
A Method for Verifying Privacy-Type Properties:
The Unbounded Case

Abstract—In this paper, we consider the problem of verifying
anonymity and unlinkability in the symbolic model, where
protocols are represented as processes in a variant of the applied
pi calculus, notably used in the ProVerif tool. Existing tools
and techniques do not allow to verify directly these properties,
expressed as behavioral equivalences. We propose a different
approach: we design two conditions on protocols which are
sufficient to ensure anonymity and unlinkability, and which can
then be effectively checked automatically using ProVerif. Our
two conditions correspond to two broad classes of attacks on
unlinkability, i.e. data and control-flow leaks. This theoretical
result is general enough that it applies to a wide class of protocols.
In particular, we apply our techniques to provide the first formal
security proof of the BAC protocol (e-passport). Our work has
also lead to the discovery of new attacks, including one on
the LAK protocol (RFID authentication) which was previously
claimed to be unlinkable (in a weak sense) and one on the PACE
protocol (e-passport).

I. INTRODUCTION

Security protocols aim at securing communications over
various types of insecure networks (e.g. web, wireless devices,
etc.) where dishonest users may listen to communications and
interfere with them. A secure communication has a different
meaning depending on the underlying application. It ranges
from the confidentiality of data (medical files, secret keys,
etc.) to e.g. verifiability in electronic voting systems. Another
example of a security notion is privacy. In this paper, we focus
on two privacy-related properties, namely unlinkability (some-
times called untraceability), and anonymity. These two notions
are informally defined in the ISO/IEC standard 15408 [1] as
follows:
● Unlinkability aims at ensuring that a user may make

multiple uses of a service or resource without others being
able to link these uses together.

● Anonymity aims at ensuring that a user may use a service
or resource without disclosing its identity.

Both are critical for instance for Radio-Frequency Identifica-
tion Devices (RFID) and are notably extensively studied in
that context (see e.g. [2] for a survey of attacks on this type
of protocols) but they obviously are not limited to it.

One extremely successful approach when designing and
analyzing security protocols, is the use of formal methods.
The purpose of formal verification is to provide rigorous
frameworks and techniques to analyze protocols. For example,
a flaw has been discovered in the Single-Sign-On protocol
used e.g. by Google Apps. It has been shown that a malicious
application could very easily access to any other application
(e.g. Gmail or Google Calendar) of their users [3]. This flaw

has been found when analyzing the protocol using formal
methods, abstracting messages by a term algebra and using the
Avantssar validation platform. Another example is a flaw on
vote-privacy discovered during the formal and manual analysis
of an electronic voting protocol [4]. All these results have been
obtained using formal symbolic models, where most of the
cryptographic details are ignored using abstract structures. The
techniques used in symbolic models have become mature and
several tools for protocol verification are nowadays available,
e.g. the Avantssar platform [5], the Tamarin prover [6], and
the ProVerif tool [7].

Unfortunately, most of these results and tools focus on
trace properties, that is, statements that something bad never
occurs on any execution trace of a protocol. Secrecy and
authentication are typical examples of trace properties: a data
remains confidential if, for any execution, the attacker is
not able to produce the data. But privacy properties like
unlinkability and anonymity are not defined as trace prop-
erties. These properties are usually defined as the fact that
an observer cannot distinguish between two situations, and
requires a notion of behavioral equivalence. Roughly, two
protocols P and Q are equivalent if an attacker cannot observe
any difference between P and Q. Based on such a notion of
equivalence, several definitions of privacy-type properties have
been proposed (e.g. [8], [9] for unlinkability, e.g. [10], [11] for
vote-privacy). In this paper, we consider the well-established
definitions of strong unlinkability and anonymity as defined
in [8]. They have notably been used to prove privacy for
various protocols either by hand or using ad hoc encodings
(e.g. eHealth protocol [12], mobile telephony [13], [14]). We
provide a brief comparison with alternative definitions in
Section III-B.

Considering an unbounded number of sessions, the problem
of deciding whether a protocol satisfies an equivalence prop-
erty is undecidable even for a very limited fragment of proto-
cols (see e.g. [15]). Bounding the number of sessions suffices
to retrieve decidability for standard primitives (see e.g. [16],
[17]). However, analyzing a protocol for a fixed (often low)
number of sessions does not allow to prove security. Moreover,
in case of equivalence properties, the existing tools scale badly
and can only analyze protocols for a very limited number
of sessions, typically 2 or 3. Another approach consists in
implementing a procedure that is not guaranteed to terminate.
This is in particular the case of ProVerif, a well-established
tool for checking security of protocols. ProVerif is able to
check a strong notion of equivalence (called diff-equivalence)

between processes that have the same structure. ProVerif has
been recently extended [18] to conclude more often. Despite
this recent effort intended to prove unlinkability of the BAC
protocol (used in e-passport), ProVerif can still not be used
off-the-shelf to establish unlinkability properties, and therefore
cannot conclude on the case studies presented in Section VII.
Recently, similar approaches have been implemented in two
other tools, namely Tamarin [19] and Maude-NPA [20]. They
are based on a notion of diff-equivalence, and therefore suffer
from the same drawbacks. In this paper, we follow a different
approach. We aim at proposing sufficient conditions that can
be automatically checked, and that imply unlinkability and
anonymity of the protocol under study. This approach is in the
same spirit as the one presented in [9]. However, the class of
protocols we target is quite different. For instance, in [9], they
are only able to consider a very restricted class of protocols
(single-step protocols that only use hash function as crypto-
graphic primitives). We target more complex protocols and the
success of our solution will be measured by confronting it to
many case studies.

Our contribution: We identify a large class of 2-party
protocols (simple else branches, arbitrary cryptographic prim-
itives) and we devise two conditions that imply unlinkabil-
ity and anonymity for an unbounded number of sessions. We
show how these two conditions can be automatically checked
using the ProVerif tool, and we provide tool support for
that. We have analyzed several protocols, among them the
Basic Access Control (BAC) protocol used in the e-passport
application, as well as the Password Authenticated Connection
Establishment (PACE) protocol. It happens that our conditions
are rather tight and each time one of our condition was not
satisfied, we report on an attack. We notably establish the first
proof of unlinkability for the BAC protocol followed by the
Passive Authentication (PA) and Active Authentication (AA)
protocols. We also report on an attack that we found on the
PACE protocol and one on the LAK protocol whereas it is
claimed untraceable in [2].

Let us now give an intuitive overview of our conditions.
In order to do this, assume that we want to design a mutual
authentication protocol between a tag T and a reader R based
on symmetric encryption, and we want this protocol to be
unlinkable. We note {m}k the symmetric encryption of a
message m with a key k and we assume that k is a symmetric
key shared between T and R.

A first attempt to design such a protocol is presented using
Alice & Bob notation as follows (nR is a fresh nonce):

1. R → T ∶ nR
2. T → R ∶ {nR}k

This first attempt based on a challenge-response scheme is
actually linkable. Indeed, an active attacker who systematically
intercepts the nonce nR and replaces it by a constant will be
able to infer whether the same tag has been used in different
sessions or not by comparing the answers he receives. Here,
the tag is linkable because, for a certain behavior (possibly
malicious) of the attacker, some relations between messages

leak information about the agents that are involved in the
execution. Our first condition, namely frame opacity, actually
checks that all outputted messages have only trivial relations
that can therefore not be exploited by the attacker.

Our second attempt takes the previous attack into account
and randomizes the tag’s response (using a nonce nT) and
should achieve mutual authentication by requiring that the
reader must answer to the challenge nT . This protocol can
be as follows:

1. R → T ∶ nR
2. T → R ∶ {nR, nT }k
3. R → T ∶ {nT }k
4. T → R ∶ . . .

Here, Alice & Bob notation shows its limit. It does not specify
how the reader and the tag are supposed to check that the
messages they received are of the expected form, and how they
should react when the messages are not well formed. This has
to be precisely defined, since unlinkability depends on it. For
instance, assume the tag does not check that the message he
receives at step 3 contains nT , and aborts the session if the
received message in not encrypted with its own k. In such an
implementation, an active attacker can eavesdrop a message
{nT }k sent by R to a tag T , and try to inject this message at
the third step of another session played by T ′. The tag T ′ will
react by either aborting or by continuing the execution of this
protocol. Depending on the reaction of the tag, the attacker
will be able to infer if T and T ′ are the same tag or not.

In this example, the attacker adopts a malicious behavior
that is not detected immediately by the tag who keeps exe-
cuting the protocol. The fact that the tag passes successfully
a conditional reveals crucial information about the agents that
are involved in the execution. Our second condition, namely
well-authentication, basically requires that when an execution
deviates from the honest one, the agents that are involved
cannot successfully pass a conditional.

Our main theorem states that these two conditions, frame
opacity and well-authentication, are actually sufficient to en-
sure both unlinkability and anonymity. This theorem is of
interest as our two conditions are fundamentally simpler than
the targetted properties (frame opacity can be expressed using
diff-equivalence and well-authentication is a trace property)
and are both in the scope of existing automatic verification
tools like ProVerif.

Outline: In Section II, we present our model inspired
from the applied pi calculus as well as the notion of trace
equivalence. We then define in Section III the class of proto-
cols and the formal definitions of unlinkability and anonymity
we study in this paper. Our two conditions (frame opacity
and well-authentication) and our main theorem are presented
in Section IV. Section V is dedicated to the proof of that
result. Finally, we discuss how to mechanize the verification
of our conditions in Section VI and present our case studies
in Section VII, before concluding in Section VIII.

2

II. MODEL

We shall model security protocols using a process algebra
inspired from the applied pi calculus [21]. More specifically,
we consider the calculus of Blanchet et al. [22], which is used
in the ProVerif tool. Participants in a protocol are modeled as
processes, and the communication between them is modeled
by means of the exchange of messages that are represented by
a term algebra.

A. Term algebra

We now present term algebras, which will be used to model
messages built and manipulated using various cryptographic
primitives. We consider an infinite set N of names which
are used to represent keys, and nonces; and two infinite
and disjoint sets of variables, denoted X and W . Variables
in X will typically be used to refer to unknown parts of
messages expected by participants, while variables in W will
be used to store messages learned by the attacker. We assume
a signature Σ, i.e. a set of function symbols together with
their arity. The elements of Σ are split into constructor and
destructor symbols, i.e. Σ = Σc⊔Σd.

Given a signature F , and a set of initial data A, we denote by
T (F ,A) the set of terms built from elements of A by applying
function symbols in F . Terms of T (Σc,N ∪X) will be called
constructor terms. We denote vars(u) the set of variables that
occur in a term u. A message is a constructor term u that
is ground, i.e. such that vars(u) = ∅. We denote by x, n, u
a (possibly empty) sequence of variables, names, and terms
respectively. The application of a substitution σ to a term u is
written uσ, and we denote dom(σ) its domain. The positions
of a term are defined as usual.

Example 1: Consider the signature

Σ = {enc,dec, ⟨ ⟩, π1, π2,⊕,0, eq,ok}.

The symbols enc and dec of arity 2 represent symmetric
encryption and decryption. Pairing is modeled using ⟨ ⟩ of
arity 2, whereas projection functions are denoted π1 and π2,
both of arity 1. The function symbol ⊕ of arity 2 and the
constant 0 are used to model the exclusive or operator. Finally,
we consider the symbol eq of arity 2 to model equality test,
as well as the constant symbol ok. This signature is split into
two parts: Σc = {enc, ⟨ ⟩,⊕,0,ok}, and Σd = {dec, π1, π2, eq}.

As in the process calculus presented in [22], constructor
terms are subject to an equational theory; this has proved
very useful for modeling algebraic properties of cryptographic
primitives (see e.g. [23] for a survey). Formally, we consider
a congruence =E on T (Σc,N ∪ X), generated from a set
of equations E over T (Σc,X). Thus, =E is closed under
substitutions and under bijective renaming. We finally assume
that there exist u, v such that u ≠E v.

Example 2: To reflect the algebraic properties of the
exclusive or operator, we may consider the equational theory
generated by the following equations:

x⊕ 0 = x (x⊕ y) ⊕ z = x⊕ (y ⊕ z)
x⊕ x = 0 (x⊕ y) = (y ⊕ x)

In such a case, we have that enc(a⊕ (b⊕ a), k) =E enc(b, k).

We may also want to give a meaning to destructor symbols.
For this, we consider the notion of computation relation.

Definition 1: A computation relation is a relation over
T (Σ,N) × T (Σc,N), denoted ⇓, such that:

● n⇓n for any n ∈ N and, for f ∈ Σc of arity k, if ti⇓ui for
all 1 ≤ i ≤ k, then f(t1, . . . , tk)⇓f(u1, . . . , uk);

● if t⇓u then tρ⇓uρ for any bijective renaming ρ ∶ N → N ;
● if t⇓u and t′[u]⇓v then t′[t]⇓v, for a term t, a context t′

(i.e. a term with a hole) built from Σ, N , and messages
u and v;

● if t1 = t[u1], t2 = t[u2] with u1 =E u2 and t a context
built from Σ, N , and such that t1⇓v1, then t2⇓v2 with
v1 =E v2.

The relation ⇓ associates, to any ground term t, at most one
message up to the equational theory E. When no such message
exists, we say that the computation fails; this is denoted t�.
As a slight abuse of notation, we may sometimes use directly
t⇓ as a message, when we know that the computation succeeds
and the choice of representative is irrelevant.

A computation relation is often obtained from a rewrit-
ing system, i.e. a set of rewriting rules of the form
g(u1, . . . , un) → u where g is a destructor, and u,u1, . . . , un ∈
T (Σc,X). A ground term t can be rewritten into t′ if there
is a position p in t and a rewriting rule g(u1, . . . , un) → u
such that t∣p = g(v1, . . . , vn) and v1 =E u1θ, . . . , vn =E unθ
for some substitution θ, and t′ = t[uθ]p (i.e. t in which the
sub-term at position p has been replaced by uθ). Moreover,
we assume that u1θ, . . . , unθ as well as uθ are messages.

Example 3: Continuing Example 1, the properties of
symbols in Σd are reflected through the following rewriting
rules:

dec(enc(x, y), y) → x eq(x,x) → ok
πi(⟨x1, x2⟩) → xi for i ∈ {1,2}.

This rewriting system is convergent modulo the equational the-
ory E given in Example 2, and therefore induces a computation
relation as defined in Definition 1. For instance, we have that
dec(enc(c, a⊕b), b⊕a)⇓c, whereas dec(enc(c, a⊕b), b)�, and
dec(a, b) ⊕ dec(a, b)�.

Our generic notion of computation relation gives us enough
flexibility to define a destructor symbol neq, and consider
that neq(u, v)⇓ok if, and only if, u and v can be reduced
to messages that are not equal modulo E.

For modeling purposes, we split the signature Σ into two
parts, namely Σpub and Σpriv. An attacker builds his own
messages by applying public function symbols to terms he
already knows and that are available through variables in W .
Formally, a computation done by the attacker is a recipe, i.e.
a term in T (Σpub,W). Recipes will be denoted by R, M , N .
Note that, although we do not give the attacker the ability to
generate fresh names to use in recipes, we obtain essentially
the same capability by assuming an infinite supply of public
constants in Σc ∩Σpub.

3

B. Process algebra

We consider a set C of channel names that are assumed to
be public. Protocols are modeled through processes using the
grammar in Figure 1.

P,Q ∶= 0 null
∣ in(c, x).P input
∣ out(c, u).P output
∣ let x = v in P else Q evaluation
∣ P ∣ Q parallel
∣ !P replication
∣ νn.P restriction

where c ∈ C, x ∈ X , n ∈ N , u ∈ T (Σc,N ∪X) is a constructor
term, x (resp. v) is a sequence of variables in X (resp. terms
in T (Σ,N ∪X)) both of the same length.

Fig. 1. Syntax of processes

Most of the constructions are rather standard. We may note
the special construct let x = v in P else Q that combines
several standard constructions, allowing to write computations
and conditionals compactly. Such a process tries to evaluate
the sequence of terms v and in case of success, i.e. when v⇓u
for some messages u, the process P in which x are replaced by
u is executed; otherwise the process Q is executed. The goal
of this construct is to avoid nested let instructions to be able to
define our class of protocols in a simple way later on. Note also
that the let instruction together with the eq theory as defined
in Example 3 can encode the usual conditional construction.
Indeed, “let x = eq(u, v) in P else Q” will execute P only
if the computation succeeds on eq(u, v), that is only if u⇓u′,
v⇓v′, and u′ =E v′ for some messages u′ and v′.

For brevity, we sometimes omit “else 0” and null processes
after outputs. We write fv(P) for the set of free variables
of P , i.e. the set of variables that are not in the scope of an
input or a let construct. A process P is ground if fv(P) = ∅.

Example 4: We consider the RFID protocol due to Feld-
hofer et al. as described in [24] and which can be presented
using Alice & Bob notation as follows:

1. I → R ∶ nI
2. R → I ∶ {nI , nR}k
3. I → R ∶ {nR, nI}k

The protocol is between an initiator I (the reader) and a
responder R (the tag) that share a symmetric key k. We con-
sider the term algebra introduced in Example 3. The protocol
is modeled by the parallel composition of the processes PI
and PR, corresponding respectively to the roles I and R.

PFh ∶= νk. (νnI .PI ∣ νnR.PR)

where PI and PR are defined as follows, with u = dec(x1, k):

PI ∶= out(cI , nI).in(cI , x1).
let x2, x3 = eq(nI , π1(u)), π2(u) in
out(cI , enc(⟨x3, nI⟩, k))

PR ∶= in(cR, y1).out(cR, enc(⟨y1, nR⟩, k)).in(cR, y2).
let y3 = eq(y2, enc(⟨nR, y1⟩, k)) in 0

C. Semantics
The operational semantics of processes is given by a labeled

transition system over configurations (denoted by K) which
are pairs (P;φ) where:
● P is a multiset of ground processes where null processes

are implicitly removed;
● φ = {w1 ↦ u1, . . . ,wn ↦ un} is a frame, i.e. a

substitution where w1, . . . ,wn are variables in W , and
u1, . . . , un are messages.

We often write P ∪ P instead of {P} ∪ P . The terms
in φ represent the messages that are known by the attacker.
Given a configuration K, φ(K) denotes its second component.
Sometimes, we consider processes as configurations, in such
cases, the corresponding frame is ∅.

The operational semantics of a process is given by the
relation

α
Ð→ defined in Figure 2. The rules are quite standard

and correspond to the intuitive meaning of the syntax given
in the previous section. The first rule allows the attacker to
send on channel c a message as soon as it is the result of
a computation done by applying public function symbols on
messages that are in his current knowledge. The second rule
corresponds to the output of a term: the corresponding term
is added to the frame of the current configuration, which
means that the attacker gains access to it. The third and fourth
rules correspond to the evaluation of a sequence of terms
v = v1, . . . , vn; if this succeeds, i.e. if there exist messages
u1, . . . un such that v1⇓u1, . . . vn⇓un then variables x are
bound to those messages, and P is executed; otherwise the
process will continue with Q. The three remaining rules allow
one to execute a restriction, unfold a replication, and split a
parallel composition.

The two first rules are the only observable actions. However,
for reasons that will become clear later on, we make a
distinction when a process evolves using LET or LET-FAIL.

Example 5: Continuing Example 4. We have that:

PFh
tr
Ð→ (∅;φ0)

where tr and φ0 are as follows, for fresh k′, n′I and n′R:

tr = {
τ.τ.τ.τ.out(cI ,w1).in(cR,w1).out(cR,w2)

in(cI ,w2).τthen.out(cI ,w3).in(cR,w3).τthen

φ0 = {w1 ↦ n′I , w2 ↦ enc(⟨n′I , n
′
R⟩, k

′),
w3 ↦ enc(⟨n′R, n

′
I⟩, k

′)}.

This execution corresponds to a normal execution of one
session of the protocol.

The relation
α1...αn
ÐÐÐÐ→ between configurations

(where α1 . . . αn is a sequence of actions) is defined as
the transitive closure of

α
Ð→.

4

IN (in(c, x).P ∪ P;φ)
in(c,R)
ÐÐÐÐ→ (P{x↦ u} ∪ P;φ) where R is a recipe such that Rφ⇓u for some message u

OUT (out(c, u).P ∪ P;φ)
out(c,w)
ÐÐÐÐÐ→ (P ∪ P;φ ∪ {w ↦ u}) with w a fresh variable in W .

LET (let x = v in P else Q ∪ P;φ)
τthen
ÐÐ→ (P{x↦ u} ∪ P;φ) when v⇓u for some u

LET-FAIL (let x = v in P else Q ∪ P;φ)
τelse
ÐÐ→ (Q ∪ P;φ) when vi� for some vi ∈ v

NEW (νn.P ∪ P;φ)
τ
Ð→ (P ∪ P;φ) where n is a fresh name from N

REPL (!P ∪ P;φ)
τ
Ð→ (P ∪ !P ∪ P;φ)

PAR ({P1 ∣ P2} ∪ P;φ)
τ
Ð→ ({P1, P2} ∪ P;φ)

Fig. 2. Semantics for processes

D. Trace equivalence

We are concerned with trace equivalence, which is com-
monly used [9], [25] to express many privacy-type properties
such as anonymity, unlinkability, strong secrecy, etc. Intu-
itively, two configurations are trace equivalent if an attacker
cannot tell whether he is interacting with one or the other. Be-
fore defining formally this notion, we first introduce a notion
of equivalence between frames, called static equivalence.

Definition 2: A frame φ is statically included in φ′ when
dom(φ) = dom(φ′), and
● for any recipe R such that Rφ⇓u for some u, we have

that Rφ′⇓u′ for some u′;
● for any recipes R1,R2 such that R1φ⇓u1, R2φ⇓u2, and
u1 =E u2, we have that R1φ

′⇓ =E R2φ
′⇓, i.e. there exist

v1, v2 such that R1φ
′⇓v1, R2φ

′⇓v2, and v1 =E v2.
Two frames φ and φ′ are in static equivalence, written φ ∼ φ′,
if the two static inclusions hold.

Intuitively, an attacker can distinguish two frames if he is
able to perform some computation (or a test) that succeeds
in φ and fails in φ′ (or the converse).

Example 6: Consider the frame φ0 as given in Example 5,
we have that φ0 ⊔ {w4 ↦ k′} /∼ φ0 ⊔ {w4 ↦ k′′}. Indeed, the
attacker may observe that the computation R = dec(w2,w4)
succeeds in φ ⊔ {w4 ↦ k′} but fails in φ ⊔ {w4 ↦ k′′}.

Then, trace equivalence is the active counterpart of static
equivalence taking into account the fact that the attacker
may interfere during the execution of the process in order
to distinguish between the two situations.

Given a configuration K = (P;φ), we define trace(K):

trace(K) = {(tr, φ′) ∣ (P, φ)
tr
Ð→ (P ′;φ′)

for some configuration (P ′;φ′)}.

We define obs(tr) to be the subsequence of tr obtained by
erasing all the τ actions (i.e. τ, τthen, τelse).

Definition 3: Let K and K ′ be two configurations. We say
that K is trace included in K ′, written K ⊑K ′, when, for any
(tr, φ) ∈ trace(K) there exists (tr′, φ′) ∈ trace(K ′) such that
obs(tr) = obs(tr′) and φ ∼ φ′. They are in trace equivalence,
written K ≈K ′, when K ⊑K ′ and K ′ ⊑K.

Example 7: We may be interested in checking whether K =
(!PFh;∅) and K ′ = (!νk.(!νnI .PI ∣ !νnR.PR);∅) are in trace
equivalence. Intuitively, this equivalence models the fact that
PFh is unlinkable: each session of the protocol appears to an
attacker as if it has been initiated by a different tag, since a
given tag can perform at most one session in the idealized
scenario K. This equivalence actually holds. It is non-trivial,
and cannot be established using existing verification tools such
as ProVerif or Tamarin. The technique developed in this paper
will notably allow one to establish it automatically.

III. OUR CLASS OF PROTOCOLS AND PROPERTIES

We aim to propose sufficient conditions to ensure unlinka-
bility and anonymity for a generic class of 2-party protocols.
In this section, we define formally the class of protocols and
the security properties we are interested in.

A. A generic class of 2- party protocols

As already mentioned, we consider 2-party protocols that
are therefore made of two roles called the initiator and
responder role respectively. We assume a set L of labels that
will be used to name output actions in these roles, allowing
us to identify outputs that are performed by a same syntactic
output action. These labels have no effect on the semantics.

Definition 4: An initiator role is a ground process obtained
using the following grammar:

PI ∶∶= 0 ∣ ` ∶ out(c, u).PR

where c ∈ C, u ∈ T (Σc,N ∪X), and PR is obtained from the
grammar of responder roles:

PR ∶∶= 0
∣ in(c, y).let x = v in PI else 0
∣ in(c, y).let x = v in PI else ` ∶ out(c

′, u′)

where c, c′ ∈ C, y ∈ X , x (resp. v) is a (possibly empty)
sequence of variables in X (resp. terms in T (Σ,N ∪ X)),
u′ ∈ T (Σc,N ∪X), and ` ∈ L.

Intuitively, a role describes the actions performed by an
agent. A responder role consists of waiting for an input
and, depending on the outcome of a number of tests, the
process will continue by sending a message, or stop possibly

5

outputting an error message. An initiator behaves similarly but
begins with an output. The grammar forces to add a conditional
after each input. This is not a real restriction as it is always
possible to add trivial conditionals with empty x, v.

Example 8: Continuing our running example, PI (resp. PR)
as defined in Example 4 is an initiator (resp. responder) role,
up to the addition of trivial conditionals and distinct labels `1,
`2, and `3 to decorate the output actions that occur in the two
roles.

Then, a protocol consists of an initiator role and a responder
role that can inteact together. This is formally stated through
the notion of honest trace.

Definition 5: A trace tr (i.e. a sequence of actions) is honest
for a frame φ if τelse ∉ tr and obs(tr) is of the form

out(,w0).in(,R0).out(,w1).in(,R1). . . .

for arbitrary channel names, and such that Riφ⇓ =E wiφ⇓ for
any action in(,Ri) occurring in tr.

An honest trace is a trace in which the attacker does not
really interfere, and that allows the execution to progress
without going into an else branch that intuitively correspond
to a way to abort the protocol.

Now, among the names that occur in the roles, we need to
distinguish those that correspond to long-term data e.g. keys
(called identity names) from others that are freshly generated at
each session (called session names). We also need to introduce
the notion of public messages. A message u is public if u =E v
for some v ∈ T (Σc ∩Σpub,∅). Intuitively, a message is public
if it is equal modulo E to a term that is built using public
symbols only.

Definition 6: A protocol Π is a tuple (k,nI , nR,I,R)
where k, nI , nR are three disjoint sets of names, I (resp. R)
is an initiator (resp. responder) role such that fn(I) ⊆ k ⊔ nI
(resp. fn(R) ⊆ k ⊔ nR). Labels of I and R must be pairwise
distinct. Names k (resp. nI ⊔ nR) are called identity names
(resp. session names).

Let PΠ = νk.(νnI .I ∣ νnR.R). We assume that PΠ
trh
Ð→

(∅;φh) for some frame φh that does not contain any public
message, and some trace trh that is honest for φh.

Example 9: Let Π = (k,nI , nR, PI , PR) with PI and PR
as defined in Example 4. We have already seen that PI
is an initiator role whereas PR is a responder role. Let
PΠ = ν k.(ν nI .PI ∣ ν nR.PR). Let trh = tr, and φh = φ0

as defined in Example 5. They satisfy the requirements stated
in Definition 6, and therefore Π is a protocol according to our
definition.

B. Security properties under study

We consider both anonymity and unlinkability as defined
in [8]. Before recalling the formal definition of these two
notions, we first introduce some useful notation.

Given a protocol Π, as defined above, we denote MΠ the
process that represents an arbitrary number of agents that may

possibly execute an arbitrary number of sessions, whereas SΠ

represents an arbitrary number of agents that can at most
execute one session each. Formally, we define:

MΠ ∶= !νk.(!νnI .I ∣ !νnR.R); and

SΠ ∶= !νk.(νnI .I ∣ νnR.R).

a) Unlinkability: Informally, a protocol preserves unlink-
ability w.r.t. the roles I and R if each session of these roles
looks to an outside observer as if it has been executed with
different identity names. In other words, an ideal version of the
protocol with respect to unlinkability, would allow the roles I
andR to be executed at most once for each identity names. An
outside observer should then not be able to tell the difference
between the original protocol and the ideal version of this
protocol as formally stated below.

Definition 7: Let Π = (k,nI , nR,I,R) be a protocol. We
say that Π preserves unlinkability if MΠ ≈ SΠ.

Although unlinkability of only one role (e.g. the tag for
RFID protocols) is often considered in the literature, we
consider a stronger notion where both roles are treated sym-
metrically. We believe this is needed to not miss practical
attacks (see Sections VII-C,VII-E for a discussion).

b) Anonymity: In order to express anonymity w.r.t. some
identities id ⊆ k, we introduce the following process:

Mid
Π ∶= MΠ ∣ νk.(!νnI .I0 ∣ !νnR.R0)

where I0 = I{id↦ id0}, R0 = R{id↦ id0}, and id0 are fresh
constants from Σc∩Σpub (i.e. not used in Π). In this process, in
addition to the arbitrary number of agents that may execute an
arbitrary number of sessions, there are two agents I0 and R0

that have disclosed (part of) their identity id0 to the attacker,
and that may also execute an arbitrary number of sessions.

Definition 8: Let Π = (k,nI , nR,I,R) be a protocol, id ⊆ k.
We say that Π preserves anonymity w.r.t. id if MΠ ≈Mid

Π.

Defined in this way, anonymity ensures that an attacker
does not see the difference between the systemMid

Π (in which
id0 is present) and the original system MΠ (in which id0 is
not present). Since id0 is not present in the system MΠ, his
anonymity is trivially preserved.

c) Discussion: A flurry of alternative definitions of un-
linkability have been proposed in the literature (see, e.g. [26],
[27] for a comparison). Among the strongest ones, various
game-based formulations have been considered, both in the
computational and symbolic models. Some of these defini-
tions, unlike strong unlinkability, can be verified directly in
ProVerif using diff-equivalence [28]. However, such game-
based definitions do not imply strong unlinkability (see Ap-
pendix C for a counter-example) which leaves open the
problem of automatically verifying it.

IV. OUR APPROACH

We now define our two conditions, namely frame opacity
and well-authentication, and our main result which states that
these conditions are sufficient to ensure unlinkability and

6

anonymity. Before doing that, we shall introduce annotations
in the semantics of our processes, in order to ease their
analysis. After having stated our conditions and result, we
will illustrate that our conditions are realistic on various case
studies.

A. Annotations
We shall now define an annotated semantics whose transi-

tions are equipped with more informative actions. The anno-
tated actions will feature labels identifying which concurrent
process has performed the action. This will allow us to identify
which specific agent (with some specific identity and session
names) performed some action.

Formally, an annotation is of the form A(k,n) where A ∈
{I,R}. An annotated action is either τ or α[a] where α is
an action other than τ (possibly τthen or τelse) and a is an
annotation. Finally, an annotated process is of the form P [a]
where P is a role process and a is an annotation.

Given a protocol Π = (k,nI , nR,I,R), consider any exe-
cution of Mid

Π, MΠ or SΠ. In such an execution, τ actions
are solely used to instantiate new agents, by unfolding a
replication, breaking a parallel and choosing fresh names.
Performing these actions results in the creation of agents, that
is, instances of I and R with fresh names. Actions other
than τ (that is, input, output and conditionals) are then only
performed by those agents.

This allows us to define an annotated semantics for our
processes of interest. In that semantics, agents in the multiset
of processes are annotated by their identity (i.e. identity and
session names that have been created for them), and actions
other than τ are annotated with the identity of the agent
responsible for that action. Traces of the annotated semantics
will be denoted by ta. We also assume that labels used to
decorate output actions are added into the frame together with
the outputted term so that we can refer to them when needed.

Example 10: Considering the protocol of Example 9,
process SΠ can essentially perform the execution seen in
Example 5. The annotated execution has the trace ta given
below, where k′, n′I and n′R are fresh names, aI = I(k′, n′I)
and aR = R(k′, n′R):

ta = τ.τ.τ.τ.τ.out(cI ,w1)[aI].in(cR,w1)[aR].
out(cR,w2)[aR].in(cI ,w2)[aI].τthen[aI].
out(cI ,w3)[aI].in(cR,w3)[aR].τthen[aR]

After the initial τ actions, the annotated configuration is

({ IσI[aI], RσR[aR], SΠ) };φ0).

where σI = {k ↦ k′, nI ↦ n′I}, and σR = {k ↦ k′, nR ↦ n′R}.
The structure is preserved for the rest of the execution of ta,
with three processes in the multiset (until they become null),
two of which remaining annotated with aI and aR. The three
terms in φ0 are decorated with `1, `2 and `3 respectively.

Note that annotations of the specific agents whose identity
contains constants id0 will contain those constants (i.e. they
are of the form A`(k,n) with id0 ⊆ k).

B. Frame opacity

In light of attacks based on leakage from messages where
non-trivial relations between outputted messages are exploited
by the attacker to trace an agent, our first condition will
basically require that, in any execution, outputs are indistin-
guishable from pure randomness and therefore do not reveal
anything to the attacker. Formally, we define this notion by
comparing a frame with an ideal version of it, which is
essentially obtained by replacing each message of a frame
by a fresh name. However, in order to obtain a reasonable
condition, we must make an exception there for constructors
which can be inverted (e.g. pairs, lists, XML data) which we
call transparent and are often used in protocols without any
inherent risk.

Definition 9: A set of constructors Σt ⊆ Σc ∩Σpub is said
to be transparent if it satisfies the following conditions:
● for all f ∈ Σt of arity n, and for all 1 ≤ i ≤ n, there exists

a recipe Ri ∈ T (Σpub,{w}) such that for any message
u = f(u1, . . . , un) ∈ T (Σc,N), one has Ri{w ↦ u}⇓vi
for some vi such that vi =E ui;

● symbols of Σt do not occur in the equations of E.
In the rest of our theoretical development, we assume an

arbitrary transparent set Σt. Our results are stronger with a
larger set, but still hold if some constructor symbols fail to be
identified as transparent.

Example 11: In the signature of Example 1, the largest set
of transparent constructors is {⟨ ⟩, 0, ok}.

We now define the idealization of (the observable parts of)
messages and frames: we first replace non-transparent sub-
terms by holes (denoted by ◻), and then fill-in these holes
using distinct fresh names. The technical details of the first
step may be found in Appendix A.

Proposition 1: There exists a function

[⋅]ideal ∶ T (Σc,N) → T (Σt,{◻})

such that [u]ideal = f([u1]
ideal, . . . , [un]

ideal) whenever u =E
f(u1, . . . , un) for f ∈ Σt, and [u]ideal = ◻ otherwise. Further-
more, we have that [u]ideal = [v]ideal whenever u =E v.

Definition 10: A concretization of ut ∈ T (Σt,{◻}) is
any term obtained by replacing each hole of ut by a fresh
nonce. We denote by inst(ut) the set of all concretizations
of ut. Finally, for a message u, we let [u]nonce be the set
inst([u]ideal).

Those definitions are extended to frames in the natural way,
with the freshness condition on nonces being understood at
the level of frame and not of individual messages. As a result,
we immediately have that, for any u′ ∈ [u]nonce (resp. φ′ ∈
[φ]nonce), no nonce appears twice in u′ (resp. φ′), and therefore
for all frames ψ and φ1, φ2 ∈ [ψ]nonce, one has φ1 ∼ φ2.

Example 12: Let u be ⟨nP , enc(⟨ok, nP ⟩, k)⟩. We have that
[u]ideal = ⟨◻,◻⟩ and [u]nonce = {⟨n1, n2⟩ ∣ n1 ≠ n2 ∈ N}.

We are now ready to state our first condition:

7

Definition 11: The protocol Π ensures frame-opacity if, for
any execution (Mid

Π;∅)
ta
Ð→ (Q;φ), we have that:

1) φ ∼ ψ for some ψ ∈ [φ]nonce, and
2) for any wi, wj in dom(φ) that carry the same label

` ∈ L, we have that [w1φ]
ideal = [w2φ]

ideal.

Example 13: Consider the frame φ0 as defined in Exam-
ple 5. We have that

[φ0]
ideal = {w1 ↦ ◻,w2 ↦ ◻,w3 ↦ ◻}.

We have that φ0 ∼ φ for any φ ∈ [φ0]
nonce.

However, in case, n′R = n′I , static equivalence between φ0

and its idealized version [φ0]
nonce does not hold, and therefore

any protocol that generates such a frame is not frame opaque.

C. Well-authentication

Our second condition will prevent the attacker to obtain
some information about agents through the outcome of condi-
tionals. To do so, we will essentially require that conditionals
of I and R can only be executed successfully in honest,
intended interactions. It is unnecessary to impose such a
condition on conditionals that never leak any information,
which are found in several security protocols. We characterize
below a simple class of such conditionals, for which the
attacker will always know the outcome of the conditional
based on the past interaction.

Definition 12: A conditional let x = v in P else Q
occurring in A ∈ {I,R} is safe if v ∈ T (Σpub,{x1, . . . , xn} ∪
{u1, . . . , un}), where the xi are the variables bound by the
previous inputs of that role, and ui are the messages used in
the previous outputs of that role.

Example 14: Consider the process given below:
out(c, u).in(c, x).let z = neq(x,u) in P else Q

The conditional is used to ensure that the agent will not
accept as input the message he sent at the previous step. Such
a conditional is safe according to our definition.

Note that trivial conditionals the grammar forced us to add
are safe and will thus not get in the way of our analysis.

We can now formalize the notion of association, which
expresses that two agents are having an honest, intended
interaction (i.e. the attacker essentially did not interfere in their
communications). For an annotated trace ta and annotations a
and a′, we denote by ta∣a,a′ the subsequence of ta that consists
of actions of the form α[a] or α[a′].

Definition 13: Two agents A1(k1, n1) and A2(k2, n2) are
associated in (ta, φ) if:
● the agents are dual, i.e. A1 ≠ A2 and k1 = k2;
● the interaction ta∣A1(k1,n1),A2(k2,n2) is honest for φ.

Example 15: Continuing Example 10, the agents I(k′, n′I)
and R(k′, n′R) are associated in (ta, φ0).
We can finally state our second condition:

Definition 14: The protocol Π is well-authenticating if, for
any execution

(Mid
Π;∅)

ta.τthen[A(k,n1)]
ÐÐÐÐÐÐÐÐÐ→ (P;φ)

either the last action corresponds to a safe conditional, or there
exists A′ and n2 such that (i) A(k,n1) and A′(k,n2) are
associated in (ta, φ), and (ii) A′(k,n2) is only associated with
A(k,n1) in (ta, φ).

Intuitively, this condition does not require anything for safe
conditional as we already know that they cannot leak new
information to the attacker (he already knows their outcome).
For unsafe conditionals, condition (i) requires that whenever
an agent a evaluates them positively (i.e. he does not abort the
protocol), it must be the case that this agent a is so far having
an honest interaction with a dual agent a′. Indeed, as discussed
in introduction, it is crucial to avoid such unsafe conditionals
to be evaluated positively when the attacker is interfering
because this could leak crucial information. Condition (ii) is
needed to prevent from having executions where an agent is
associated to several agents, which would systematically break
unlinkability.

D. Soundness w.r.t. unlinkability and anonymity

Our main theorem establishes that the previous two condi-
tions are sufficient to ensure unlinkability and anonymity:

Theorem 1: Consider a protocol Π = (k,nI , nR,I,R)
and some identity names id ⊆ k. If the protocol is well-
authenticating and ensures frame opacity, then Π ensures
unlinkability and anonymity w.r.t. id.

Note that, since Mid
Π ≈ MΠ when id = ∅, we have as a

corollary that if MΠ ensures well-authentication and frame
opacity, then Π is unlinkable.

Before establishing this result in the next section, let us
comment on its practical impact. We summarize the result
of the confrontation of our method to our case studies in
Figure 3, focusing on unlinkability. Detailed descriptions of
those protocols and discussions are in Section VII. We remark
that our conditions have proven to be tight enough for all our
case studies: when a condition fails to hold, we could always
discover a real attack on unlinkability. Most of the positive
results (when unlinkability holds) and all attacks are new. Note
that all positive results were established automatically using
our tool UKano. Our tool concludes within 1 minute for the
first five examples, and it takes a bit more time (around 20
minutes) to conclude on the other examples.

V. PROOFS

We provide in this section the proof of Theorem 1. Our
main argument consists in showing that, for any execution of
Mid

Π, there is an indistinguishable execution of SΠ.
Instead of working withMid

Π,MΠ and SΠ, it will be more
convenient to work with ground configurations of the protocol
under consideration, which are annotated multisets of instances
of I and R. Intuitively, ground configurations correspond to
the annotated multisets obtained from Mid

Π, MΠ or SΠ by
launching a few sessions (performing τ actions corresponding
to replication and names creations) and then removing the
initial replicated process to keep only the instantiated agents.

We first define ground configuration annotations as sets of
annotations satisfying the following conditions:

8

Protocol Frame Well Unlink.
opacity auth.

Feldhofer 3 3 safe
Hash-Lock 3 3 safe
LAK (stateless) − 5 attack
Fixed LAK 3 3 safe
BAC 3 3 safe
BAC/PA/AA 3 3 safe
PACE (faillible dec) − 5 attack
PACE (as e.g. in [29]) − 5 attack
PACE − 5 attack
PACE with tags 3 3 safe

Fig. 3. Summary of our case studies. We note 3 for a condition automatically
checked using our tool UKano (based on ProVerif) and 5 when the condition
does not hold.

● in all annotations A(k,n), the session parameters n are
names and the identity parameters k are made of names
or constants id0;

● no name appears both as identity and session parameter
in any two annotations;

● no two annotations share a session parameter;
● two annotations either have the same identity parameters,

or do not share any identity parameter at all.
Then, a ground configuration is any annotated multiset of the
form PI ⊔ PR where

PI = { I{k ↦ l, nI ↦m}[I(l,m)] ∣ I(l,m) ∈ S }

and similarly for PR, where S is a ground configuration
annotation.

We shall say that a ground configuration P is single-session
if there is at most one agent per identity and role (i.e. if
A(k,n) and A(k,m) occur in P then n = m) and id0 does
not occur in it. Any ground configuration can be reached from
Mid

Π; single-session ground configurations are those which can
also be obtained from SΠ.

We now introduce formally the notion of renaming of agents
that we shall use in the proof, before presenting a few key
results that will finally allow us to prove our theorem.

Definition 15: A renaming of agents (denoted by ρ) is
an injective mapping from annotations to annotations which
preserves roles (i.e. initiator (resp. responder) annotations are
mapped to initiator (resp. responder) annotations) such that the
image of a ground configuration annotation is still a ground
configuration annotation.

If ta is an annotated trace whose annotations are all in
dom(ρ), we define taρ as the annotated trace obtained from
ta by replacing any annotation a by ρ(a), without changing
the actions of the trace.

If ρ(A(k,n)) = A(k′, n′), the renaming σ induced by ρ
on A(k,n) is the (injective) mapping such that σ(k) = k′ and
σ(n) = n′. Given a ground configuration P = {Ai[ai]}i whose
annotations are in dom(ρ), we define Pρ = {Aiσi[ρ(ai)]}i
where σi is the renaming induced by ρ on ai.

Note that the renaming on parameters induced by a renam-
ing of agents may conflict: this happens, for example, when
ρ(A(k,n)) = A(k1, n) and ρ(A(k,m)) = A(k2,m). This
means, in particular, that we cannot meaningfully define φρ
for a frame φ. However, given an execution ta that yields φ,
each handle w ∈ dom(φ) is uniquely associated in ta to an
output, and thus an agent aw. We can then define φρ (omitting
the mention of ta as a slight abuse of notation) as

{ w ↦ uσ ∣ w ∈ dom(φ), σ induced by ρ on aw }.

A. Control is determined by associations

We show that the outcome of tests is entirely determined by
associations. This will be useful to show that, if we modify
an execution (by renaming agents) while preserving enough
associations, then the control flow is left unchanged.

Proposition 2: Let Π be a well-authenticating protocol, and
P a ground configuration of Π such that

(P;∅)
ta.τx[A(k,n1)]
ÐÐÐÐÐÐÐÐ→ (P ′;φ)

and the last action is performed by an unsafe conditional.
We have τx = τthen iff there exists n2 such that A(k,n2) is
associated to A(k,n1) in (ta, φ).

Proof sketch. The ⇒ direction is a direct consequence
of well-authentication. For the other direction, we essen-
tially observe that (up to changes of recipes that do not
affect the resulting messages) if two agents are associated
then they are executing the honest trace of Π modulo a
renaming of parameters, thus the considered test must be
successful. Assuming that a1 = A(k,n1) and a2 = A(k,n2)
are associated in (ta, φ), we shall prove that τx = τthen. By
hypothesis, ta∣a1,a2 is honest: its observable actions are of
the form out(c1,w1).in(c

′
1,M1) . . .out(cn,wn).in(c

′
n,Mn)

with possibly an extra output at the end, such that Miφ⇓ =E
wiφ for all 1 ≤ i ≤ n. Consider ta′ obtained from ta by
replacing each recipe Mi by wi. Since this change of recipes
does not affect the resulting messages, the modified trace can
still be executed by (P;∅) and yields the same configuration
(P ′;φ). But now ta′∣a1,a2 is a self-contained execution, i.e. if
P and Q are the processes respectively annotated a1 and a2

in P , we have

({P [a1],Q[a2]};∅)
ta′∣a1,a2
ÐÐÐÐ→ (P ′′;φ′′).

In that execution, everything is deterministic (up to the equa-
tional theory) and thus the execution is actually a prefix of the
honest execution of Π, up to a renaming of parameters (note
that P and Q do not share session parameters). Thus the next
action, i.e. the conditional performed by a1, is a τthen. ◻

B. Invariance of frame idealizations

In general, a renaming of agents can break executability;
typically, mapping two dual agents to agents of different iden-
tities breaks the ability of these two agents to communicate
successfully. Even when executability is preserved, parameters
change (so do names) and thus frames are modified. However,
the last requirement of frame opacity immediately implies that

9

a renaming of agents has no effect on the resulting idealized
frames, because the renaming has no effect on the labels
associated to the agent outputs. Note that, by frame opacity
again, this implies that the frames are statically equivalent.

Proposition 3: Let Π be a protocol ensuring frame opacity.
Let P be a ground configuration of Π, ta an annotated trace,
and ρ an arbitrary renaming of agents. If (P;∅)

ta
Ð→ (P1;φ1)

and (Pρ;∅)
taρ
Ð→ (P2;φ2), then [φ1]

ideal = [φ2]
ideal.

C. A sufficient condition for preserving executability

We can now state a key lemma, identifying a class of
renamings which yields indistinguishable executions.

Definition 16: Agents a and a′ are connected in (ta, φ)
if they are associated in (ta0, φ) for some prefix ta0 of ta
such that ta∣a,a′ contains at least one τthen action of an unsafe
conditional.

Lemma 1: Let Π be a well-authenticating protocol ensuring
frame opacity, and ta be an annotated trace executed by some
ground configuration P:

(P;∅)
ta
Ð→K

Let ρ be a renaming of agents whose domain contains the
annotations of P , and such that ρ(a) and ρ(a′) are duals iff
a and a′ are connected in (ta, φ(K)). Then we have:

(Pρ;∅)
taρ
Ð→Kρ and φ(K) ∼ φ(Kρ).

Proof. We shall focus on establishing that taρ is executable;
once this is known, static equivalence is a direct consequence
of Proposition 3. We thus prove that, for any prefix ta0 of ta,
we have

(Pρ;∅)
ta0ρ
ÐÐ→K0ρ

with an additional invariant: ρ(a) and ρ(a′) are associated in
(ta0ρ,φ(K0ρ)) iff a and a′ are associated in (ta0, φ(K0))
and connected in (ta, φ(K)),

We proceed by induction on ta0. If it is empty, then ta0ρ
can also obviously be executed. For empty traces, association
coincides with duality, thus the hypothesis on ρ implies our
invariant.

Consider now a prefix of ta of the form ta0.α[a]. By
induction hypothesis we have K0 (resp. K0ρ) resulting from
the execution of ta0 by P (resp. ta0ρ by Pρ) and our invariant
satisfied for ta0. Moreover, by Proposition 3, we know that
φ(K0) ∼ φ(K0ρ). The action α performed by the process
annotated a in P may be an input, an output, or a test. In any
case, the corresponding process in Pρ can perform an action
of the same nature. To conclude, we distinguish the three kinds
of actions:
● If α is an output, we only have to check our invariant

for ta0.α[a]. It essentially follows from the fact that
association is not affected by the execution of an output:
ρ(a) and ρ(a′) are associated in (ta0.α[a])ρ iff they are
associated in ta0ρ, and similarly without ρ.

● If α is a conditional we first need to make sure that
the outcome of the test is the same for a and aρ. We
distinguish two cases, whether the conditional is safe or
not.

If the conditional is safe, then its outcome only depends
on the inputs and outputs of a that are statically equivalent
to those of ρ(a). Hence, outcome of that test is the same
for a and aρ.
If the conditional is unsafe, we make use of Proposition 2
to show that the outcome of the conditional is the same
on both sides. We can do it because our invariant, in this
case, implies that a and a′ are associated in ta0 iff ρ(a)
and ρ(a′) are associated in ta0ρ. This is simply because,
if a and a′ are associated in ta0, then they are having an
honest interaction, thus the outcome of the test will be
positive, and a and a′ are connected in ta.
In both cases (safe or unsafe) we need to make sure that
our invariant is preserved. This is because the association
between a and a′ is preserved iff the outcome of the test is
positive, which is the same before and after the renaming.

● If α is an input we immediately have that aρ can perform
α, on the same channel and with the same recipe. Let
us now check that our invariant is preserved. We only
check one direction, the other being very similar. Assume
that ρ(a) and ρ(a′) are associated in ta0ρ.α[ρ(a)]. The
renamed agents are also associated in ta0, thus a and a′

are connected in ta and associated in ta0. Now, because
α did not break the association of ρ(a) and ρ(a′) in ta0ρ,
it must be that the input message in α = in(c,M) corre-
sponds to the last output of ρ(a′) in ta0ρ. Formally, if that
last output corresponds to the handle w in φ(K0ρ)), we
have Mφ(K0ρ)⇓ =E wφ(K0ρ). But, because φ(K0) ∼
φ(K0ρ), we then also have Mφ(K0)⇓ =E wφ(K0). Thus
the association of a and a′ in ta0 carries over to ta0.α[a].

◻

D. Proof of Theorem 1

Thanks to our lemma, we can change any execution ofMid
Π

into an indistinguishable execution of SΠ, provided that an
appropriate renaming of agents exists. This is our last step
before the final proof:

Proposition 4: For any protocol and any ground configu-
ration P of the protocol such that

(P;∅)
ta
Ð→K,

there exists an agent renaming ρ satisfying the hypothesis of
Lemma 1 and such that Pρ is single-session.

Proof sketch. The renaming maps all session (resp. identity)
parameters to new distinct, fresh session (resp. identity) param-
eters, with the only constraint that connected agents are sent to
dual agents (and thus share identity parameters). The precise
definition and complete proof can be found in Section B. ◻

We can now easily conclude.
Proof of Theorem 1. It is easy to see that SΠ ⊑MΠ ⊑Mid

Π,
so it only remains to establish Mid

Π ⊑ SΠ. Consider an exe-
cution Mid

Π

ta
Ð→ K. Without loss of generality we can assume

that session creations are all performed at the beginning of ta,
i.e. it is of the form τ∗.ta′ with no occurrence of τ in ta′:
otherwise we can modify ta to satisfy this condition, without

10

changing its observable actions and the resulting frame. Thus
we have a ground configuration P of Π, such that

(P;∅)
ta′

Ð→K.

Let ρ be the renaming obtained in Proposition 4 for ta′. By
Lemma 1, ta′ρ remains executable and is indistinguishable
from ta′. Moreover, since Pρ is single-session, we have:

(SΠ;∅)
τ∗

Ð→ (Pρ ∪ SΠ;∅)
ta′ρ
ÐÐ→Kρ

This execution allows us to conclude: it has the same observ-
ables as ta, and yields a statically equivalent frame. ◻

VI. MECHANISATION

We now discuss how to delegate the verification of frame-
opacity and well-authentication to a fully automatic tool.
We show that it is possible to use ProVerif [30] to do
so. Everything that is explained in this section has been
implemented in our tool UKano [31]. This tool basically takes
as inputs a specification of a protocol in our class and, by
applying translations described in this section and by calling
ProVerif, it automatically checks our two conditions (and thus
unlinkability and anonymity).

A. Well-authentication

We first explain how to check condition (i) of well-
authentication. It is basically a conjunction of reachability
properties, which can be checked in ProVerif using correspon-
dence properties [32]. For each role A ∈ {I,R}, we associate
to each syntactical output (resp. input) of the role an event
which uniquely identifies the action. More formally, we use
events of the form OutAi(k,n,m) and InAj(k,n,m), whose
arguments contain:
● identity parameters k and session parameters n;
● the message m that is inputted or outputted.

In the same fashion, we also add events of the form
TestAk(k,n) at the beginning of each then branches.

For each conditional of the protocol, we first check if the
simple syntactical criterion of safe conditionals holds. If it
is the case we do nothing for this conditional. Otherwise,
we need to check the condition of Definition 14 (i). It can
be expressed as a correspondence property using events as
explained next. Given a role A ∈ {I,R} and a conditional
of this role whose event is TestAi(k,n), the fact that if the
conditional is positively evaluated, then the involved agent
must be associated to a dual agent, can be expressed by the
following correspondence property:

1) when the event TestAi(k,n) is fired,
2) there must be a previous event InAj(k,n,m) (InAj

corresponding to the input just before the conditional),
3) and a previous event OutBk(k,n

′,m) (OutBk corre-
sponding to the output that fed the input InAj in the
honest execution),

4) and a previous event InBl(k,n′,m′) (InBl correspond-
ing to the first input before OutBk),

5) and a previous event OutAm(k,n,m
′) (OutAm corre-

sponding to the output that fed the input InBl in the
honest execution), etc.

Note that by using the same messages m and m′ for inputs
and outputs, we express that the messages that are outputted
and inputted are equal modulo our equational theory E.

Example 16: Those kinds of correspondence properties are
better explained by showing the ProVerif code we produce.
We depict in Figure 4 the query we produce for checking
well-authentication (i) on the first conditional of PI from our
running example.

query k:key, n1:bitstring, n2:bitstring,
nt:bitstring, nr:bitstring,
mP:bitstring, mR:bitstring;
event(TestI1(k,n1)) ==>
(event(InI1(k,n1,mR)) ==>
(event(OutR1(k,n2,mR)) ==>

(event(InR1(k,n2,mP)) ==>
(event(OutI1(k,n1,mP)))

))).

Fig. 4. Example of ProVerif query for checking well-authentication

B. Frame Opacity

Assuming well-authentication (i), we now explain how to
check frame opacity using the diff-equivalence feature of
ProVerif [33]. Diff-equivalence is a property of bi-processes.
A bi-process is a process in which some terms are replaced
by bi-terms, denoted choice[u1, u2]. Intuitively, a bi-process
represents two processes. The first (resp. second) process
is obtained by considering terms occurring on the left-hand
side (resp. right-hand side) of the choice operators. Checking
the diff-equivalence of a bi-process boils down to checking
that when the two processes are executed simultaneously, the
resulting frames are in static equivalence.

Frame opacity (see Definition 11) requires that for any
execution Mid

Π

ta
Ð→ (P ;φ), one has (1) φ ∼ ψ for some

ψ ∈ [φ]nonce and (2) output with the same label produce
messages with the same idealization. It is possible to verify
both points by checking the diff-equivalence between Mid

Π

and a modified version of this process where each syntactical
output u (identified by a label) has been replaced by its static
idealization, i.e. the idealization of some message that this
output may produce.

We first explain how to determine, for each syntactical
output ` ∶ out(c, u), its static idealization uideal` . If the output
is not in an else branch, then it is executed in the honest
execution producing some message m. In that case we set
uideal` = [m]ideal. Otherwise, the output is the only action of
the else branch of some conditional executed (positively) in
the honest execution. Since we assume well-authentication (i),
it is possible to reach that else branch (and thus this output) by
choosing a recipe which breaks any association for the input

11

! new k;
! new nI; new nR; new n1; new n2;
(out(cI,choice[nI, n1]);
in(cI,x);
let merge = (let y1 = eq(pi1(dec(x,k)),nI)

in choice[y1, n1]
else n1)

in out(cI,merge) ...)
| (in(cR,z);

out(cR,choice[enc((nI,nR),k), n2]) ...)

Fig. 5. Example of ProVerif file checking frame opacity (part of Feldhofer)

just before that conditional. We can thus obtain an execution
performing this output, producing some message m, and we
set uideal` = [m]ideal.

Given a protocol Π ensuring well-authentication (i), we
check that frame opacity holds by checking diff-equivalence
for some bi-process biproc(Mid

Π). As a first approxima-
tion, the bi-process is defined from Mid

Π by replacing each
` ∶ out(c, u) by out(c, choice[u,unonce]) where unonce is
obtained from uideal` by filling its holes with fresh names.
A crucial point is to consider fresh names from messages
unonce as new session names of the bi-process so that they will
be different for each session. The only remaining problem at
this stage is that diff-equivalence in ProVerif forces the left-
hand and right-hand processes to execute exactly the same
kind of actions at the same time. This might be a problem
for conditionals that have no real meaning for the right-
hand part. We overcome this difficulty in the actual definition
of biproc(Mid

Π) by pushing conditionals into messages and
putting else branches in parallel. We do not formally explain
how to do so as it heavily depends on specificities of ProVerif,
but just give an example to illustrate this point: we show in
Figure 5 (part of) the bi-process resulting from the application
of our transformation to our running example. More examples
can be found in the ProVerif files associated to our case
studies, available online [31].

Assuming that diff-equivalence holds for biproc(Mid
Π),

frame opacity holds. Indeed, for any executionMid
Π

tr
Ð→ (P ;φ),

there exists some execution biproc(Mid
Π)

tr
Ð→ (Q, [φl, φr])

with φl ∼ φr. By construction of the bi-process, we have
φr ∈ [φl]

nonce, which implies item (1) of frame opacity, and the
idealization only depends on the output labels, which implies
item (2).

Finally, we will see that checking condition (ii) of well-
authentication is trivial once the other conditions have been
checked. More precisely, we claim that if well-authentication
(i) and frame opacity hold, then well-authentication (ii) holds
if, and only if, the first input of the responder R is not
immediately followed by an unsafe test. Indeed, if that test
of R is unsafe, condition (ii) is immediately broken by
considering that the first output of some agent I(k,n) can be
fed to the first input of two readers R(k,n1) and R(k,n2),

both of which will pass the test. Conversely, assume that the
first test of R is safe. Consider an execution where two agents
a and a′ are associated and a′ has peformed an unsafe test.
We shall prove that a is only associated to a′. Thanks to our
hypothesis, a has performed at least one input even if it is
an initiator. Let m be that input message. We know that it is
equal (modulo E) to the previous output of a′, and want to
show that it cannot be equal to any output of another agent.
Let ` be the label of the previous output of a′. By definition
of a protocol, that output label cannot correspond to a public
message in the honest trace. Thus the idealization of the output
message associated to ` in the honest trace contains at least
one hole. By condition (2) of frame opacity, the same holds
for the idealization of m. Therefore, if m had been outputted
twice, it would have lead to two different messages in the
idealized frames, violating frame opacity.

VII. CASE STUDIES

In this section we apply our proof technique to several
case studies. We rely on the ProVerif tool (as explained in
Section VI) to check automatically whether the protocol under
study satisfies frame opacity and well-authentication as defined
in Section IV. All ProVerif files can be found in [31]. We
also discuss some variations of the protocols to examine how
privacy is affected.

A. Feldhofer’s protocol

As already mentioned, this protocol falls into our generic
class of 2-party protocols. We succeeded in establishing auto-
matically frame opacity and well-authentication.

B. Hash-Lock protocol

We consider an RFID protocol, called Hash-Lock (more pre-
cisely the Improved Randomized Hash-Locks), as described
in [34] that has been designed to achieve privacy even if no
formal proof is given. The protocol relies on a hash function,
and can be informally described as follows.

Reader → Tag ∶ nR
Tag → Reader ∶ nT ,h(nR, nT , k)

This protocol falls into our generic class of 2-party protocols,
and frame opacity and well-authentication can be established
using ProVerif. We can therefore conclude that the protocol
preserves unlinkability.

C. LAK protocol

We present an RFID protocol first introduced in [35], and
we refer to the description given in [2]. To avoid traceability
attacks, the main idea is to ask the tag to generate a nonce
and to use it to send a different message at each session. We
suppose that initially, each tag has his own key k and the
reader maintains a database containing those keys.

The protocol is informally described below (h models an
hash function). In the original version (see e.g. [2]), in case
of a successful execution, both parties update the key k with
h(k) (they always store the two last keys). Our framework
does not allow one to model protocol that rely on a mutable

12

state. Therefore, we consider here a version where the key is
not updated at the end of a successful execution allowing the
key k to be reuse from one session to another.

Reader → Tag ∶ r1

Tag → Reader ∶ r2,h(r1 ⊕ r2 ⊕ k)
Reader → Tag ∶ h(h(r1 ⊕ r2 ⊕ k) ⊕ k ⊕ r1)

Actually, this protocol suffers from an authentication attack.
The protocol does not allow the reader to authenticate the
tag. This attack can be informally described as follows (and
already exists on the original version of this protocol). By
using algebraic properties of ⊕, an attacker can impersonate a
tag (I(Tag)) by injecting previously eavesdropped messages.

I(Reader) → Tag ∶ r1

Tag → I(Reader) ∶ r2, h(r1 ⊕ r2 ⊕ k)

Reader → I(Tag) ∶ r′1
I(Tag) → Reader ∶ rI2 , h(r0 ⊕ r1 ⊕ k)
Reader → I(Tag) ∶ h(h(r0 ⊕ r1 ⊕ k) ⊕ k ⊕ r

′
1)

where rI2 = r
′
1⊕ r1⊕ r2, thus h(r1⊕ r2⊕k) =E h(r′1⊕ r

I
2 ⊕k).

Due to this, the protocol does not satisfy our well-
authentication requirement. Indeed, the reader can end a
session with a tag whereas the tag has not really participated
to this session. In other words, the reader passes a test (which
does not correspond to a safe conditional) with success, and
therefore performs a τthen action whereas it has not interact
honestly with a tag.

Actually, this trace can be turned into an attack against
the unlinkability property. Indeed, by continuing the previous
trace, the reader can send a new request to the tag generating
a fresh nonce r′′1 . The attacker I(Tag) can again answer
to this new request choosing his nonce r′′2 accordingly, i.e.
r′′2 = r′′1 ⊕ r1 ⊕ r2. This execution, involving two sessions of
the reader talking to the same tag, cannot be mimicked in the
single session scenario, and corresponds to an attack trace.

More importantly, this scenario can be seen as a traceability
attack on the original version of the protocol (the stateful
version) leading to a practical attack. The attacker will first
start a session with the targeted tag by sending it a nonce r0

and storing its answer. Then, later on, he will interact with the
reader as described in the second part of the attack scenario.
Two situations may occur: either the interaction is successful
meaning that the targeted tag has not been used since its last
interaction with the attacker; or the interaction fails meaning
that the key has been updated on the reader’s side, and thus
the targeted tag has performed a session with the reader since
its last interaction with the attacker. This attack shows that the
reader may be the source of leaks exploited by the attacker
to trace a tag. This is why we advocate for the strong notion
of unlinkability we used, taking into account the reader and
considering it as important as the tag.

We may note that the same protocol was declared untrace-
able in [2] due to the fact that they have in mind a weaker
notion of unlinkability.

To avoid the algebraic attack due to the properties of the
xor operator, we may replace this operator using the pairing
operator. The resulting protocol is a 2-party protocol that
falls into our class, and for which frame opacity and well-
authentication can be established using ProVerif. Therefore,
Theorem 1 allows us to conclude that it preserves unlinkability.

D. BAC protocol and some others

An e-passport is a paper passport with an RFID chip that
stores the critical information printed on the passport. The
International Civil Aviation Organization (ICAO) standard [36]
specifies several protocols through which this information can
be accessed. Before executing the Basic Access Control (BAC)
protocol, the reader optically scans a weak secret from which
it derives two keys kE and kM that are then shared between
Tag and Reader. Then, the BAC protocol establishes a key
seed from which two sessions keys are derived. The session
keys are then used to prevent skimming and eavesdropping on
the subsequent communication with the e-passport.

In [8], two variants of the BAC protocol are described and
analyzed w.r.t. the unlinkability property as formally stated
in this paper. We refer below to these two variants as the
French version and the UK version. The UK version is claimed
unlinkable (with no formal proof) whereas an attack is reported
on the French version. To explain the difference between the
two versions, we give a description of the passport’s role in
Figure 6. The relevant point is the fact that, in case of failure,
the French version sends a different error message indicating
whether the failure occurs due to a problem when checking the
mac, or when checking the nonce. This allows the attacker to
exploit this conditional to learn if the mac key of a Tag is the
one used in a given message ⟨m,mac(m,k)⟩. Using this, he
can very easily trace a tag T by first eavesdropping an honest
interaction between the tag T and a reader.

The UK version of the BAC protocol is a 2-party protocol
according to our definition1. Note that since the two error
messages are actually identical, we can merge the two let
instructions, and therefore satisfy our definition of being
a responder role. Then, we established frame opacity and
well-authentication relying on the ProVerif tool. Therefore,
Theorem 1 allows us to conclude that unlinkability is indeed
satisfied.

Regarding the French version of this protocol, it happens
that the passport’s role is neither an initiator role, nor a
responder role according to our formal definition. Indeed, our
definition of a role, and therefore of a 2-party protocol does not
allow to model two sequences of tests that will output different
error messages in case of failure. As illustrated by the attack
on the French version of the BAC protocol, imposing this
syntactic condition is actually a good design principle w.r.t.
unlinkability.

Once the BAC protocol has been successfully executed, the
reader gains access to the information stored in the RFID tag

1We do not model the getChallenge constant message that is used to
initiate the protocol but it is clear this message does not play any role regarding
the security of the protocol.

13

Tag → Reader ∶ nT
Reader → Tag ∶ {nR, nT , kR}kE ,mackM ({nR, nT , kR}kE)
Tag → Reader ∶ {nT , nR, kT }kE ,mackM ({nT , nR, kT }kE)

The BAC protocol using Alice & Bob notation between Tag
(i.e. passport) and Reader is depicted above. A process
modeling Tag more precisely is defined below, where m =
enc(⟨nT , ⟨π1(dec(xE , kE)), kT ⟩⟩, kE).

T (kE , kM) = νnT .νkT .out(cT , nT).in(cT , x).
let xE = π1(x), xM = π2(x), ztest = eq(xM ,mac(xE , kM)) in

let z′test = eq(nT , π1(π2(dec(xE , kE)))) in
out(cT , ⟨m,mac(m,kM)⟩)
else out(errorNonce)

else out(errorMac)

We consider the signature given in Example 1 augmented
with a function symbol mac of arity 2. This is a public
constructor whose purpose is to model message authentication
code, taking as arguments the message to authenticate and the
mac key. There is no rewriting rule and no equation regarding
this symbol. We also assume public constants to model error
messages. The UK version of the protocol does not distinguish
the two cases of failure, i.e. errorMac and errorNonce are the
same constant, whereas the French version does.

Fig. 6. Description of the BAC protocol

through the Passive and Active Authentication protocols (PA
and AA). They are respectively used to prove authenticity of
the stored information and prevent cloning attacks, and may be
executed in any order. A formal description of these protocols
is available in [37]. These two protocols also fall into our
class and our conditions can be checked automatically both
for unlinkability and anonymity properties. We can also use
our technique to analyze directly the three protocols together
(i.e. the UK version of the BAC together with the PA and
AA protocols in any order). We thus prove unlinkability and
anonymity w.r.t. all private data stored in the RFID chip (name,
picture, etc.).

E. PACE protocol

The Password Authenticated Connection Establishment pro-
tocol [38] (PACE) has been proposed by the German Federal
Office for Information Security (BSI) to replace the BAC
protocol. It has been studied in the literature [29], [39], [40]
but to the best of our knowledge, no formal proof about privacy
were given. Similarly to BAC, the purpose of PACE is to
establish a secure channel based on an optically-scanned key k.
The protocol comprises four steps:

● The tag randomly chooses a random number sT , encrypts
it with the shared key k and sends the encrypted random
number to the reader (message 1).

● Both the tag and the reader perform a Diffie-Hellman
exchange (messages 2 & 3), and derive G from sT and
gnR,nT .

1. Tag → Reader ∶ {sT }k
2. Reader → Tag ∶ gnR

3. Tag → Reader ∶ gnT

4. Both parties compute G = gen(sT , g
nRnT).

5. Reader → Tag ∶ Gn
′

R

6. Tag → Reader ∶ Gn
′

T

7. Both parties compute k′ = Gn
′

Rn
′

T

8. Reader → Tag ∶ mac(Gn
′

T , k′)

9. Tag → Reader ∶ mac(Gn
′

R , k′)

Fig. 7. PACE in Alice & Bob

● The tag and the reader perform a Diffie-Hellman ex-
change based on the parameter G computed at the previ-
ous step (messages 5 & 6).

● The tag and the reader derive a session key k′ which are
confirmed by exchanging and checking the authentication
tokens (messages 8 & 9).

More specifically, a description in Alice & Bob notation is
given in Figure 7. Moreover, at step 6, the reader will not
accept as input a message which is equal to the previous
message that it has just sent.

To formalize such a protocol, we consider the following
signature:

Σc = {enc,dec,dh,mac,gen,g,ok} and Σd = {neq}

Except g and ok which are public constants, all these function
symbols are public constructor symbols of arity 2. The de-
structor neq has already be defined in Section II. The symbol
dh is used to model modular exponentiation whereas mac will
be used to model message authentication code. We consider
the equational theory E defined by the following equations:

dec(enc(x, y), y) = x
dh(dh(x, y), z) = dh(dh(x, z), y)

This protocol falls into our generic class of 2-party proto-
cols. We take

ΠPACE = (k,{sT , nT , n
′
T },{nR, n

′
R},IPACE,RPACE)

where the RPACE process (reader), described in Figure 8, is
a responder role (we do not detail the continuation R′ and
we omit trivial conditionals). The process modeling the role
IPACE can be obtained in a similar way.

Unfortunately, ProVerif cannot handle the equation above
on the dh operator (due to some termination issues). Instead,
we consider the following equational theory that ProVerif
handle, where g is a constant:

dh(dh(g, y), z) = dh(dh(g, z), y)
dh(dh(gen(x1, x2), y), z) = dh(dh(gen(x1, x2), z), y)

This is sufficient for the protocol to work properly but it
obviously lacks equations that the attacker may exploit.

Firstly, we would like to highlight an imprecision in the
official specification [38] that may lead to practical attacks
on unlinkability. As the specification seems to not forbid

14

it, we could have assumed that the decryption in G =
gen(dec(y1, k),dh(y2, nR)) is implemented in such a way
that it may fail when the key k does not match with the key
of the ciphertext y1. In that case, an attacker could eavesdrop
a first message c0 = enc(s0

T , k
0) of a certain tag T 0 and then,

in a future session, it would let the reader optically scan a tag
T but replace its challenge enc(sT , k) by c0 and wait for an
answer of the reader. If it answers, he learns that the decryption
did not fail and thus k = k0: the tag T is actually T 0. We
discovered this attack using our method since in our first
attempt to modelize the protocol, we modelized dec(⋅, ⋅) as
a destructor (that may fail) and the computation of G as an
evaluation:

let G = gen(dec(y1, k),dh(y2, nR)) in[...]

This test has to satisfy our requirement in order to declare the
protocol well-authenticating. But the conditional computing
G is not safe and does not satisfy the requirements of
Definition 14 e.g. the attack scenario described is a counter
example. The same attack scenario shows that the protocol
does not ensure unlinkability (this scenario cannot be observed
when interacting with SΠ). Similarly to the attack on LAK, we
highlight here the importance to take the reader into account
and give it as much importance as the tag in the definition of
unlinkability. Indeed, it is actually a leakage from the reader
that allows an attacker to trace a specific tag.

Second, we report on an attack2 that that we discovered
using our method on some modelizations of PACE found in
the literature [29], [39], [40]. Indeed, in all those papers, the
first conditional of the reader

let ytest = neq(y3,dh(G,n
′
R)) in

is omitted. Then the resulting protocol is not well-
authenticating. To see this, we simply have to consider a
scenario where the attacker will send to the reader the message
it has outputted at the previous step. Such an execution will
allow the reader to execute its role until the end, and therefore
execute τthen, but the resulting trace is not an honest one.
Again, this scenario can be turned into an attack against
unlinkability as explained next. As before, an attacker could

2For that different attack, we obviously consider that decryption is a
constructor, and thus cannot fail.

RPACE ∶= in(cR, y1).
out(cR,dh(g, nR)).in(cR, y2).
out(cR,dh(G,n

′
R)).in(cR, y3).

let ytest = neq(y3,dh(G,n
′
R)) in

out(cR,mac(y3, k
′));

in(cR, y4).
let y5 = eq(y4,mac(dh(G,n′R), k

′)) in R′.

where G = gen(dec(y1, k),dh(y2, nR)) and k′ = dh(y3, n
′
R).

Fig. 8. Process RPACE

eavesdrop a first message c0 = enc(s0
T , k

0) of a certain tag T 0.
Then, in a future session, it would let the reader optically scans
a tag T but replace its challenge enc(sT , k) by c0. Whatever
k is equal or k0, the reader answers gnR . The attacker then
plays the two rounds of Diffie-Hellman by reusing messages
from the reader (he actually performs reflection attacks). More
precisely, he replies with gnT = gnR , Gn

′

T = Gn
′

R and
mac(Gn

′

R , k′) = mac(Gn
′

T , k′). The crucial point is that the
attacker did not prove he knows k (he supposed to do so to
generate G at step 4) thanks to the reflection attack that is not
detected. Now, the attacker waits for the reader’s answer. If it
is positive (the process R′ is executed), he learns that k = k0:
the tag T is actually the same as T 0.

Third, we turn to PACE as properly understood from the
official specification: when the latter test is present and the
decryption may not fail. In that case, we report on a new attack.
UKano found that the last test of the reader violates well-
authentication. This is the case for the following scenario: the
message enc(sT , k) from a tag T (k,nT) is fed to two readers
R(k,n1

R),R(k,n2
R) of same identity name. Then, the attacker

just forwards messages from one reader to the other. They can
thus complete the two rounds of Diffie-Hellman (note that the
test avoiding reflection attacks holds). More importantly, the
mac-key verification phase (messages 8 and 9 from Figure 7)
goes well and the attacker observes that the last conditional
of the two readers holds. This violates well-authentication
but also unlinkability because the latter scenario cannot be
observed at all in SΠ: if the attacker makes two readers talk
to each other in SΠ they cannot complete a session because
they must have different identity names. In practice, this flaw
seems hard to exploit but it could be a real privacy concern: if
a tag initiates two readers, an attacker may learn which ones
it had initiated by forwarding messages from one to the other.
It does not seem to be realistic in the e-passport scenario, but
could be harmful in other contexts.

Finally, we propose a simple fix to the above attack
by adding tags avoiding confusions between reader’s mes-
sages and tag’s messages. It suffices to replace messages 8
and 9 from Figure 7 by respectively mac(⟨cr,G

n′T ⟩, k′) and
mac(⟨ct,G

n′R⟩, k′) where cr, ct are public constants, and
adding the corresponding checks. Frame opacity and well-
authentication can be automatically established using our tool
UKano. Therefore, PACE with tags preserves unlinkability in
the model considered here.

VIII. CONCLUSION

We have identified two conditions, namely well-
authentication and frame opacity, which imply anonymity
and unlinkability for a wide class of protocols. Additionally,
we have shown that these two conditions can be checked
automatically using the tool ProVerif. This yields a new
verification technique to check anonymity and unlinkability
for an unbounded number of sessions. It has proved
quite effective on various case studies. In particular, it
has brought first-time unlinkability proofs for the BAC

15

e-passport protocols. Our case studies also illustrated that our
methodology is useful to discover attacks against unlinkability
and anonymity as illustrated by the new attacks we found on
PACE and LAK.

In the future, we plan to develop a mature implementation
of our tool in order to make it widely accessible for the
design and study of privacy-preserving two-party protocols.
We could also try to translate our conditions into more
comprehensive guidelines helping the design of new privacy-
enhancing protocols.

We also identify a number of research problems aimed
at generalizing the impact of our technique. Currently, our
conditions are checked using ProVerif which, despite its
great flexibility, supports only a limited kind of equational
theory. In particular, full Diffie-Hellman theory or associative-
commutative theories needed for xor (widely used in RFID
protocols) are not supported. It seems likely that frame opacity
can be checked using ad-hoc methods rather than ProVerif,
which could support wider classes of theories. Concerning
well-authentication, we could consider various extensions of
ProVerif with partial support for xor [41], or other tools
such as Tamarin and Maude-NPA. We also would like to
investigate the extension of our main theorem to the case of
protocols with state. This is certainly technically challenging,
but would make it possible to model more protocols, or at
least model them more faithfully. Finally, we would like to
investigate whether our frame opacity condition could be
relaxed to allow one to deal more precisely with primitives
that are neither transparent, nor totally opaque in general (e.g.
zero-knowledge proof, signature).

REFERENCES

[1] “Iso 15408-2: Common criteria for information technology security
evaluation - part 2: Security functional components,” July 2009.

[2] T. Van Deursen and S. Radomirovic, “Attacks on rfid protocols.” IACR
Cryptology ePrint Archive, vol. 2008, p. 310, 2008.

[3] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L. Tobarra,
“Formal analysis of SAML 2.0 web browser single sign-on: breaking
the SAML-based single sign-on for Google apps,” in Proc. 6th ACM
Workshop on Formal Methods in Security Engineering (FMSE’08).
ACM, 2008, pp. 1–10.

[4] V. Cortier and B. Smyth, “Attacking and fixing Helios: An analysis of
ballot secrecy,” Journal of Computer Security, vol. 21, no. 1, pp. 89–148,
2013.

[5] A. Armando et al., “The AVANTSSAR platform for the automated
validation of trust and security of service-oriented architectures,” in
Proc. 18th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’12), vol. 7214. Springer,
2012, pp. 267–282.

[6] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The Tamarin Prover
for the Symbolic Analysis of Security Protocols,” in Proc. 25th Interna-
tional Conference on Computer Aided Verification (CAV’13), ser. LNCS,
vol. 8044. Springer, 2013, pp. 696–701.

[7] B. Blanchet, “An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules,” in Proceedings of CSFW’01. IEEE Comp. Soc. Press,
2001, pp. 82–96.

[8] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan, “Analysing unlinka-
bility and anonymity using the applied pi calculus,” in Proceedings of
CSF’10. IEEE Comp. Soc. Press, 2010.

[9] M. Bruso, K. Chatzikokolakis, and J. den Hartog, “Formal verification
of privacy for RFID systems,” in Proceedings of CSF’10, 2010.

[10] S. Delaune, S. Kremer, and M. D. Ryan, “Verifying privacy-type
properties of electronic voting protocols,” Journal of Computer Security,
no. 4, 2008.

[11] M. Backes, C. Hritcu, and M. Maffei, “Automated verification of remote
electronic voting protocols in the applied pi-calculus,” in Proceedings of
the 21st IEEE Computer Security Foundations Symposium, CSF 2008,
Pittsburgh, Pennsylvania, 23-25 June 2008. IEEE Computer Society,
2008, pp. 195–209.

[12] N. Dong, H. Jonker, and J. Pang, “Formal analysis of privacy in an
ehealth protocol,” in Computer Security–ESORICS 2012. Springer,
2012, pp. 325–342.

[13] M. Arapinis, L. Mancini, E. Ritter, M. Ryan, N. Golde, K. Redon,
and R. Borgaonkar, “New privacy issues in mobile telephony: fix and
verification,” in Proceedings of the 2012 ACM conference on Computer
and communications security. ACM, 2012, pp. 205–216.

[14] M. Arapinis, L. I. Mancini, E. Ritter, and M. Ryan, “Privacy through
pseudonymity in mobile telephony systems.” in NDSS, 2014.

[15] R. Chrétien, V. Cortier, and S. Delaune, “From security protocols
to pushdown automata,” ACM Transactions on Computational Logic,
vol. 17, no. 1:3, Sep. 2015.

[16] M. Baudet, “Deciding security of protocols against off-line guessing
attacks,” in Proc. 12th Conference on Computer and Communications
Security. ACM, 2005.

[17] V. Cheval, H. Comon-Lundh, and S. Delaune, “Trace equivalence deci-
sion: Negative tests and non-determinism,” in Proceedings of CCS’11.
ACM Press, 2011.

[18] V. Cheval and B. Blanchet, “Proving more observational equivalences
with proverif,” in Principles of Security and Trust. Springer, 2013, pp.
226–246.

[19] D. Basin, J. Dreier, and R. Sasse, “Automated symbolic proofs of
observational equivalence,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015,
pp. 1144–1155.

[20] S. Santiago, S. Escobar, C. Meadows, and J. Meseguer, “A formal
definition of protocol indistinguishability and its verification using
maude-npa,” in Security and Trust Management. Springer, 2014, pp.
162–177.

[21] M. Abadi and C. Fournet, “Mobile values, new names, and secure
communication,” in Proceedings of POPL’01. ACM Press, 2001.

[22] B. Blanchet, M. Abadi, and C. Fournet, “Automated verification of
selected equivalences for security protocols,” Journal of Logic and
Algebraic Programming, 2008.

[23] V. Cortier, S. Delaune, and P. Lafourcade, “A survey of algebraic prop-
erties used in cryptographic protocols,” Journal of Computer Security,
vol. 14, no. 1, pp. 1–43, 2006.

[24] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong authentication
for rfid systems using the aes algorithm,” in Cryptographic Hardware
and Embedded Systems-CHES 2004. Springer, 2004, pp. 357–370.

[25] S. Delaune, S. Kremer, and M. D. Ryan, “Verifying privacy-type prop-
erties of electronic voting protocols: A taster,” in Towards Trustworthy
Elections – New Directions in Electronic Voting. Springer, 2010, vol.
6000.

[26] M. Brusó, K. Chatzikokolakis, S. Etalle, and J. Den Hartog, “Linking
unlinkability,” in Trustworthy Global Computing. Springer, 2012, pp.
129–144.

[27] M. Brusó, “Dissecting unlinkability,” Ph.D. dissertation, Technische
Universiteit Eindhoven, 2014.

[28] M. Backes, M. Maffei, and D. Unruh, “Zero-knowledge in the applied pi-
calculus and automated verification of the direct anonymous attestation
protocol,” in Security and Privacy, 2008. SP 2008. IEEE Symposium on.
IEEE, 2008, pp. 202–215.

[29] J. Bender, M. Fischlin, and D. Kügler, “Security analysis of the pace
key-agreement protocol,” in Information Security. Springer, 2009, pp.
33–48.

[30] “Proverif: Cryptographic protocol verifier in the formal model.”
[Online]. Available: http://prosecco.gforge.inria.fr/personal/bblanche/
proverif/

[31] “Webpage hosting our tool ukano and our case studies.” [Online].
Available: https://sites.google.com/site/ukanosp/

[32] M. Abadi and B. Blanchet, “Computer-assisted verification of a protocol
for certified email,” in Static Analysis. Springer, 2003, pp. 316–335.

[33] B. Blanchet, M. Abadi, and C. Fournet, “Automated verification of
selected equivalences for security protocols,” in Logic in Computer
Science, 2005. LICS 2005. Proceedings. 20th Annual IEEE Symposium
on. IEEE, 2005, pp. 331–340.

16

[34] A. Juels and S. A. Weis, “Defining strong privacy for rfid,” ACM
Transactions on Information and System Security (TISSEC), vol. 13,
no. 1, p. 7, 2009.

[35] S. Lee, T. Asano, and K. Kim, “Rfid mutual authentication scheme based
on synchronized secret information,” in Symposium on cryptography and
information security, 2006.

[36] “PKI for machine readable travel documents offering ICC read-only
access,” International Civil Aviation Organization, Tech. Rep., 2004.

[37] M. Arapinis, V. Cheval, and S. Delaune, “Verifying privacy-type prop-
erties in a modular way,” in Proceedings of the 25th IEEE Computer
Security Foundations Symposium (CSF’12). Cambridge Massachusetts,
USA: IEEE Computer Society Press, Jun. 2012, pp. 95–109.

[38] “Technical advisory group on machine readable travel docu-
ments (tag/mrtd).” [Online]. Available: http://www.icao.int/Meetings/
TAG-MRTD/TagMrtd22/TAG-MRTD-22 WP05.pdf

[39] J. Bender, Ö. Dagdelen, M. Fischlin, and D. Kügler, “The pace aa
protocol for machine readable travel documents, and its security,” in
Financial Cryptography and Data Security. Springer, 2012, pp. 344–
358.

[40] L. Cheikhrouhou, W. Stephan, Ö. Dagdelen, M. Fischlin, and M. Ull-
mann, “Merging the cryptographic security analysis and the algebraic-
logic security proof of pace.” in Sicherheit, 2012, pp. 83–94.

[41] R. Küsters and T. Truderung, “Reducing protocol analysis with XOR
to the xor-free case in the horn theory based approach,” J. Autom.
Reasoning, vol. 46, no. 3-4, pp. 325–352, 2011.

APPENDIX A
PROOFS OF SECTION IV

We detail below how to obtain Proposition 1.
Definition 17: Let u ∈ T (Σc,N). We define h0(u) as the

maximum number of nested transparent function symbols in
u. Then, ht(u) is the minimum of all h0(v) for u =E v.

Proposition 5: For any u =E f(u1, . . . , un) with f ∈ Σt, we
have ht(u) > ht(ui) for all i.

Proof. We show that, for all v =E u, h0(v) > ht(ui). Since
v =E f(u1, . . . , un), and since the equational theory cannot
involve f by definition of Σt, we have v = f(v1, . . . , vn) with
vi =E ui. We conclude: ht(ui) = ht(vi) ≤ h0(vi) < h0(v). ◻

Definition 18: The relation Rideal ∶ T (Σc,N)×T (Σt,{◻})
is the least relation such that:

● uRideal f(t1, . . . , tn) if there exist f ∈ Σt and messages
ui for 1 ≤ i ≤ n = ar(f), such that u =E f(u1, . . . , un) and
uiR

ideal ti for all 1 ≤ i ≤ n;
● uRideal ◻ otherwise.

Proposition 6: For all u there exists a v such that uRideal v.
Furthermore, whenever we have u =E u′, uRideal v and
u′Rideal v′, it must be that v = v′.

Proof. We proceed by induction over ht(u). If u cannot
be equated to a message with a transparent function symbol
at toplevel, then the result is obvious with v = ◻. Otherwise,
assume u =E f(u1, . . . , un). By induction hypothesis we obtain
uiR

ideal vi for all i, and thus uRideal f(v1, . . . , vn). Consider
now u′, v and v′ such that u =E u′, uRideal v and u′Rideal v′.
Observe that u′ =E f′(u′1, . . . , u

′
m) is only possible if f = f′,

n = m and ui =E u′i for all i. Thus v = f(v1, . . . , vn) and
v′ = f(v′1, . . . , v

′
n). Moreover, vi = v′i by induction hypothesis

on ui, which concludes the proof. ◻

The above results immediately allow to show Proposition 1,
by defining [u]ideal to be the unique v such that uRideal v. The
last point is an easy consequence of the definition of [⋅]nonce.

APPENDIX B
PROOFS OF SECTION V

Proposition 4: For any protocol and any ground configu-
ration P of the protocol such that

(P;∅)
ta
Ð→K,

there exists an agent renaming ρ satisfying the hypothesis of
Lemma 1 and such that Pρ is single-session.

Proof. We first define Co(k) as the set of all (n1, n2)
such that I(k,n1) and R(k,n2) are connected in (ta, φ(K)).
Next, we assume for each (k,n1, n2) a vector of names
kc(k,n1, n2) of the length of identity parameters of our proto-
cols. These name vectors are assumed to be all disjoint and not
containing any name already occurring in the annotations of
P . This gives us a mean to pick fresh identity parameters for
each combination of k,n1, n2 taken from the annotations of
P . We also assume name vectors k1(k,n1) which are again
disjoint and not overlapping with annotations of P and any
kc(k′, n′1, n

′
2), and similarly for k2(k,n2) which should also

not overlap with k1 vectors. These last two collections of
identity parameters will be used to give fresh identities to
initiator and responder agents, independently. We then define
ρ as follows:

I(k,n1) ↦ I(kc(k,n1, n2), n1)

if (n1, n2) ∈ Co(k)

↦ I(k1(k,n1), n1) otherwise
R(k,n2) ↦ R(kc(k,n1, n2), n2)

if (n1, n2) ∈ Co(k)

↦ R(k2(k,n2), n2) otherwise

By construction, agents that were connected in ta are renamed
into agents sharing same identity names kc(k,n1, n2). Other
agents have distinct, fresh identities. Finally, we have not used
id0, and the image of ρ obviously has at most one session per
identity and role: our renaming is single-session. ◻

APPENDIX C
EXAMPLE

In this section, we give a protocol that does not preserve
unlinkability according to the defintion we used in this paper
(see Definition 7). However, it appears that this protocol
would be considered secure w.r.t. a game-based definition
of unlinkability suitable for direct verification using diff-
equivalence.

Description of the protocol: The protocol can be pre-
sented in Alice & Bob notation as follows:

1. T → R ∶ {nT }k
2. R → T ∶ {nR}k
3. T → R ∶ {nR ⊕ nT }k

The protocol is between a tag T and a reader R that share a
symmetric key k. Moreover, we assume that T aborts in case
the nonce nR he receives is equal to the nonce nT he sent
previously (in the same session). We consider the term algebra

17

introduced in Example 1, and the equational theory introduced
in Example 2 with in addition the following equation:

dec(enc(x, y), y) = x

Attack against unlinkability (Definition 7): To show that
the property formally stated in Definition 7 does not hold,
consider the following scenario.

1. T → R ∶ {nT }k
1′. T → R ∶ {n′T }k

2. I(R) → T ∶ {n′T }k
2′. I(R) → T ∶ {nT }k

3. T → R ∶ {n′T ⊕ nT }k
3′. T → R ∶ {nT ⊕ n

′
T }k

A same tag starts two sessions and therefore generates two
nonces nT and n′T . The attacker answers to these requests
by sending back the two encrypted messages to the tag who
will accept both of them, and sends on the network two
messages that are actually equal (the exclusive or operator
is commutative). Therefore the attacker observes a test (the
equality between the two last messages), and this equality
has no counterpart in the single session scenario. In practice,
this can be very harmful when e.g. tags are distributed among
distinct groups (e.g. for access control policies) sharing each
the same key k. By interacting with two tags, the attacker
would then be able to know if they belong to the same group.

Game-based definition: We will not give any formal
definition but instead briefly give its general idea. In such a
definition, the two scenarios under study will be made of two
phases:

1) Learning phase: During this phase, the attacker can
trigger an arbitrary number of sessions of the two roles
(namely tag and reader) with the identity of his choice.
This allows him to gain some knowledge.

2) Guessing phase: This phase starts once the previous one
is finished. The challenger chooses an identity x among
two identities id1 and id2, and the attacker is allowed to
interact again with x (an arbitrary number of times).

The attacker wins the game if he can infer whether x is id1 or
id2, i.e. if he is able to distinguish between these two scenarios.

This is typically the kind of scenario that can be checked
relying on the diff-equivalence notion implemented in several
automatic tool (e.g. ProVerif, Tamarin). However, here we
failed to prove it using ProVerif due to the ⊕ operator that
ProVerif can not handle. The attack scenario described in the
previous paragraph can be done in the guessing phase with tag
id1, and can be mimicked on the other side using two sessions
of the tag with identity id2. Actually, we believe that these two
scenarios are indistinguishable, i.e. the resulting processes are
in trace equivalence.

This example shows that game-based variants of unlink-
ability that are amenable to automation relying on the diff-
equivalence notion is rather weak.

18

