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We investigate a novel approach for studying protein folding that has evolved
from robotics motion planning techniques called probabilistic roadmap methods
(PRMs). Our focus is to study issues related to the folding process, such as the
formation of secondary and tertiary structure, assuming we know the native fold.
A feature of our PRM-based framework is that the large sets of folding pathways
in the roadmaps it produces, in a few hours on a desktop PC, provide global
information about the protein’s energy landscape. This is an advantage over other
simulation methods such as molecular dynamics or Monte Carlo methods which
require more computation and produce only a single trajectory in each run. In
our initial studies, we obtained encouraging results for several small proteins. In
this paper, we investigate more sophisticated techniques for analyzing the folding
pathways in our roadmaps. In addition to more formally revalidating our previous
results, we present a case study showing our technique captures known folding
differences between the structurally similar proteins G and L.

1 Introduction

There are large and ongoing research efforts whose goal is to determine the
native structure of a protein from its amino acid sequence!? A protein’s 3D
structure is important because it affects the protein’s function. In this work, we
assume the native structure is known, and our focus is on the study of protein
folding mechanisms. That is, instead of performing fold prediction, we aim to
study issues related to the folding process, such as the formation of secondary
and tertiary structure, and the dependence of the folding pathway on the initial
denatured conformation. Such questions have taken on increased practical sig-
nificance with the realization that mis-folded or only partially folded proteins
are associated with many devastating diseases3 Moreover, increased knowledge
of folding mechanisms may provide insight for protein structure prediction. De-
spite intensive efforts by experimentalists and theorists, there are major gaps
in our understanding of the behavior and mechanism of the folding process.
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Table 1: A comparison of protein folding models.

\ Comparison of Models for Protein Folding |

Folding #Paths Path Compute Need
Approach Landscape | Produced | Quality Time Native
Molecular Dynamics No 1 Good Long No
Monte Carlo No 1 Good Long No
Statistical Model Yes 0 N/A Fast Yes
PRM-Based Yes Many Approx Fast Yes
Lattice Model Not used on real proteins

In previous work} we proposed a technique for computing protein folding
pathways that is based on the successful probabilistic roadmap (PRM) method
for robotics motion planning. We were inspired to apply this technique to
protein folding based on our success in applying it to folding problems such
as carton folding and paper crafts® We obtained promising results for small
proteins (~60 amino acids) and validated our pathways by comparing the
secondary structure formation order with known experimental results”

A major feature of our PRM-based framework is that in a few hours on
a desktop PC it produces roadmaps containing large sets of unrelated folding
pathways that provide global information about the protein’s energy landscape.
In this paper, we investigate more sophisticated techniques for analyzing the
pathways in our roadmaps. In addition to more formally revalidating our
previous results, we present a case study showing our technique captures known
folding differences between the structurally similar proteins G and L.

1.1 Comparison to Related Work

Table 1 provides a summary comparison of various models for protein fold-
ing. Both Monte Carlo simulation and molecular dynamics provide a single,
usually high quality, folding trajectory. Each run is computationally intensive
because they attempt to simulate complex kinetics and thermodynamics. Sta-
tistical mechanical models, while computationally efficient, assume extremely
simplified molecular interactions and are limited to studying global averages
of folding kinetics. They also cannot detect multiple kinetics behavior such as
the two-state and three-state kinetics exhibited by hen egg-white Lysozyme®?°
Lattice modelst® have been well studied and possess great theoretical value but
cannot be applied to real proteins.

Our PRM approach, by constructing a roadmap that approximates the fold-
ing landscape, computes multiple folding pathways in a single run and provides
a natural way to study protein folding kinetics at the pathway level. What
we sacrifice is path quality, which can be improved through bigger roadmaps,
oversampling, or other techniques.



Figure 1: A PRM roadmap for protein folding shown imposed on a visualization of
the potential energy landscape: (a) after node generation (note sampling is denser
around N, the known native structure), (b) after the connection phase, and (c) using
it to extract folding paths to the known native structure.

2 A Probabilistic Roadmap Method for Protein Folding

Our approach to protein folding is based on the probabilistic roadmap (PRM)
approach for motion planning® A detailed description of how the PRM frame-
work can be applied to protein folding is presented in our previous work? The
basic idea is illustrated in Figure 1. We first sample some points in the pro-
tein’s conformation space (Figure 1(a)); generally, our sampling is biased to
increase density near the known native state. Then, these points are connected
to form a graph, or roadmap (Figure 1(b)). Weights are assigned to directed
edges to reflect the energetic feasibility of transition between the conformations
corresponding to the two end points. Finally, folding pathways are extracted
from the roadmap using standard graph search techniques (Figure 1(c)).

2.1 Modeling Proteins (C-Space)

The amino acid sequence is modeled as a tree-like linkage. Using a standard
modeling assumption for proteins!! the only degrees of freedom (dof) in our
model of the protein are the backbone’s phi and psi torsional angles, which we
model as revolute (rotational) joints taking values in [0,27). Moreover, side
chains are modeled as spheres and have zero dof.

Since we are not concerned with the absolute position and orientation of
the protein, a conformation of an n 4+ 1 amino acid protein can be specified
by a vector of 2n phi and psi angles, each in the range [0,27), with the angle
27 equated to 0, which is naturally associated with a unit circle in the plane,
denoted by S'. That is, the conformation space (C-space) of interest for a
protein with n + 1 amino acids can be expressed as:

C={qlqe S} (1)



Figure 2: An illustration of our iterative perturbation sampling strategy shown im-
posed on a visualization of the potential energy landscape.

Note that C simply denotes the set of all possible conformations. The feasibility
of a point in C will be determined by potential energy computations.

2.2 Node Generation

Recall that we begin with the known native structure and our goal is to map the
protein-folding landscape leading to the native fold. The objective of the node
generation phase is to generate a representative sample of conformations of
the protein. Due to the high dimensionality of the conformation space, simple
uniform sampling would take too long to provide sufficiently dense coverage of
the region surrounding the native structure.

The results presented in this paper use a biased sampling strategy that
focuses sampling around the native state by iteratively applying small pertur-
bations to existing conformations? The process is illustrated in Figure 2. A
node ¢ is accepted and added to the roadmap based on its potential energy
E(q) with the following probability:

1 if B(q) < Bain
P(accept q) = g;“:(‘i:giﬂ if Enin < £(q) < Fmax

if E(q) > Emax

We set Epnin = 50000 kJ/mol and Fy,.x = 70000 kJ/mol which favors config-
urations with well separated side chain spheres. This acceptance test, which
retains more nodes in low energy regions, was also used in PRM-based methods
for ligand binding'?>!® and in our previous work on protein folding!*

2.8 Connecting the Roadmap

Connection is the second phase of roadmap construction. The objective is
to obtain a roadmap encoding representative, low energy paths. For each
roadmap node, we first find its k£ nearest neighbors, for some small constant k,



and then try to connect it to them using local planning method. This yields
a connectivity roadmap that can be viewed as a net laid down on the energy
landscape (see Figure 1(b)).

When two nodes ¢; and ¢o are connected, the directed edge (g1, g2) is added
to the roadmap. Each edge (¢1,¢2) is assigned a weight that depends on the
sequence of conformations {q1 = co,c1,¢2,...,¢n—1,¢n = g2} on the straight
line in C connecting ¢; and gs. For each pair of consecutive conformations c¢;
and c¢; 1, the probability P; of moving from ¢; to ¢; 11 depends on the difference
between their potential energies AE; = E(ciy1) — E(¢;).

—AE; .
p—{c¢ RT if AE; >0 9
{ 1 ifAE; <0 )

This keeps the detailed balance between two adjacent states, and enables the
weight of an edge to be computed by summing the logarithms of the probabil-
ities for consecutive pairs of conformations in the sequence.

n—1

w(g,q2) = Z —log(F;), (3)

=0

In this way, we encode the energetic feasibility of transiting from one confor-
mation to another in the edge connecting them.

2.4  Extracting Folding Pathways

The roadmap is a map of the protein-folding landscape of the protein. One
way to study this landscape is to inspect and analyze the pathways it contains.

An important feature of our approach is that the roadmap contains many
folding pathways, which together represent the folding landscape. We can
extract many such paths by computing the single-source shortest-path (SSSP)
tree from the native structure (see Figure 1(c)).

3 Potential Energy Calculations

The way in which a protein folds depends critically on the potential energy. Our
PRM framework incorporates this bias by accepting conformations based on
their potential energy (Section 2.2) and by weighting roadmap edges according
to their energetic feasibility (Section 2.3).

While our framework is flexible enough to use any method for computing
potential energies, our current work uses a very simplistic potential? Briefly,



we use a step function approximation of the van der Waals potential compo-
nent. Our approximation considers only the contribution from the side chains.
Additionally, in our model of each amino acid, we treat the side chain as a
single large ‘atom’ R located at the Cjg atom. For a given conformation, we
calculate the coordinates of the R ‘atoms’ (our spherical approximation of the
side chains) for all residues. If any two R ‘atoms’ are too close (less then 2.4
A during node generation and 1.0 A during roadmap connection), a very high
potential is returned. If all the distances between all R ‘atoms’ are larger than
2.4 A, then we proceed to calculate the potential as follows:

Utot = Z Kd{[(di - d0)2 + dz]l/Q - dc} + Ehp, (4)

restraints

The first term represents constraints which favor the known secondary struc-
ture through main-chain hydrogen bonds and disulphide bonds and the second
term is the hydrophobic effect.

Finally, we note that in our case, the minimum potential is not necessarily
achieved by the native structure, and thus our energy model does not yield
true funnel landscapes as are shown in the figures.

4 Timed Contact Analysis

Contact analysis provides us with a formal method of validation and allows
for detailed analysis of the folding pathways. We first identify the native con-
tacts by finding all pairs of Cy, atoms in the native state that are at most 7 A
apart. If desired, attention can be restricted to hydrophobic contacts between
hydrophobic residues. To analyze a particular pathway, we examine each con-
formation on the path and determine the time step on the path at which each
native contact appears. Although these time steps cannot be associated with
any real time, they do give a temporal ordering and produce a timed contact
map for the given pathway, see Figures 3 and 4.

The timed contact map provides a formal basis for determining secondary
structure formation order along a pathway. Here, structure formation order is
based on the formation order of the native contacts!® We have looked at several
metrics to determine when a secondary structure appears: average appearance
time of native contacts within the structure, average appearance of the first x%
of the contacts, average appearance ignoring outliers, etc. We can also focus
our analysis on smaller pieces of secondary structure such as S-turns (instead
of the entire 8-sheet). This is especially helpful when looking for fine details
in a folding pathway.
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Figure 3: Timed Contact Map for Protein G. The full contact matrix (right) and
blow-ups (left) showing the time steps when contacts appear on a path. The blow-
ups: I - alpha helix contacts, II - beta 1-2 contacts, III - beta 3-4 contacts, IV - beta
1-4 contacts, V - turn 1 (beta 1-2) contacts, and VI - turn 2 (beta 3-4) contacts.

Because the roadmap contains multiple pathways, we can estimate the
probability of a particular secondary structure formation order occurring. If
the roadmap maps the potential energy landscape well, then the percentage
of pathways in the roadmap that contain a particular formation order reflects
the probability of that order occurring.

5 Experimental Validation and Discussion

In this section, we present results obtained using our PRM-based approach. For
each protein studied, we construct a roadmap, extract the folding pathways as
described in Section 2.4, and analyze the pathways as described in Section 4.
We study several small proteing* in detail, see Table 2. The structures for
all the proteins were obtained from the Protein Data Bank!” Protein A is an

®Abbreviations of proteins: G, Bl immunoglobulin-binding domain of streptococcal pro-
tein G; L, a 62-residue variant 16 of B1 immunoglobulin-binding domain of peptostreptococcal
protein L; A, B domain of staphylococcal protein A; CTXIII, Cardiotoxin analogue III.
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Figure 4: Timed Contact Map for Protein L. The full contact matrix (right) and blow-
ups (left) showing the time steps when contacts appear on a path. The blow-ups: 1
- alpha helix contacts, II - beta 1-2 contacts, III - beta 3-4 contacts, IV - beta 1-4
contacts, V - turn 1 (beta 1-2) contacts, and VI - turn 2 (beta 3-4) contacts.

all alpha protein composed of three alpha helices. Protein G and protein L
are mixed proteins which are both composed of one a-helix and a 4-stranded
(B-sheet. CTXIII is an all beta protein composed of a 2-stranded (-sheet and
a 3-stranded [(3-sheet.

As discussed in Section 1.1, our PRM-based method sacrifices accuracy in
favor of rapid coverage. As can be seen from the running time and roadmap
statistics shown in Table 2, our roadmaps containing thousands of folding
paths are computed in just a few hours on a desktop PC. In contrast, tradi-
tional methods such as molecular dynamics, compute a single trajectory, have
tremendous computational requirements, and are subject to local minima.

Contact analysis was performed on the pathways for proteins A, G, L and
CTXIII. Timed contact maps for proteins L and G are shown in Figure 3
and Figure 4. The dominant formation order found for each protein is shown
in Table 3. It is clearly seen that our results are in good agreement with
the hydrogen-exchange experimental results described by Li and Woodward.”



Table 2: Proteins studied. Shown are number of residues (#res), number of « helices
and  strands («a + ), roadmap size (#nodes), and construction time.

Proteins and Roadmap Statistics

name pdb | brief description #res SS #nodes | time (hr)
G 1gbl | Protein G, B1 domain 56 la + 46 16407 6.985
A 1bdd | Protein A, B domain 60 3a 21917 11.325
CTXIII 2crt, | Cardiotoxin III 60 503 14532 6.386
L 2ptl Protein L, B1 domain 62 la + 46 17407 9.152

Table 3: The secondary structure formation order on dominant pathways in our
roadmaps and some validations. The brackets indicate there was no clear order. The
last column compares our results with those from hydrogen-exchange experiments.

Secondary Structure Formation Order and Validation

pdb Out-Exchange’ Pulse-Labeling” Our SS Formation Order | Comp.
1gb1 [a7/317/83764}7 52 [05764}7 [B17B27ﬁ3] a, ﬁg_ﬁ47 Bl_ﬁ27 /61_64 Agreed
1bdd [@2,a3], al [al,a2,a3] [al,02,a3], a2-a3, al-a3 | Agreed

2crt || [83,64,85], [81,82] | B5, 33, 44, [81,52] 83-84, [81-52,83-55] Similar
zptl [a7ﬂ17ﬁ27/64}7 ﬁg [awﬁl}? [B27ﬁ37ﬁ4] «, /81'/827 Bg'ﬁ47 ﬁl'ﬂ4 Agreed

All proteins seem to form local contacts first, and then those with increasing
sequence contact order, like a zipper process!®'® Finally, we note that our
results for CTXIIT may be affected by the four disulphide bonds which we
model as hydrogen bonds.

5.1 Protein G and Protein L: A Detailed Study

Proteins G and L present a good test case for our technique because they are
known to fold differently although they are structurally similar. In particular,
although they have only 15% sequence identity, they are both composed of
an a-helix and a 4-stranded (-sheet. § strands 1 and 2 form the N-terminal
hairpin (hairpin 1) and ( strands 3 and 4 form the C-terminal hairpin (hairpin
2). Experimental results show that S-hairpin 1 forms first in protein L, and
(B-hairpin 2 forms first in protein G.

In native state out-exchange experiments for protein G and L, numerous
NHs out-exchange very slowly, which makes it difficult to unambiguously iden-
tify the slowest out-exchange residues. It is found that the slow exchanging
NHs are in (1, 03, 04 and the helix for G, and the « helix, 81, (B2, and 5, for
L. On the other hand, pulse-labeling experiments identify that the first NHs
to gain protection during folding are in a and 4 for G and « and (; for L.
(See Li and Woodward 7 and references therein.) In summary, out-exchange
and pulse-labeling experiments strongly suggest that the o and 84 form first
for G and that the o and (; form first for L. Furthermore, this is consistent
with ®-value analysis on G ' and L ?° which indicates that, in the folding
transition state, 8-hairpin 2 is more formed than the rest of the structure for



Table 4: Comparison of analysis techniques for proteins G and L using roadmaps
computed with energy thresholds Emin = 50,000 kJ/mol and Fmax = 70,000 kJ/mol.
For each combination of contact type (all or hydrophobic) and number of contacts
(first 2% to form), we show the percentage of pathways with a particular secondary
structure formation order. Recall that S-hairpin 2 (83-£4) forms first in protein G
and B-hairpin 1 (81-32) forms first in protein L.

Comparison of Analysis Techniques — Helix and Hairpins

analyze first x% contacts

Name Contacts SS Formation Order 20 | 40 | 60 [ 80 | 100
Protein all «a, 33-64, f1-82, B1-p4 | 76 | 66 | 77 | 55 | 58
G «a, B1-82, 63-p4, B1-64 | 23 | 34 | 23 | 45 42

«, 83-p4, 1-52, f1-g4 | 85 | 78 | 77 | 62 | 67
hydrophobic | «, 83-64, 61-64, 1-62 | 11 | 11 | 9 8 8
o, B1-52, B3-B4, B1-p4 | 4 |10 | 14 | 29 | 24
Protein «a, $1-62, B3-B4, B1-B4 | 67 | 76 | 78 | 78 | 92

L all o, B1-52, B1-B4, B3-p4 | 15| 4 | 4 | 4 | 4
o, B3-84, B1-B2, B1-p4 | 19 | 20 | 18 | 18 | 4
o, B1-52, B3-B4, B1-p4 | 54 | 65 | 74 | 73 | 86
hydrophobic | o, 81-82, B1-84, 3384 | 9 | 3 | 3 | 2 | 2
a, B3-64, B1-62, f1-64 | 36 | 32 | 23 | 26 | 13

G and (-hairpin 1 is similarly more formed for L.

For both protein G and L, we use the same definition of the beta strands
as is contained in the protein Data Bank. These definitions include all the
observed residues that are found in the slowest exchange core in the native
state out-exchange experiments and that are among the first gaining protection
in the pulse labeling experiments, see Figures 3 and 4. This enables us to have
a fair comparison of our results with those from these experiments.

Table 4 shows our results. For each protein, one roadmap was constructed
and then its (thousands of) pathways were studied using the different analysis
methods described in Section 4. When only the specified contacts were consid-
ered, the percentage of paths that had the given secondary structure formation
order is shown. For example, for all contacts, and limiting our consideration
to only the first 60% of the contacts to form, in 77% of the pathways for pro-
tein G S-hairpin 2 (83-34 contacts) formed before S-hairpin 1 (-2 contacts),
while in 82% of the pathways for protein L S-hairpin 1 formed before S-hairpin
2. Thus, the helix and S-hairpin 2 form first by a significant percentage for
protein G, while for protein L, the helix and S-hairpin 1 consistently form first
by a significant percentage. Both results agree very well with experimental
observations. We also performed the study considering only the hydrophobic
contacts, and obtained similar results, further confirming our findings.

We also study the formation order of 3 turns (see Figures 3 and 4 for



Table 5: § turn formation: comparison of analysis techniques for proteins G and L
using the same roadmaps as in Table 4. Recall that turn 2 forms first in protein G
and turn 1 forms first in protein L.

Comparison of Analysis Techniques — Helix and Turns
analyze first x% contacts

Name Contacts SS Formation Order | 20 | 40 | 60 { 80 I 100
Protein a, turn 2, turn 1 53 | 52 | 52 | 50 50
G all turn 2, o, turn 1 15| 9 | 17 | 22 22

a, turn 1, turn 2 25 | 33| 26 | 23 24
hydrophobic a, turn 2, turn 1 96 | 96 | 85 | 96 87
a, turn 1, turn 2 4 4 |12 | 2 11
Protein a, turn 1, turn 2 24 | 30 | 37 | 38 41

L all 1st turn, o, 2nd 3 4 4 4 6
a, turn 2, turn 1 73 | 63 | 60 | 48 39
a, turn 1, turn 2 72 | 68| 72 | 70| 69
hydrophobic turn 1, o, turn 2 5 9 5 7 15
a, turn 2, turn 1 23 | 22| 22 | 23 15

our definition). Remarkably, the results (see Table 5) are in good agreement
with those obtained using the beta strands. For protein G, the second [ turn
forms consistently earlier than the first § turn, which confirms our results
that the second hairpin forms first. For protein L, our results show that the
second 3 turn forms first when considering all contacts. However, when only
hydrophobic contacts are considered, then the first § turn forms first by a
significant percentage. This indicates that some hydrophobic contacts form
earlier in the first turn than in the second.

6 Conclusion and Future Work

We have shown that our PRM-based approach for studying protein folding
pathways is able to correctly reproduce known folding differences between the
structurally similar proteins G and L. This result gives confidence in our ap-
proach and implies it could be valuable for analyzing proteins whose structure
is known but for which we lack experimental data on the folding pathway.
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