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Repurposing an existing drug for an alternative use is not only a cost effective method of development, 

but also a faster process due to the drug’s previous clinical testing and established pharmokinetic 

profiles. A potentially rich resource for computational drug repositioning approaches is publically 

available high throughput screening data, available in databases such as PubChem Bioassay and 

ChemBank. We examine statistical and computational considerations for secondary analysis of publicly 

available high throughput screening (HTS) data with respect to metadata, data quality, and 

completeness.  We discuss developing methods and best practices that can help to ameliorate these 

issues.  

 

1.  Introduction 

Despite increasing investment in drug research and development in recent years, the pharmaceutical 

industry has seen limited results in the form of novel marketable drugs.
1
 Attention has recently turned 

to drug repositioning, or finding new uses for already developed drugs. Drug repurposing is 

particularly attractive due to its simplified timeline; while the traditional drug discovery process can 

take between ten and seventeen years to bring a drug to production, repurposing a drug can take as 

little as three to twelve years depending on the drug’s previously established chemical properties.
2
 In 

several cases, repurposing has provided enormous benefit to patients with previously limited 

treatment options, such as the repositioning of thalidomide to treat multiple myeloma, or 

bromocriptine for Type 2 diabetes. Other well-known repositioning successes include Wellbutrin as 

Zyban for a smoking cessation aid, Minoxidil for hair loss, and Viagra (sildenafil) for erectile 

dysfunction.
1–3

   

 

A potentially valuable resource for drug repositioning efforts is publically available high throughput 

screening (HTS) data.
4
 A primary strategy for drug discovery, the automated high throughput 

screening process allows for the activity of hundreds of thousands of chemical compounds to be tested 

simultaneously.
5
 Compounds are screened against a particular target compound, typically a receptor 

or enzyme implicated in a disease, and are declared active if their results differ from the majority of 

the test compounds. However, it is well known that there are several common sources of variation 

within high throughput screens, both technological, such as batch, plate, and positional (row or 

column) effects, and biological, such as the presence of non-selective binders, which can result in 

false positives and negative bioactivity results.
4–8

 These problems are can be resolved through pre-

processing, standardization and normalization methods, which include the z-score, percent inhibition, 

and median-based methods among others.
5,9,10
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Results from high throughput screening projects, primarily from academic institutions, are often made 

available through public databases such as NCBI PubChem Bioassay and ChemBank. 
4
 The PubChem 

Bioassay database contains the results of high throughput screens for the biological activities of 

molecules cross-listed in PubChem Substance and Compound.
11,12

 Each PubChem assay has a unique 

assay identifier (AID). Assay data sets usually contain compound information, accompanying readout 

(for example, recorded fluorescence emission), activity score, activity outcome, and the mean values 

of minimum and maximum control wells for each plate in the assay. Activity scores and outcome are 

defined in the assay description, which typically explains the threshold used  to declare a particular 

compound active.
12

 The actual raw HTS data is not included in PubChem, however, and therefore 

there is no information on batch, plate, or within-plate position for each screened compound.  

 

The Broad ChemBank database also contains the results of small molecule screens, as well as the raw 

datasets from screening centers. Each assay in ChemBank therefore contains not only compound 

information and accompanying readout, but also batch, plate, row, and column annotation for each 

screened compound. Additionally, each assay is conducted twice, so assay datasets contain replicate 

fluorescence readings.
13

  

 

Given the common sources of variation known to affect high throughput screening data, it is crucial 

that the quality of a particular bioassay is evaluated before its results are used in further research 

efforts. For instance, researchers interested in using bioactivity information from databases such as 

PubChem and ChemBank for computational repositioning methods must first be convinced of the 

reliability of the screens in these databases.
7
 Issues in assay quality can result in false positive or false 

negative bioactivity results, affecting which compounds are considered for potential repositioning.  

Here, datasets from both PubChem and ChemBank are evaluated to quantify the advantages and 

limitations of each repository as well as to investigate common sources of variation such as batch, 

plate, and positional effects. This analysis is representative of a typical investigation of HTS data that 

would be conducted before utilizing this data in further computational repurposing efforts. Overall, 

the problems encountered here illustrate some of the key barriers to effective secondary use of 

publically available high throughput screening data in order to realize the full potential of these 

datasets. 

 

2. Methods 

In this study, exploratory analysis was conducted on representative bioassay datasets from PubChem 

and ChemBank to examine data completeness, particularly in the context of data pre-processing and 

addressing technical sources of variation. Additional data was obtained directly from the original 

screeners of the highlighted PubChem study to complete the exploratory data analysis and allow for 

comparable assessments to the ChemBank study.  

 

 



 

 

2.1 PubChem Example 

The PubChem CDC25B (AID 368) dataset contains the results from approximately 65,222 

compounds and controls of a primary screen against the target CDC25B. CDC25 is a protein tyrosine 

phosphatase cell cycle regulator, and of three existing isoforms, two are oncogenic and have been 

found to be overexpressed in a variety of human tumors. The goal of this screen was to find potential 

inhibitors for the CDC25B isoform.
14

 The CDC25B dataset contained the following attributes: 

PubChem Substance ID, PubChem Compound ID, activity score, activity outcome, database URL, 

comment field, raw fluorescence intensity, calculated percent inhibition, mean of minimum control 

well signals (by plate), mean of maximum control well signals (by plate), calculated z-factor, and 

assay run date. Exploratory data analysis was conducted to evaluate the overall distribution of 

fluorescence intensity, percent inhibition, minimum control well means, maximum control well 

means, and calculated z’-factors. However, no further analysis could be performed for this dataset in 

the form available from the PubChem database, given the lack of plate level data such as batch 

number, plate number, and row and column information for each well. 

 

2.2 Full PubChem Example 

 The full CDC25B dataset, including plate-level annotation, was obtained directly from the PMLSC 

screening center and contained results from approximately 83,711 compounds and controls across 218 

384-well microtiter plates. In addition to PubChem Compound ID, raw fluorescence emission, 

calculated percent inhibition, mean minimum signal, mean maximum signal, calculated z-factor, and 

run date, this dataset also included assay batch, plate ID, row, column, well number, and well 

annotation. This information enabled further exploratory data analysis such as evaluation of 

fluorescence intensity distribution by well type and across plates and batches. Heatmaps were created 

for individual plates to check for positional effects. The mean signal to background ratio and percent 

coefficients of variation for the minimum and maximum control wells were also calculated. Based on 

the exploratory data analysis, percent inhibition was chosen as the most appropriate normalization 

method, which was also the method chosen by the original screeners when processing the dataset. 
5,14

  

 

2.3 ChemBank Example  

The ChemBank BRAF dataset contains the results from approximately 41,088 compounds and 

controls of a primary screen to find an inhibitor of the BRAF
V600E

 mutant. The BRAF gene plays an 

important role in the mitogen-activated signaling pathway and in particular, the BRAF
V600E

 mutation 

has been implicated in melanoma, papillary thyroid carcinoma, and colorectal cancer.
15

 The BRAF 

dataset is composed of seven different assays, each with two replicates. Given limited assay 

description and annotation provided, each of the seven assays was evaluated separately. First, 

correlation of raw fluorescence intensity between the two replicates was assessed for each of the 

seven assays, and if present, any outlying data points were investigated at the plate level. Next, 



 

 

 

exploratory data analysis was conducted for each assay to assess the overall distribution of 

fluorescence intensity, background-subtracted values, and calculated z-score. This analysis included 

histograms, boxplots, and quantile-quantile plots for individual replicates and statistical indices of the 

combined data, as appropriate.  

 

3. Results 

3.1 PubChem Example 

Overall, the distribution of fluorescence intensity across all compounds in the CDC25B dataset is 

strongly skewed right, while the distribution of percent inhibition across all compounds is strongly 

skewed to the left. The distribution for the range between the mean minimum and mean maximum 

control wells is slightly skewed bimodal (See Supplementary Material S1) The distribution of z’-

factors across all compounds is fairly skewed to the left and appears to be slightly bimodal. Boxplots 

of z’-factor by run date reveal strong variation by date (Figure 1).  

   

                              (A)                                                                                (B) 

Figure 1. Distribution of Z’-factors for PubChem CDC25B dataset. (A) Histogram depicting distribution of 

calculated z’-factors. (B) Boxplots by run date for calculated z’-factors.  

It is noted that the compounds run in March 2006 have much lower z’-factors than the remaining 

compounds, run in August and September 2006. Additionally, the compounds run on September 13th, 

2006 exhibit a much wider range of z’-factors than compounds run on any other dates, while 

compounds run on September 29
th
, 2006 exhibit a much narrower range. Given that the z’-factor is a 

commonly used measure of assay quality, plates with a such divergent z’-factors should be examined 

for possible errors and batch effects.  Here, however, further investigation into the sources of this 

variation could not be conducted due to the lack of plate level annotation available through the 



 

PubChem Bioassay database. If the metadata had been available, it would then be possible to attempt 

to correct for batch and technical sources of variation.  

Full PubChem CDC25B example 

 Histograms of fluorescence intensity by well type (compound, 50% inhibition, minimum, and 

maximum) for the full CDC25B dataset show that the distribution of fluorescence intensity across all 

wells is somewhat normal with a strong peak. The distributions of fluorescence intensities for 

compound wells and maximum control wells are slightly skewed right, while the distributions of 

fluorescence intensities for minimum and 50% inhibition control wells are more strongly skewed to 

the right (See Supplementary Material S2 Fig 1 and 2). Fluorescence intensity appears to vary widely 

by both batch and run date as well as by plate within respective batches (See Supplementary Material 

S2 Fig 3-8). No apparent positional effects were detected by visual examination of heatmaps for each 

of the 218 plates in the dataset.   

 

Following a recently proposed decision process for HTS data processing, percent inhibition was 

chosen as the most appropriate method of normalization, due to the fairly normal distribution of 

fluorescence intensity, lack of row and column biases, a mean signal to background ratio greater than 

3.5, and percent coefficients of variation for both the minimum and maximum controls wells less than 

20% 
5
 (See Supplementary Material S2 Table 1). This appeared to successfully normalize the data by 

batch, date, and across plates within each batch and reproduced the original analysis (See 

Supplementary Material S2 Fig 9-16). It is important to note that it would not be possible to 

successfully evaluate this data set with regard to pre-processing and normalization without the plate 

level annotation.  

 

3.2 ChemBank Example 

 

There was a large range with regard to correlation of fluorescence intensity between replicates: 0.436-

0.910 (Table 1).  Scatterplots further illustrate the high variability among some replicates (Figure 2). 

This allows easy identification of signal discrepancies. For example, the bottom of the scatterplot for 

assay 1110.0002, it is easy to detect a set of mock treatment wells (in red) where signal was present in 

replicate A, but not in replicate B. Similarly, the upper left-hand corner of the scatterplot for assay 

1110.0003 shows a replicate specific cluster of compound treatment wells. The outlying data points in 

assay 1110.0002 were found to be confined to one plate, 1110.0002.Base. The outlying data points in 

assay 1110.003 were similarly located on a single plate, 1110.0003.2340.  

Table 1. Correlation Coefficients for Fluorescence Intensity Replicate A vs Fluorescence Intensity 

Replicate B, by Assay, ChemBank BRAF dataset.  

Assay 

Number 

1110.0001 1110.0002 1110.0003 1110.0004 1110.0005 1110.0006 1110.0007 

Correlation 0.436 0.536 0.906 0.910 0.902 0.869 0.846 



 

 

 

Examination of the well-plate layout for 1110.0002 allowed identification of an obvious positional 

effect in the upper six rows of the plate (Figure 3). Similarly for 1110.0003, the corresponding well-

plate layout illustrated a clear positional effect along the bottom two rows of the plate.  

  

 



 

Figure 2. Scatterplots for Correlation of Fluorescence Intensity Between Replicates A and B. Correlation 

between replicates of Assay 1110.0001- 1110.0007. Blue indicates compound-treatment wells, red indicates 

control wells.    

 

Figure 3. Well Plate Layouts for Selected BRAF Assays. (Left) Replicate B of Base Plate for Assay 

1110.0003. (Right) Replicate A of Plate 2340 for Assay 1110.0003. Darker wells indicate decreased 

fluorescence. 

Overall, each of the seven assays in the BRAF dataset showed fairly different distributions for 

fluorescence intensity, background-subtracted values, and calculated z-scores (See Supplementary 

Material S3), further reiterating the role of exploratory data analysis to examine model assumptions 

prior to downstream analysis.   

 

Boxplots of the fluorescence intensity by plate were then examined. It was noted that the signal varies 

considerably across plates, both within and across each of the seven assays. (Replicate A shown in 

Figure 4). Beginning with assay 1110.0003 in replicate A, it is apparent that within each assay, 

fluorescence intensities steadily increase with each successive plate that is run before dropping down 

at the beginning of the next assay. In the absence of timestamps for each plate, it was assumed that 

increasing plate numbers indicate passage of time. However, without that appropriate metadata, it is 

not possible to determine the actual source of variation, again limiting the ability to correctly model 

batch or temporal effects.  

 



 

 

 

 

Figure 4. Raw Fluorescence Intensity by Plate, Across All Assays, Replicate A, ChemBank BRAF dataset. 

Each boxplot depicts the fluorescence values of the wells of one plate. Colors indicate assay “Name”, which 

may or may not be synonymous with batch.   

 

4. Discussion 

Both repositories examined provide excellent opportunities for secondary analysis of public HTS data. 

However, we have noted several issues that need to be addressed in order to realize their full potential.  

Most notably, the lack of actual raw data, and therefore plate level annotation for bioassays in 

PubChem BioAssay prevents rigorous analysis of data quality. As illustrated above, initial exploratory 

analysis of the limited CDC25B dataset (as obtained from PubChem) reveals potential quality issues, 

such as variation by run date. These issues cannot be fully investigated, however, without knowledge 

of batch and plate numbers and row and column positioning for each tested compound. The complete 

CDC25B dataset, obtained directly from the screeners, allowed for more in-depth investigation of 

sources of variation, which in turn allowed for more appropriate pre-processing and normalization 

recommendations to be made. It would not have been possible to evaluate the dataset solely from the 

data and annotation made available through the PubChem database. 

 

Another issue for researchers seeking to extract assay information from PubChem is the lack of 

description for the particular readouts used in assays. While the PubChem assay discussed in this 

paper provided a full description of the fluorescence emission readout, many assays do not necessarily 

include this level of information.  It is also important to note that the issues discussed here are likely 



 

extensible to other databases, such as ChEMBL, which contain bioactivity information from selected 

PubChem Bioassays.
16

 

 

 

The ChemBank database is currently the only publically available bioassay database that requires the 

inclusion of plate level annotation in their datasets. While this information is crucial for secondary 

analysis, the value of the datasets in ChemBank is negatively impacted by the lack of assay annotation 

and description. For instance, the BRAF dataset was composed of seven different assays, but it was 

unclear how these differed from one another, if at all. From the assay descriptions, it appeared that 

only the first assay differs in its biological components, but there was no additional information as to 

why the remaining six assays were conducted separately.  Additionally, while we might expect strong 

correlation between replicates for each assay, several assays exhibited exceptionally poor correlation, 

which casts doubt on the overall quality of the screening data. Furthermore, the lack of date or 

timestamps for the ChemBank data makes it impossible to confirm temporal batch effects, limiting 

one to data visualization by plate, with an assumption that plate order corresponds with time, as done 

in Figure 4.  

 

Correspondence with PubChem confirmed that PubChem Bioassay does not require plate level 

annotation in uploaded datasets to the BioAssay database. It is also noted that there is no way to query 

for which, if any, datasets include this level of annotation (Personal communication with PubChem). 

ChemBank also confirmed that the “AssayName” field is used by depositors in different ways: it can 

be used for biologically different assays or batches of similar assays. Currently, there is no method of 

querying for datasets to identify those for which particular descriptive information/metadata are 

included (Personal Communication with ChemBank). These issues affect not only the general 

usability of the databases, but in particular hinder a larger-scale systematic quality analysis of HTS 

assays. The analysis presented here was restricted to one assay from each database primarily due to 

difficulties in accessibility and poor annotation.  

 

Issues such as these in turn stymie the usage of high throughput screening data in further research 

efforts such as computational repositioning efforts requiring bioactivity information. There is the 

potential for improved data standards and development of best practices for data dissemination to 

improve the quality and reusability of the data in these repositories. At a minimum, the inclusion of 

metadata such as plate and well-level annotation will enable a more thorough secondary analysis of 

HTS data. Additional oversight to ensure descriptor fields for assays are completed may also 

encourage assay re-use. With respect to cost-benefit analysis, the potential for re-use of the data via 

secondary analysis far outweighs any costs due to additional data standards or metadata requirements, 

as the metadata has already been generated. Further impact in time/resources for depositing additional 

metadata can easily be mitigated by automation. One example of methods to facilitate the reporting of 

this metadata is a recently proposed method to first extract workflows directly from screening data in 

PubChem and then use the workflows to organize data within screening projects. 
17

  

 



 

 

 

Addressing these issues in the research community and in the requirements for submission to these 

repositories could improve the re-use of these data sets.  A PubMed search for “PubChem” results in 

only 263 articles, and the more specific “PubChem BioAssay” pulls up only 51 articles. Querying for 

“ChemBank” returns even fewer articles, with only 17 results.  For perspective, searching “GEO” 

brings up approximately 8480 results for Gene Expression Omnibus. While both PubChem BioAssay 

and ChemBank are fairly young databases and more expansive mining efforts using their datasets may 

still be yet to come, the annotation and data quality issues in both databases cannot be ignored as a 

potential barrier to dissemination. Expanded datasets as well as more rigorous quality standards are 

necessary to ensure the public data is truly accessible and re-usable.
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