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The emergence of multi-drug and extensive drug resistance of microbes to antibiotics poses a great threat to human 
health. Although drug repurposing is a promising solution for accelerating the drug development process, its 
application to anti-infectious drug discovery is limited by the scope of existing phenotype-, ligand-, or target-based 
methods. In this paper we introduce a new computational strategy to determine the genome-wide molecular targets of 
bioactive compounds in both human and bacterial genomes. Our method is based on the use of a novel algorithm, 
ligand Enrichment of Network Topological Similarity (ligENTS), to map the chemical universe to its global 
pharmacological space. ligENTS outperforms the state-of-the-art algorithms in identifying novel drug-target 
relationships.  Furthermore, we integrate ligENTS with our structural systems biology platform to identify drug 
repurposing opportunities via target similarity profiling. Using this integrated strategy, we have identified novel P. 
falciparum targets of drug-like active compounds from the Malaria Box, and suggest that a number of approved drugs 
may be active against malaria. This study demonstrates the potential of an integrative chemical genomics and 
structural systems biology approach to drug repurposing. 



1.  Introduction 

 Treatment of infectious diseases is under threat.  The emergence of multi-drug resistance and 
extensively drug resistant microbes to antibiotics calls for new treatment regimes.1 Yet, at the 
same time, the drug discovery process, characterized by a one-drug-one-gene-one-disease 
paradigm, has yielded few successes in combating drug resistance and is hampered by a high 
failure rate leading to soaring costs.2 Fortunately, the cause of that failure is also cause for 
optimism. Since the failure is due, in part, to drug promiscuity there is also the opportunity to 
repurpose existing drugs to treat infectious diseases.3 However, there are several unique challenges 
in anti-infectious drug repurposing. First, successful phenotype-based methods which compare the 
genome-wide molecular signature of repositioned drugs to a disease-induced phenotype,4 have 
limitations when applied to anti-infectious drug discovery. Second, recent efforts in cell-based 
antibiotics screening produce thousands of active compounds, but gives few hints as to their 
molecular targets as well as their in vivo activities and toxicities.5-6 Finally, due to the bias in high-
throughput screening, existing chemical genomics databases only collect several thousand targets, 
most of which are from human and model organisms, not pathogens. Taken together these 
limitations hinder the application of state-of-the-art computational methods to anti-infectious drug 
repurposing. 

These limitations can be addressed through chemical genomics - the construction of genome-
scale drug-target interaction networks. Creating such networks requires that we address the 
question, given a chemical entity, how do we accurately identify its targets on a genome scale 
based on its structural similarity with known ligands and reliably determine the significance of 
those putative targets? Several data mining techniques have recently been developed to predict 
drug-target interactions.7-15 However, few of them can assess the statistical significance of ranked 
targets. A notable advance was the development of Similarity Ensemble Approach (SEA) 
statistical model,16-17 which is comparable to the state-of-the-art machine learning algorithms.18  
However, SEA and most of the existing machine learning techniques only consider local 
neighborhoods for relevance between chemicals.19 Thus it remains a big challenge to find the 
global relationships between chemicals so that an expanded target space can be established.20-27 In 
this paper, we introduce a fundamentally new methodology, ligand Enrichment of Network 
Topological Similarity (ligENTS), which integrates graph mining algorithms and random set 
theory to begin to address the above challenges. ligENTS considerably improves the performance 
of existing methods for drug-target prediction. Thus, ligENTS may open new doors to the next 
generation of chemical genomics algorithms.   

The integration of chemical genomics and structural genomics is needed since current 
chemical genomics methods have only identified targets for a small portion of the human (<10%) 
and pathogen genomes (often <1%), respectively.28 In other words the molecular targets of a large 
number of active compounds against bacteria are still unknown. Complementary to the knowledge 
of existing drug targets, the structural information of proteins has increased rapidly.29

  Previously, 



starting from a known drug-target, we have developed a structural systems biology approach for 
linking drug molecules to pathogen structural genomes through target binding site similarity, 
thereby reconstructing high-resolution 3D drug-target physical interaction models.30  However, 
these structural systems biology methods are not scalable to millions of chemicals. To address 
these limitations, we combine ligENTS with the structural systems biology approach to link entire 
bioactive chemical space to the pathogen structural genome. The innovative integration of 
chemical genomics with structural systems biology will not only greatly expand the scope of both 
ligand- and target-based methods, but also considerably improve the quality of predicted drug-
target interaction models. Consequently, it may provide new opportunities for drug discovery.      

To demonstrate the utility of this integrated approach, we apply it to identify molecular targets 
of drug-like compounds from the Malaria Box, and suggest drug repurposing opportunities for 
anti-malaria chemotherapies. Malaria is one of the most devastating and widespread tropical 
parasitic diseases and is the most prevalent in developing countries.31 The Malaria Box includes 
200 drug-like and 200 probe-like compounds that are active against the blood stage of P. 
falciparum, one of the most dangerous pathogen causing malaria. Although the compounds have 
desirable ADMET properties, their molecular targets in bacteria and human, as well as in vivo 
activity and toxicity, remain unknown. We use ligENTS to identify their target profiles in the 
chemical genomics databases, and their mapping to the P. falciparum genome. Using the target 
profile of active compounds as a proxy, we link approved drugs with active compounds against P. 
falciparum. Our results provide abundant testable hypothesis for further experimental validation. 

2.   Results and Discussion 

2.1.  Ligand Enrichment of Network Topological Similarity (ligENTS) method  

Fig. 1. Scheme of ligENTS. Hexagons represent chemicals. Two similar chemicals are connected. The more similar a 
chemical is to the query, the darker the hexagon. The chemicals in the colored sphere bind to corresponding targets Ti 

and Tj. 

We have developed a new algorithm, ligand Enrichment of Network Topological Similarity 
(ligENTS), to assess the statistical significance of chemical-target associations based on the 
network topological similarity. As shown in Fig. 1, ligENTS consists of three key steps. (1) We 
connect around half a million chemicals in ChEMBL32 into a chemical similarity network (termed 
ChemWeb). (2) Given a query, we apply a Random Walk with Restart (RWR) algorithm to define 
the network topological similarity between the query and other chemicals in ChemWeb. (3) To 
assess the statistical significance of the topological rank derived from the RWR, we apply random 
set theory to estimate the enrichment of a ligand set that is associated with a protein target in terms 



of the distribution of its network topological similarity scores. The final output of ligENTS is the 
false discovery rate (FDR) of a list of targets in the database, which may interact with the query 
chemical. 

 

Fig. 2.  Performance comparison of (A) global RWR relevance and Daylight fingerprint in detecting a pair 
of chemicals that share the same target, and (B) ligENTS (ligand Enrichment of Network Topological 

Similarity), SEA (Similarity Ensemble Approach)16, HGBI (Heterogeneous Graph Based Inference)15, and 
MaxSim (maximum similarity score in a set of ligands)33 in ranking targets given a query chemical.  

2.2. Graph mining improves the performance of detecting pairwise chemical similarity 

State-of-the-art algorithms such as SEA, TurboSim,34 MaxSim,33 and IRV19 only consider 
the similarity between the nearest neighbors, but ignores the global structure similarity 
relationships among all entities in a database. To overcome this limitation, we apply graph 
mining algorithms to define global relationships between chemicals. Given a query chemical, 
we first link the query to all nodes in ChemWeb, if edge weights between the query and any 
node are above a predefined threshold. Then, we use a Random Walk with Restart (RWR) 
algorithm to perform a probabilistic traversal of ChemWeb across all paths leading away from 
the query. The probability of choosing a path depends on the edge weight. The output of the 
algorithm is the list of all nodes (chemicals) in the network, ranked by the probability pi for the 
query to reach node i. In this way, the query may detect related chemicals that are missed by 
the direct neighbors through intermediate nodes. As shown in Fig. 2A, a RWR transversal of 
ChemWeb improves the sensitivity and specificity of pair-wise chemical similarity search over 
a Daylight fingerprint similarity (http://www.daylight.com). When the Tanimoto Coefficient 
(TC) is 0.57 (approximately false positive ratio of 0.1), the Daylight fingerprint only identifies 
around 20% of all ligand pairs that bind to the same target. Using the same threshold to 
construct ChemWeb, the sensitivity of RWR is approximately 0.30, 50% more than that of the 
Daylight fingerprint. Thus the exploration of global community structures within the chemical 
similarity network allows us to detect novel protein-ligand interactions.  

2.3. Ligand Enrichment of Network Topological Similarity (ligENTS) considerably improves 
the performance of detecting novel drug-target associations 



Conventional ligand-based virtual screening focuses on ranking putative active compounds to 
a specific target. The issue that we need to address here is a reverse screening problem. Given a 
query chemical, how can we reliably rank all protein targets in a database by their likelihood to 
interact with the query chemical? To detect novel protein-chemical interactions, we developed a 
new algorithm, Ligand Enrichment of Network Topological Similarity (ligENTS). ligENTS 
combines RWR/ChemWeb with a ligand set enrichment framework. We compare the performance 
of ligENTS with three state-of-the-art algorithms: Similarity Ensemble Approach (SEA),16 
Heterogeneous Graph Based Inference (HGBI),15 and the target assignment based on the most 
similar chemical in a ligand set (MaxSim).33 SEA normalizes the sum of similarity scores between 
two sets of ligands known to bind to their targets, based on an empirical extreme value distribution 
model, and in an extensive benchmark study, SEA outperforms a state-of-the-art machine learning 
method.18 SEA is the most relevant comparison to ligENTS in terms of statistical models for 
evaluating the chemical-target association. MaxSim is found to be the best performing method for 
ligand-based virtual screening when multiple ligands are used as a profile.33 For comparison we 
modified the MaxSim algorithm to rank targets based on the maximum similarity score when 
comparing their ligands to the query. HGBI applies RWR on a heterogeneous drug-drug, drug-
target, and target-target network to infer drug-target interactions, and outperforms other network 
inference algorithms for drug-target prediction.15 As shown in Fig. 2B, HGBI is slightly better in 
the low false positive region than MaxSim. Consistent with a recent study in evaluating the 
performance of ligand profiles,33 MaxSim outperforms SEA when the false positive rate is less 
than 0.15. Although HGBI is one of the best performers of the three of existing methods, HGBI 
does not provide a statistical significance assessment for predicted interactions. 

  LigENTS outperforms the above three methods in identifying novel chemical-target 
relationships, as shown in Fig. 2B.  ligENTS identifies 200% and 50% of true positives more than 
that of HGBI at a false positive ratio of 0.01 and 0.05, respectively. The superior performance of 
ligENTS comes from its combination of the RWR search and global set statistics. The RWR 
captures the global structure of chemical space. However, conventional statistics models such as 
SEA fail when applied to global similarity problems. Global set statistics is more powerful than 
the fitted parametric statistical model. However, it is less useful when only the nearest neighbors 
are considered, as the scores of most ligands in the set are zeros, providing no information for the 
hypothesis testing. Enrichment of Network Topological Similarity (ENTS) by integrating RWR 
and global set statistics provides a general framework to enhance similarity search and association 
detection. Although this paper focuses on its application to chemical-target prediction, we have 
shown that ENTS improves the performance of protein fold recognition, RNA structure prediction, 
and disease gene identification. These results will be published elsewhere.  

2.4. Prediction of molecular targets of Malaria Box in the chemical genomics database 

       To demonstrate the application of ligENTS to drug repurposing, we first use it to identify 
molecular targets of drug-like compounds from the Malaria Box, which are annotated in ChEMBL. 



At a false discovery rate of 0.05, we associate 161 out of 200 drug-like active compounds from the 
Malaria Box with more than 577 proteins annotated in ChEMBL. The majority of these hits 
(~80%) are proteins from human and animal models. This reflects the screening and annotation 
bias in the chemical genomics databases. Nevertheless, enriched biological processes for these 
genes may provide valuable information on potential side effects (e.g., regulation of blood 
pressure, and muscle contraction) of these compounds, or their impact on pathogen-host 
interactions (e.g., response to molecule of bacterial origin), as shown in Table 1. 

Table 1.  Enriched biological processes of molecular targets of human and animal models 
for drug-like compounds from the Malaria Box. 

Biological process False Discovery Rate 

second-messenger-mediated signaling 1.171e-58 

positive regulation of lipase activity 3.028e-23 

calcium ion homeostasis 1.923e-22 

oxidoreductase activity 6.961e-17 

regulation of blood pressure 1.117e-15 

inflammatory response 1.593e-10 

phosphoric diester hydrolase activity 3.745e-10 

smooth muscle contraction 2.888e-07 

regulation of apoptosis 2.353e-05 

response to molecule of bacterial origin 3.870e-03 
 

 

2.5 Prediction of molecular targets of drug-like compounds in P. falciparum 

To identify the P. falciparum targets of drug-like compounds from the Malaria Box, we map 
the targets identified from the chemical genomics databases to the P. falciparum genome using 
both sequence similarity and ligand binding site similarity. Most of the mapped targets are 
essential genes in P. falciparum. Some of them (e.g., dihydroorotate dehydrogenase, beta-
hydroxyacyl-ACP dehydratase, cysteine protease falcipain-3, and type II DNA topoisomerase) are 
novel targets under investigation.35-38 When we rank the targets by the number of binding 
compounds, the top ranked targets include several proteins that bind to quinine, one of the most 
efficient drugs to treat malaria, providing support for our predictions. Other proteins include the 
JmjC domain containing protein, 3-oxoacyl-acyl-carrier protein reductase, and several putative 
transporters.  The JmjC domain containing protein is particularly interesting. Twelve compounds 
are predicted to interact with JmjC. JmjC plays a key role in chromatin remodeling and histone 
posttranslational modifications that is fundamentally important in the developmental program of P. 



falciparum.39 However, this protein has not been explored as a drug target. Because the human 
homolog of JmjC exists, the detailed analysis of the drug binding site features may provide critical 
information on developing selective anti-malaria chemotherapy targeting JmjC. This analysis is 
ongoing. 

2.6 Repurposing approved drugs to target P. falciparum 

We apply ligENTS to 1,484 approved small molecule drugs in DrugBank to identify their 
molecular targets in ChEMBL. If the target profile of a drug is similar to that of the active 
compounds from the Malaria Box, we hypothesize that the drug is active against malaria. We term 
this strategy Target Similarity Profiling (TSP). Based on TSP, Table 2 shows the top ranked drugs 
that have the potential to treat malaria. The top hit sirolimus is a macrolide compound, targeting 
the FK506 binding protein. It has been used as an anti-fungal and an anti-neoplastic agent. FK506 
binding protein in P. falciparum has been suggested as a novel target to fight malaria infection.40 
Several other drugs are predicted to target phosphodiesterase, dihydrofolate reductase, protease, 
carbonic anhydrase, somatostatin receptor, and ion channels. All these proteins are novel targets 
for anti-malaria therapeutics.41-46 Doxycycline is a known anti-malaria agent, providing putative 
validation to TSP predictions. Thus, TSP provides abundant testable hypotheses for anti-malaria 
drug repurposing.  

 
Table 2.  Top 10 ranked drugs by TSP and their predicted target by ligENTS 

Drug Target(s) Primary indication 

Sirolimus FK506 binding protein anti-fungal and anti-neoplastic 

Acitretin Lyase, Nitric oxide synthase, DNA 
methyltransferase, Collagenase 

treatment of psoriasis 

Roflumilast Phosphodiesterase (PDE) chronic obstrtuctive pulmonary 
disease 

Trimetrexate dihydrofolate reductase (DHFR) Antibiotics 

Metaxalone Protease muscle relaxant 

Piperazine Carbonic anhydrase Anthelmintic 

Doxycycline demethylase, hydrolase, dehydrogenase Anti-malaria 

Octreotide Somatostatin receptor treatment of acromegaly and 
reduction of side effects from 
cancer chemotherapy 

Benazepril Sodium channel subunit alpha, Voltage-dependent 
calcium channel subunit alpha 

Hypertension 

 

 



3.  Conclusion 

In this paper, we introduce a new chemical genomics algorithm, ligENTS, to map the chemical 
universe to its global pharmacological space, as well as an integrated chemical genomics and 
structural systems biology approach for anti-infectious drug repurposing. Although the detailed 
implementation of the algorithm needs to be improved, its prototype outperforms existing state-of-
the-art methods, and demonstrates the potential for use in anti-infectious drug repurposing. The 
further development of this new strategy may consolidate phenotype-, ligand-, and target-based 
drug discovery, thereby facilitating the transformation of the conventional drug discovery process 
to a new paradigm of systems pharmacology.   

4. Methods 

4.1. Benchmark 

We extract positive and negative cases from the bioactivity database ChEMBL32. To reduce 

the chance of including false positive hits, we only include those pairs with IC50<10.0 M as 
positive cases. The negative cases include those pairs in which no binding is detected. We define 
the benchmark using the intersection of ligand sets in the positive and negative cases. After 
removing the chemical redundancy (Tanimoto Coefficients (TC)  of 0.85, a common threshold in 
virtual screening), the final benchmark includes 390 chemicals, which involve 803 true and 1,336 
false chemical-target interactions, respectively. We evaluate the sensitivity and specificity of the 
ranked target for a benchmark chemical when querying ChemWeb in which all benchmark 
chemicals are excluded. 

4.2. Construction of similarity matrix of ChemWeb 

Using a Daylight fingerprint representation of each chemical and TC as a similarity measure, 
we connect 415,975 chemicals that have high confidence annotation to targets in ChEMBL into a 
pairwise chemical similarity network. We represent ChemWeb as a weighted graph, in which 
nodes are chemicals. An edge is formed between two chemicals if they share the same activity and 
their chemical similarity is above a certain threshold. With a TC larger than 0.57, a threshold used 
by SEA but not optimized for ligENTS, ChemWeb consists of more than 10 million edges. We 
represent the ChemWeb weighted graph as a similarity matrix W. 

4.3. Implementation of Random Walk with Restart (RWR) algorithm 

We modified the RankProp algorithm,47 a variant of RWR, and implemented it using a boost 
library (http://www.boost.org). The pseudo code of the algorithm is shown as follows. 

 

 



 
Input: A graph representation of ChemWeb, with i  = 1, …, N chemicals and their chemical similarity matrix  
W with the instance of ݓ; a diffusion vector A with the instance of  ai, and   a query chemical q. 

Initialization: pq(0) = 1; pi(0) = 0 
while t = 0, 1, 2, … do 

                    for i = 1 to N do 
                           pi(t+1) = wqi + ai∑ ሻݐሺݓ

ே
ୀଵ   

                       end for 
               until convergence t = T* 
              output:  a ranked list of pi(T*) 

        ai corresponds to the restart probability in the RWR and determines how far the query will 
propagate through ChemWeb. In this study, ai was set as a constant of 0.65. 

4.4. Implementation of set statistics 

Inspired by Gene Set Enrichment Analysis, we adapted the random set method48 to estimate 
the enrichment of a ligand set that is associated with a protein target. For the RWR output pi(T*), i  
= 1, …, N, an unnormalized score for a ligand set S consisting of m chemicals is calculated as the 
average of the RWR outputs of these chemicals    

 തܺ = 
∑ ೕೕ∈ೄ


 

To compare the enrichment in a ligand set S with that of all other (N, m) distinct randomly 
drawn ligand sets of size m, the ligand set S is now considered as a random collection of m ligands 
whose score pj are fixed. The exact distribution of തܺ is intractable, but can be approximated with 
the normal distribution with mean and variance as follows: 
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       The enrichment score is then normalized with    

ܼ ൌ 	
തିఓ

ఙ
 . 

       The false discovery rate (FDR) is estimated by fitting the enrichment score Z with the false 
positive ratio from the benchmark. 

4.5. Target identification of active compounds from the Malaria Box in the ChEMBL 
database and P. falciparum genomes 

       LigENTS was first used to identify potential molecular targets of active compounds from the 
Malaria Box found in the ChEMBL database. Because most of the targets in ChEMBL are from 



human or model organisms, SMAP49-51  and PSI-Blast52 are applied to map the targets identified 
by ligENTS, which are not from P. falciparum genome, to P. falciparum proteins.  

4.6. Functional Enrichment Analysis 

Functional Enrichment Analysis of human targets is carried out using the DAVID functional 
annotation tool (http://david.abcc.ncifcrf.gov/). The whole genome of Homo sapiens is used as 
background. 
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