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Gene expression and disease-associated variants are often used to prioritize candidate genes for target 
validation. However, the success of these gene features alone or in combination in the discovery of 
therapeutic targets is uncertain. Here we evaluated the effectiveness of the differential expression (DE), the 
disease-associated single nucleotide polymorphisms (SNPs) and the combination of the two in recovering 
and predicting known therapeutic targets across 56 human diseases. We demonstrate that the performance of 
each feature varies across diseases and generally the features have more recovery power than predictive 
power. The combination of the two features, however, has significantly higher predictive power than each 
feature alone. Our study provides a systematic evaluation of two common gene features, DE and SNPs, for 
prioritization of candidate targets and identified an improved predictive power of coupling these two 
features. 
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1. Introduction 

A major goal of biomedical research is to identify disease genes to guide drug discovery that aims 
to improve the disease outcomes (1). Genes are defined as disease genes when they carry disease-
causing aberrations (2). To identify an aberration of a gene, or a gene feature, and prove it as a 
causal link between the gene and a disease involves experimental testing and is time consuming. 
The advancement in high-throughput experimental techniques has facilitated this process by 
enabling rapid generation of vast amount of data for disease-associated gene features. Those 
techniques include the gene expression microarray, which allows the study of differential gene 
expression (DE) between disease and control samples; and high-throughput genotyping and next 
generation sequencing, which allows the study of disease-associated single nucleotide 
polymorphisms (SNPs) by comparing disease and control populations. However, these disease-
associated features could be assigned to thousands of candidate genes. Prioritizing genes by 
incorporating these features for further experimental testing of causal relation is therefore 
necessary to narrow down the search space and increase the effectiveness of translating these 
candidates (3).  
 DE is often considered when prioritizing candidate genes, largely because it has been 
widely used to discover differentially regulated genes and deregulated molecular mechanisms (4).  
However, it has also been shown that DE genes might not perform well for specific diseases, 
where highly differentiated genes were not directly related to diseases (5). Yet, whether it can be 
generalized for all diseases is not clear and most researchers still use DE genes as their primary 
choice for seeking molecular explanations of biological phenotypes. SNPs to phenotype 
associations from genome-wide association studies provide unbiased screens of common variant 
associations. Using disease-associated SNPs to prioritize candidate genes are on the rise, 
especially as the sequencing technology is getting cheaper and more comprehensive 
computational tools have been developed to facilitate the process of the raw sequencing data. 
However, disease-associated SNPs derived from a defined population could fail in a larger or 
different population (6) and how SNPs perform across different disease conditions is largely 
unknown.  

Increasing effort has been put to link different types of gene features from different 
sources to improve the performance of each individual feature. As an example, highly 
differentially expressed genes were found more likely to harbor disease-associated SNPs (7). 
However, how this feature combination would affect the candidacy of the gene for target 
validation has not been studied. More comprehensive integration of genetic variants with other 
types of genomic and biological data has been performed in individual disease condition (8). 
Although it showed great promise of using genetics to guide drug discovery, whether this can be 
generalized for other disease conditions is not clear.  

An objective assessment of the performance of DE genes and disease-associated SNPs 
alone or in combination in different disease conditions will help understand the utility of these 
features and provide guidance to the application of them for target prioritization. However, that 



 
 
 

 

type of assessment is currently lacking, mainly because it will require multiplex data collection 
and incorporation between features across disease conditions.  

In this study, we integrated gene expression with disease-associated SNPs and therapeutic 
target data sets across a diverse set of 56 diseases in 12 disease categories (Figure 1). We 
systematically evaluated how successful DE genes, disease-associated SNPs or the combination of 
both can recover known disease targets, and how well they can predict the known targets by 
comparing with random sampling of these features. We demonstrate that the performance of DE 
genes, disease-associated SNPs or the combination of both varies across diseases. We observe that 
both DE genes and disease-associated SNPs have more recovery power than predictive power. 
The combination of the two features, however, has more predictive power than each feature alone. 
This suggests linking DE genes with disease-associated SNPs improves the accuracy of 
prioritizing candidate targets.  

  

2. Methods 

2.1 Selection of diseases 

To examine the relation between gene expression and disease targets, we focused our study on 
diseases that have at least one gene expression microarray study and one known target.  

To identify diseases and their associated microarray data, we utilized a text mining 
approach using previously published methods (9,10). Briefly, Gene Expression Omnibus (GEO) 
experiments that are relevant to human diseases and measure both normal and disease states were 
collected by an automated annotation and mapping between the Medical Subject Heading (MeSH) 
terms of the experiment associated publications and the disease concepts in the Unified Medical 
Language System (UMLS). Disease annotations and the associated microarray datasets were 
manually reviewed in a post-processing step to ensure accuracy. The resulting datasets included 
238 disease concepts and 8,435 microarray samples.  

To identify diseases that have at least one known target, we used the Therapeutic Target 
Database (TTD) (11), which provides manually annotated information about known therapeutic 
targets, their targeted disease conditions and corresponding drugs. It had 897 disease conditions 
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Figure 1. The schematic diagram of the work flow. "



 
 
 

 

and 2,071 therapeutic targets (accessed in Aug. 2013), which include targets that are successful, in 
clinical trials, in pre-clinical research or discontinued. We extracted the UniProt IDs of the targets 
and mapped them to human Gene IDs. Then we converted the disease conditions of successfully 
mapped targets to UMLS concept IDs using the MetaMap (12). The maximum confidence score 
of 1000 was used as a cutoff for the successful mapping. The resulting dataset consists of disease-
known target pairs that are represented by the disease concept ID and the target gene ID across 
859 diseases and 2,071 therapeutic targets.   

Next, we mapped the disease concept IDs between the disease-microarray and the disease-
target datasets, which resulted in 122 diseases (Figure 1). These diseases that have at least one 
known therapeutic target and one gene expression microarray study were further analyzed for their 
DE genes.   

2.2 Determination of DE genes and disease-associated SNPs 

We used the method of significance analysis of microarray (SAM) (13) and its Bioconductor R 
package (siggenes) to identify DE genes for each of the 122 diseases. For diseases that have 
multiple associated studies, the study that has the largest sample size was chosen. For genes with 
multiple probes, the expression level of the probe that had the highest absolute value was used. 
The raw data of the microarrays were processed and normalized as described in our previous 
publication (14). With a false discovery rate (FDR) < 0.05, 56 diseases were found to have at least 
one DE gene, which includes a total of 17,409 unique DE genes across all the diseases. 

To identify the associated SNPs of these 56 diseases, we utilized a human disease-SNP 
association database (VARIMED) (15,16). In a recent release (Sep. 2013), we have manually-
curated over 466,000 disease-associated SNPs across about 6,600 associated diseases and related 
phenotypes from 17,088 publications. To evaluate the performance of using SNPs for recovering 
known targets, we used a cutoff p<10-6 and obtained 46,644 disease-associated SNPs from 
VARIMED. The SNP associated disease names were then mapped to concept IDs of the 56 
diseases that have at least one DE genes and at least one known target. Thirty-eight diseases were 
assigned with at lease one SNPs. Unassigned diseases were marked as having 0 SNPs in Table 1. 
SNPs associated genes were obtained from the dbSNP138 database. Linkage disequilibrium (LD) 
effect was not counted for selecting disease-associated SNPs to obtain a general pool of SNPs.  

By combining the disease-DE genes dataset with the disease-SNPs dataset, we built 
129,905 triples between the 56 diseases, their DE genes and associated SNPs. The resulted dataset 
was mapped with the gold standard of disease targets, which allowed us to examine how often DE 
genes and associated SNPs alone or in combination can recover and predict the known targets of 
each disease.  

2.3 Determination of the gold standard for disease targets 

Targets of the 56 diseases that have at least one DE genes were extracted from the disease-target 
dataset derived from TTD. Total 520 targets were selected and used as the gold standard for the 



 
 
 

 

evaluation. These targets are primary targets, which are directly responsible for the efficacies of 
the corresponding drugs that were confirmed by strong experimental evidence (11). 

2.4 Evaluation 

To evaluate how often the DE genes and disease-associated SNPs can recover and predict the 
known targets in each disease, we calculated the percentage of targets that have each feature 
(recall) and the percentage of each feature that are associated with targets (precision). We also 
calculated the percentage of targets that have both features and the percentage of having both 
features and being targets for each disease. This allowed us to evaluate the combinatory effect of 
differential expression and genetic variants on recovering and predicting known targets. To obtain 
the expectation of the performance of these features, we randomly sampled (1,000 times) the same 
amount of genes and SNPs against the total gene sets in the microarray and the whole dbSNP138 
pool, respectively. The precision and recall of the random samples were then calculated the same 
way as above. The q value was calculated as the percentage of the precision or recall of random 
sampling that is better than the original. The known targets of each disease were used as the gold 
standards. For comparing the performance between features, the precision and recall of each 
feature for all diseases were plotted (Figure 3).  

2.4.1 Precision  

For each disease, the precision of DE genes, disease-associated SNPs and both are calculated 
using the following formulas: 

Precision (DE genes)  =  
Number of DE genes that are targets  (1) 

Number of DE genes 

Precision (SNPs)  =  
Number of disease-associated SNPs in targets  (2) 

Number of disease-associated SNPs 

Precision (DE genes & SNPs)  =  
Number of DE genes harboring SNPs that are targets  (3) 

Number of DE genes harboring SNPs 

2.4.2 Recall 

For each disease, the recall of DE genes, disease-associated SNPs and both are calculated using 
the following formulas: 

Recall (DE genes)  =  
Number of targets that are DE genes  (4) 

Total number of targets 

Recall (SNPs)  =  
Number of targets that harbor SNPs  (5) 

Total number of targets 

Recall (DE genes & SNPs)  =  
Number of targets that are DE genes & harbor SNPs   (6) 

Total number of targets 



 
 
 

 

3. Results 

3.1 Statistics of the diseases studied 

Overall we studied 56 diseases (Figure 2). According to Human Disease Ontology, they consisted 
of 16 cancers, 7 nervous system diseases, 6 metabolic diseases, 5 gastrointestinal system diseases, 

5 infectious diseases, 4 cardiovascular system diseases, 4 respiratory system diseases, 3 
musculoskeletal system diseases, 3 autosomal recessive diseases, 2 reproductive system diseases, 
1 mental disease, and 1 syndrome (Figure 2). These diseases had total 520 unique known targets,  
17,409 unique DE genes and 8,235 unique disease-associated SNPs. About 2/3 of them had fewer 
than 10 targets; 2/3 of them had under 2,000 DE genes; and about 80% of them had fewer than 
200 associated SNPs (Figure 2). On average, these diseases had 13.6 known targets, with obesity 
(64), prostate cancer (59) and breast cancer (51) having the largest number of known targets 
(Table 1). With a FDR<0.05, the average DE genes these diseases had was 2320. Spinal muscular 
atrophy and breast cancer had the largest number of DE genes, which were 12,648 and 10,314 
respectively. Given the 10-6 p-value cutoff, the average number of disease-associated SNPs was 
163. Rheumatoid arthritis (RA) and type 1 diabetes mellitus had the largest number of disease-
associated SNPs, which were 1,826 and 1,456 respectively. However, 18 out of the 56 diseases 
did not have any associated SNPs with p<10-6 (# of dis. SNPs=0, Table 1).  
 
3.2 Recovering known targets by DE genes and disease-associated SNPs 
Next, we asked for each disease how often the known targets were differentially expressed, 
harbored disease-associated SNPs or had both gene features. Those are essentially the true 
positive rates (recall) of using DE genes, disease-associated SNPs or both to recover known 
targets. We also calculated how often DE genes, disease-associated SNPs or both were associated 
with known targets, which are the positive predictive values (precision) of using these gene 
features to predict targets (Table 1).  

Figure 2. Histogram of disease categories, known targets, DE genes, 
and disease SNPs of the 56 diseases studied. !
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 The average recall by DE genes was 20.7%. Thirty-two of the 56 diseases (57.1%) had no 
targets that were DE genes, or 0% recall. Four diseases (urothelial carcinoma, spinal muscular 
atrophy, sickle cell anemia and dilated cardiomyopathy) had 100% recall, because they had only 
one known target and that target was a DE gene. Compared to random sampling, DE genes did not 
perform better in most of the diseases, except for prostate cancer, breast cancer, multiple sclerosis, 
and inflammatory bowel disease (q < 0.1 or q < 0.05). The average recall by disease-associated 
SNPs was 1.3% and 44 of them (78.6%) were 0%, where no targets of those diseases harbored 
disease-associated SNPs. HIV and type 2 diabetes mellitus had the highest recalls, 16.7% and 
9.8% respectively. For diseases with non-zero recall, SNPs of most of them performed better than 

Disease Name

# of 
known 
targets

# of DE 
genes 

(FDR<0.05)

# of dis. 
SNPs  

(p<10-6)

% of targets 
being DE 

genes

% of targets 
harboring 
dis. SNPs

% of targets 
being DE 
genes & 

harboring 
dis. SNPs

% of DE 
genes 
being 

targets

% of dis 
SNPs in 
targets

% of DE 
genes 

harboring 
SNPs that are 

targets
Obesity 64 1 507 0 3.1 0 0 0.4 NA

Prostate Cancer 59 1030 407 23.7 1.7 0 1.4 0.5 0
Breast Cancer 51 10314 189 82.4 2.0 2.0 0.4 0.5 3.6

Asthma 48 2754 348 12.5 4.2 0 0.2 1.7 0
Rheumatoid Arthritis 43 858 1826 11.6 7.0 4.7 0.6 0.5 15.4

Type 2 Diabetes Mellitus 41 26 647 0 9.8 0 0 1.4 0
Alzheimer's Disease 39 4682 416 30.8 7.7 0 0.3 2.2 0

Atherosclerosis 35 93 0 0 0 0 0 NA NA
Hypertension 32 71 161 0 3.1 0 0 0.6 NA

Parkinson's Disease 25 1235 899 8.0 0 0 0.2 0 0
Multiple Sclerosis 22 131 435 9.1 4.6 4.6 1.5 0.2 25.0

Inflammatory Bowel Disease 18 4682 39 50.0 0 0 0.2 0 0
Non-small Cell Lung Cancer 17 7834 4 52.9 0 0 0.1 0 0

Hypercholesteremia 17 7179 1 64.7 0 0 0.2 0 NA
Malignant Melanoma 17 7901 78 82.4 5.9 5.9 0.2 3.9 6.2
Myocardial Infarction 17 4 132 0 0 0 0 0 NA

Osteoarthritis 15 131 59 6.7 0 0 0.8 0 0
Lymphoma 12 888 14 33.3 0 0 0.5 0 NA

Crohn's disease 11 5590 352 54.5 9.1 0 0.1 0.3 0
Glaucoma 11 140 28 0 0 0 0 0 NA

Chronic Obstructive Pulmonary Disease 11 23 42 0 0 0 0 0 NA
Acute Myeloid Leukemia 10 2097 0 40.0 0 0 0.2 NA NA

Malaria 10 194 27 0 0 0 0 0 NA
Erectile Dysfunction 10 1 3 0 0 0 0 0 NA

Sepsis 10 29 0 0 0 0 0 NA NA
Colon Cancer 9 2547 235 11.1 0 0 0 0 0

Irritable Bowel Syndrome 8 69 0 0 0 0 0 NA NA
Ulcerative Colitis 7 2587 119 0 0 0 0 0 0

Cystic Fibrosis 7 4 0 0 0 0 0 NA NA
Type 1 Diabetes Mellitus 7 35 1456 0 0 0 0 0 NA

Small Cell Carcinoma of Lung 7 8118 0 28.6 0 0 0 NA NA
Bacterial Infection 6 233 0 0 0 0 0 NA NA

HIV 6 356 350 16.7 16.7 0 0.3 0.3 NA
Chronic Lymphocytic Leukemia 6 5996 40 66.7 0 0 0.1 0 0

Amyotrophic Lateral Sclerosis 5 2 84 0 0 0 0 0 NA
Skin Squamous Cell Carcinoma 5 877 2 0 0 0 0 0 NA

Cancer of the Stomach 5 1846 55 0 0 0 0 0 0
Gastro-esophageal Reflux Disease 4 2 0 0 0 0 0 NA NA

Huntington's Disease 4 8100 15 75.0 0 0 0 0 0
Pulmonary Hypertension 4 10 0 0 0 0 0 NA NA

Endometriosis 3 9 33 0 0 0 0 0 NA
Acute Promyelocytic Leukaemia 3 2 0 0 0 0 0 NA NA

Macular Degeneration 3 721 0 0 0 0 0 NA NA
Pulmonary Fibrosis 3 14 1 0 0 0 0 0 NA

Cervial Cancer 3 66 0 0 0 0 0 NA NA
Myelodysplastic Syndrome 2 760 0 0 0 0 0 NA NA

Alpha-1 Anti-trypsin Deficiency 2 5 0 0 0 0 0 NA NA
Sickle Cell Anemia 1 6429 7 100.0 0 0 0 0 0

Urothelial Carcinoma 1 8767 0 100.0 0 0 0 NA NA
Cardiomyopathy, Dilated 1 5728 19 100.0 0 0 0 0 0

Hepatic Cirrhosis 1 118 6 0 0 0 0 0 NA
Spinal Muscular Atrophy 1 12648 0 100.0 0 0 0 NA NA

Vitamin A Deficiency 1 88 0 0 0 0 0 NA NA
Idiopathic Fibrosing Alveolitis 1 241 18 0 0 0 0 0 NA

Testis Cancer 1 5280 61 0 0 0 0 0 0
Severe Acute Respiratory Syndrome 1 359 0 0 0 0 0 NA NA

Average 13.6 2319.7 162.8 20.7 1.3 0.3 0.1 0.3 2.4

Recall Precision

Table 1. Statistics of the 56 diseases in the study!
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NA: either the total # of dis. SNPs is 0 or the total # of DE genes harboring SNPs is 0. *: q < 0.1, **: q < 0.05 !



 
 
 

 

random sampling, except prostate cancer, breast cancer, asthma, and multiple sclerosis. The 
average recall by both DE genes and disease-associated SNPs was 0.3% and 52 of them (92.9%) 
were 0%. Only 4 diseases (malignant melanoma, rheumatoid arthritis, multiple sclerosis and 
breast cancer) had targets that were DE genes and harbored disease-associated SNPs, which had a 
recall of 5.9%, 4.7%, 4.6% and 2%, respectively. Compared to random sampling, the combination 
performed better in all four diseases, except breast cancer.  

On the other hand, the average precision by DE genes was 0.1%, where 39 diseases 
(69.6%) had no DE genes that were targets, or 0% precision. Multiple sclerosis and prostate 
cancer had the best precision, 1.5% and 1.4% respectively. Similarly, DE genes did not predict 
better than random sampling in most of the diseases. Since 18 of the 56 diseases had no associated 
SNPs (NA in the second to the last column, Table 1), the precision by disease-associated SNPs 
was calculated for 38 diseases. The average precision by disease-associated SNPs was 0.3% and 
26 of them (68.4%) were 0%, where no SNPs of those diseases occurred in targets. Malignant 
melanoma and Alzheimer's disease had the best precision, 3.9% and 2.2% respectively. For most 
of the diseases, SNPs also predicted better than random sampling. Thirty-five diseases had no DE 
genes that also harbored disease-associated SNPs (NA in the last column, Table 1), thus the 
precision by DE genes and SNPs were calculated for 21 diseases. The average precision by both 
DE genes and disease-associated SNPs is 2.4% and 17 of them (80.9%) were 0%, where no DE 
genes that harbored SNPs were targets. The four diseases that had DE genes that harbored disease-
associated SNPs and were targets were multiple sclerosis, rheumatoid arthritis, malignant 
melanoma, and breast cancer, with a precision of 25%, 15.4%, 6.2% and 3.6% respectively. The 
combined features of all four diseases predicted better than random sampling (q < 0.05). 

  To compare the performance between features, we plotted the precision and recall of each 
feature for all diseases (Figure 3). Although it was not the common precision and recall curve for 

evaluating the performance of a classifier, it showed how the performance of each feature varied 
in different diseases and allowed the comparison of performance between features. The 
performance of each feature varied greatly between diseases. When using DE genes, the recall 
values ranged from 0-100%, while the precision values were all below 3%. In other words, DE 

Figure 3. Performance of recovering known targets of each disease by DE genes, disease SNPs or 
both. Each point indicates the values of one disease. !
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genes could recover all known targets of a disease, but most of the DE genes were not disease 
targets. When using disease-associated SNPs, the recall values were between 0-20%, while the 
precision values were below 5%. In other words, disease-associated SNPs could recover a small 
portion of the known targets, but most of them were not in known targets. When using both DE 
genes and disease-associated SNPs, the recall values were below 6%, yet the precision values 
ranged from 0-25%. In other words, although the combination of both features could hardly 
recover any known targets, if a gene was differentially expressed and contained disease-associated 
SNPs, it would have higher chance to be a target for that disease.  

When comparing between features, we found that DE genes gave better recall than 
disease-associated SNPs and disease-associated SNPs gave better recall than the combination of 
both. On the other hand, disease-associated SNPs gave better precision than DE genes, and the 
combination of both gave the best precision. We also identified the genes that were differentially 
expressed, harbored disease-associated SNPs and were targets. They were MOG (Myelin-
oligodendrocyte glycoprotein) of multiple sclerosis, C5 (Complement C5) and TNF (Tumor 
necrosis factor) of rheumatoid arthritis, MC1R (Melanocyte-stimulating hormone receptor) of 
malignant melanoma, and ERBB4 (Receptor tyrosine-protein kinase erbB-4) of breast cancer   
(Table 2).  

4. Discussion 

Gene expression and genetic variants are the two most commonly measured and used features for 
selecting the best candidate genes for target validation. Their efficiency in target prioritization is 
often studied in specific disease conditions and their performance between diseases is largely 
unknown. Here we incorporated three diverse datasets from GEO microarray database, 
VARIMED disease-associated SNPs database and TTD target database, and systematically 
evaluated each feature and the combination of them in recovering and predicting known targets of 
56 human diseases.  

!
Disease Name!

All Known Targets!
(DE genes in italic, harboring SNPs in bold, DE genes & harboring SNPs in bold italic)!

Multiple Sclerosis!
!

ADRB2, CASP3, CNP, CRH, LPAR1, CXCR3, ICAM1, IFNAR2, IFNG, ITGA4, KCNA3, 
LEP, MMP9, MOG, MPO, PPARG, KLK6, CFLAR, NR1I2, CCR2, SPP1!

Rheumatoid Arthritis!
!
!
!

C5, CD4, CD80, CCL2, CCR2, CD86, CFLAR, CTSK, F2RL1, FGF2, IKBKB, IKBKE, 
IL12A, IL13, IL15, IL17A, IL1R1, IL4, IL6ST, ITGA4, ITGB1, LTA, ITGB7, JAK3, JUN, LIF, 
LTB4R, MAPK11, MAPK12, MAPK14, MIF, MMP8, MMP9, MYD88, OSM, PTGES, 
PTGS2, SYK, TLR9, TNF, TNFRSF1B, TRBV7-9, VEGFB!

Malignant Melanoma!
!

ALOX12, BIRC5, BRAF, CDH2, CTLA4, CTSL1, DCT, EDNRB, FN1, HDAC4, HSP90AA1, 
IFNAR2, JUN, MAP3K4, MC1R, PLAU, TXNIP!

Breast Cancer!
!
!
!
!

AKT1, ANGPT2, CDH2, CYP1B1, BRCA2, CCND1, CDC25A, CLU, COPS5, CTSD, 
CXCL12, CXCR4, CYP19A1, DNMT3B, EGFR, EPHA2, ERBB2, ERBB4, ESR2, ESRRA, 
FOS, HSD17B1, JUN, LHCGR, MAP2K1, MAP3K4, MDM2, MFGE8, MMP2, MUC1, 
NCOA3, NRG1, PGR, PLAUR, PRL, PRLR, PTGS2, PTK6, PTN, SERPINB5, SNCG, 
SRC, ST14, STC1, TPBG, VDR, HSP90AA1, MAP2K5, SCGB2A2, STS, TYMP!

Table 2. Diseases that have targets that are DE genes and harbor dis. SNPs!
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 We found that the performance of each feature varied between diseases, which indicates 
that each feature could have different therapeutic utility for different diseases. However, overall, 
both DE genes and SNPs had lower precision than recall, which suggests that the DE or disease-
associated SNP feature by itself is not good at predicting a target. The combination of being DE 
genes and harboring disease-associated SNPs had significantly improved precision (q < 0.05) 
compared to each feature alone (Figure 3). This implies that genes that are differentially expressed 
and harbor disease-associated SNPs are more likely to be targets. Indeed, for example, TNF 
(Table 2) is a successful target for RA validated by others (17) and carries risk variants 
via  genome-wide association studies (18). Thus this combinatory feature could be used as a new 
criterion for prioritizing candidate genes for target validation.  

In this study, DE genes, disease-associated SNPs or the combination of them was directly 
evaluated to allow objective assessment of their performance in target prioritization. Although the 
combination of DE and SNPs showed increased predictive power, it was still not great (< 25%). 
Optimizing the two features may improve their performance in prioritizing targets. A common 
alternative way to prioritize DE genes is their fold change (fc). Disease-associated SNPs can be 
ranked by how often they are associated with DE genes (%SNPs), since genetic variants 
associated with disease traits are likely to influence gene expression (1). Then the rank sum of fc 
and %SNPs can be used combinatorially. Many other prioritization methods can be incorporated 
with each feature, including the use of protein-protein interaction network, pathway involvement, 
literature and ontology. However, their effect on the performance may not necessarily improve the 
overall performance and need to be evaluated on a disease-by-disease basis.  

There are limitations in this study that should be recognized. First, the microarrays used to 
derive the DE genes were from the study with the largest sample size, which could be the reason 
for the over 10,000 DE genes in some diseases. Meta-analysis of all microarray studies of each 
disease might result in more robust set of DE genes and a better disease signature (19). Likewise, 
meta-analysis of genome-wide studies for the same disease, as well as accounting for LD structure 
among the associated variants, may increase the reliability of disease-SNPs pairs. In this work, we 
used stringent thresholds (i.e., FDR < 0.05 and p value < 10-6), changing which can alter the 
number of DE genes and disease-associated SNPs that will affect the precision and recall. Second, 
the known targets of each disease were extracted from the TTD database. Other databases may 
help derive more known targets, such as the DrugBank (20) and PharmGKB (21). However, 
DrugBank does not provide direct relations between targets and diseases, while PharmGKB has 
more pharmacogenomic information than drug-therapeutic targets relations. It is also important to 
recognize that all of these databases capture the current knowledge, which is not complete or 
perfect. As we discover more therapeutic targets and evaluate their efficacy, these resources will 
become more comprehensive and serve as a better gold standard. 

Our study revealed a baseline performance of the two most common gene features, DE and 
SNPs, on prioritizing candidate targets, and identified an increased predictive power of the 
combination of the two features than that of each feature alone.  
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