
 1 

DETERMINING SIGNIFICANT FOLD DIFFERENCES  
IN GENE EXPRESSION ANALYSIS 

 
A.  J .  BUTTE 1 ,  J .  YE 2 ,  G.  NIEDERFELLNER3 ,  K.  RETT3 ,  

H.  U.  HÄRING3 ,  M.  F .  WHITE 2 ,  I .  S .  KOHANE 1  
1 Children’s Hospital Informatics Program, 

Boston, MA 02115, USA 
 

2 Howard Hughes Medical Institute, Joslin Diabetes Center, 
Boston, MA 02115,USA 

 
3 Department of Medicine, Universität Tübingen, 

Otfried-Müller-Straße 10 
D-72076 Tübingen, Germany 

 

A typical use for RNA expression microarrays is comparing the measurement of gene 
expression of two groups. There has not been a study reproducing an entire experiment and 
modeling the distribution of reproducibility of fold differences. Our goal was to create a model 
of significance for fold differences, then maximize the number of ESTs above that threshold. 
Multiple strategies were tested to filter out those ESTs contributing to noise, thus decreasing 
the requirements of what was needed for significance. We found that even though RNA 
expression levels appear consistent in duplicate measurements, when entire experiments are 
duplicated, the calculated fold differences are not as consistent. Thus, it is critically important 
to repeat as many data points as possible, to ensure that genes and ESTs labeled as significant 
are truly so. We were successfully able to use duplicated expression measurements to model 
the duplicated fold differences, and to calculate the levels of fold difference needed to reach 
significance. This approach can be applied to many other experiments to ascertain significance 
without a priori assumptions. 

1   Background 

1.1  Noise in expression measurements 

Oligonucleotide microarrays currently allow the quantitation of expression of 
over 60,000 expressed sequence tags (EST) in a sample of RNA. A typical use for 
microarrays is the measurement of gene expression before and after an intervention, 
or the comparison of two groups. A fold difference for each gene is calculated by 
dividing its measurement in one group by its measurement in the other group. 
Expression can be measured using a two-dye microarray approach, where RNA from 
each of the two groups is labeled with a different color, then hybridized to a single 
microarray. (1, 2) Expression can also be measured in single-color microarrays, such 
as those available from Affymetrix. 

Measurement noise can come from many theoretical and practical sources 
including, for example: varying microarray technology, nonspecific probes, 
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intraprobe noise (from nonspecificity or differing concentrations of A/T), or 
biological noise (time of day for measurements). (3) 

When RNA expression is measured using the same sample on two chips, 
correlation coefficients are commonly quoted as being high or near 1.0. Few studies 
have analyzed the reproducibility of these measurements. In a publicly available 
document, Incyte demonstrated high concordance between RNA expression 
measurements using Cy3 and Cy5 dye signals. Based on this, Incyte estimates that 
the limit of detection of fold differences is at 1.8, meaning 95% of fold differences 
between samples of 2.0 or higher are significant. (4) 

There has been little other published data on reproducibility. Bertucci, et al., 
measured the expression of 120 genes in various cancer cell lines, using cDNA 
spotted filters. Close to 98% of the measurements showed less than a twofold 
difference when repeated. (5) Richmond, et al., studied differentially expressed 
genes in E. coli and filtered out genes under a minimum expression threshold as well 
as genes with less than a 5 fold difference. (6) Geiss, et al., used a Cy3/Cy5 system 
to measure genes differentially expressed during HIV infection. In their analysis, 
they determined that fold differences as little as 1.5 fold were statistically 
significant. However, this was determined to exclude 95% of the expression 
measurements seen, and not using an information-theoretic method. (7) Other 
publications citing differences between control and experimental groups as low as 
1.7 fold continue to be published. (8) 

To our knowledge, there has not been a study reproducing an entire experiment 
and modeling the distribution of reproducibility of fold differences. 

2   Methods 

2.1  Measurements of RNA expression 

Steps needed to measure RNA expression levels using Affymetrix microarrays have 
been described previously. (9) Data was collected measuring RNA expression in 
muscle biopsies of four individuals. The overall goal here was to find the genes most 
significantly different between patients. 

RNA was hybridized onto Affymetrix Hu35K microarrays. Expression levels 
for 35,714 ESTs across four microarrays were measured from each of the four 
persons. Duplicated measurements from the same samples were also made. 
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2.2  Normalizing microarray scans and reproducibility of expression measurements 

Measurements of the 35,714 ESTs using the four microarrays on the first 
patient were considered standard. The four microarrays measuring the three other 
patients were normalized to the standard by calculating a linear regression model 
and then multiplying the expression levels by the inverse slope of the linear model. 
The four duplicated microarray measurements for all four patients were also 
normalized to the same standard. Intrapatient fold differences (FD) were then 
calculated between the duplicated measurements for each of the four patients. 
Interpatient FD were calculated between all six possible pairs of patients, and 
duplicates of the interpatient fold differences were also calculated. The logarithm 
(base-10) fold differences (LFD) were used throughout this analysis, so that up and 
down regulation were represented equally. 

2.3  Reproducibility of fold differences within and between patients 

The correlation coefficients between all 35,714 repeated expression measures 
for ESTs measured in the four patients were 0.76, 0.84, 0.78 and 0.82. These 
correlation coefficients dropped to 0.69, 0.73, 0.73, and 0.69, respectively, when 
expression measures were transformed using base-10 logarithm (figure 1). This 
suggests that the wider splay of points seen at lower expression values worsens the 
correlation coefficient, and this splay is different between patients. However, we feel 
that the high correlation coefficients for duplicated measures were also due to bias 
by genes expressed at high levels; with such a large dynamic range of measurements, 
the fewer high values can overwhelm the pattern in the low measures. 

When the interpatient LFD were calculated from these same expression 
measures between the six possible pairs of patients, the correlation coefficient for 
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Figure 1: RNA samples from four humans were placed on duplicate GeneChips and 
the expression of 35,714 ESTs was measured. Each point represents an EST. 
Correlation coefficients were 0.69, 0.73, 0.73 and 0.69 when expression measures 
were transformed using the base-10 logarithm shown here. 
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LFD in the replicated measurements was very poor (figure 2), when almost all 
35,714 ESTs were considered (those with any negative or zero expression value 
were already excluded, since these fold differences could not be calculated 
mathematically). Further analysis showed that the poor correlation coefficient in the 
replicated LFD was due to small expression values; when two small numbers (i.e. 
expression measures) were divided, it led to a high fold difference. This was 
particularly troublesome due to the more pronounced effects of noise on 
measurements at low expression levels. 

Thus, we needed a strategy to filter out those ESTs with measurements that 
were contributing to the poor correlation between replicated LFD. However, we 
needed to determine the specific strategy without a priori knowledge or assumptions 
about this specific study. An overview of the data sources and types of calculated 
fold differences is shown in figure 3. The four intrapatient LFD were termed goal-
negative because all of these should have equaled zero (i.e. there should have been 
no fold difference in the ESTs in the same patient). The six interpatient LFD were 
termed goal-positive because although few of the goal-positive LFD were non-zero, 
all of these should have equaled the repeated interpatient LFD. 

Various strategies were used in a comprehensive manner to filter out those 
genes contributing to the noise. Models were created using the goal-negative and 
goal-positive LFD. Using these models, we determined the range of fold differences 
that could still be zero when replicated (the ranges of insignificance). Finally, the list 
of genes exceeding the range of both the goal-negative and goal-positive models was 
determined. An overview of this entire approach is shown in figure 4. 
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Figure 2: Fold differences of 35,714 ESTs were calculated between the six possible 
pairings of the four patients. Fold differences are expressed in logarithm base-10, so 
that ESTs that did not change between models are plotted in the center of each graph. 
The calculated fold differences from the duplicated measures are shown on the x- and 
y-axes. Even though the correlation coefficients were high between original and 
repeated expression values, the correlation coefficients were very low between 
original and repeated calculated fold differences. 

Pacific Symposium on Biocomputing 6:6-17 (2001) 



 5 

2.4  Determining threshold fold differences where intrapatient fold-differences 
should have been zero (goal-negative) 

Every gene had four calculated intrapatient LFD. Since the same samples were 
used in the duplicated measurements, all the intrapatient LFD should have been zero 
(i.e. fold difference of one). Instead, we found a bell-shaped distribution of LFD 
around zero. We calculated threshold log fold differences (TLFD), or the smallest 
and largest LFD that should have been zero. Together, these high and low thresholds 
define a range of LFD, called a range of insignificance. Specifically, the range of 
insignificance encompasses the LFD of 95% of the ESTs. Operationally, this means 
that if a new EST’s log fold difference is inside this range, it is too close to zero, and 
could actually have been zero. When a range of insignificance is calculated, each 
EST can then be evaluated individually to determine whether its fold difference is 
significantly different than zero. The TLFD were empirically found at the 2.5th and 
97.5th percentile of the bell-shaped distribution. 
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Figure 3: Data source. 35,714 gene expression measurements were made in duplicate 
in muscle samples from 4 patients. The four intrapatient fold differences should equal 
1, since the measurements should have been equal (this assertion was used to make 
the goal-negative model, referred to in the text). The four intrapatient fold differences 
should equal the duplicated fold differences (used to make the goal-positive model). 
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2.5  Determining threshold fold differences where interpatient fold-differences 
should have been equaled the duplicated fold-differences (goal-positive) 

Every gene had six interpatient LFD (i.e. the six possible pairings of four 
patients). Since the same samples were used in the duplicated measurements, the 
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Figure 4: Strategy to filter out those ESTs with measurements that were contributing 
to the poor correlation between replicated LFD. Gene expression measurements were 
performed in duplicate, then fold differences were calculated for the original and 
repeated data set. Various strategies were used in a comprehensive manner to filter 
out those genes contributing to the noise. Using the goal-negative and goal-positive 
LFD, models were created to determine ranges of insignificance. Finally, the list of 
genes exceeding this range was determined, and the process repeated for all strategies. 
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expectation was that each LFD would be equal to the LFD from the duplicated 
measurements. In reality, each LFD had a confidence interval, such that the 
duplicated LFD could have been larger, smaller or even zero when replicated. 
However, we found that the greater the LFD of a gene was from zero, the less likely 
that the replicated LFD was zero. For the interpatient LFD, we developed a statistic 
to choose threshold log fold differences (TLFD), which are the smallest LFD that 
are significantly likely to actually be differentially expressed. Together, the high and 
low thresholds define another range of insignificance. Similar to the previously 
defined range, an EST with an LFD inside this range is too close to zero and could 
actually be zero when replicated. 

The method of determining the goal-positive TLFD is shown in figure 5. We 
created a linear regression model fitting the original and duplicated LFD with the 
equation y = mx + b, where x represents the original LFD, y is the duplicated LFD, 
m is the slope of the regression line, and b is the y-axis intercept. We then calculated 
the standard deviation of the differences of actual y from predicted y, using 

∑ ′−=
n

yy
LMSD

2)(
 

where y is an actual replicated LFD, y’ is the predicted LFD for that same x using 
the regression model, and n is the number of duplicated points. 

Based on this model, we were able to calculate the high and low significance 
thresholds. The high threshold was defined as 

m

bLMSD
TLFDhigh

)2( −⋅=  

and the low threshold was defined as  

m

bLMSD
TLFDlow

)2( −⋅−=  

In other words, if a gene showed a fold increase greater than the high TLFD, it was 
significantly likely to still have a fold increase when the experiment was repeated. 

Once both the goal-negative and goal-positive ranges of insignificance were 
known for a particular strategy, we counted the number of genes with at least one 
interpatient LFD outside both insignificance ranges and viewed these as significant. 
The goal was to maximize this count using the various combinations of strategies. 

2.6  Strategies to improve the significant threshold fold differences 

Once the ranges of insignificance were known, our goal was to maximize the 
number of genes with interpatient fold differences outside this range. There were 
two ways to do this (1) either eliminate the ESTs contributing to the noise, thus 
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reducing the TLFD and allowing more ESTs to fall outside the range, or (2) include 
as many ESTs as possible, including those that may fall outside the range. In other 
words, both adding and decreasing the number of ESTs could improve the number 
of ESTs falling outside the insignificance range. 
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Figure 5: Finding the range of insignificance using the goal-positive LFD. Each point 
is an EST. Fold difference between two patients is on the x-axis, and fold difference 
using duplicated measurements is on the y-axis. The linear regression model is shown 
in the bold diagonal line, and the thin diagonal line is the ideal noise-free model (x = 
y). The distance of each point from the regression model was calculated, and the 
standard deviation was calculated (LMSD). The dashed lines are the regression line 
shifted by two times LMSD. The y-intercept of the dashed lines are the high and low 
threshold fold differences for significance (the high and low TLFD). The range 
between the high and low TLFD is the range of insignificance. An LFD in this range 
is too likely to be zero when repeated. 

Pacific Symposium on Biocomputing 6:6-17 (2001) 



 9 

There were two strategies to limit the ESTs outside the range of insignificance: 

• Limit ESTs to those with Affymetrix “present” calls 

• Limit ESTs to those exceeding a defined minimum expression 
Our methodology was to try all possible combinations of strategies to determine the 
best way to find the largest number of ESTs outside the range of insignificance. This 
way, there were no a priori assumptions as to the list of ESTs being chosen. 

For the first strategy, we considered choosing ESTs based on the Affymetrix 
“A” and “P” calls from the scan. Affymetrix assigns “absent” and “present” calls 
during its quantitation algorithm. ESTs assigned a “P” demonstrated improved 
average contrast between perfectly-matching and mismatching probes, and thus have 
a tighter confidence interval around the quantitation. ESTs assigned an “A” have a 
weaker confidence interval. There were three possible sub-strategies: 

• Choosing ESTs with a “P” call in all patient chips 

• Choosing ESTs with a “P” call in at least one patient chip, and 

• Ignoring “A” and “P” calls. 

For the second strategy, we had found many of high LFD were artifacts 
resulting from the division of two small expression measures. We considered using a 
minimum expression level threshold (MELT) and eliminating those ESTs not 
meeting this minimum threshold. Again, there were three possible sub-strategies: 

• Choosing ESTs meeting the MELT in all patient chips 

• Choosing ESTs meeting the MELT in at least one patient chip, and 

• Ignoring the MELT. 
In addition, there were also many possible expression level thresholds to try. 

All nine possible combinations of sub-strategies were tried. For those strategies 
involving the MELT, each MELT from 0 to 3000 was tried, in increments of 100. 

3  Results and Discussion 

3.1  Findings 

Our goal was to create a model of significance for fold differences, then maximize 
the number of ESTs above that threshold. This was done by creating strict criteria to 
filter out those ESTs contributing to noise, thus decreasing the requirements of what 
was considered an insignificant fold difference. All nine combinations of criteria 
strategies were tested including using minimum expression level thresholds and the 
Affymetrix absent and present calls. The results of the testing are shown in the table. 
In each of the nine criteria strategies, models of insignificance were created. In 
seven of the nine strategies, ESTs were present that exceeded the range of 
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insignificance. Two strategies, that of choosing all ESTs, and that of choosing ESTs 
on based on an Affymetrix “present” call on any one chip, failed to produce a list of 
significant ESTs because the measurement noise was so high, the range of 
insignificance was so wide that none of the ESTs exceeded the range. 

For this data set, the largest number of ESTs meeting or exceeding significance 
occurred when either ESTs were removed if (1) expression levels were under 100 in 
all patients and duplicates, or (2) there was no “present” call on any chip. With this 
strategy, the correlation coefficient between interpatient LFD and duplicates was 
0.61. Because of the high correlation coefficients, the interpatient range of 
insignificance was only 0.5 to 1.7 fold (in logarithm base-10: -0.33 to 0.22). Stated 
another way, and taking the asymmetry into account, genes with half the expression 
level in one patient compared to another were not significantly different than zero. 
Genes beyond this range were, however, significantly different than zero. 

With this strategy, 389 ESTs had at least one interpatient LFD that exceeded 
both the goal-negative and goal-positive ranges of insignificance. This strategy 
could be viewed as having the highest sensitivity, in that using this strategy 
produced the largest number of significant ESTs., and highest specificity, in that the 
ESTs with no fold difference were maximally contained in a range of insignificance. 

3.2  Advantages of Approach 

There were two critical findings in this experiment. First, even though RNA 
expression levels appear consistent in duplicate measurements, when entire 
experiments are duplicated, the calculated fold differences are not necessary as 
consistent. Thus, it is critically important to repeat as many data points as possible, 
to ensure that genes and ESTs labeled as significant are truly so. 

Second, we were successfully able to use duplicated expression measurements 
to model the duplicated fold differences and to calculate the levels needed to reach 
significance. Without a priori knowledge, we were able to comprehensively try 
multiple strategies to limit ESTs so that the duplicated fold differences would be 
more consistent. Dropping these noisier ESTs decreased the required levels of 
significance, permitting more ESTs to exceed the significance thresholds. 

Table (next page): Nine combinations of strategies were used to filter out ESTs with 
measurement noise, to reduce the requirements of statistical significance and allow 
more ESTs to meet or exceed these requirements. Each strategy is listed in a column. 
Six of the nine strategies involved varying a minimum expression level threshold, 
which are listed in the rows. For each strategy, ranges of insignificance were 
calculated, such that an EST that demonstrated an interpatient fold difference within 
this range was still likely to be zero when measurements were repeated. The largest 
number of ESTs exceeding insignificance is highlighted. 
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Strategies to limit ESTs contributing to poorly correlating replicated fold differences 

No min expression level threshold X   X   X   

ESTs must reach min expression 

level on at least one patient chip 

 X   X   X  

ESTs must reach min expression 

level on all eight patient chips 

  X   X   X 

ESTs may have “A” or “P” calls X X X       

ESTs must have “P” calls on at 

least one patient chip 

   X X X    

ESTs must have “P” calls on all 

eight patient chips 

      X X X 

Minimum Expression Level 

Threshold 

Number of ESTs with significant fold difference using 

this strategy and threshold 
0 0 0 2 0 0 3 363 363 363 

100 0 0 337 0 3 389 363 363 367 
200 0 4 354 0 8 359 363 363 284 
300 0 12 243 0 12 254 363 367 200 
400 0 16 156 0 29 157 363 366 137 
500 0 31 93 0 56 93 363 369 78 
600 0 55 50 0 87 50 363 368 50 
700 0 84 48 0 136 49 363 384 55 
800 0 103 25 0 161 25 363 386 41 
900 0 112 19 0 161 19 363 380 29 
1000 0 136 14 0 176 14 363 373 27 
1100 0 158 10 0 186 10 363 373 18 
1200 0 182 6 0 232 6 363 365 7 
1300 0 226 5 0 252 5 363 355 4 
1400 0 269 4 0 286 6 363 344 4 
1500 0 283 2 0 299 3 363 331 1 
1600 0 285 1 0 291 1 363 327 0 
1700 0 272 2 0 298 2 363 319 1 
1800 0 249 1 0 272 1 363 309 1 
1900 0 287 0 0 308 0 363 308 0 
2000 0 278 0 0 299 0 363 295 0 
2100 0 261 0 0 275 0 363 286 0 
2200 0 251 0 0 272 0 363 282 0 
2300 0 261 0 0 280 0 363 274 0 
2400 0 274 0 0 285 0 363 269 0 
2500 0 257 0 0 270 0 363 266 0 
2600 0 267 0 0 270 0 363 258 0 
2700 0 258 0 0 256 0 363 250 0 
2800 0 235 0 0 235 0 363 240 0 
2900 0 250 0 0 248 0 363 229 0 
3000 0 237 0 0 235 0 363 227 0 
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Unlike other methods of significance determination, this analysis makes no 
assumptions as to the distribution of expression measurements in these data sets. In 
other words, significance was only a function of the reproducibility of measures and 
calculated fold differences. It was not a function of the measurements themselves 
(e.g. significance was not set at the top 5%ile of genes by expression level). 

3.3  Future Directions 

This approach will be applied to many other data sets, to ascertain whether the 
specific strategy parameters found to be optimal in this experiment are also optimal 
in others. Further work will also be done on applying this technique to data sets 
collected under alternate microarray techniques. Other non-linear methods could be 
also be used to model duplicate data and set significance thresholds. 
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