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The Cell Index Database, (CELLX) (http://cellx.sourceforge.net) provides a computational framework for
integrating expression, copy number variation, mutation, compound activity, and meta data from cancer cells.
CELLX provides the computational biologist a quick way to perform routine analyses as well as the means to
rapidly integrate data for offline analysis. Data is accessible through a web interface which utilizes R to
generate plots and perform clustering, correlations, and statistical tests for associations within and between
data types for ~20,000 samples from TCGA, CCLE, Sanger, GSK, GEO, GTEx, and other public sources.
We show how CELLX supports precision oncology through indications discovery, biomarker evaluation, and
cell line screening analysis.

1. Introduction

To support precision medicine patient selection strategies, genomics data is used to identify
oncogenic drivers or dysregulated pathways in cancer cells susceptible to therapeutic intervention.
Notably, efforts by The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov), the Cancer
Cell Line Encyclopedia (CCLE)[1], and Sanger Wellcome Trust Genomics of Drug Sensitivity in
Cancer (GDSC)[2] have generated a plethora of data and datatypes that can be used for generating
patient selection hypotheses. However, multiple genomics data types such as expression, copy
number variation (CNV), and mutation are large and unwieldy to manage. For the computational
biologist, much time and effort can be spent to assemble an up to date table of features which can
be computed on because new data are often generated frequently and incrementally. Thus, there is
a need for an infrastructure to perform simple, quick, and routine analyses on multi-dimensional
genomics data as well as the automated assembly of data tables for offline computation using
more sophisticated algorithms.

Currently, there exist several cancer genomics databases to access expression, CNV, mutation, and
integrated data as reviewed in [3]. For example, BioGPS[4] provides expression data,
Tumorscape[5] contains CNV measurements, the Sanger Catalog of Somatic Mutations in Cancer
(COSMIQ)[6] lists mutations, and the cBio Portal[7] integrates multiple TCGA data types.
Additionally, databases with compound activity data include GDSC and CCLE. Here we present a
publicly available web-based informatics tool to integrate data, perform analysis, and visualize
results from public as well as private internal sources to support precision medicine activities.

* This work is supported by Pfizer, Inc.
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2. Architecture

The underlying MySQL database consists of 22 tables for expression, CNV, mutation, compound,
sample, meta data, RNAi, RPPA, and gene annotation data. The Perl CELLX application runs on
an Apache web server. R-serve (http://www.rforge.net/Rserve/) instances generate plots and
perform statistical analyses. An Apache Tomcat application server runs a custom Java servlet
which bridges Perl and R by funneling Perl http requests to the R-serves and sends results back to
the web server. A demo site, instructions, source code, database dumps, and data parsing / loading
scripts are available at http://cellx.sourceforge.net.

3. Gene Based Search

A common starting point for indications discovery is asking where the target of interest is altered.
CELLX can plot the relative expression or CNV of a gene within a dataset or across multiple
compatible datasets. For instance, RNA-Seq data processed by RSEM[8] can be compared across
tumors profiled not only by TCGA, but CCLE as well. CDK4 expression can be seen to have high
outliers in Glioblastoma Multiforme (GBM), melanoma (SKCM), breast (BRCA), Lower Grade
Glioma (LGG), and sarcomas (SARC) (Figure 1). A similar plot can be generated of CNV to
identify datasets with amplifications or deletions. CELLX can chart the relationship between
expression and CNV across datasets using scatter plots of expression versus CNV. A hallmark of
amplification, CDK4 expression levels scale with CNV level in several datasets (Figure 2a,b).
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Figure 1. RNA-Seq RSEM gene expression of CDK4 (y-axis, log2) across datasets shows higher expression in
tumor vs. adjacent normal tissue. Particular groups of outliers can be seen in GBM (glioblastoma multiforme),
SARC (sarcoma), SKCM (skin cutaneous melanoma), LGG (brain lower grade glioma), and cell lines (CCLE).


http://www.rforge.net/Rserve/
http://cellx.sourceforge.net

ERBB2

a) TCGA-SARC-RSEM b) TCGA-GBM-RSEM

o
o o, @8
_ @ _ [ o
: S oBes : 900 o
o&§ @) ®9 % o ©
o 0 ° o o
o
o

- - o 7 o ©
O‘ (&)
< <
X o = X o - (]
o o
(@) O

T T

o o

| |

T | T T T | | T
10 12 14 16 12 14 16 18
CDK4 CDK4

Figure 2. Correlation of expression and CNV. CNV (y-axis in log2 diploid genome) vs. RSEM expression levels (log2)
for CDK4 show that a) SARC and b) GBM datasets have a sizable population of cells overexpressing CDK4 due to
amplification of the locus. Additionally, expression levels scale with CNV levels. Clear outliers from the main
distribution of CNV values can help determine appropriate CNV cut offs for amplification status. In this example,
samples colored red have > 1 log2 diploid genomes (i.e. >~4 copies).

4. Integrated Visualization

Mixed data types can be visualized in 2D scatter plots to look at the relationship between two
datatypes on the same or different genes. For instance, expression of gene A on the x-axis can be
plotted versus the CNV of gene B on the y-axis. Other plottable datatypes are protein levels for
Reverse Phase Protein Arrays (RPPA), the mutation count per sample, the general amount of CNV
per sample, IC50 values for compounds, and meta data. Multiple layers of data can be added to
the plot to increase dimensionality. As a simple example, one can plot the expression of ERBB2
expression vs. ERBB2 CNV overlaid with ERBB2 mutations (Figure 3a) or breast cancer subtype
meta data. (Figure 3b). The underlying data used to generate each plot is linked as a tab separated
tsv file for downloading.
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Figure 3. 2D scatter plots. a) Gene expression of ESR1 (x-axis, log2) vs. ERBB2 (y-axis, log2) gene expression. ERBB2
CNV over the selected threshold of 1 (log2 diploid genome) is colored pink. Focal amplifications (< 10MB) are denoted
with ‘foc’. Mutations in ERBB2 are colored green. ¢) Meta data for PAMS0 subtype classification are colored and
overlaid on the ESR1 vs. ERBB2 gene expression plot.



5. Biomarker Frequency Reports

Tables of the frequency of alterations across datasets can help to prioritize indications for therapies
with known biomarkers. For instance, the venn report of the frequency of CDK4 biomarker
alterations within datasets shows significant frequencies of CDK4 amplification in sarcoma,
gliomas, and melanoma TCGA datasets (Table 1). Cutoffs can be defined by expression level,
CNV level, and/or mutation status. The co-occurrence or exclusion of 2-4 biomarkers within the
same sample can also be quantified.

Table 1. Frequency report for CDK4 alterations in TCGA. CDK4 c is the number of samples in which the CNV
exceeds the set threshold, in this case ~4 copies. CDK4 m is the number of samples with a CDK4 mutation. The
cells ¢/ m columns are the number of samples for which CNV or mutation data are available, respectively.
Percentages are calculated as altered / total for each individual alteration type.

sourcename CDK4_ c cells_c CDK4_m cells_m cell_type tumor_type CNV% MUT%
TCGA-SARC 35 171 0 0 soft_tissue Sarcoma 20.47 NA
TCGA-GBM 73 607 0 150 neuronal Glioblastoma multiforme 12.03 0
TCGA-LGG 14 471 1 612 neuronal Brain Lower Grade Glioma 2.97 0.16
TCGA-ACC 2 90 0 91 adrenal_gland Adrenocortical carcinoma 2.22 0
TCGA-SKCM 7 387 8 372 skin Skin Cutaneous Melanoma 1.81 2.15
TCGA-LUAD 5 510 3 491 lung Lung adenocarcinoma 0.98 0.61
TCGA-STAD 2 403 1 373 stomach Stomach adenocarcinoma 0.5 0.27
TCGA-BRCA 5 1074 1 777 breast Breast invasive carcinoma 0.47 0.13
TCGA-BLCA 1 255 2 242 urinary_tract Bladder Urothelial Carcinoma 0.39 0.83
TCGA-OV 2 569 0 476 ovary Ovarian serous cystadenocarcinoma 0.35 0
TCGA-LUSC 1 487 0 233 lung Lung squamous cell carcinoma 0.21 0
TCGA-COAD 0 446 2 219 large_intestine Colon adenocarcinoma 0 0.91
TCGA-PRAD 0 381 0 300 prostate Prostate adenocarcinoma 0 0
TCGA-THCA 0 508 0 428 thyroid Thyroid carcinoma 0 0
TCGA-PAAD 0 92 1 91 pancreas Pancreatic adenocarcinoma 0 1.1
TCGA-PCPG 0 175 0 0 adrenal_gland Pheochromocytoma and Paraganglioma 0 NA
TCGA-MESO 0 37 0 pleura Mesothelioma 0 NA
TCGA-READ 0 164 0 1 rectum Rectum adenocarcinoma 0 0
TCGA-UCEC 0 533 5 248 endometrium Uterine Corpus Endometrial Carcinoma 0 2.02
TCGA-KIRC 0 521 6 328 kidney Kidney renal clear cell carcinoma 0 1.83
TCGA-ESCA 0 126 0 0 oesophagus Esophageal carcinoma 0 NA
TCGA-DLBC 0 28 0 79 haematopoietic_ Lymphoid Neoplasm Diffuse Large B-cell 0 0
TCGA-KICH 0 66 0 66 kidney Kidney Chromophobe 0 0
TCGA-UCS 0 57 0 57 uterus Uterine Carcinosarcoma 0 0
TCGA-KIRP 0 212 0 169 kidney Kidney renal papillary cell carcinoma 0 0
TCGA-LAML 0 194 0 118 haematopoietic_  Acute Myeloid Leukemia 0 0
TCGA-LIHC 0 213 5 202 liver Liver hepatocellular carcinoma 0 2.48
TCGA-HNSC 0 516 5 513 upper_aerodiges Head and Neck squamous cell carcinoma 0 0.97
TCGA-CESC 0 206 0 41  cervix Cervical squamous cell carcinoma and 0 0
6. Analysis

CELLX can identify genes whose expression correlates with a gene of interest and return a table
of significant genes that can be visualized via a heat map with labelled metadata. For example, a
search for genes correlated with CDK4 expression in the TCGA sarcoma dataset yields ACVRL1
which is expressed by vascular endothelium and a potential anti-angiogenesis target. (Figure 4a)
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Figure 4. Analysis of features associated with CDK4 expression. a) Heatmap of top 200 genes (columns) correlated with
CDK4 expression levels in samples (rows) from the TCGA sarcoma dataset showing ACVRL1 expression correlates with
CDK4 (arrows). Meta data labels for histologic diagnosis are colored in a column on the left side of the plot. b) Scatter
plot of CDK4 expression versus ACVRL1 expression showing high ACVRLI expression in dedifferentiated
liposarcomas. Metavalues from a) are colored and abbreviated by the first 3 letters. Amplification of CDK4 is denoted by
a violet circle. foc=focal. ¢) Meta data with significantly different CDK4 expression levels. Min p-value is the lowest
pairwise t-test score. d) Boxplot of histologic diagnosis by CDK4 expression data used in c).

A scatter plot of CDK4 vs. ACVRLI shows higher ACVRLI in Dedifferentiated Liposarcomas
(DDPLS) vs. Leiomyosarcomas (Figure 4b). This is consistent with a study reporting immature
and intermediate blood vessels in sarcomas and quantifying tumor microvessel density that is ~3X
higher in DDLPS vs. Leiomyosarcomas. [9] The plot also shows that CDK4 expression is high in
DDLPS and often focally amplified which is consistent with the literature.[10] CELLX can also



test for significant gene expression associated with meta data features by performing a t-test of a
gene’s expression grouped by a sample’s meta data. As an example, a search for meta data with
significantly different CDK4 expression in the TCGA sarcoma dataset reveals that the histologic
diagnosis type has large differences in CDK4 expression levels (lowest p-val = 2.54¢’!%) as
calculated by a pairwise t-test between all groups (Figure 4c). A box plot of the groups from
histologic diagnosis shows that the CDK4 values from DDPLS are higher than other sarcomas
(Figure 4d). Additional types of analyses include the identification of differentially expressed
genes using t-tests of gene expression between groups defined by a gene’s expression, a gene’s
mutation status, or a meta value label. For example, one could ask what genes are differentially
expressed between samples with high CDK4 vs. low CDK4, samples with mutated EGFR vs. wild
type EGFR, or samples annotated as male vs. female. Conversely, one can search for mutated
genes which differentially express the query gene. e.g. which gene(s) mutations have higher or
lower expression of EGFR than wild-type.

7. Precision Medicine

To support precision medicine, CELLX can be used to generate responder / non-responder
hypotheses from cell line screening data. As a retrospective example, one can analyze the cell line
sensitivity profile of Palbociclib, a CDK4/6 inhibitor under development for ER+ breast cancer.
Published breast cell line IC50 values for Palbociclib[11] show a range of responses. (Figure 5a)
CELLX can associate IC50 values with cell line expression, CNV, and mutation data from data
sources such as CCLE. Samples divided into two groups by user defined cutoffs, in this case
<1uM for responder cell lines (LOW IC50) and > 1uM for non-responder cell lines (HIGH IC50)
can be used to identify genes whose expression is significantly different between responder and
non-responder cells by calculating t-tests on the expression of ~20,000 genes and displaying a p-
value ranked table (Figure 5b). Hierarchical clustering on the top 100 most significant genes,
ordering the samples from low to high IC50, and coloring the samples by intrinsic breast subtype
as defined by PAMS50[12] shows that luminal B and Her2 subtypes tend to be sensitive to
Palbociclib whereas cells of the basal subtype tend to be resistant (Figure 5c¢). Luminal A cell line
subtypes were not represented in the screening set. Additionally, CELLX can dynamically
generate a combination CNV / mutation table for genes which meet user defined amplification /
deletion thresholds or have annotated mutations. A ranked table of p-values from Fisher’s exact
test for all genes with either a CNV or mutation alteration (Table 2) highlights genes potentially
associated with compound activity. While individually, the appearance of any one gene is not
necessarily significant, together the combined results from the expression, CNV, and mutation
associations highlight RB1, CCNEI, and to a lesser extent CDKN2A. Specifically, the expression
of RB1 was low in resistant cells whereas CDKN2A and CCNEI were high in resistant cells.
Interestingly, unlike other targeted therapies where the small molecule target is often the
biomarker of sensitivity (e.g. EGFR, MET, BRAF) the significant Palbociclib biomarkers
represent markers of resistance. RB1 deficiency (CNV deletion, STOP mutations, and low
expression) and concomitant high CDKN2A expression[13] are characteristics of the basal or
triple negative breast subtype status (Figure 5c). Thus, if most of the RB1 deficient samples
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belong to the triple negative subtype, the remaining luminal A/B (ER+/ERBB2+/-) and ERBB2+
segments would be enriched for possible CDK4i responders. In support of this notion, luminal B
and Her?2 breast subtype cell lines are mostly sensitive to CDK41i (Figure 5¢).

CELLX can also confirm if the low RB1 expression found in triple negative breast cell lines also
occurs in primary tissues by using the TCGA-BRCA breast invasive carcinoma dataset. CELLX
can identify the genes that are most differentially expressed between RB1 high (> 9.5) vs. RBI
Several of the top 100 ranking genes by p-value are
related to cell cycle (RB1, CDKN2A, CCNE1) or DNA replication/repair (RFC2, RFC4, MCMS,
MCM7, CDT1, NASP, POLK, POLDI1, MUTYH, FANCE). Hierarchical clustering and labeling
with the intrinsic subtype via PAMS50[12] shows that similar to cell lines, we find that tumors with
low RB1 and high CCNE1/CDKN2A expression are often of the basal subtype (Figure 6).

low (< 9.5) expressing cells using t-tests.
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Figure 5. a) Waterfall plot of breast cell line responses to Palbociclib (PD0332991) colored by IC50 range. b) Example output
listing the p-value of genes. dm = difference in group means, statistic = t-statistic (LOW-HIGH), p.value = uncorrected p-
value of two-sided, two-class t-test with equal variances. Not shown: FDR and Hochberg adjusted p-values. c) Heatmap of
gene expression of top 100 genes by t-test between sensitive (IC50 < 999nM, LOW) and resistant cell lines (IC50 > 999nM,
HIGH). The positions of RB1, CDKN2A, and CCNEI are denoted with arrows. Cell lines are ordered by IC50 and colored
by intrinsic breast subtype via PAMS50.



Table 2. Association of mutations / CNV with response to Palbociclib (PD0332991). a) Ranking of genes by p-value
for Fisher’s Exact test. b) Breast cell line table of selected alterations. Breast cell lines are labeled LOW (sensitive) or
HIGH (resistant) and marked altered or non-altered for mutation or CNV change in each gene. Cell lines are ordered
by Palbociclib IC50 value. Genes with CNV values > abs(1) or mutations from CCLE are marked as altered. CNV
units are in log2 diploid genomes. (i.e. 1=~ 4 copies) CCLE mutation nomenclature: del = deletion, p.0 = whole gene
deletion, ? = unknown change, fs = frameshift, * = STOP codon

GENE pval GENE pval b) _cell name PD0332991 RESPONSE RB1__ PIK3C2G CCNE1 _ CDKN2A
RB1 0.0004 ATP9B 0.0611 pvalue 0.0004 0.0048  0.0136 0.1362
PIK3C2G 0.0048 CAPRIN1 0.0611 MDAMB175 4 LOW
C190rf12 0.0136 CTIF 0.0611 ZR7530 5 LOW p.P129del
CCNET1 0.0136 DNM2 0.0611 CAMA1 8 LOW
LOC284395 0.0136  EHF 0.0611 MDAMB134VI 13 LOW p.P129del
PLEKHF1 0.0136 ELP2 0.0611 HCC202 21 LOW
POP4 0.0136 EPG5 0.0611 UACC893 24 LOW
URI1 0.0136 FANCI 0.0611 EFM19 27 | Low p.02-2.16
VSTM2B 0.0136 HDLBP 0.0611 SUM190 o8 | LOw
DOCK3 0.0136 LRP6 0.0611 EFM192A 4 | Low
NCOA4 0.0136  MAPK4 0.0611 MDAMB361 44 LOW p.P129del p.M521
ADRA1A 0.0136  MCPH1 0.0611 HOC1500 5 | Low 127 oo
CTNNAT1 0.0136  NKX6.3 0.0611
TCF12 0.0136 PDCD6 0.0611 Hoc1419 51| Low p-P129del
CoH 00459 PEBPA 00611 HCc3s 64 LOW p.P129del p.02/-2.75
ANKS1B 00459 PTK2B 0.0611 MDAMB415 64 | LOW p-P129del
DIP2C 0.0459 RP1L1 0.0611 MCF10A 92 | LOW
GsTH 00595 SGK223 0.0611 UACC812 96 LOW 1.26  p.P129del
GSTTP2 0.0595 SMAD4 0.0611 HCC2218 100 | LOW p.P129del
LOC391322 0.0595 ZFYVE26 0.0611 ZR751 110 | Low p.P129del
D2HGDH 0.0611  MTAP 0.0932 MDAMB453 15 LOW p.P129del
DHRS4L1 0.0611 USP32 0.0932 184A1 18  LOW
DHRS4L2 0.0611 BCAS1 0.0932 T47D 127 LOW p.P129del
ELAC1 0.0611  TRIM37 0.0932 MCF7 148 LOW p.0?/-2.19
GAL3ST2 0.0611  PIK3CA 0.0952 BT20 177 LOW p.1388S  p.P129del p.02/-2.11
LINC00906 0.0611 TP53 0.0952 MDAMB435 201  LOW p.?
LINC01029 0.0611  AUTS2 0.0971 BT474 240  LOW -1.07
LOC100420587 0.0611  LOC649352 0.0971 SKBR3 300 LOW
LOC100505835 0.0611  MIR4650.1 0.0971 KPL1 327 LOW -1.97
LOC102724958 0.0611  MIR4650.2 0.0971 HCC1143 350  LOW
LOC439994 0.0611  SIGLEC14 0.0971 MDAMB231 432 LOW p.P129del p.02/-2.53
MIR6511B1 0.0611  FHIT 0.0971 HCC1395 472 LOW p.02/-2.03
NAALADL2 0.0611  PIK3C2B 0.0971 SUM225CWN 503 LOW
NUTM2A.AS1 0.0611 PTEN 0.1176 HS578T 524 | LOw p.0?
RBFOX1 0.0611  CDKN2A 0.1362 18485 538 | LOW
SALL3 0.0611  LOC284344 0.1560 UAGG732 742 | Low
UGT2B28 0.0611 LPAR6 0.1560 CALS1 905 | LOW 0.P125del
UQCRFST 0.0611  NRG1 0.1560 MDAMB468 1000 HIGH p.2/-1.89
APC 0.0611 PDE4D 0.1560
MDAMB436 1000 = HIGH p.G203fs*9
BTK 0.0611 EEF2K 0.1560
ELN 0.0611 EPHB3 0.1560 HCC1954 1000 | HIGH
EPHBG 00611 ITPR1 01560 HCC1937 1000 HIGH p.T738_R775del38
GCNT2 00611  KIAA1549 0.1560 DU4475 1000 | HIGH p.07-1.92
HIPK2 00611  MAP3K19 0.1560 HCC1569 1000 | HIGH 202
KLK15 0.0611 MELK 0.1560 HCC1187 1000 | HIGH
NOS2 0.0611  MLKL 0.1560 BT549 1000 HIGH p.2/-2.22
OMG 00611 MMP8 0.1560 MDAMB157 1000 HIGH 1.01
TBX22 0.0611  MYLK 0.1560 COLO824 1000  HIGH p.?
ZNF142 0.0611 PLCB2 0.1560 HCC70 1000 HIGH p.N480del
AGPATS 0.0611__ SPTA1 0.1560 HCC1806 1000 HIGH 1.25  p.0?/-2.25

8. Summary

CELLX is an informatics infrastructure to manage multi-dimensional genomics datasets
containing expression, copy number variation, mutation, and compound sensitivity information. A
browser based web page enables an accessible way to visualize, analyze, and download the
database data in a pre-formatted table suitable for offline computation. CELLX is presently



iRl

v —

=k_‘

CCNE1
CDKN2A

PAM50.RNASEQ

® Basal

u Her2
LumA
LumB
NA

N

Figure 6. TCGA Breast differential gene expression between RB1
high and RB1 low expressing tumors. Hierarchical clustering of
the top 100 genes in a heat map colored by breast subtype as
determined by PAMS50. Positions of CDKN2A, CCNEI, and RB1
are denoted by arrows.

focused on supporting oncology precision medicine
through the evaluation of preconceived hypotheses as
well as unbiased, data driven hypothesis generation.
Though usable by the general user, CELLX is aimed at
the computational biologist who desires more control
over the data or wants to integrate custom data not
available in public databases.

9. Data Processing

When available, summarized data from the source was
used for TCGA, CCLE, and Tumorscape except for
CNV calls. If Affymetrix SNP files were available, they
were processed relative to the hgl8 assembly using the
aroma.affymetrix R package according to the methods of
H. Bengtsson et al.[14] using the average baseline of
128 female HapMap samples[15] as the reference to
maintain consistency and comparability across datasets.
Microarray expression data from GEO, Sanger, and
CCLE were GC Robust Multiarray Average normalized
using R and the gcrma[16] library. Comparable to the
TCGA RNA-Seq RSEM pipeline, CCLE RNA-Seq[17]
data was processed using RSEM[8] on RefSeq
sequences, quartile normalized to 1000, and log2
transformed. The R library genefu[18] predicted PAMS50
subtypes and genefilter[19] enabled fast t-tests, F-tests,
and correlations. Plots were made using CELLX and
edited using Preview and Pages.
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