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Genomic information is becoming increasingly useful for studying the origins of disease.
Recent studies have focused on discovering new genetic loci and the influence of these loci
upon disease. However, it is equally desirable to go in the opposite direction – that is, to infer
genotype from the clinical phenotype for increased efficiency of treatment. This paper
proposes a methodology for such inference. Our method constructs a simple knowledge-based
model without the need of a domain expert and is useful in situations that have very little data
and/or no training data. The model relates a disease’s symptoms to particular clinical states of
the disease. Clinical information is processed using the model, where appropriate weighting of
the symptoms is learned from observed diagnoses to subsequently identify the state of the
disease presented in hospital visits. This approach applies to any simple genetic disorder that
has defined clinical phenotypes. We demonstrate the use of our methods by inferring age of
onset and DNA mutations for Huntington’s disease patients.

1 Background

1.1 Genotype-Phenotype Relationships

Over the past decade, growing interest has surfaced in recognizing relationships
between the genotype and clinical phenotype of an individual. It is believed that
more efficient treatment of many diseases can be achieved through tailoring drug
administration to specific genotypes.1 With this in mind, one must consider that the
etiology of many diseases resides in a combination of genetic predispositions,
environmental variables, and random chance. Genetic influence varies among
diseases, ranging from a weak influence on Alzheimer’s disease to a deterministic
effect on sickle cell anemia.

This paper addresses the relationship in single gene mutation diseases known as
simple Mendelian traits. The traits are an interesting study from the standpoint that
their DNA mutation is considered the direct cause of the disease and permit a wide
range of genotype-phenotype relationships. For example, the autosomal recessive
disease cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane
conductance regulator gene, of which over 750 mutations have been documented.
While cystic fibrosis’ clinical expression is variable, the phenotypes have been
demonstrated to relate to particular mutations of the gene.2

Though the relationship between the genotype and some aspect of the clinical
phenotype is known, the relationship is often obscured in standardized medical
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information. This paper describes a generally applicable method for discovering the
particulars of this relationship from standardized medical information as they relate
to individual patients. We demonstrate our general method to determine clinical
phenotype of the autosomal dominant disorder known as Huntington’s disease in a
group of patients. Huntington’s disease is caused by a CAG trinucleotide repeat
expansion of the HD gene, a feature relatively independent of the observed clinical
features.3 Rather, the size of the repeat harbors an inverse exponential relationship
to the age of onset of the disease, a feature of the clinical phenotype not recorded in
general medical information.4 Our methods therefore, are utilized to infer non-
recorded features of the clinical phenotype (such as age of onset) from standardized
hospital information to reveal characteristics of the genotype.

1.2 Knowledgebase and Statistical Learning Approaches

Nowadays knowledge-based systems, which gained tremendous popularity in the
1980's, and data mining techniques, which gained tremendous popularity in the
1990's, are often viewed as rival approaches. The era of expert systems began with
exciting systems like DENDRAL, which inferred molecular structure from
information provided by a mass spectrometer5, and MYCIN, which diagnosed blood
infections6. But the era of expert systems ended with disillusionment as the costs of
constructing real-world knowledge-based systems far exceeded their perceived
benefits. Excitement shifted to neural networks and statistical data mining
techniques, in part, because they provided results using standardized learning
models with little or no explicit representation of domain knowledge required. But
as the problem space becomes more complex, the advantages of a knowledge-based
approach become apparent. Examples include games such as chess, checkers, and
backgammon where efforts to learn an evaluation method using knowledge of the
game are much more successful then methods void of domain knowledge7.

In this paper, we tackle a problem in which a neural network, for example,
could be used if training data were available; but in this environment, we assume no
training data are available. Our approach constructs an initial knowledge-based
model with minimal effort by relating diagnoses to a disease's symptoms and
relating those symptoms, in turn, to stages of the disease. The represented
knowledge is not from a domain "expert" but from simple extractions drawn from
common literature and so, these initial mappings may be inconsistent. We therefore
calibrate the model by generalizing, specializing and partitioning the initial
mappings as needed. Finally, we apply the model to infer genotype for patients.
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2 Methods
Materials needed for this approach are standardized hospital data, general facts
about the clinical presentation of the disease, and for a sample of individuals,
known features of the clinical phenotype. Following are descriptions of these
materials, which are necessary for use with our approach.

INDIV1 AGE1 DOB1 SEX1 ZIP1 ADMIT1 {DIAGNOSES}
INDIV2 AGE2 DOB2 SEX2 ZIP2 ADMIT2 {DIAGNOSES}
INDIV2 AGE2 DOB2 SEX2 ZIP2 ADMIT2 {DIAGNOSES}
INDIV2 AGE2 DOB2 SEX2 ZIP2 ADMIT2 {DIAGNOSES}
INDIV3 AGE3 DOB3 SEX3 ZIP3 ADMIT3 {DIAGNOSES}

Figure 1. Longitudinal medical profiles from clinical information databases. Multiple visit profile is
shaded.

2.1. Inference Algorithm Definition

First, we consider the collections of inpatient hospital visits. The National
Association of Health Data Organizations reported that 44 of 50 states have
legislative mandates to gather hospital-level data on each patient visit. As shown in
Figure 1, patient demographics, hospital identity, diagnosis codes, and procedure
codes are among the attributes stored with each hospital visit. Previous research has
demonstrated that publicly available discharge data permits the formation of genetic
population subsets.8

INPUT Patient profiles of clinical data (basic hospital visit information)

ASSUMES Disease is known to be temporal or constrained to an exclusionary status of clinical

phenotype for the duration of a profile

Step I Manually map diagnoses to symptoms to clinical phenotype states and diagnoses

to clinical phenotype states

do

Step II Automatically adjust symptoms to cover clinical phenotype states

Step III Learn accuracy of diagnosis codes using the defined mappings

Step IV Automatically classify each patient visit into a clinical phenotype state based on the

mappings

Step V Align the predicted clinical phenotype states for each set of patient visits to

optimally respect temporal or disease stage constraints

until predictions converge

OUTPUT Specific inferences and/or constraints regarding genotype of patient

Figure 2. Genotype inference algorithm.

Second, we consider the current corpora of knowledge about particular
diseases. General information about symptoms and clinical presentation of the
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disease are needed. Such information can be found in articles on MEDLINE, on
authoritative web sites devoted to the disease, and in general medical texts. From
the study of this information, the symptoms of the disease in question can be
defined. Symptoms are defined narrowly enough, so that diagnoses map to a single
symptom. With the previous information available, we present an algorithm for
knowledge representation and inference in Figure 2. Steps of the algorithm are
discussed in the following subsections.

2.2 Manual Mapping of Diagnoses and Symptoms (Step I)

The simplest model is the direct mapping of each diagnosis to its corresponding
disease states. Such a model permits the use of a neural network for parameter
estimation for a defined model as depicted in Figure 3a. However, such learning
tools require ample training data. Yet, this study uses a small amount of data and no
training data, and as such, we attempt to use known knowledge about a disease to
tune the model by adding an internal layer of nodes. Each node in the additional
layer represents a group of diagnoses, as shown in Figure 3b. The question
becomes, “What criteria is best for grouping the raw diagnoses?” Three
possibilities are explored.

Figure 3. Clinical phenotype inference models.a) Diagnoses (di) are directly mapped to vectors
describing clinical phenotype states (bi). b) Diagnoses are grouped (gdi). Basis for grouping may be
generalization of code, semantic text description, defined symptoms, or some other binning feature.V is
the final combined result.

One possibility is to generalize on diagnosis codes. In the case of ICD-9
diagnosis codes, codes having the same leftmost digits are semantically related. The
fewer the number of leftmost digits found in common between codes, the greater the
number of codes to which those digits refer. By "generalizing" diagnosis codes,
codes that share the same left most digits are grouped together. A second
possibility uses the textual descriptions that accompany the ICD-9 diagnosis codes.
String matching words or phrases found in the text descriptions provide the basis for
grouping diagnosis codes together. Finally, a third possibility identifies symptoms
based on published articles and books about the disease in question. Each symptom
then has an associated set of diagnoses not dependent on the coding structure or
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common words in the description. In all three possibilities, diagnosis codes are
grouped into sets, which we generally refer to as "symptoms." Tools for performing
each of these ways of grouping diagnosis codes into symptoms were constructed.

Each clinical phenotype may be thought of as a different state of the disease.
Of the states, only one may be presenting at any particular point in time. Thus, the
disease can be characterized as a vector of 0s and 1s withk positions, wherek is the
number of distinct phenotypes associated with the disease. From published
descriptions of the disease, groups of diagnoses ("symptoms"), which are reported
as being related to states of the disease, are designated a 1 in each vector position
that corresponds to those states and a 0 in all other vector positions. Each symptom
therefore has a non-zero "state vector" associated with it that identifies the states in
which the symptom is expected to appear. For example, the vector [1,1,0,0]
represents a disease having 4 states and the symptom related to this vector has
diagnoses that only appear in the first two states. Eachbi in Figure 3 represents
such a vector.

At this point, we have an initial knowledge-based model that relates each
diagnosis code to states of the disease through a symptom as shown in Figure 3b.
We now look at an alternative mapping directly from diagnosis codes to disease
states as shown in Figure 3a. Using literature about the disease, each diagnosis code
appearing in the hospital visits is directly mapped to corresponding disease states
without the use of symptoms. These are manual mappings that are not calibrated by
actual observations or mapped by a real domain expert. They provide a second
guess at the relationship between diagnosis and disease states.

2.3 Mapping Adjustment (Step II)

The question becomes, “Do the mappings consistently define the clinical
phenotype?” For example, a hospital visit with diagnoses that when binned into
their respective symptoms (using the model in Figure 3b) could provide the vectors
{[0,1,1,0] , [0,1,1,0] , [0,0,1,0]}, while those same diagnoses mapped directly to
disease states (using the model in Figure 3a) could yield only the fourth state. Using
the vectors resulting from the symptoms, the fourth clinical phenotype would never
be considered. Thus, the scenario exists where a symptom may under-represent the
states provided in the diagnosis-to-state mappings. Similarly, the situation could
occur where a symptom over-represents the diagnosis-to-state mappings. If a
symptom vector presents [0,1,1,0], but the corresponding diagnosis-to-state
mappings appear only in the second clinical phenotype, then the symptom falsely
assumes the third phenotype.

We address these scenarios, with a method to update the symptoms, such that
our model becomes consistent in its mappings. Our approach involves finding
maximally specific mappings in the space defined by the initial brute-force

Pacific Symposium on Biocomputing 7:41-52 (2002) 



mappings. This approach builds on prior work in the area of concept learning using
general-to-specific ordering9. Let Syi be the state vector for theith symptom. LetDi

be the state vector for the set of diagnoses mapped toSyi, but whose state is
determined from the diagnosis to disease state mappings. In each positionj of the
vectorDi, the number is 1 if any diagnosis, withinDi, maps to clinical statej, and 0
otherwise. For eachSyi and Di, there are four possible scenarios each with a
specific action as defined in Table 1.

Table 1.Symptom refinement based on diagnoses vector comparison

Scenario Example Action

Di = Syi Di = [0,1,0,0],Syi = [0,1,0,0] None

Di < Syi Di = [0,1,0,0],Syi = [0,1,1,1]

Di > Syi Di = [0,1,1,1],Syi = [0,1,0,0]
Syi = Di

Not(Di = Syi) And
Not(Di < Syi) And

Not(Syi < Di)
Di = [1,1,0,0],Syi = [0,1,1,0] Partition symptoms

The first scenario,Di=Syi, is trivial, the symptom does not change. When there
are more states found for a symptom than the diagnoses provide,Di>Syi, or the
symptom covers too many states,Di<Syi, we setSyi equal toDi. The final scenario,
when the two vectors are unequal we partitionSyi into several symptoms and
redefine the state mappings. The partitioning rule is explained with an accompanied
example. LetDi= [1,1,0,0] andSyi = [0,1,1,0]. Diagnoses withinDi that are
contained bySyi (≤) remain mapped toSyi. So, diagnoses that provide [0,1,0,0],
[0,0,1,0], or [0,1,1,0], remain mapped toSyi. Next, create new symptoms with the
vectors defined to be equal to the largest range of states spanning the remaining
diagnoses. Thus, if there existed diagnoses with vectors [1,0,0,0] and [1,1,0,0] a
new symptom would be created with the vector [1,1,0,0]. Yet, if the remaining
diagnoses all had the vector [1,0,0,0], the new symptom would have a vector of
[1,0,0,0]. Partitioning modifies the structure of the model. We now have mappings
of diagnoses to symptoms and symptoms to states that are generally specific to the
mapping of diagnoses to states.

2.4 Learning Diagnosis Weights (Step III)

For any particular hospital visit, we are interested in what state of the disease a
patient is presenting. To accomplish this, we must determine how accurate a
diagnosis code is for predicting any particular state. Initially we cannot make such
a determination because we have no training data. Hospital visits are not initially
classified as representing a particular phenotype of the disease. So initially, we
assume all mappings are equally accurate. On subsequent iterations however,
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hospital visits are classified as representing certain disease states thereby revealing
some diagnosis codes as being more accurate then others. The accuracies of
diagnosis code mappings, once hospital visits are classified, are determined as
follows.

From the classified hospital visits, the frequency of each diagnosis is calculated
for each state. The frequency vectors are compared with the state vectors from
symptoms to determine the accuracy of each diagnosis code in the prediction of
disease state. A vector containing the frequency of diagnosis codes appearing in the
hospital visits and a symptom's state vector are incomparable. For comparison, the
frequency vector is thresholded to transform it into vector of 0s and 1s. The
threshold was calculated as the average number of non-zero counts per stage:
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wherex represents the frequency counts for statei, S is the number of states, and
θ(x) is the indicator function. Each position of the frequency vector is changed to a
bit, where a 1 is assignment to frequencies greater than the threshold and 0
otherwise. For example, the frequency vector [1,9,1,1] would provide a threshold
of 3 ((1+1+9+1) / (1+1+1+1)), and the frequency vector after thresholding would be
[0,1,0,0]. All frequency data is now on the order of a string of bits. The
corresponding vectors are termed "sample vectors."

From the sample and symptom vectors, we can determine an accuracy score for
each diagnosis code. Because each vector position has a binary choice, we consider
the accuracy score as the following. True positives and true negatives add a score
of +1, while false positives add –1. The score is normalized by the total number of
statesk. Formally, accuracy is defined as:
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wheret and f representative of the positions in the state and thresholded frequency
vectors, respectively, and )(xφ a bit function. By the above definition, the
accuracy of any particular feature must reside in the range [(k-1)/k , 1]. The lower
bound is dependent on the nature of assigning a state pattern for a symptom. there
must be a minimum of one position in the vector that is defined as 1.

2.5 Patient Visits Mapped to Disease States (Step IV)

The question becomes, "How do we use these accuracy values to relate distinct
hospital visits to disease states?" Consider the feed forward schematic depicted in
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Figure 4. The useful information from a hospital visit, diagnosis codes (though
procedure and discharge status codes could also be used), denoted asd, are mapped
to their respective symptoms, denoted ass. Rather than feed the raw frequency
vector associated with a symptom, the accuracy value of each constituent diagnosis
code is used. This is represented bywi, which recognizes the degree to which the
hospital visit belongs to the disease state based on the appearance of the diagnosis.
At each symptom, the maximum accuracymax wi, a scalar value, is used to scale the
symptom’s state vector. The scaling is simple multiplication of a vector by a scalar,
which converts the state vector into a vector of 0s and the max weight. For
example, letsi have a state vector [0,1,1,0] and the corresponding set of diagnoses
weights that fed forward tosi be [0.3, 0.4, 0.3, 0.7]. Because the max weight is
equal to 0.7, the weighted state vector is [0, 0.7, 0.7, 0].

Figure 4. a) Weighted inference model.di= diagnosis,si= symptom,bi=weighted clinical phenotype
vector,V = final weighted clinical phenotype vector for a hospital visit.b) An example relating a hospital
visit to disease states.

The weighted vectors, noted asbi in Figure 4a, for each symptom are then
combined via vector addition. Since the vectors are of the same dimension, with
each position corresponding to the same state of the disease, the vector addition
results in a vector the same size as the number of disease states. The final vectorV,
is a weighted score of the certainty in each state that a particular hospital visit
exhibits. This score is determined for each hospital visit independently.

2.6 Temporal Constraints for Optimizing Disease State Alignments (Step V)

Now that each hospital visit has been converted into a weighted vector of disease
states, we must determine how to relate visits belonging to a single patient with time
dependent aspects. There exist some diseases that have a defined progression
pattern, or one that may be inferred. One example of such progression inference has
been demonstrated with partially observable Markov decision processes for
studying heart disease.11 Other diseases, such as Huntington’s disease, are currently
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untreatable and therefore have a direct progression towards death. This section of
the algorithm is not necessary for clinical information inference of diseases with an
unknown progression status, such as cystic fibrosis. However, because progression
of disease is an issue that helps define the current state of some diseases, time
constraints must be taken into account.

Consider the profile depicted in Figure 5a. Each row corresponds to a states of
the disease. We are attempting to determine the optimal alignment of states for this
profile. If we assume that the max value in eachv corresponds to the actual state,
then the predicted progression would be as depicted in Figure 5b. However, if the
disease could only have a forward progression without remission, we would have to
consider the maximum sum of single vector positions under this constraint. The
result is depicted in Figure 4c. Yet, to prevent impossible stage alignments for
longitudinal medical profiles, we must utilize knowledge about the disease.

Figure 5. a) Sample patient profile with the time elapsed shown between each vertical state vector. The
time elapsed is in years.b-d) Various statement alignments as the result of varying degrees of time
constraints. Inb) max cell values are assumed to be stage of disease; inc) linear forward progression
constraint is enforced, and ind) time dependency for each stage is considered.

Many different state sequences could have given rise to the observed sets of
diagnoses. For example, the state sequences could have been generated from the
underlying states (1,1,1,1,1), (2,2,2,2,2), (2,2,3,3,3), or (1,1,2,2,2), though there
would be many more possible alignments of the sequence. The difference between
these alignments is that they would present diagnoses at each visit with different
probabilities. We are interested in the path through the sequence alignment that
provides the highest probability by considering the most probable state sequence
given the set of compressed tuple vectorsV, the set of time constraintsT, and a state
path through the profile.

The diagnosis-state mappings are updated from the hospital visit classifications
and then steps II through IV of the algorithm repeat until no further refinement in
the classification of hospital visits is realized. Metrics were defined to determine
convergence.

3 Results on Huntington’s Disease

Materials included hospital discharge data from the State of Illinois, for the years
1990 through 1997. There were approximately 1.3 million hospital discharges per
year. Collection information has compliance with greater than 99% of discharges
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occurring in hospitals in the state.8 As a sample set, a Huntington’s disease registry
from Rush Presbyterian Hospital of Chicago was used. The registry consisted of
demographic information and the age of onset of the disease for each listing.

Longitudinal medical profiles were constructed as described in previous
reports.8 Profile construction was performed with an estimate of 100% uniqueness
and identifiability of individuals based on {ZIP, date of birth, gender}. The
resulting profiles were crossed with the registry. The resulting join, yielded a
sample of 22 individuals, with a total number of 69 hospital visits.

The literature review provided a list of symptoms related to four stages.
Clinically, there are three stages of the disease known to exist; an early stage,
middle stage, and late stage, as well as the asymptomatic period of the disorder. It
is worth noting there are two types of Huntington’s disease that have different
progression rates. One type is a juvenile onset that presents before the age of 20,
while the other is normal adult presentation above the age of 20. Furthermore, the
disease has an untreatable forward progression toward death. There is no remission,
thus you could not backtrack from the middle to the early stage of the disease.

Step I of the approach involves mapping symptoms to phenotype states. Based
on literature review, a list of 36 symptoms was constructed with each symptom
mapping to any of 4 possible stages of the disease. Diagnosis codes and discharge
status codes were identified and then mapped to the generalized diagnoses based on
the methods described in section 2.2. For Step II, partitioning the symptom model
resulted in a total of 45 symptoms.

Table 2.Comparison of Models for Generalizing Diagnoses

Model Number of Nodes Number of States Encountered

Diagnoses (direct) 156 477

Generalized Codes 60 791

Text Semantics 8 975

Symptoms 45 752

As shown in Table 2, the diagnosis model, which maps each diagnosis directly
to its disease state, resulted in 477 states being encountered. Of the generalized
models, we found the symptom model to be more specific than the models resulting
from generalizing codes or using textual descriptions. Henceforth, we continue
with the symptom model.

Step III of the approach involves learning corresponding weights for the
diagnosis and discharge status codes. Step IV of the approach involves
automatically classifying each patient visit into a known disease state. Finally, with
each hospital visit independently classified as exhibiting a state of the disease, we
had to align visits pertaining to the same patient in order to respect the temporal
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constraints specific to Huntington’s Disease. The method used is described in the
next paragraphs.

For Huntington’s disease, the expected length of time is approximately 5 years
per stage for the adult type, and 3 years for the juvenile type.10 Furthermore, there
is a linear progression of the disease. Once the patient reaches stage (or state) 2,
remission to stage 1 is not possible. For the adult type, time up to the age of onset is
defined as stage 0, from onset up to five years afterwards defines stage 1, five to ten
years defines stage 2, greater than ten years defines stage 3.

Based on knowledge about the particular disease, we can construct a set of
rules governing the time-dependency of the disease that overlaps the stages in time
to account for transitions in the disease as well as in age reporting. The noted ranges
are: 1 to 6 years for stage 1, 4 to 11 years for stage 2 and 9 to 15 years for stage 3.

Based on these constraints, we predicted the age of onset for each patient in the
following manner: list the times for each visit as an inequality in the time ranges
noted. This provides a set of inequalities, one inequality for each visit. Expand the
list by reporting the time lapses between visits. Solve the resulting set of inequalities
to get time bounds and then modify hospital visit classifications accordingly. Final
results, converging after three iterations of the algorithm, appear in Figure 6.

Figure 6. Results from Huntington’s data. Age of onset is accurately predicted in 20 of the 22 cases.

The relationship between the age of onset and the trinucleotide repeat size has
been shown to have an inverse relationship. The relationship has an r2 regression
value of 0.73 as noted in previous works.12 The equation used to determine the
relationship between age of onset and CAG repeat size is ln(age of onset) = 5.4053 -
0.0377*(trinucleotide repeat size). Out of the Rush Presbyterian dataset, there were
3 subjects that we knew the repeat size for. Predictions of the repeat size yielded
matches.
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4 Discussion

Our approach is biased by the initial disease and symptom mappings, but such bias
is analogous to having incorrect knowledge in a knowledge base or incorrect
classifications assigned in training data. The iterative nature of our approach further
refines its models to better fit the data but cannot always overcome initial bias.

The methodology described above is general enough to be compatible with
many single gene disorders. For each of these diseases, the number of states will be
dependent on the number of clinical types.
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