
Time and Memory E�cient Algorithm for Extracting Palindromic

and Repetitive Subsequences in Nucleic Acid Sequences

Tatsuhiko TSUNODA , Masao FUKAGAWA, and Toshihisa TAKAGI

Genome DB, HGC, Institute of Medical Science, University of Tokyo, 4-6-1,

Shirokanedai, Minatoku, Tokyo, 108-8639, JAPAN

KWs: Palindrome, Repeat, E�cient Pattern Extraction, DNA structure, RNA structure.

Genomic science and structural biology meet in the relationship between the se-

quence and the structure of nucleic acids. The structure that supports each func-
tion is preserved in the process of evolution as speci�c sequences. Particularly, the
same sequence which appears in a di�erent place such as a palindromic or repetitive

sequence has biophysical meaning: recognition site of dimers, forming stem-loops,
and contributions to global structure of nucleic acids. Also, the genetic network,

transduction pathway, and tissue speci�city largely depend on these. Although the
relationship between them can be found experimentally, there is increasing demand

for automated analysis. Especially, it is desirable to extract the same character
sequences of arbitrary length (especially, very long ones) which co-occur at an
arbitrary separation. We propose an algorithm to identify the maximum match

sequence at each position with a calculation cost of O(N logN) and memory space
of O(N). Applying it to some sequences, we found unexpectedly large palindromes

and repeats in DNA.

1 Introduction

It is quite common that the same sequence of characters appears at di�erent

positions in nucleic acids. First of all, let's classify such cases: (1) Direct

repeats: simple repetitive sequences. (2) Trans-strand repeats: reverse se-

quences on the complimentary strand. (3) Backward repeats (ss-palindrome):

reverse sequences with the same polarity. Although they look like palindromes

as strings, because nucleic acids have polarity, they are not palindromes. (4)

Inverted repeats (ds-palindrome, so-called palindrome in nucleic acids): repet-

itive sequences on the complimentary strand of nucleic acids.

One of the simplest methods for generating such repetitive sequences is to

use reverse-transcriptase. If mRNA transcripted from a subsequence of DNA

is put in by the reverse-transcriptase in the same direction near the original

site, it provides a direct repeat. If it is put in to the complimentary chain

with the opposite direction, it provides a palindrome. There are many other

biological mechanisms which produce repetitive and palindromic sequences. If

there is no biological mechanism which uses such sequences, even if they are

generated, they will be lost before long by rearrangement and mutation in the

process of evolution.

Pacific Symposium on Biocomputing 4:202-213 (1999)

Table 1: Phenomena based on palindromic and repetitive sequences.

In
uence on Mechanism Instance (phenomenon)

DNA a. Site recognized Transcription factor binding sites,
by proteins restriction enzyme recognizing sites,

(homo-dimers etc.) and prokaryotic operators.
b. Stem-loop Prokaryotic transcription terminators,

formation prokaryotic transcription attenuators,
and viral replicating origins.

c. Duplicate, copy High density sites, retro-transposons.

RNA a. Complex (double RNA duplex forming then protein binding sites
helix + protein) (formation of functional protein-RNA complex).

b. Stem-loop RNA processing sites (self splicing)
formation and translation regulators1.

c. Structure RNA enhancers
modi�cation (Tat RNA which binds tar RNA of HIV4).

Protein Hydrophobicity Self-folding hydrophobic structure of
protein translated from palindrome6.

However, recent research has clari�ed that they may be very important.

One is the interaction between proteins and nucleic acids. For example, some

transcription factors form homo-dimers and recognize DNA by their 3D struc-

ture. The recognition sites of homo-dimers that form in tandem are repetitive

sequences. While, the recognition sites of homo-dimers that form symmetri-

cally are palindromic sequence. Moreover, it is well known that in a palindrome

of the nucleic acids, the subsequence binds with the subsequence of the oppo-

site direction and complimentary bases on its own strand and tends to make

a stem-loop. In addition, it is known experimentally that backward repeats

and trans-strand repeats form higher-order structures depending on conditions,

although its biophysical meaning is not clear yet.

The phenomena which are clari�ed at present are classi�ed in Table 1.

This table is a summary of the cases where palindromic and repetitive se-

quences interact locally. However, they also have the possibility to form a

global 3D structure of the nucleic acids. In the case of repetitive sequences,

after loosing the site, they bind with the sequences on a complimentary chain

at other sites occasionally. In general, the probability of such cases is low.

However, they sometimes occurs when the nucleic acids binds and it becomes

very dense, forming a triple helix or quadruple helix nucleic acids. Also in

the case of palindromes, there is the possibility to bind with another reverse-

complimentary sequences at a distant position, which makes a higher-order 3D

structure of the nucleic acids.

When these 3D structures are made in the transcription regulatory re-

Pacific Symposium on Biocomputing 4:202-213 (1999)

gion, by controlling the distance between the transcription factors, they con-

trol whether each transcription factor can bind with the region, or determine

whether they can cause the interaction. It a�ects the amount of transcription

and the expression of the mRNA and protein. Splicing of RNA, translation

regulation, and even the structure and function of proteins may depend on

this mechanism. As already classi�ed above, people have laboriously investi-

gated experimentally the biological meaning of these unusual sequences such

as palindromes. They examined especially palindromes without spacers. How-

ever, because the phenomena are known to di�er according to the presence of

spacers and the di�erences in length, it is necessary to examine palindromes or

repeats with arbitrary length spacers. Also, to consider the global structure, it

is necessary to search subsequence pairs with long distances on long sequences

such as full genomes in the future.

When looking for palindromes, repeats, and other variations with �xed

length and without spacer between each pair, the search can be processed at

a time proportional to the sequence length N . It is because it only has to

prepare a matching pattern in temporary memory of a �xed length for each

subsequence in the full sequence, and match the pattern in the position with

a �xed distance from each original subsequence. However, because we want

to extract such pairs of subsequences of variable length with unknown spacer

length, i.e. with arbitrary distance between them, naively, the calculation time

is O(N2). Although we can consider converting the entire sequence into a su�x

array or a tree structure beforehand and using a lot of memory (4L, where L

is the upper limit of the length) to reduce the processing time to O(N), it is

not realistic considering the amount of the memory which can be used and the

size of full genomes.

Thus, here we set the task to detect palindromes, complimentary chain

repeats, and inverted repeats of maximum length at each position with arbi-

trary spacers by a complete match search on large size nucleic acid sequences.

The reason we limited the task to complete match is that it is one of the

most fundamental parts of matching; we can collect them to �nd more
ex-

ible matches. We propose a high-speed (O(NlogN)), memory space e�cient

(O(N)) algorithm that satis�es the above requirement.

2 Algorithm

2.1 Originality

In general, repetitive subsequences on an input sequence are detected by the

following procedures: First, subsequence (S) is extracted from the full se-

quence. Secondly, S is converted to target subsequence S'. (E.g., for searching

Pacific Symposium on Biocomputing 4:202-213 (1999)

repetitive sequences, S itself. For searching palindromic sequences, a comple-

mentary sequence of S.) Lastly, the target subsequence S' is searched in the

original full sequence. In this method, the process costs up to O(N2L2), where

N is the length of the full sequence, and L is the upper limit of the length

of the subsequences (the searching template is extracted from each position of

the full sequence. In addition, this process is applied to all range of L to �nd

maximum length subsequences at each position).

However, our method di�ers from this. It converts the entire sequence into

another sequence, and compares it with the original sequence. For instance,

to �nd a palindrome, a complementary sequence is made �rst and compared

with the original sequence. As a result, all the problems we want to solve can

be converted to the problem of a string comparison between two texts. In the

comparison of two strings, a high speed algorithm with a small memory space

can be developed using sorting. These are the original points of our algorithm.

2.2 Sequence conversion

First of all, from the input sequence, the following four sequences are generated

(Fig. 1):

(0) A capitalized sequence of the original sequence. Thus it can uniformly deal

with the sequence without making distinction between capital letters and small

letters in the original sequence.

(1) A complementary-base substituted sequence of (0). If we compare it with (0),

we can detect complementary sequence repeats (trans-strand repeats) with

reversed polarity.

(2) A reverse directed sequence of (0). If we compare it with (0), we can detect

reverse direction repeats (backward repeats).

(3) A complementary sequence of (0). If we compare it with (0), we can detect

palindromic subsequences (symmetrical repeats, so-called inverted repeats).

2.3 Algorithm of extracting subsequences common in two sequences

(a) Substring sorting in each text (Fig. 2(left)) : First, scanning the se-

quence from the beginning to the end, subsequence (within length L,

256 characters in our implementation) which starts from each position

is listed. Secondly, all the subsequences are sorted according to the al-

phabetical ordering (we de�ne the word `superior'; `A' is superior to `C',

`G', and `T', etc.). In the sorted order, the beginning positions of the

subsequences are written on an output �le (e.g., 0.sort p). Here, each

subsequence is not actually copied onto the main memory; only the po-

sition pointers are generated and sorted according to the subsequences

Pacific Symposium on Biocomputing 4:202-213 (1999)

CAT...

(0)

repeat
(direct)

5’-CAT--CAT-3’
3’----------5’

This time,
not handled.

...ATG
(3)

CAT...

(0)

T->A
A->T

C->G

palindrome
(inverted repeat)
5’-CAT--ATG-3’
3’------TAC-5’

...TAC
(2)

CAT...

(0)

backward repeat
(ss-palindrome)
5’-CAT--TAC-3’
3’----------5’

GTA...

(1)

CAT...

(0)

T->A
A->T

C->G

trans-strand repeat

5’-CAT------3’
3’------CAT-5’

Figure 1: Converting the original sequence to detect palindromic or repetitive subsequences
by comparing them with the original one.

pointed by these position pointers. Because the original sequence is fully

stored on the disk, the subsequence can be restored if necessary. Here,

the end of the sequence (EOS) is ordered last in the nucleotide order.

This procedure (a) is applied to each converted sequence.

(b) To each combination for comparison (e.g., (0) and (3)), the position ta-

bles sorted by (a) (0.sort p and 3.sort p) are merged into one table (Fig.

2(right)): First, we open both table �les. Secondly, the position ac-

cording to the current line in each table provides the subsequence. This

subsequence is not copied to other memory, but only virtually pointed to

by the position in the full sequence stored in the memory array. Thirdly,

we compare the current subsequence from 0.sort p with the current sub-

sequence from 3.sort p and decide which is alphabetically earlier. The

position of the superior subsequence is stored to the memory. After that,

the current line of that side is incremented. Because each table is sorted,

by repeating this procedure, we can make the tables merged into one

table. This result is recorded in memory (see Fig. 2), and, the source

pointer (source �le ID) of each line is written in another memory array

in the same order. In addition, the number of characters matched from

the beginning with the subsequence of the previous line is calculated for

each line and recorded in another memory array.

(c) Scanning each line of the row of the source of the result of (b), if we �nd

a line from the converted sequence (i.e. 3), we search forward to the lines

from the original sequence (i.e. 0): if we �nd a line of which the sequence

is from the original sequence (0) and the number of coincidental char-

acters with the sequence of previous line (column `match') is not zero,

it suggests that there is the subsequence in common with the original

sequence and the converted sequence. Here, during this local search, the

minimum value of the number of matched characters is updated (because

Pacific Symposium on Biocomputing 4:202-213 (1999)

sequence (subseq.) pos. sorted pos. position
table

(0.seq)

CATGCA (CATGCA)
(ATGCA)
(TGCA)
(GCA)
(CA)
(A)

0
1
2
3
4
5

(ATGCA)
(A)
(CATGCA)
(CA)
(GCA)
(TGCA)

1
5
0
4
3
2

(0.sort_p)

1
5
0
4
3
2

(3.seq)

TGCATG (TGCATG)
(GCATG)
(CATG)
(ATG)
(TG)
(G)

0
1
2
3
4
5

(ATG)
(CATG)
(GCATG)
(G)
(TGCATG)
(TG)

3
2
1
5
0
4

(3.sort_p)

3
2
1
5
0
4

(ATGCA)
(ATG)
(A)
(CATGCA)
(CATG)
(CA)
(GCATG)
(GCA)
(G)
(TGCATG)
(TGCA)
(TG)

0
3
0
0
3
0
3
0
3
3
0
3

1
3
5
0
2
4
1
3
5
0
2
4

3
1
0
3
2
0
3
1
0
4
2

source pos. #match
with
prev.
line

merge

in memory
(for sorting)

in memory or
on disk(file)

Figure 2: Sorting and merging the virtual subsequences (not in memory) of the original

sequences. Only the full sequences and the position tables are in memory.

it depends on the comparison, it can not be determined previously). This

minimum value is the true number of matched characters from the begin-

ning between the original subsequence and the converted subsequence. If

we �nd that the number of matched strings equals zero, then the search

is discontinued because there will be no sequence matched with the se-

quence. For instance, in Fig. 3 (left), we start the global search from

the �rst line until the last line to �nd subsequences which are from the

converted sequence (`source' is 3). Because we can �nd the line signed

(*) �rst, we start the local search from the next line (i) for �nding subse-

quences which are from the original sequence (`source' is 0). We can �nd

that the line (i) satis�es the condition. Because the number of matched

characters between the subsequence `A' indicated by the line (i) and the

subsequence `ATG' indicated by the previous line (*) exceeds zero (i.e., 1

indicated by the `match' column of the line), we output this combination

as a result candidate. We continue the local search. Seeing the next

line (ii), we can �nd that the number of characters matched between the

subsequence `CATGCA' indicated by the line (ii) and the subsequence

`A' indicated by the previous line (i) does not match from the beginning

(indicated by the `match column of the line (ii) as 0). Thus we stop the

local search. Let's return to the global search.

Pacific Symposium on Biocomputing 4:202-213 (1999)

0

3

0

0

3

0

3

0

3

3

0

3

1

3

5

0

2

4

1

3

5

0

2

4

3

1

0

3

2

0

3

1

0

4

2

(ATGCA)

(ATG)

(A)

(CATGCA)

(CATG)

(CA)

(GCATG)

(GCA)

(G)

(TGCATG)

(TGCA)

(TG)

0

3

0

0

3

0

3

0

3

3

0

3

1

3

5

0

2

4

1

3

5

0

2

4

3

1

0

3

2

0

3

1

0

4

2

local
forward
search

1

global search

(*)

(i)

(ii)

0

3

0

0

3

0

3

0

3

3

0

3

1

3

5

0

2

4

1

3

5

0

2

4

3

1

0

3

2

0

3

1

0

4

2

local
backward
search

3 (I)

(*)

3(ATG)(1:3)

1(A)(5:3)

3(CAT)(0:2)

2(CA)(4:2)

3(GCA)(3:1)
1(G)(3:5)

4(TGCA)(2:0)
2(TG)(2:4)

pos. on
sequences
 0 3

Final
candidates

source
pos.

match source
pos.

match source
pos.

match

Figure 3: Searching matched subsequences: local forward search, local backward search, and

�nal outputs by global search.

Sometimes we want to set the lower bound of the number of matched

characters from the beginning of the subsequences. Then the local searches

can be stopped earlier.

Simultaneously with the local forward searches, we also execute local

backward searches from the key lines (e.g., (*) in Fig. 3 (middle)). Here,

to see the number of matched characters from the beginning, we use the

`match' value of the next line. For example, at the local forward search

from the line (*), the number of matched characters between `ATG' in-

dicated by (*) and `ATGCA' indicated by (I) is 3 (shown at the column

`match' of the line (*), which is the next line of (I)). Thus, this com-

bination of these lines is a candidate. Because (I) is the �rst line, we

can not go backward any more. Although sometimes the local searches

go beyond the next key lines, the search continues while the number of

matched strings is above the lower bound.

All candidates picked here are passed to the post-processing part for

re�ning results (Fig. 3(right)).

(d) We combine the sorted sequences processed at (a), i.e. (0) with (1), (0)

with (2), and (0) with (3), and apply them with the procedure (b)-(c)

respectively.

Pacific Symposium on Biocomputing 4:202-213 (1999)

CATGCA TGCATG
ATG
 TG
 G

3
2
1

Figure 4: Redundant candidates (sub-subsequence pairs).

2.4 Post-processing the candidates

First, because each position in the reversed sequences di�ers from the origi-

nal one, the position is calculated with respect to the original position (the

sequence length minus its value). Secondly, self-overlapping subsequences are

omitted. Thirdly, because of the symmetricity of the palindromes and re-

peats, each candidate may have a redundant pair. To avoid this, only the

subsequences of which position in the original sequence is after that in the

converted sequence. Lastly, because we treat each part of subsequence to be

di�erent from the subsequence, the candidates are a mixture of combinations

of sub-subsequences although their locations are the same as the subsequences.

For example, let's consider sequence `CATGCA' and `TGCATG' (see Fig. 4).

The subsequence `ATG' appears in both the sequences. Also we can see at the

same location `TG' and `G', which is sub-subsequence of `ATG'. Because only

after the pair is decided we can extract the matched characters, it is not pos-

sible to group them beforehand. Therefore, when the maximum length of the

subsequence common in both the sequences isM , M pairs will be produced as

candidates. However, these redundant candidates have the same characteristic

that the end of the matched characters have the same positions respectively.

Thus, such redundant combinations can be gathered by checking the end posi-

tion of subsequence in the original sequence (Aend), and that on the converted

sequence (Bend); we can collect such combinations by sorting all of the com-

binations according to the position A
end

, and by sorting candidates inside the

group of the same Aend position according to the position Bend.

3 Result

The program is written in C++ and is executable on a supercomputer (Sun
Enterprise 10000, 64 processors). Although it can run on the computer in
parallel, we evaluated it using a single processor. Because we implemented
the merge process using disk �le, the execution cost was larger than the on-
memory implementation. However, it consumes only 5Nbytes (for the full
sequence and the position table. See ahead). First, we applied our program
to an eukaryotic promoter sequence (902bases) from EPD3 setting the lower
bound of the subsequence length to 7:

Pacific Symposium on Biocomputing 4:202-213 (1999)

% palin EPD49023 7

| EPD49023, 7

- trans-strand repeats -

0: 8, (265), [6, 13], [279, 286]: GGGTAGGG

1: 7, (44), [148, 154], [199, 205]: GGTTTCC

2: 7, (159), [182, 188], [348, 354]: GTCTCCC

3: 7, (171), [112, 118], [290, 296]: ACCCTCC

4: 7, (39), [307, 313], [353, 359]: CCTTGGG

5: 7, (357), [12, 18], [376, 382]: GGGTGCT

- backward repeats -

0: 10, (150), [287, 296], [136, 127]: AGGTGGGAGG

1: 8, (72), [204, 211], [131, 124]: GGAGGAGG

2: 7, (204), [423, 429], [218, 212]: GACGATC

3: 7, (160), [296, 302], [135, 129]: GGTGGGA

4: 7, (159), [404, 410], [244, 238]: CAATGGG

5: 7, (395), [406, 412], [10, 4]: ATGGGGG

6: 7, (246), [339, 345], [92, 86]: TTGAGGG

- palindromes -

0: 9, (59), [413, 421], [353, 345]: CCTCTGAGC

1: 8, (6), [126, 133], [119, 112]: AGGAGGGT

2: 7, (174), [261, 267], [86, 80]: CCTGCCT

3: 7, (100), [299, 305], [198, 192]: GGGACTA

4: 7, (87), [303, 309], [215, 209]: CTAGCCT

5: 7, (81), [202, 208], [120, 114]: AAGGAGG

6: 7, (106), [319, 325], [212, 206]: GCCTCCT

7: 7, (27), [261, 267], [233, 227]: CCTGCCT

8: 7, (173), [292, 298], [118, 112]: GGAGGGT

Here, ID number, subsequence length, spacer length, position in the origi-

nal sequence, position in the converted sequence, and subsequence are indicated

by each line. The execution time was 0.79 sec (total time includes memory

access, disk access, printing process, and temporary-�le removal). Indeed, we

could extract long palindromic and repetitive subsequences. We also applied

our method to the HPV16 DNA sequence (double strand, 16 Kbases). The

execution time was 11.61 sec. Although we set a lower bound of the subse-

quence length to 7, we found this cancer-viral DNA includes 2689 trans-strand

repetitive pairs, 2796 backward repetitive pairs, and 3150 palindromic pairs.

The length of the longest subsequence is 12, 16, and 14 respectively.

4 Discussion

4.1 Related works and complexity

Genomic science stands on the assumption that all information of the life is

written in the full DNA and aims to decipher the cryptograms in it. In recent

years, a large amount of genomic sequences are clari�ed and the function of

each gene has been analyzed. Now we are to analyze the higher-order function,

the global interaction such as intra-DNA binding a�nity, the unit of each func-

tion in the DNA, and the protein-DNA bind-ability must be considered. In this

research, �rst, the Nagao and Mori's algorithm5 by which frequency statistics

Pacific Symposium on Biocomputing 4:202-213 (1999)

of the character strings in the text itself has been expanded to an algorithm by

which the substrings of the maximum length at each location common in two

texts can be identi�ed. Next, we resolved the problem of detecting repetitive

subsequences such as palindromes into a problem of the comparison between

two texts, and applied the above algorithm to this problem.

In this research, we generalized the concept of palindromic and repetitive

sequences, and classi�ed the phenomena according to the case when the same

sequence (including opposite direction and on the complimentary chain) ap-

pears and how they function. Although only local areas in nucleic acids had

been extracted to analyze their function, using this method, we can detect in

one time the same subsequences at long distances. For example, to examine

the transcription regulation, the range for analysis was only limited to the

transcription regulatory area. It is the same situation in the analysis of the

mechanism of the translation and the replication. However, recently, some

people provide mechanisms for replication, repair, transcription, translation,

signal transduction pathway, etc. that closely a�ect each other 7.

Early programs which detect palindromic sequences are only optionally

developed for DNA sequence analysis. Thus, there is no tool that can handle

the general situation of palindromic sequences using time and memory e�cient

algorithm. For example, although Bailey's program2 also includes the option

for detecting palindromes, because it only applies a complimentary symmetry

matrix for each position, it can not detect the general palindromic sequences

with spacers of arbitrary length. There is the problem that, once arbitrary

spacers are considered, the amount of the calculation and memory required

explodes. This research solved this problem.

Let's thinks about the ability of the implemented program. First of all,

because we used 32 bit unsigned integer to represent the position in the input

sequence, 232 = 4Gbp can be treated (it also has information on a reverse-

strand). This is enough to handle full sequence of the human genome. The

amount of the calculation time of this algorithm is O(N logN) (Table 2). Here,

N is the number of nucleotides of the full sequence input. For sorting, we im-

plemented comb sort. In the table, � is the number of combinations produced.

This value a�ects the e�ciency when the candidates are listed and compacted

to the �nal results. If N >= �, the time required for sorting subsequences

(O(N logN)) is critical for entire processing time. Otherwise, the time re-

quired for post-processing the candidates (O(�log�)) is critical. While the

amount of the memory required is O(N) (see the column at the center of the

table), the memory used in each process is assumed to be reused by garbage

collection. That is, the process in which the memory use is the largest in 1-

6 becomes the total amount of memory required in this program. The four

Pacific Symposium on Biocomputing 4:202-213 (1999)

Table 2: Order estimation of execution time and memory space (unsigned int = 4 bytes).

Processing Execution time Memory space Memory space (with disk)

1. Sequence conversion O(N) N (unsigned int) 1(unsigned int)

2. Sorting subsequences O(N logN) N (unsigned int) N(unsigned int)+Nbytes

3. Merge O(N) 2N(unsigned int) 1(unsigned int)

+2Nbytes+2Nbytes +(2 + L+ O(1))bytes

4. Counting matched O(N) 2N(unsigned int) 1(unsigned int)

characters +2Nbytes+2Nbytes +(2 + L+ O(1))bytes

5. Generating O(N + �) 2N (unsigned int) 2(unsigned int)

candidates +2Nbytes+2Nbytes +(2 + L + O(1))bytes

6. Post-processing O(� log �) �(unsigned int) �(unsigned int)

+Nbytes +Nbytes

unsigned integers used for each candidate in the post-processing are the tem-

porary space for recording the beginning and end positions of the subsequences

on both the original sequence and the converted sequence. If N > (16=11)�,

2N �(unsigned int) +4N byte used in the steps from 3 to 5 is the largest. On

the other hand, if N < (16=11)�, � �4(unsigned int) +N bytes used in the step

6 is largest.

Here, we can also consider the version which uses disk �les in the steps

3-5, then, these processes hardly require memory. Although we recommend

steps 2 and 6 are processed in memory because they are sorting, when the

memory size is small, we can use the disk �les using the merge sort algorithm.

Even when using the disk, the execution speed and memory space are still in a

trade-o� relation. When the merge sort algorithm is applied, although we can

expect high speed access with direct memory access transfer (block transfer

from the disk to the main memory), temporary memory for processing is also

required. For example, merge sort with ideal memory space requires only

O(logN) �le access. However, it requires N memory space and O(N logN)

processing time (including the memory access frequency). The total execution

time is the summation of the �le access time, the memory access time, and the

calculation time. Under smaller memory size, as the frequency of the block

transfer increases, a �le access frequency more than O(logN) is needed, which

reduces the e�ciency.

4.2 Limitation of our algorithm

Our algorithm aims to extract completely matched subsequences. Thus, nei-

ther the mismatch nor gaps in the subsequences are considered although spac-

ers between the subsequences were considered. In general, it is di�cult to

estimate how mismatches or gaps a�ect the binding a�nity or conformation

structure of nucleic acids because they largely depend on the entire structure.

Pacific Symposium on Biocomputing 4:202-213 (1999)

Therefore, we focused our task to the simplest case: extracting completely

matched subsequences as the 1st approximation. In future work, we have

planned to assemble the subsequences extracted by our algorithm to handle

the mismatch and gap problem. Our algorithm for extracting palindromic and

repetitive subsequences will be the �rst step to the processing of the grammat-

ical structure of nucleic acid sequences.

5 Conclusion

Up to now, the meaning of palindromes and repeats has not been looked into

deeply. Especially, backward-repeats and trans-strand-repeats from which the

possibility of binding was thought to be negligible. However, recent investi-

gations suggest that a lot of unexpectedly long sequences are commonly seen

separated by large distances in nucleic acids. Thus, we proposed the cost

and memory e�cient algorithm to extract such sequences. With the current

computer ability, a large amount of genomic sequences, and the data of gene

expression in many di�erent situations, the relation between the function and

the structure of nucleic acids converges through structural biology.

Acknowledgements

This work is partially supported by Grant-in-Aid for Scienti�c Research on Priority Areas,

\Genome Science" from the Ministry of Education, Science, Sports, and Culture, Japan.

References

1. B.Alberts et al. Molecular biology of the cell. Third ed. (1994), 463-468.

2. T.L.Bailey. Discovering motifs in DNA and protein sequences. Univ. of.

California at San Diego (Ph.D. dissertation) (1995).

3. R.Cavin, T.Junier, and P.Bucher. The Eukaryotic Promoter Database

EPD, R.50 (1997). Swiss Institute for Experimental Cancer Research.

4. RA.Marciniak et al. HIV-1 Tat protein trans-activates transcription in

vitro. Cell (1990) 63(4), 791-802.

5. M.Nagao and S.Mori. A New Method of N-gram Statistics for Large

Number of n and Automatic Extraction of Words and Phrases from Large

Text Data of Japanese. In Proceedings of International Conference on

Computational Linguistics (1994), 611{615.

6. A.Tropsha et al. Making sense from antisense: a review of experimen-

tal data and developing ideas on sense{antisense peptide recognition.

J.Mol.Recognit.(1992) 5(2), 43-54.

7. TBP held hostage by cisplatin. nature structural biology (1998), Vol.5,

103.

Pacific Symposium on Biocomputing 4:202-213 (1999)

