€)T = 2], 41T = 3 lizo (0-1).T.

e On a Kéhler manifold X the Riemannian metric g, Kdhler form w,
complex structure J, and o local Kihler potential K are related by
the equations

w(€1,&2) = 9(J&1,62)

40
(40) w=1iJIK.

o Suppose f is a (suitable) function on a vector space V of dimen-
sion n. Then [ and its Fourier transform f on V* are related
by

. 1 ,
j = =z [ e @) el
QY2 2
(41) ( TI') v

$@) = gy [, €4 fk

o Suppose g is the Lie algebra of a real Lie group G. Then the com-
plexified Lie algebra gc = g ® C carries a conjugation whose set of
real points is g.

For example, starting with the unitary group G = U(n), we obtain the conjugation
A~ —A* on complex n x n matrices. (A* is the conjugate transpose of A.)



