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The precise molecular etiology of obstructive sleep apnea (OSA) is unknown; however recent research 

indicates that several interconnected aberrant pathways and molecular abnormalities are contributors to 

OSA. Identifying the genes and pathways associated with OSA can help to expand our understanding of the 

risk factors for the disease as well as provide new avenues for potential treatment. Towards these goals, we 

have integrated relevant high dimensional data from various sources, such as genome-wide expression data 

(microarray), protein-protein interaction (PPI) data and results from genome-wide association studies 

(GWAS) in order to define sub-network elements that connect some of the known pathways related to the 

disease as well as define novel regulatory modules related to OSA. Two distinct approaches are applied to 

identify sub-networks significantly associated with OSA. In the first case we used a biased approach based 

on sixty genes/proteins with known associations with sleep disorders and/or metabolic disease to seed a 

search using commercial software to discover networks associated with disease followed by information 

theoretic (mutual information) scoring of the sub-networks. In the second case we used an unbiased 



approach and generated an interactome constructed from publicly available gene expression profiles and 

PPI databases, followed by scoring of the network with p-values from GWAS data derived from OSA 

patients to uncover sub-networks significant for the disease phenotype. A comparison of the approaches 

reveals a number of proteins that have been previously known to be associated with OSA or sleep. In 

addition, our results indicate a novel association of Phosphoinositide 3-kinase, the STAT family of proteins 

and its related pathways with OSA. 

1.  Introduction 

Although its precise functions are not entirely known, sleep is important for numerous 

physiological and cognitive functions. Sleep disorders can have a range of consequences, from 

minor to severe, such as untimely drowsiness, motor vehicle collisions, and workplace accidents 

as well as increase risk of hypertension, diabetes and mortality. Of the more than 70 known sleep 

disorders, obstructive sleep apnea (OSA) is one of the most common
1,2

. OSA is a complex 

disorder caused by a repetitive collapse of the upper airway during sleep, disrupting breathing 

and sleep. Repetitive episodes of obstruction cause intermittent drops in blood oxygen and 

increases in carbon dioxide levels, which can lead to frequent arousals from sleep. OSA is a 

major cause of chronic sleep deprivation and excessive daytime sleepiness. It is estimated that up 

to 5% of adults in Western countries are likely to
 
have OSA syndrome

3
. Treatments for OSA 

include behavioral therapies (such as changing sleeping positions), use of mechanical devices, 

and surgery to increase the patency of the airway. However, after decades of research the 

molecular mechanisms underlying OSA remain unclear.  

OSA is unlikely to be a simple condition associated with a few genes or proteins; instead, it 

is likely a manifestation of multiple interconnected aberrant pathways and numerous molecular 

abnormalities
4
. In addition, it is a risk factor for many other diseases and many other diseases 

increase the risk of OSA. For example, OSA is associated with inflammatory states
5-8

 and 

oxidative stress
9,10

. While obesity is one of the strongest risk factors for OSA
11

, other co-

morbidities include insulin resistance, hypertension, and cardiovascular disease
12-14

. 

Multiple studies indicate an important genetic basis for OSA, and genetic factors alone can 

explain approximately 30-40% of the variance of the apnea hypopnea index (AHI), a quantitative 

measure of OSA, defined by the number of apneas and hypopneas per hour of sleep
15,16

. OSA is 

also mediated by environmental factors, most obviously through those that link it to related traits 

such as obesity
17

, but which may include influences associated with irritant exposures, alcohol 

use and sleep deprivation. Efforts to identify genetic variants related to OSA, include family as 

well as genome-wide, case-control studies and are an important attempt to provide diagnostic 

and/or prognostic information related to the disease. In linkage analysis of families with an 

affected OSA member, Larkin et al. have identified several chromosomal regions linked to the 

AHI
18

.  Some, but not all, of the genetic pathways were believed to be obesity dependent
18

. In 

another study, based on a pre-selected gene set and SNP data, the same group found five genes 

significantly associated with OSA and the AHI
19

. Many additional genes in these and related 

genome-scale studies are likely relevant to mediating disease, but due to the multiple hypotheses 

testing problem when thousands of genes are analyzed, only a few genes with very significant p-

values are allowed to pass the relevant filters for significance. The problem of identifying as 

many biologically significant genes as possible in such an analysis remains very important.  



Network modeling of protein-protein interactions provides a relatively new context to study 

disease and identify disease-related genes. The effectiveness of network-based approaches to the 

identification of multiple disease markers has been demonstrated in the context of various 

diseases, such as colon cancer
20

. The aim of this study is to uncover protein-protein sub-networks 

associated with OSA by integrating data from multiple high-dimensional studies, both to 

demonstrate the power of systems biology data integration in developing novel mediators of 

OSA and to use the novel data available in the field to explore and validate new computational 

approaches. To achieve these goals, we applied two approaches, 1: candidate gene approach 

integrated with adipose tissue microarray data; 2: genome-wide approach integrated with adipose 

microarray data. The first approach is based on the method proposed by Nibbe et al.
20

: we use 56 

seed proteins to drive a search of a protein-protein interaction (PPI) to discover rank-ordered 

sub-networks associated with OSA. In this method, proteins known or suspected to be associated 

with OSA and related co-morbidities are used to seed a search of a well-annotated, human PPI 

for candidate sub-networks, which are subsequently scored with gene expression data to derive 

candidate sub-networks underlying the disease phenotype. We demonstrate the utility of this 

approach, using a biased seed set, to provide interesting candidate sub-networks for further 

exploration in the etiology of OSA. 

In a second unbiased approach, we mapped p-values obtained from a case-control GWAS 

study based on OSA phenotypes to nodes of an adipose tissue-specific interactome constructed 

from gene expression data
21-23

. Subsequently, we used Cytoscape based tools to identify sub-

networks significantly associated with OSA. A novel feature of the study is that nodes that were 

highly significant along with nodes that were not the most significant in the GWAS analysis both 

provided important contributions to discovering the sub-networks that are of potential biological 

significance for the phenotype. This indicates an approach for extending the value of GWAS 

data to other complex phenotypes. By incorporating data from both approaches, sub-networks 

were identified that included targets known to be associated with OSA or sleep in general and 

also indicated that PI3K, STAT family, and related pathways may have important functional 

roles in OSA. 

2. Material and Methods 

2.1 Network construction 

Two methods to construct PPI networks were used in this study. First, 56 seed genes/proteins 

were selected based on knowledge of the underlying biology and prior genetics studies of OSA
19

. 

The list of genes is provided as supplementary material (Supplementary Table 1), and can be 

reached at website (http://proteomics.case.edu/news_events.aspx?newsid=38).  Most of the genes 

are known to be in one or more pathways representing intermediate phenotypes for OSA: 

craniofacial morphology, obesity, inflammation, and ventilatory control pathways, or across 

multiple pathways, through biologic pleiotropy. A traditional association study has been 

conducted on this set of proteins and has been recently published
19

. Ingenuity Pathway Analysis 

(IPA) software (Ingenuity® Systems, www.ingenuity.com) was used to construct networks by 

the following steps
24

:a) seed proteins are combined into networks that maximize their specific 

connectivity, which is their interconnectedness with each other relative to all molecules they are 



connected to in the Ingenuity Knowledge Base; b) additional proteins from the Ingenuity 

Knowledge Base are added to specifically connect two or more smaller networks by merging 

them into a larger one. The networks were limited to 70 nodes each to permit ease of 

computational scoring of sub-networks using mutual information (see below). The overall 

network score is based on the number of seed proteins they contain. The two top scoring 

networks were used in the analysis (See Results and Discussion). Note that IPA will cluster a 

protein complex or protein family into a single node if a number of components or family 

members are present in the network. For scoring purposes (see below), the expression value of 

the family or complex is represented by the maximum expression value among its components. 

Second, an interactome specific to adipose tissue, which has been previously constructed by 

combining gene expression data from adipose tissues and PPI information from public databases 

and published papers
22,23,25,26

, was optimized following curation with recent next-generation 

sequencing data
23

. Briefly, mRNA expression levels from Su et al
25,26

 and Wang et al
23

, which 

are used to determine the significance of a gene to the network, were estimated by combining 

results from microarray (chip based) experiments along with next generation sequencing results 

from selected references
23,25,26

. Protein nodes with mRNA levels below a defined threshold were 

considered as absent (the threshold for data from next generation sequencing is 20 reads; in the 

case of data from microarray experiments, the threshold for normalized expression level is 

200
25,26

). Interactions between two proteins supported by at least three databases and two 

experiments were added to the interactome
22

. The adipose specific interactome in SIF format is 

provided as supplementary data (Supplementary Table 2, http://proteomics.case.edu/ 

news_events.aspx?newsid=38). Network-Analyzer is used to compute the network properties, 

such as the average shortest path length and the node degree distribution
27

. 

2.2 Gene expression data processing 

Experimentally derived mRNA expression data for subcutaneous and visceral fat tissues were 

measured by cDNA microarray using the Affymetrix Human Gene 1.0 ST Array on intra-

operative samples from 10 OSA patients and 8 controls undergoing elective ventral hernia repair 

surgery. Adipose tissue was chosen for expression studies since it is accessible and because of 

the central role of obesity in the pathogenesis of OSA.  The information about these samples, 

such as sample IDs, AHIs, are provided as supplementary data (Supplementary Table 3, 

http://proteomics.case.edu/news_events.aspx?newsid=38). Expression values were generated 

using the aroma package from bioconductor
28

. Robust multichip average (RMA) and quantile 

normalization methods were used for background correction and normalization. In an initial 

analysis, two subcutaneous and three visceral samples (i.e., five out of 36 samples) had much 

larger variances than other samples (GEGF ID 14, 15, 16, 21, 22, all of them are control samples, 

see Supplementary Table 3, http://proteomics.case.edu/news_events. aspx?newsid=38), these 

were treated as outliers, and removed.  

2.3 Subnetwork scoring and detecting using mutual information (MI) 

Once a network enriched in seed proteins is constructed, we identify dysregulated sub-networks 

within this network using mRNA expression data. The aim of this procedure is to find sets of 



genes that exhibit coordinate differential expression, in that they can discriminate case and 

control samples when their expression profiles are considered together. For this purpose, we use 

an information-theoretic measure of coordinate dysregulation that was developed by Chuang et 

al.
29

 and was previously used to detect dysregulated subnetworks in breast cancer metastasis
29

 

and late stage colorectal cancer
20

.  This measure of sub-network dysregulation is powerful in that 

it provides a multivariate assessment of the coordination between multiple genes in their 

differential expression.  

Namely, for a given set of proteins S={g1,  g2, …, gk}, let ei denote the mRNA expression 

level of gi ϵ S. Then the subnetwork activity of S is defined as 𝑒𝑆 =  𝑒𝑖/ 𝑘
𝑘
𝑖=1 , that is the 

aggregate mRNA-level expression of the proteins in the sub-network. Subsequently, mutual 

information is used to measure the dependence of two discrete random variables: in this case the 

health status vs. subnetwork activity of S. Denoting health status vector as c (i.e., c(j) denotes the 

health status of the j
th

 sample) and quantized subnetwork activity of S as 𝑒 𝑆, (i.e.,  𝑒 𝑆(𝑗) denotes 

the aggregate expression of the gene products in S in the j
th

 sample), the dysregulation of S is 

defined as I(c,𝑒 𝑆)=H(c)-H(𝑐|𝑒 𝑆).  Here, H(c) denotes the Shannon entropy of random variable c 

(that is the uncertainty on the health status of a sample) and H(𝑐|𝑒 𝑆) denotes the entropy of 

random variable c after the observation of random variable 𝑒 𝑆 (that is the uncertainty on the 

health status of a sample given the subnetwork activity of S in that sample). Consequently, the 

mutual information (MI) I(c,𝑒 𝑆) is a measure of the expression levels of all genes in the 

subnetwork in discriminating OSA patients from control. To this end, a high MI score 

for a sub-network is an indicator of the coordinate mRNA-level dysregulation of the proteins in 

the subnetwork, i.e., although the gene coding for each protein in the sub-network may not be 

significantly differential expressed in OSA, the total mRNA-level expression of these proteins 

exhibits significant difference between OSA patients and control. This information theoretic 

formulation of coordinate dysregulation has been shown to be effective in identification of 

subnetwork markers that were powerful in prediction of breast and colon cancer metastasis 
29, 51

. 

While Chuang et al. originally used a greedy algorithm to identify subnetworks with high MI 
29

, we exhaustively searched for subnetworks of the IPA network to identify sets of genes with 

high MI. This is because the network obtained from IPA analysis is already filtered to obtain a 

concise network of proteins that are functionally associated with proteins that are already known 

to play a role in sleep apnea. Consequently, an exhaustive search for reasonably sized 

subnetworks (we search for subnetworks composed of up to 6 proteins in this study) is feasible 

on this network, which is guaranteed to find all subnetworks with a maximum MI, as opposed to 

a greedy algorithm
20

.  

2.4 Analyzing adipocyte interactome using SNP association scores from GWAS 

The Candidate Gene Association Resource (CARe) project initiated by the National Heart, Lung, 

and Blood Institute, conducted analyses of genetic variation in cardiovascular, pulmonary, 

hematological, and sleep-related traits in nine community-based cohorts
21

. Polysomnography 

data, providing objective measurements of OSA, were only available for a subset of these 

cohorts, and of these, a genome-wide assay (Affymetrix 6.0) was only performed in the African 

American participants (n=647)  in the Cleveland Family Study, which provided p-values for the 

associations between 867,496 SNPs with OSA (defined as an AHI > 15 for identifying cases).  



We then map these p-values to proteins/nodes in the adipose tissue-specific interactome map 

as follows. For each protein gi in the network, the most significant p-value that is associated with 

a SNP located in the coding region of gi is designated as the p-value of the association of gi with 

OSA. In other words, letting p(s) denote the p-value of the association of SNP s with OSA, we 

define 𝑝𝑖 = min𝑠∈𝑅𝑖 𝑝(𝑠) where Ri denotes the set of SNPs that reside within the coding region 

of gi.
30,31

. Subsequently, we apply a Cytoscape tool, jactivemodule, to extract sub-networks of the 

adipose tissue-specific interactome map that are enriched in proteins with high total significance 

of association with OSA
31

.  

jactivemodule is a subnetwork search algorithm that was originally developed  to identify 

active subnetworks in a network of interactions, where an active subnetwork refers to a 

connected subgraph of the interactome that has high total significance of differential mRNA-

level expression with respect to a particular perturbation
32

. It takes as input p-values associated 

with each protein in the network, converts these p-values to z-scores (so that a higher z-score 

indicates more significant differential expression), and greedily identifies subnetworks with high 

aggregate z-score. More precisely, the score of a subnetwork S={g1, g2, …, gk} is defined as  

𝐴(𝑆) =  𝑧𝑖/ 𝑘
𝑘
𝑖=1 , where zi denotes the z-score corresponding to p-value pi.  

Although this method was originally developed to identify differentially expressed 

subnetworks, it can as well be used to identify disease-associated subnetworks since the p-values 

of differential expression can be replaced by p-values of association with the disease. Motivated 

by this insight, we use this algorithm to identify subnetworks that are implicated in OSA by 

GWAS. Observe also that, a high-scoring sub-network is not necessarily one that is enriched in 

proteins with very significant p-values, but it can also be comprised of many proteins with 

moderately significant p-values. Consequently, this method has the potential of uncovering 

groups of proteins that exhibit seemingly insignificant association with OSA when considered 

individually, but exhibit strong association when considered together. Since such subnetworks 

are connected by a network of interactions by the construction of the algorithm, they are likely to 

be functionally associated and therefore might be underlying a potential genetic interaction that 

underlies the manifestation of  the disease. The details of procedure can be found at the 

documentation of cytoscape (www.cytoscape.org) and in the literature
33

.  

Finally, MCODE and BiNGO were applied to analyze the sub-networks detected, e.g., 

detecting the functional modules and identifying the enrichment of GO category
34,35

. 

3. Results and Discussion 

3.1 Generating and analyzing networks from seed genes/proteins 

We used IPA to generate networks using the 56 seed proteins related to sleep disorders. The top 

two scoring networks were used for further analysis. Among 70 proteins in each network, 

network 1 (Left figure in Figure 1) contains 32 seed proteins. The enriched functions for this 

network as identified by IPA include neurological disease, organismal injury and abnormalities, 

and genetic disorders. Network 2 (Right figure of Fig. 1) includes 16 seeds, and the associated 

functions are genetic disorder, neurological disease, and respiratory disease.  

A quantitative method to detect and score sub-networks within the networks was applied to 

identify sub-networks that are highly discriminative for the OSA phenotype based on 

transcriptional dysregulation using mRNA expression data from subcutaneous and visceral fat 



tissues
20

. To limit the computational overhead of the calculation while using exhaustive search, 

we constrained the search where sub-networks were limited to six nodes. This analysis of 

network 1 provided 108 sub-networks of 6 nodes using expression data from subcutaneous fat 

tissue, and 97 sub-networks of 6 nodes from visceral tissue that had the maximum possible 

values of MI. In case of network 2, 9 sub-networks are detected for subcutaneous tissue, and 8 

for visceral tissue. Further analyses focus on these sub-networks. 

 

       
Network 1                                                                                       Network 2 

Fig. 1 Networks generated using IPA with highest score (proteins name in blue indicates seed proteins), 

subnetworks with 6 nodes are identified by MI scores for subcutaneous and visceral fat tissues. Larger and high 

resolution picture can be found at http://proteomics.case.edu/news_events. aspx?newsid=38 

 

In order to analyze the sub-networks, we calculated the frequency of occurrence of proteins in 

these sub-networks. We assume that the proteins that appear most frequently will likely be 

significant in terms of defining differences between the OSA phenotype and control. To reduce 

the incidence of false positives, we focused on the proteins that are in the top 6 in frequency for 

both tissues, which are listed in Table 1. 

Table 1a Protein detected in subnetworks from network 1(Figure 1) and its frequency in the exhaustive search 

Protein 

(subcutaneous fat) 

Frequency Probability in 

detected subnetwork* 

Protein 

(visceral fat) 

Frequency Probability in 

detected subnetwork* 

PDGF BB 55 50.9% ERK 53 54.6% 

EDN1 43 39.8% EDN1 34 35.0% 

IL1 43 39.8% STAT 31 31.9% 

PI3K 38 35.1% PI3K 26 26.8% 

RET 27 25.0% LEP 26 26.8% 

ADCY 25 23.1% LEPR 24 24.7% 

Table 1b Protein detected in subnetworks from network 2 (Figure 1) and its frequency in the exhaustive search 

Protein 

(subcutaneous fat) 

Frequency Probability in 

detected subnetwork* 

Protein 

(visceral fat) 

Frequency Probability in 

detected subnetwork* 

P38 MAPK 5 55.6% BDNF 4 50.0% 

RGS4 4 44.4% P38 MAPK 4 50.0% 

FSH 4 44.4% NOS3 3 37.5% 

BDNF 4 44.4% FSH 3 37.5% 

IL1 3 33.3% Nos 3 37.5% 

ALP 3 33.3% IgG 3 37.5% 

    *  Calculated by Frequency/(total number of sub-networks with maximum MI) 



Notably, 14 out of 24 proteins in table 1 are not seed proteins, and potentially indicate novel 

findings discovered by our approach. A number of proteins listed in table 1 are associated with 

OSA or other sleep phenotypes based on previous studies. For example, Endothelin 1 (EDN1), a 

potent vasoconstrictor implicated in hypertension, is both a seed protein and is ranked as second 

most frequent node for both tissues in the network 1 analysis (Table 1). Studies using knockout 

mice show that EDN1 is associated with respiratory distress
36

, and more recently, association 

studies suggests that a missense coding SNP in EDN1 is linked with OSA in a European 

American sample
19

. The phosphorylation of ERK (Extracellular Signal-Regulated Kinase), the 

most frequently identified protein in visceral fat from network 1, is correlated with sleep patterns 

in flies
37

. PDGF BB (subunit of platelet-derived growth factor) the most frequently identified 

protein in subcutaneous fat from network 1, is a growth factor that regulates cell growth and 

division. There is evidence for the role of PDGF BB in disordered breathing from the responses 

of rats to hypoxia
38-40

. Follicle-stimulating hormone (FSH), seen in both fat analyses of network 

2, is a hormone found in humans and other animals. Recent studies show that the concentration 

of FSH has a significant correlation with the obstructive apnea index in cerebrospinal fluid.
41

 

Aside from many proteins that are directly related to OSA or sleep, the sub-networks also 

contain proteins that are known to be involved in processes related to sleep, but have not been 

reported to have specific associations with OSA. P38 MAPK (a frequently observed sub-network 

member from the analysis of network 2) is a member of the mitogen-activated protein kinases 

(MAPK) that play crucial roles in signaling the inflammatory response and are involved in 

pathways that respond to oxidative stress
42,43

. As indicated above, both processes are known to 

be related to OSA
4
. Another protein, Phosphatidylinositol 3-kinases (PI3K) is ranked in the top 

four in both tissues (Table 1, network 1). PI3Ks are a group of lipid kinases that catalyze the 

phosphorylation of phosphatidylinositols and phosphoinositides. They are composed of one 85 

kDa regulatory subunit and one 110 kDa catalytic subunit. PIK3R genes (such as PIK3R1, 

PIK3R2, PIK3R3, PIK3R5, etc), encode the p85 regulatory subunit, while PIK3C genes (such as 

PIK3C3, PIK3CA, PIK3CB, PIK3CD, etc), code for the p110 catalytic subunit. It has been 

reported that PI3K is associated with fatty acid-induced insulin resistance
44

, and although OSA 

and insulin resistance may be causally related, the exact mechanism linking them has not been 

fully elucidated 
4
. Another top gene, STAT, encodes a family of transcription factors. In response 

to cytokines and growth factors, STAT family members are phosphorylated by the receptor 

associated kinases, and then translocated to the cell nucleus where they act as transcription 

activators. In a recent report, STAT4 was found to be involved in metabolic processes, especially 

in insulin resistance and inflammation in adipose tissue.
45

 

3.2 Analyzing interactome in adipose 

An interactome relevant to adipose tissue was generated from a combination of public interaction 

databases and gene expression profiles and contains 2909 proteins and 8323 interactions 

(Supplementary Table 2). Analyses of the topological parameters of the network show that it 

possesses typical properties of realistic networks,
46,47

 such as small-world properties (the average 

shortest path length is 4.5). The node degree distribution fits a power law distribution. 

We searched this interactome for OSA related sub-networks by mapping p-values from the 

GWAS study to proteins of the interactome 
21

. Then, cytoscape and its plugin jactivemodule are 

applied to detect sub-networks that are significant. The jactivemodule combines the network 

structure and associated p-value of each protein to extract potential meaningful sub-networks. A 

subnetwork with 203 proteins and 324 interactions is identified with a significant score (7.09, 



Figure 2, subnetworks with score > 3.0 are considered as significant
32

). Similar to the whole 

interactome, this sub-network shows some typical properties, such as small-world and power-law 

distribution of node degree. Note that many of the nodes have modest p-values (low z-scores), 

and would not be seen as significant in a conventional GWAS analysis. For example, the p-value 

of hepatocyte growth factor-regulated tyrosine kinase substrate (HGS) is 0.62, but its interacting 

partners (neurofibromin 2 (NF2), signal transducing adaptor molecule (STAM and, STAM2)) 

have p-value less than 0.006, thus, it is included in the subnetwork. Other similar examples are 

minichromosome maintenance complex component 7 (MCM7, p-value: 0.97) and SHC (Src 

homology 2 domain containing) transforming protein 1 (SHC1, p-value: 0.35). 

Another cytoscape plugin MCODE was applied to explore the protein complexes or other 

modules present in the sub-network identified by jactivemodule. MCODE detects densely 

connected regions in a network that may represent functional modules. It is based on vertex 

weighting by local neighborhood density and outward traversal from a locally dense seed protein 

to isolate the dense regions. The top two clusters identified by MCODE are listed in Figure 3. 

The cluster with best score has ten proteins that are densely connected. Nine out of ten 

components are proteasome subunits. The proteasome is a large, multimeric protein complex 

with regulatory and catalytic functions. It is responsible for degrading damaged, misfolded, 

nonfunctional and potentially toxic proteins. Notably, it has been reported that the proteasome 

pathway and proteasomal activity are associated with OSA and hypoxia, a central feature of 

OSA 
48,49

. 

 

Figure 2 Network identified by jactivemodule using p-values from GWAS study, color represents the p-values and 

nodes with grey color indicate that the p-values are missing from GWAS. High resolution picture with the node 

lable can be found at http://proteomics.case.edu/news_events. aspx?newsid=38 



 

To determine which Gene Ontology (GO) functional categories are statistically 

overrepresented in the sub-network, we further applied the BiNGO program to the sub-network 

of Figure 2. The detected functions include axon extension, spliceosome assembly, protein 

catabolic process, insulin receptor signaling pathway, and negative regulation of tyrosine 

phosphorylation of STAT3 proteins. Recent studies suggest that STAT3 tyrosine 

phosphorylation is critical for interleukin protein production in the inflammatory response 
45

. 

Also, STAT family members are implicated in several processes relevant to tumor growth, 

providing an additional link aside from PI3K between OSA and cancer. 

As there is an association between OSA and diabetes
50

, the functional enrichment for the 

insulin receptor-signaling pathway deserves closer investigation. Three proteins in the sub-

network are responsible for the enrichment of this function: PIK3R1, IRS2, and IGF1R. PIK3R1 

(phosphoinositide-3-kinase, regulatory subunit 1) phosphorylates the inositol ring of 

phosphatidylinositol at the 3-prime position and plays an important role in the metabolic actions 

of insulin; IRS2 (insulin receptor substrate 2) mediates effects of insulin by acting as a molecular 

adaptor between diverse receptor tyrosine kinases and downstream effectors; IGF1R (insulin-like 

growth factor 1 receptor) binds insulin-like growth factor with a high affinity and modulates 

insulin’s actions.. Notably, these three proteins plus YWHAG (tyrosine 3-

monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide) densely 

connect, forming a cluster in the subnetwork that is also detected by MCODE (Figure 3).  

 
Figure 3 Densely connected subnetworks identified using MCODE, those represent 

potentially functional module or protein complex 

3.3 Comparison and limitation of approaches 

In this study, we took two systems biology approaches to detect subnetworks which are likely 

associated with OSA. Because of the nature of two approaches (the first one is biased and based 

on prior knowledge of OSA; the second one is unbiased), it is hard to compare them, and it is not 

surprising that the results are different. These two approaches use SNP data from GWAS and 

gene expression data from microarray experiments respectively, and treat them independently. 

Also the data are from two different sources (SNP data derived from CARe project
21

, and gene 

expression data from other sources (Patel, S, et al, unpublished data).  

One limitation of our approach is that the method for detection of subnetworks using MI is 

computationally extensive, and can only be applied on small networks. Further efforts are 

necessary to improve its efficacy. Another limitation is the method to derive the significance 

level of proteins based on the SNP data. Usually, there are multiple SNPs located within the 

regions for each gene. Although several methods have been proposed to condense this 



informaiton
30,31,52

, we applied the simple and most commonly used one: consider the most 

significant p-value among SNPs as p-value of proteins as other methods may provide conflicting 

results. 

4. Conclusion 

Our integrated analysis of mRNA expression from adipose tissues, PPI networks, and SNP data 

from genome-wide association studies provides a novel approach for combining data from 

disparate sources to identify candidate pathways for potential validation studies. Some of the 

associations identified may reflect pathways that predispose to OSA, while others may indicate 

pathways that are perturbed by OSA-related stresses which contribute to co-morbidities such as 

diabetes. The results of this initial study suggest that the PI3K, the STAT protein family, and 

insulin signaling may be associated with OSA. Further investigation is needed to elucidate the 

exact role of these genes and their gene products in OSA. In addition, our approach outlines a 

novel application of SNP data in sub-network discovery relevant to disease that is consistent with 

other well-accepted methodologies. Thus, we suggest this approach could be generally applied to 

the analysis of GWAS data that is available for over 100 other diseases. 
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