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Abstract

Model-driven development (MDD) is a software engineering discipline which suggests that
software development should be done at the modeling level and that applications should be
generated from models. The MDD approach is becoming more mature in time with new
techniques and tools being defined to support it, also as a result of intensive research in
this field. A key concept of MDD is a model transformation that generates applications
from models. Since models are “first-class” citzens in MDD their verification and validation
is an important task. Of course, also are model transformations. In this paper we apply
the transformation contract approach to model transformations. A transformation contract
is a specification of what a particular model transformation must implement and essentially
specifies a relation between metamodels, the transformation metamodel, and properties that
such a relation must satisfy, such as invariants in the Object Constraint Language (OCL). A
transformation contract is said to be correct when a source model in conformance with its
metamodel implies in a target model in conformance with the target metamodel and the joined
model of source and target is in conformance with the transformation metamodel, where model
conformance means that all the properties of a metamodel hold in a model. We have defined
a design pattern that enforces transformation contract correction over model transformations,
that is, a model transformation implemented following our transformation contract will be
verified and validated following transformation contracts correctness. We have also developed
model transformations using our transformation contract design pattern. The UMLToEJB
model transformation generates application code in Enterprise Java Beans, from class diagrams
described in the Unified Modeling Language. This paper reports on our proposed design
pattern, the design of UMLToEJB, and illustrates how our approach may help different actors
in MDD with transformation contracts, including model transformation designers, to identify
erroneous situations.

1 Introduction

Model-driven development (MDD, e.g. [1]) is a software engineering discipline that
considers models as live artifacts in the development process. By live artifacts we
mean that models are not used for documentation purposes only but actually as input
to software tools that may operate on them and produce other artifacts. Such artifacts
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maybe compilable source-code or other models, in the same or different abstraction
levels than the source model.

A key concept in MDD is a metamodel which defines the syntax for a modeling
language. A model is said to be syntactically well-formed (or simply well-formed)
with respect to a metamodel when it follows the structure defined by the given meta-
model. In algebraic terms, a model is well-formed with respect to a given metamodel
M when it is an instance of the signature induced by M. A stronger relationship
between a model and a metamodel is the so-called conformance relation. A model m
is said to be in conformance with a given metamodel M iff m is well-formed w.r.t.
M and the properties of the metamodel M hold in m. An example property of the
metamodel of class diagrams in the Unified Modeling Language (UML) [2] is that
any given inheritance chain in a model may not have cycles. Hence, a class model
m is only considered in conformance with the metamodel of UML class diagrams if
m does not have cycles in its inheritance hierarchies. One way to understand such
properties is to specify them as invariants over a metamodel.

Another key concept in MDD is a model transformation. Model transformations
may be defined with different purposes such as code-generation or reverse engineer-
ing, understood as model generation from code. A model transformation is a function
among many metamodels. In this paper, we consider a subclass of model transfor-
mations called unidirectional exogenous model-to-model transformations [3], that is,
model transformations between two different metamodels, labeled source and target,
that has to be applied from the source to the target. An unidirectional exogenous
model-to-model transformation is essentially a function that relates elements from
the two given metamodels.

Models are “first-class citizens” in MDD, therefore, their verification and vali-
dation is an important task. By verification we mean to make sure that a model
has general properties such as consistency [4], which guarantees that properties of a
model are satisfiable and therefore it may be instantiated, or temporal properties [5]
related to behavioral aspects of a model. By validation we mean to check that a set
of invariants [6] hold in a particular scenario or model instance, such as checking for
cycles in a class hierarchy in a particular class diagram when it is understood as an
instance of the UML metamodel. These verification and validation techniques may
also be applied to model transformations when the specification of a model transfor-
mation is also understood as a model, called transformation model in [7] and joined
metamodel in [8]. We continue the work in [8] by specifing a model transformation
as a the join modeloperation on the source and target metamodels related by a model
transformation. Verification and validation of a model transformation means to make
sure that the join of the model instances of the source and target metamodels, related
by the model transformation, is in conformance with the given metamodel. We call
the transformation contract (e.g. [8] and [9]) of the model transformation the trans-
formation metamodel and the properties that constrain it. Therefore, correctness of a
model transformation is stated by m = Iny = ((m' = I )A((m X m') = Tywanr))
where ¢ € () denotes that the model ¢ is in conformance with the metamodel @),
q | Ig denotes that the properties of @ hold in ¢, @ X Q' denotes the join of
metamodels Q and Q" and g X ¢’ denotes the join of the models ¢ and ¢'.

The main contribution of this paper is a design pattern that enforces transfor-



mation contracts correctness over model transformations implemented following our
approach.

Problem statement and paper contribution Our research is applied on the
problem of software verification. We apply a technique for the specification, verifi-
cation and implementation of model transformations called transformation contracts.
A transformation contract is a relation between the domains that a transformation
relates together with properties that such a relation must fulfill, where a domain is
defined as the metamodel of the modeling language associated with the domain to-
gether with properties that model instances of the given metamodel must fulfill. As
a matter of fact, a model transformation is understood as a domain in the trans-
formation contracts approach. The contribution of this paper is a realization of the
transformation contracts approach, in the form of a design pattern, that enforces all
the verification steps that transformation contracts-based model transformation must
implement.

This paper also reports on the model transformation UMLToEJB that generates
CRUD (create, read, update and delete) code in Sun’s Enterprise Java Beans from
UML class diagrams. We describe its architecture, as an application of the transfor-
mation contract design pattern, and explain how transformation contracts may help
to identify errors in a model transformation implementation. The tool! is available
for download at http://1lse.ic.uff.br/.

The remainder of this paper is organized as follows. In Section 2 we detail
the MDD process used in this paper and the concept of transformation contracts.
Section 3 discusses how executable invariants may be useful for different types of
users. Section 4 reports on the transformation contract design pattern for model
transformation implementations and our tool. Section 5 discusses related work. We
conclude this paper in Section 6 with our final remarks.

2 MDD with transformation contracts

Model-driven development is an approach for software development where models
of a system are live artifacts in the process. A model is not only a passive document
that, for instance, represents a system’s design, but it may actually be used as input to
a software tool that transforms it into compilable source-code, in a so-called model-
to-code transformation [3]. One such example is the model transformation from class
diagrams in the UML into a database description written in the Structured Query
Language (SQL).

Model transformations relate languages, such as UML and SQL. If one decides
to work with the standards of the Object Management Group (OMG) and take ad-
vantage of the interoperability gained from using OMG’s standards, the syntax of

! We have also implemented another model transformation following the ideas reported in this paper.
SecureUMLtoAAC is a model transformation from access control policies, specified in SecureUML
modeling language, to Aspect] code. Due to space constrains, this experiment is not described in this paper.
The interested reader may download the tool and its documentation from http://lse.ic.uff.br/. A
technical report is also available from http://www.ic.uff.br/~cbraga/mda/tr.pdf.
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such languages may be described in the form of an UML class diagram.> Such a
model is called a metamodel since it describes the syntax that models should follow.
A model that is an instance of a metamodel is said well-formed with respect to the
metamodel. The notion of well-formedness may be understood as the pertinence of
a program with respect to the programming language it is written in, that is, a model
must be well-formed w.r.t. its metamodel as a program written in a language L must
be well-formed with respect to L’s syntax. For example, UML has a metamodel and
any UML class diagram may be seen as an instance of the UML metamodel that
should be well-formed with respect to it. Figure 1 shows a simplified version of
the UML metamodel, improved from [1]. The metamodel essentially represents the
notions of datatypes, classes, attributes, operations, interfaces, association ends, their
inter-relations and their typing relations.

UML is an extensible modeling language. Any given UML model element may be
tagged or stereotyped, using UML terminology, in order to denote a new entity named
after the tag’s name. This is “UML’s way” of defining domain specific modeling
languages. We may now, once again, draw a relationship between model-driven
concepts and programming languages concepts. One may understand a UML profile,
which is essentially a UML extension consisting of a set of stereotypes and other
extension elements, as the concrete syntax of a modeling language M. The metamodel
of M may be understood as its abstract syntax. With that understanding in mind, the
first step that a model transformation should do when transforming an UML model
m written using an UML profile that represents a modeling language M is to map
m into an instance of the metamodel of M. This step is similar to language parsing
in a compiler when the abstract syntax tree of a program p is built according to
the grammar of the programming language is written. Here we compare a program
to a model and a metamodel to the grammar of a programming language. Even
though stereotypes are not used the in the experiment we describe in this paper it
is an important part of our model-driven development process and is used in the
SecureUMLtoAAC tool we mentioned in Footnote 1 in Section 1. In our experiment
described in Section 4.2 we do not use any profiles. The concrete syntax there is
XMI [10], the OMG standard for model interoperability, and the parsing function
creates an instance of the UML metamodel from a given class diagram.

Up to this point, the model-driven development process we are describing in this
paper can be drawn as follows

parse ,
m e Msconcrete syntax ——> M € MSMetamodel
T

pretty print ,
_—

ne MtMetamodel n e Mtconcrete syntax

where m,m’,n,n’ are models; Ms and Mt represent the source and target meta-
models of a model transformation 7; we write m € M to denote that the model
m is well-formed with respect to M; parse is the mapping that given a model m

2 Of course, the Backus-Naur Form, or BNF for short, could also be used for such descriptions but the
main point here is to interoperate and use all the efforts based on such standards.



written in the concrete syntax of a modeling language M generates an abstract syntax
version m’ of m, where m’ is well-formed w.r.t. M’s metamodel; pretty print is the
inverse mapping of parse; Majetamodel T€PTEsents the abstract syntax for a modeling
language M, represented as an UML class model; and M concrete syntas TEpresents
the concrete syntax, described in textual form (could be the concrete syntax of a
programming language for instance), for a modeling language M.

It is not always true, however, that any well-formed model with respect to a given
metamodel is in conformance with it. For instance, a UML class model m with an
inheritance chain that has a cycle may be syntactically well-formed with respect to
UMPL’s metamodel but it is not in conformance with it. The reason is that there is
an invariant in the UML metamodel that specifies that there should be no cycles in
any inheritance chain. Since the invariant does not hold in m, the model m is not
in conformance with UML’s metamodel. The conformance relation between a model
m and a metamodel M is given by well-formedness of m w.r.t. M and validity
of the invariants of M in m, assuming M consistent, that is, assuming that M has
instances.> The conformance relation between a metamodel and an instance of it is
similar to the concept of type checking in programming languages. A syntactically
correct program p w.r.t. a language L is ill-typed if the typing rules of L do not
apply to p. It should be noted that invariants specified in OCL is one possibility
for the specification of such properties. Other properties such as model consistency,
which is essentially boolean satisfiability of a model with its constraints, or temporal
formulae representing dynamic properties of a model, could also be specified and
checked within our approach. However, they are out of the scope of this paper.

One way to specify such invariants is using the Object Constraint Language
(OCL) [11]. Essentially, OCL has several constructs for manipulating collections
of typed model elements in a model m, navigating through m’s relationships, defin-
ing operations and invariants in M, where M is the metamodel of m. For example,
the invariant noCyclesinClassHierarchy below checks for the presence of cycles in
class hierarchies by verifying, for each class ¢, if ¢ is not included in the transitive
closure of the inheritsFrom relationship, in the UML metamodel, that represents the
inheritance hierarchy. (This invariant is one of the invariants implemented in our tool
in Section 4.2.) The invariant uses two operations, namely superPlus and superPlu-
sOnSet, to calculate the transitive closure. The operation superPlusOnSet does the
actual calculation by a recursive call on each element of the collection yielded by the
inheritsFrom relation for each class c¢. Regarding OCL syntax, the keyword context
defines the type of objects that the invariant should be applied to. The keyword inv
defines an invariant. The informal meaning of the remaining OCL constructors in
the example are as follows: forAll iterates over the elements of a given collection
checking for a given predicate; excludes checks if a given collection does not contain
a given element; collects creates a collection of objects such that a given predicate
holds; flatten receives a set which may have other sets as elements and produces a
flatten set of objects from its set elements; asSer casts a collection into a set; and
including includes a given element in a given collection. The user-defined function

3 In this paper, we assume every model consistent. We refer the interested reader to [4] for a discussion
on this subject.



emptySet constructs an empty set of objects of type Class.

context Class inv noCyclesinClassHierarchy: self.inheritsFrom—>forAll(r|r.superPlus()
—>excludes(self))

context Class::superPlus():Set(Class) body: self.superPlusOnSet(self.emptySet())

context Class::superPlusOnSet(rs:Set(Class)):Set(Class) body:

if self.inheritsFrom—>notEmpty() and rs—>excludes(self)

then self.inheritsFrom—>collect(c : Class | c.superPlusOnSet(rs—>including(self)))—>
flatten()—>asSet()

else rs—>including(self) endif

OCL can be used to automatically validate UML models. Considering an imple-
mentation of an OCL interpreter, such as [12], one may actually apply the invariants
of a metamodel M to a syntactically well-formed model m w.r.t. M to guarantee
m’s conformance with respect to M. Therefore, before applying a model transfor-
mation to a given model m, one must make sure that m is in conformance with its
metamodel M (such as in Figure 1), that is, m is syntactically well-formed w.r.t. M
and all invariants in M (such as noCyclesinClassHierarchy) hold in m.

The MDD process adopted in this paper when invariants are considered may be
drawn as follows

e /
parse m € MSMetamodelv

m € Msconcrete syntax /
Y m ': I

n € Mt pretamodel, Pretty print le M
T >N € tconcrete syntax
n = I,

where [, are the invariants of the metamodel of the modeling language M and
m |= I means that all the invariants in /), hold in the model m € M.

We are now ready to explain the concept of transformation contracts and how it
fits into the MDD approach considered in this paper.

A transformation contract is a specification of what a model transformation should
do. It is written in the form of invariants that must hold in the joined metamodel of the
source and target languages related by the given model transformation. An example
invariant in a transformation contract for a model transformation 7 : UML — SQL is
that for each class in m € UML there must exist a table ¢ in 7(m) € SQL.* By joined
metamodel we mean a metamodel M resulting from a model operation M7 X4 Mo
on two given metamodels M7 and Mo, that extends the metamodels M7 and My by:
(i) exclusively uniting all the metamodel elements of M; and Ms; (ii) preserving the
invariants of M; and M, that is, for all invariants « € Ips;, j € {1,2}, if ¢ holds
in M; implies that ¢ holds in M and no other invariant £ # ¢ holds in M; as a
result of M; X Ms>; and (iii) declaring associations a € A, such that A is disjoint

4 A more precise model transformation would consider a stereotype marking a given class in m as
persistent. However, for pedagogical purposes, let us consider a simpler model transformation without
such markings, hence assuming all classes persistent.

5n algebraic terms [13], M extends the metamodels M7 and Mo and adds “no confusion”, that is,
preserves the included model.



with the associations of M; and M, and each a may relate classes in M; and M,.
A transformation contract is the metamodel M = M; X M5 called transformation
metamodel and the set of invariants I,;.

The MDD process adopted in this paper when transformation contracts are consid-
ered may be drawn as follows where M = Ms X4 Mt, k € M, and k = (m X, n),
where L is a set of links [ instances of the associations in A.

We continue the paper in Section 3 showing the usefulness of the invariants
mentioned in this section for validation purposes and for different types of users of
our approach when they are executed.

3 Invariants as live assertions

A transformation contract may be executed for each application of a model transforma-
tion that implements it in the same way it is done for the invariants of a metalanguage
(such as noCyclesinClassHierarchy). Hence, model transformations may be validated
using transformation contracts as live assertions when an OCL interpreter is used in
the implementation of a model transformation. This approach is similar to Meyer’s
Design by Contract [14] (DbC). In DbC, programs are annotated with assertions and
raise exceptions when they fail. Here, a model transformation terminates abruptly
when an OCL assertion fails. Therefore, transformation contracts have the same ben-
efits for the transformation developer as DbC provides for a programmer that adopts
it.

In this work we consider a model-driven development process as depicted in
Figure 3 and identify three types of actors that may be benefited by a model transfor-
mation implemented using our transformation contract-based approach: (i) designers
of modeling languages, (ii) developers of a model transformation and (iii) users of a
model transformation. During the development process, an actor may identify prob-
lems in an artifact, thanks to the execution of invariants defined by him or her or
other actors of the process.

The validation process can be divided in two steps: (i) an actor identifies a
problem on his or hers own artifact, such as a modeling language designer checking
the invariants that he or she designed or (ii) an actor identifies a problem on an
artifact designed by a previous actor in the development process, such as a model
transformation designer reporting a problem in a modeling language while testing the
model transformation he or she is developing. Moreover, each actor may encounter
the following situations: (i) a model is ill-formed with respect to its metamodel,
(i) a model is well-formed with respect o its metamodel and is in conformance
with the properties of its metamodel, and (iii) a model is well-formed and is not in
conformance with the properties of its metamodel.

Traceability is the ability to relate model elements in different models that are
potentially in different abstraction levels. This ability plays an important role in
the implementation of model transformations since it helps the identification of the
different errors listed in the previous paragraph. Our approach provides a form of
traceability, which we call invariant-based traceability, that identifies model elements
that make a property fail during the verification or validation of a given model. For



the case when the properties of a metamodel are described in OCL, which is the focus
of this paper, when an invariant fails in a model instance of the given metamodel, we
select the objects of the type of the context of the failing invariant that do not have
the property specified by the failing invariant. This allows the actor playing with the
failing model to either submit a report to another actor with the failing scenario or to
query the model about the failing objects, in a form of model debugging. It should
be noted that other forms of traceability are required for different formalizations of
the properties of a metamodel, such as model consistency in Description Logic or
behavior properties as temporal formulae mentioned in the introduction of this paper.
It is, however, out of the scope of this paper to discuss them.

In Section 4.2.6 we illustrate, in the context of model-driven development of
distributed systems using Enteprise Java Beans, how our approach may help identify
the different situations described in this section using traceability.

We continue this paper in Section 4, discussing how we have used the concepts
in this section to implement a general model transformation design pattern that im-
plements the structure that implements the structure and behavior of transformation
contracts and a model transformer from a subset of UML class models to Oracle/Sun’s
Enterprise Java Beans.

4 Transformation contracts in practice

The objective of this section is twofold. In Section 4.1 we introduce a design pattern
for the rigorous development of model transformations following the transformation
contracts approach. In Section 4.2 we apply in the development of a model transfor-
mation from UML class diagrams to Java code with Enterprise Java Beans support,
following the model transformation specified in [1].

4.1 A design pattern for model transformations

A transformation contract is a specification of what a model transformation should
do. It is written in the form of invariants that must hold in the joined metamodel of
the source and target languages related by the given model transformation.

From our presentation of model transformations with transformation contracts
in Section 2 one identifies the following basic concepts: metamodel, metamodel
invariants, transformation metamodel, transformation metamodel invariants, model
parsing and model pretty printing.

We propose a design pattern to enforce the transformation process described by
Figure 2 in Section 2. Its main components and their relationships are depicted in
Figure 4.

The meaning of each class in the abstract architecture is as follows. The class
ModelManager provides an interface for declaring class diagrams, object diagrams,
invariants, and querying object diagrams. It declares several insertion methods for
class diagrams model elements (such as insertClass) and object diagram model ele-
ments (such as insertObject) along with insertion methods for invariants and opera-
tions on class diagrams.



The class Domain represents a modeling language and allows for the instantiation
and manipulation of models which are instances of the domain’s metamodel. It
declares methods for: (i) the creation of the modeling language’s metamodel on the
ModelManager instance associated with a domain (method createMetamodel), (ii) the
creation of a model in the modeling language’s concrete syntax as an instance of the
modeling language’s metamodel on the ModelManager instance associated with the
domain (method parse), (iii) generation of the concrete syntax of a model represented
as an instance of the domain’s metamodel, stored in the the ModelManager instance
associated with the domain (method pretty-print), and (iv) validation of a model as an
instance of the domain’s metamodel, stored in the ModelManager instance associated
with the domain (method validate).

The class JoinedDomain represents the joined metamodel of a model transforma-
tion, that is, the disjoint union of source and target metamodels together with model
elements (classes or associations) that relate them. It inherits from class Domain
all the behavior that a domain should have and is associated with an instance of
class TransformationContract that manages the transformation process between the
domains related by JoinedDomain.

The class TransformationContract essentially defines a method that implements
the general behavior of a transformation contract which, given a well-formed model,
instance of the source metamodel of the JoinedDomain associated with the transfor-
mation contract, (i) validates the given model according to the source metamodel’s
validators, (ii) transforms it into a model instance of the target metamodel, (iii) val-
idates the generated model using the target metamodel’s validators, and, finally, (iv)
generates the target model in the target metamodel’s concrete syntax. It also defines a
constructor responsible for instantiating the source domain and requesting it to parse
a given model, and a method that requests for an instance of the source domain to
parse a given model (method parse).

The interface IValidator provides a method for requesting a reasoner to validate
a model instance of the validator’s domain (method validate). Finally, the interface
IXMIParser defines a method that produces a model instance of a domain’s metamodel
given a file in OMG’s XML Metadata Interchange (XMI) standard (method parse).

This design pattern not only enforces the transformation process of transformation
contracts but also allows for an easy addition of new validators for domains, such as
consistency checking, as described in [4]. We will return to this point in Section 5.

Section 4.2 describes UMLtoEJB, a model transformation from UML class dia-
grams to Java code with Enterprise Java Beans support. It is also a model-to-model
transformation, from a simplified UML metamodel to a simplified EJB metamodel,
that pritty-prints Java code when proper models are generated according to UML-
toEJB transformation contract.

4.2 A transformation contract approach to distributed
systems development

The purpose of the paper is to describe a design pattern that implements the transfor-
mation contracts approach. To illustrate an application of the design pattern, we have



chosen to implement the model transformation from UML to Enterprise Java Beans
described in [1] as it is one of the main references in the MDA literature. Even though
they specify, in a language very close to OMG’s Query View Transformations (QVT),
and very clearly, a transformation from UML class diagrams to (coarse-grained) EJB
components, the given specification is not executable. With teaching purposes in
mind, but also aiming at having a full-fledged model transformer available for us to
experiment with the transformation contract approach, we have implemented a model
transformation from UML class diagrams to Java code with EJB support based on [1]
using the concept of transformation contracts described in Section 2. We call the re-
sulting model transformation UMLtoEJB. In UMLtoEJB we extend and improve the
metamodels and model transformation described in [1] by allowing class inheritance
in the source model, specifying and implementing a transformation contract for the
model transformation. This is the reason why we have chosen to use the UML meta-
model described in Figure 1 (which is a subset of version 1.4 of the UML standard)
and not another metamodel such as Eclipse’s Ecore. To our purposes, the metamodel
in Figure 1 is as good as Ecore or any other. Moreover, as mentioned above, we have
teaching purposes in mind and we present in the class room both approaches. The
results of this discussion, from a pedagogical point of view is out of scope of this
paper.

This section is organized as follows. In Section 4.2.1 we describe the metamodels
related by the model transformation UMLtoEJB. Section 4.2.2 describes the invariants
of each metamodel related by UMLtoEJB. Section 4.2.3 describes the transformation
contract. Section 4.2.4 describes the model transformation implementation as an
application of the design pattern in Figure 4. Section 4.2.5 describes an example
of the application of UMLtoEJB. Finally, Section 4.2.6 exemplifies how the concept
of transformation contract helped improving the confidence on the correctness of
UMLtoEJB.

4.2.1 Source and target metamodels

UML metamodel We use a simplified UML metamodel depicted in Figure 1. Ev-
ery element in a diagram is an instance of a ModelElement, that must have a name.
Essentially, every element in a model is a Classifier, Typed or Association. The
abstract metaclass Classifier is a generalization of Class, Interface and DataType.
Typed, as Classifier, is an abstract metaclass and a generalization of Feature and
Parameter. Each Typed has its type defined by a Classifier. Association defines how
classes are associated through instances of AssociationEnd. A Feature can be an
AssociationEnd, Attribute or Operation. An AssociationEnd represents one side of
an association between classes. The metaclasses Attribute and Operation represent,
respectively, an attribute and a method of a given class. The metaclass Operation
may have Parameters, that, of course, represent the parameters of a given method.
DataType represents the data types that can be used in the models. Inferface, as the
name suggests, represents an interface as in the Java language. The metaclass Asso-
ciationClass is both a Class and an Association. The metaclass Class can implement
Interface and can inherit from another Class.

10



Enterprise Java Beans EJB is a server-side component architecture intended to
enable scalable business applications developed by Sun/Oracle. It supports three com-
ponent types: entity bean, responsible for object persistence; session bean, respon-
sible for the implementation of an application’s business rules; and message-driven
bean, responsible for the implementation of asynchronous concurrent behavior in an
EJB-based application.

The EJB metamodel is depicted in Figure 5. EJBDataAssociation and EJBDat-
aClass represent, respectively, associations and classes of the internal structure of a
component. An EJBDataSchema represents a set of instances of EJBDataAssociation
and EJBDataClass. An EJBServingAttribute represents an association end between
an entity bean and a data class. An EJBKeyClass is an identifier to an EJBEnti-
tyComponent used to avoid sending an entire object through the network. EJBEn-
tityComponent and EJBSessionComponent represent, respectively, entity beans and
session beans of an application. EJBEntityComponent persistence is represented by
its association with the metaclass Table.

The EJB metamodel is almost the same one presented in [1, pg. 115], except
for: (i) the insertion of the metaclass EJBModelElement that every other metaclass
inherits, to simplify the definition of characteristics common to all metaclasses and
(ii) the insertion of the metaclass EJBSet to represent sets in EJB, as in the UML
metamodel.

4.2.2 Source and target metamodel invariants

For both metamodels, a common type of invariant is to guarantee the multiplicity
of each association. As an example, the OCL invariant restrictionMinimunOneAs-
sociationEndPerAssociation details, for the UML metamodel, that every Association
requires at least one AssociationEnd.

context Association inv restrictionMinimunOneAssociationEndPerAssociation: self.end
—>size() > 1

An important invariant of UML metamodel is noCyclesinClassHierarchy, de-
scribed in Section 2, guarantees the absence of cycles in class hierarchies.

The invariant restrictionRequiredFieldNameToModelElement specifies that all
UML model elements, except for associations and association ends, must be named.

context ModelElement inv restrictionRequiredFieldNameToModelElement:
self.name <> "' or self.ocllsKindOf(Association) or self.ocllsKindOf(AssociationEnd)

The association ends of an association class may not be compositions, specified
by UMLAssociationmusthaveoneAssociationEndcompositiontrue, and no association
end may be associated with an association class, specified by AssociationClassfro-
mUMLAssociationClassToEJBDataClasscannothaveAssociationEndwithcomposition.

context Association inv UMLAssociationmusthaveoneAssociationEndcompositiontrue:
self.ejbDataAssociation—>notEmpty() implies self.ocllsTypeOf(Association) and self.end
—>exists(end : AssociationEnd | end.composition = true)
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context AssociationClass inv
AssociationClassfromUMLAssociationClass ToEJBDataClasscannothaveAssociationEndwithcomposition

self.ejpDataClass—>notEmpty() implies not self.feature—>exists(end : AssociationEnd |
end.otherEnd—>exists(other : AssociationEnd | other.composition = true))

Finally, only binary associations may be composite. This is specified by invariant
limitCompositeAssociationSize.

context Association inv limitCompositeAssociationSize: self.end—>exists(end :
AssociationEnd | end.composition = true) implies self.end—>size() = 2

Entity beans contain four groups of methods: (i) create methods, responsible for
the creation of a new instance, (ii) finder methods, responsible for locating an entity
bean, (iii) remove methods, responsible for removing an entity bean, and finally (iv)
home methods, which implement the component’s business logic.

Methods in the groups (i)—(iii) must have “ejb” as a prefix, as defined in the EJB
standard. A designer of an EJB model does not need to care about these methods as
they are automatically handled by the EJB domain pretty-printer. Home methods, on
the other hand, represented in the EJB metamodel by the metaclass BusinessMethod,
must be specified by the EJB model designer and may not have such a prefix. The
invariant prefixEjbisforbidden specifies this constraint over BusinessMethods.

context BusinessMethod inv prefixEjbisforbidden: self.name.size() >= 3 implies self.
name.substring(1,3) <> 'ejb’

4.2.3 Transformation contract for UMLtoEJB

Following the transformation contract design pattern described in the introduction of
this section, the transformation from an UML class diagram m to Java source code
c with EJB support has four steps: (i) all UML invariants must hold in m; (ii) the
model m is transformed into an instance of the EJB metamodel e; (iii) all invariants
of the EJB metamodel and the transformation metamodel of UMLtoEJB must hold
in e; (iv) the Java source code with EJB support is generated from e.

Figure 6 shows the UMLtoEJB transformation metamodel. On the left-hand side
it represents the metaclasses of the UML metamodel and on the right-hand side the
metaclasses of the EJB metamodel. In the center part one may find the associations
among the source and target metaclasses that specify which EJB elements the model
transformation must generate from elements in a UML class diagram.

Due to space constraints, in this section we focus only on two associations: (i)
ejbKeyClass, between the metaclass Class, from the UML metamodel, and the meta-
class EJBKeyClass, from the EJB metamodel, and (ii) e¢jbld relating a class from the
UML metamodel and an EJBAttribute from the EJB metamodel. The associations
ejbKeyClass and ejbld specify that, given a UML Class, the model transformation
must generate an EJBKeyClass and an EJBAttribute. Moreover, the generated EJBAt-
tribute is an attribute of the generated EJBKeyClass.

The invariants keyClassnameisValid and idAttributesmustbelnteger specify that an
EJBKeyClass must be named after the UML class that it is originated from and that
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the type of the generated EJBAttribute must be of type Integer, our chosen type to
represent identifiers. The invariants validatetransfomedKeyClasselementsfromClasses
and validatelfEveryClasswastransformedtoEJBKeyClass guarantee that the generated
EJBAttribute is a feature of the generated EJBKeyClass (see Figure 5) and that an
EJBKeyClass and an EJBAttribute must be generated from an UML Class.

The complete set of invariant is listed in Appendix A.

context Class inv keyClassnameisValid: self.ejbKeyClass—>notEmpty() implies self.name
= self.ejbKeyClass.name

context Class inv idAttributesmustbelnteger: self.ejbld—>notEmpty() implies self.ejbld.
type.name = 'Integer’

context Class inv validatetransfomedKeyClasselementsfromClasses: self.ejbKeyClass—>
notEmpty() and self.ejbld—>notEmpty() implies self.ejbld.classifier = self.
ejbKeyClass

context Class inv validatelfEveryClasswastransformedtoEJBKeyClass: self.ejbKeyClass
—>notEmpty() and self.ejbld—>notEmpty()

4.2.4 Architecture

UMLtoEJB model transformations is implemented as an extension of the abstract
architecture presented in the introduction of this section. Figure 7 shows the extension.
Domain, JoinedDomain and [Validator, the classes and interface in grey, come
from the abstract architecture. UMLDomain and EJBDomain represent, respectively,
the UML and EJB metamodels, both based on the metamodels presented in [1].
UMLEJBDomain extends JoinedDomain, so it uses UMLDomain and EJBDomain
as source and target domain. It implements the rules to transform an UML class
diagram, loaded by UMLDomain in the ModelManager, to an EJB metamodel’s
instance. EJBDomain pretty-prints the result of transformation in Java syntax.

In order to validate our domains, we have extended [Validator to InvariantVal-
idator, that represents invariants written in OCL to validate a given metamodel’s
instance. UMLInvariantValidator, EJBInvariantValidator and UMLEJBInvariantVal-
idator extend InvariantValidator and, respectively, validates the UML, EJB and the
UMLtoEB joined domain using their respective invariants.

Our implementation uses the transformation rules and metamodels specified in [1],
extended in the following ways: (i) the execution of the transformation rules is split
in two phases: first the metaclasses are generated and then the associations between
them to avoid errors for linking elements that were not transformed yet; (ii) navigable
associations are treated as plain associations as they are not explicitly handled in
EOS, our OCL interpreter of choice; (iii) our tool processes models described in XMI
produced by ArgoUML, which handles composition associations differently from the
book (the XMI file inform the composition in the correspondent association end
while [1] considers this information in the opposite association end). This implied a
change in the way classes are transformed into EJBEntityComponents, which affects
the transformation.
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4.2.5 Example

Figure 8 shows a meeting manager system modeled as an UML class diagram. Es-
sentially, it consists of a system that users can schedule meetings and notify its
participants by messages. In this system an entity called Person is responsible for
representing a real person and User represents the information necessary to allow a
person to log in the system. Role represents which roles an User can assume in the
system, such as root. Meeting represents a real meeting that will occur in a given
date and will have participants, that can be notified by a Message.

The application of the model transformation UMLtoEJB to the meeting model
generates classes that represent EJBObject, EJBHome and EntityBean, all the infra-
structure needed to deploy an EJB application. EJBObject defines the business meth-
ods callable by a client. EJBHome defines methods that allow a client to create,
remove and find EJB objects. The class EntityBean defines how the container EJB
treats an instance’s life cycle events.

Figure 9 shows part of the transformation result: everything directly related with
the entity Meeting from Figure 8. The class Meeting and MeetingHome represent,
respectively, an EJBObject and EJBHome interfaces to represent the meeting’s entity
bean, called MeetingBean. The EJBDataClass, that represents the persistent data, for
the class Meeting from the Figure 8 is called MeetingDataObject. It has a primary
key called MeetingKey and have associations with PersonKey to represent the meeting
owner and participants. These objects represent the basic structure needed for an
entity bean to be instantiated correctly, when using the coarse-grained components
approach of [1].

The result of the transformation, this tool and its documentation is available
for download at http://1lse.ic.uff.br/ including a deployed application server
loaded with this project.

4.2.6 Transformation contracts as live assertions

Recall from Section 3 that we defined three different “actors” in our proposed MDD
process with transformation contracts and three situations that the validation process
may identify regarding well-formedness and conformance of a model with respect
to its metamodel. The actors are the modeling language designer, the model trans-
formation developer and a model transformation user. The validation situations are
a ill-formed model, a well-formed but invalid model and, finally, a well-formed and
valid model. We also defined invariant-based traceability, a form of traceability sup-
ported in our approach to aid model debugging, which lists the model elements that
fail in an invariant check thus allowing the generation of an error report or query to
the model about the failing objects.

Invariant-based traceability is automatically available to any model transformation
that uses our implementation of the design pattern described in Section 4.1. When
validation of a domain fails, method validate raises an exception with information
identifying the failing invariant and the objects that did not pass the invariant check.

In this section we illustrate how our approach may help identify erroneous sit-
uations given the structure we described in Section 3. Besides the implementation
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of invariant-based traceabilty we also developed an application, that we call UML-
toEJBPad, to help on the visualization of the erroneous scenario. The tool is an
instantiation of a small object-oriented framework for model visualization and query
based on transformation contracts. It was devised to be a simple tool for teaching
metamodeling and model transformations. A complete description of the architecture
of this tool is out of scope of this paper. For the purposes of this section, it suffices to
explain that: (i) it allows visualization of a model as an instance of its metamodel as a
graph, (ii) it supports OCL query over the models in a given application of the model
transformation, and (iii) it provides a simple graphic-user interface for traceability.

We give two examples of erroneous scenarios: when a model is ill-formed and
when it is well-formed but invalid. For each example we: (i) describe the erroneous
scenario, (ii) explain the invariant that fails, (iii) explain the output of UMLtoEJBPad,
and (iv) explain the traceability information.

The first example is for an ill-formed metamodel instance resulting from the
parsing of the UML class diagram in Figure 8. This error situation is a re-
sult of the UML language designer actor not implementing a proper model
parser for UML and resulting models do not have a cardinality between Associ-
ation and AssociationEnd greater or equal to 1. The OCL invariant that fails is
restrictionMinimunOneAssociationEndPerAssociation and the output mes-
sage of UMLtoEJBPad and the log file are shown in Figure 10.

With the information provided by the traceability infrastructure, one may query
the failing model using UMLtoEJBPad (see Figure 11) to identify the problematic
model element and see its relations with other model elements. In this example is easy
to see given the error message, the failing invariant and the visual output that there
is a problem while building the relations between Association and AssociationEnd
for objects representing classes User and Role, which is a responsibility of the UML
domain parser.

The next example is an error situation given by a well-formed but invalid
model. Assume that a model transformation user actor defined a cycle in the in-
heritance hierarchy among classes User, Role and Person in Figure 8. The invariant
noCyclesinClassHierarchy would fail and UMLtoEJBPad would show the error
message in Figure 12, which also shows the error log entry.

Once again, the actor may query the failing model, as shown in Figure 13, for
the problematic objects. Given the error message, the failing invariant and the visual
output shown by UMLtoEJBPad the actor may conclude that there is a problem while
building the inheritance relations among the objects representing the classes User,
Role and Person.

5 Related work

The main contribution of this paper is a design pattern for the rigorous implementa-
tion of model transformations following the transformation contracts approach. The
Query-view-transformations language [15], an OMG standard, also induces a pattern:
a model transformation may only be applied if the preconditions stated in the when
clause of the given model transformation hold and also the postconditions stated in
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the where clause of the given model transformation must hold after the application
of the given transformation. When we compare QVT specifications to our approach
there are a few aspects that must be taken into account:

e QVT is a language while transformation contracts is an approach that may
be implemented in any language, such as QVT or even Java, as long as the
properties of all domains hold.

e The transformation contract approach suggests an abstract way to specify a
model transformation as a relation between domains. A QVT description of
a model transformation is one possible realization of such a specification. A
QVT description which is not based on a transformation contract would rely
on the model transformation designer to remember to write all the properties
of the source and target domain as well as the model transformation proper-
ties. The design pattern proposed in Section 4.1 enforces that not only pre
and postconditions of a model transformation must hold but also the domains
properties.

e QVT only allows for the specification of OCL properties in its when and where
clauses while the transformation contract approach abstracts from that and en-
forces that all domain properties should hold, which may be described in any
suitable formalism not only OCL. Different properties may be best described
and verified in different formalisms.

e Domains are a key aspect in transformation contracts and not explicitly sup-
ported on QVT. For instance, the property that specifies the absence of cycles
in class hierarchies does not belong to a transformation but rather to the UML
domain. Without this property a EJB dataclass with cycles in its hierarchy
could be generated and would not be the model transformation designer fault!

e Domains also help on the design of a model transformation as the latter should
be syntax driven: every model element in a domain should be understood
as a language construct with its own semantics. As an example, in [1] the
composition association is not handled properly as no data integrity enforcement
is produced in the SQL representation of a UML class diagram. If the model
transformation was described in a syntax driven way perhaps the transformation
designer would have defined it properly.

The concept of transformation model is central to our work. In [7] the idea of
transformation model instead of model transformation is discussed. The authors de-
scribe the benefits of omitting details of the transformation process and concentrating
in depicting the transformation as a model, in which models are instances of meta-
models and transformations can be described in conformity to a metamodel. From
this point it is possible to describe a transformation model in a formal way, thus it
can be validated and verified.

Using invariants to specify transformation models is another key aspect of the
work discussed in this paper. (We would like to stress that invariants, and in par-
ticular OCL-specified ones, are one class of properties that may be described.) The
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correctness of a transformation between models has been discussed by many authors.
In [16] the author emphasizes that model transformation specification can be consid-
ered a special kind of model and as such it can be subject to existing model analysis
techniques. According to [17], the correctness of a model becomes a major issue as
the model defects will directly become implementation defects in the final software
system due to the application of code-generation techniques. However, popular mod-
eling notations are not formal enough to prove the correctness of models. Therefore, a
set of model-level verification techniques are needed to ensure the quality of software
model specifications.

Some approaches transform models into other languages and formalisms, in which
the validation occurs by the use of solvers or theorem provers. In [18], Constraint
Satisfaction Problem (CSP) are used to verify UML/OCL models using a translation
method. After the translation, a constraint solver is used to verify if the problem is
satisfiable under a finite search space of possibilities. The advantage of this method
is the assurance that the model and its invariants are well defined. Our work could
be complemented by this kind of validation to ensure the consistency of metamodels
and transformation contracts, where this would no longer be a responsibility of the
designer, e.g., combining the presenting work with the approach described in [4].

Another key point in our approach is the concept of transformation contract.
In [19], transformation contracts are presented as one of the test case generation
techniques used in the validation of transformations. To check the transformation
consistency it describes the creation of a new metamodel adding an element to con-
nect elements from the source and target metamodels. Their approach consists on
generating test cases. Our approach also aims at gaining confidence of model trans-
formations but instead we prefer to view the specification of a model transformation
also as a metamodel and apply the same techniques one would use to validate a
model also to validate a model transformation.

In [9] the contracts are verified in three steps: in the source model, in the target
model and in the transformation model. For the transformation, it is presented two
possible methods to verify the consistency using transformation contracts. In the
first one, the elements from the source model are verified in the precondition and
the transformation is verified in the postcondition linking elements from the source
model with the @pre constructor from OCL. This constructor enables the elements
from the target model to be compared with the elements from the source model. In
this method, the transformation operation is described in OCL and both source and
target metamodels are the same or close enough. The second method consists in the
creation of two packages. The first contains elements from the source model and the
second contains elements from the target model. The transformation operation is also
defined in OCL, having a package for the source model as the input and resulting in
a package of the target model. In this case, both elements from the source and target
model can be referenced in the transformation operation. Instead of the notion of
using constraints to validate the model, the methods defined in [9] are too dependent
of the UML metamodel.

A difference between our approach and the methods above is the use of OCL
for the transformation operation, which is not fixed in our approach, even though we
made extensive use of it in this paper. Our approach does not define contracts for
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test cases, instead it is defined as part of transformation specification. It is positive
to consider OCL as the standard for the specification of the constraints and also the
transformation. Nevertheless, it limits the transformation, e.g., in the first method the
source and the target metamodels needs to be the same. In the second method it is
necessary to create a new OCL operator to map elements from the source and target
models. In our approach, the designer must specify the joined metamodel and the
association between the source and target elements in an explicit way representing
the equivalence between the structure of languages represented by the metamodels.
However, the transformation operation is not specified in OCL. What we propose
is that the designer specifies the properties that must be fulfilled and the actual
transformation may implement the transformation in any way as long as the specified
properties are checked. Executing OCL invariants is one such possibility. Other
properties such as consistency, as discussed in [4], or temporal formulae could also
be checked in our approach.

Finally, our process is different and lies on the premise that models are in confor-
mity to metamodels, which represent languages. The transformation of models can be
seen as a transformation of languages. We also present the transformation contracts
as invariants of the process and not as pre and postconditions of the transformation.

6 Final remarks

We have presented a design pattern to support a rigorous approach to model trans-
formation development with transformation contracts. A transformation contract is
a set of invariants that specify a relationship between a source and a target meta-
model. A transformation contract is an executable specification when described in
OCL and the model transformation implementation interacts with model validators
such as an OCL interpreter. With such an architecture, a transformation contract
becomes a conjunction of live assertions that may be checked every time a model
transformation is executed. As an illustrative example, we discussed the UMLToEJB
model transformation that generates Java code with EJB support from UML class
diagrams. It implements the concept of transformation contracts by applying our de-
sign pattern. We have also exemplified the benefits of using transformation contracts
to different types of users of our approach and how it may improve the confidence
on the correctness of the implementation of the model transformation.
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A Invariants for UMLtoEJB transformation contract

context Class inv keyClassnameisValid:
self.ejbKeyClass—>notEmpty() implies self.name = self.ejbKeyClass.name

context Class inv idAttributesmustbelnteger:
self.ejbld—>notEmpty() implies self.ejbld.type.name = 'Integer’

context Class inv validatetransfomedKeyClasselementsfromClasses:

self.ejbKeyClass—>notEmpty() and self.ejbld—>notEmpty() implies self.ejbld.classifier
= self.ejbKeyClass

context AssociationClass inv
primaryKeymustbelongstoaEJBKeyClassfromUMLAssociationClass:

self.ejbKeyClass—>notEmpty() implies self.name = self.ejbKeyClass.name

context AssociationClass inv primaryKeymustbeEJBIntegerfromUMLAssociationClass:
self.ejbld—>notEmpty() implies self.ejbld.type.name = 'Integer’

context AssociationClass inv validatetransfomedKeyClasselementsfromAssocClasses:

self.ejbKeyClass—>notEmpty() and self.ejbld—>notEmpty() implies self.ejbld.classifier
= self.ejbKeyClass

context Class inv UMLClassfromUMLClassToEJBDataClasscannotbeanOutermostclass

self.ejbKeyClass2—>notEmpty() implies not self.isOuterMostContainer()

context Association inv UMLAssociationmusthaveoneAssociationEndcompositiontrue:

self.ejbDataAssociation—>notEmpty() implies self.ocllsTypeOf(Association) and self.

end—>exists(end : AssociationEnd | end.composition = true)

context AssociationClass inv
AssociationClassfromUMLAssociationClassToEJBDataClasscannothaveAssociationEndwithcomposition

self.ejbDataClass—>notEmpty() implies not self.feature—>exists(end : AssociationEnd
| end.otherEnd—>exists(other : AssociationEnd | other.composition = true))

context AssociationEnd inv
AssociationfromUMLAssociationEnd ToEJBDataEndusingRule8mustbetypedasAssociation

self.ejbEnd_r1—>notEmpty() implies self.association.ocllsTypeOf(Association)

context AssociationEnd inv
AssociationrelationtypefromUMLAssociationEnd ToEJBDataEndusingRule8:
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self.ejbEnd_r1—>notEmpty() implies self.classifier.getOuterMostContainer() = self.
type.getOuterMostContainer()

context AssociationEnd inv
AssociationfromUMLAssociationEndToEJBDataEndusingRule9mustbetypedasAssociation

self.ejbEnd_r2—>notEmpty() implies self.association.ocllsTypeOf(Association)

context AssociationEnd inv
AssociationrelationtypefromUMLAssociationEnd ToEJBDataEndusingRule9:
self.ejbEnd_r2—>notEmpty() implies self.classifier.getOuterMostContainer() <> self.
type.getOuterMostContainer()

context AssociationEnd inv
AssociationEndUppermustbedifferentthan1forUMLAssociationEndEmEJBAssociationusingRule10

self.ejbEnd1_r3—>notEmpty() or self.ejpbEnd2_r3—>notEmpty() or self.
ejbDataAssociation—>notEmpty() implies self.upper <> '1’

context AssociationEnd inv
AssociationofanAssociationEndmustbeanAssociationClassfromUMLAssociationEndEmEJBAssociationusingRule10

self.ejbEnd1_r3—>notEmpty() or self.ejpbEnd2_r3—>notEmpty() or self.
ejbDataAssociation—>notEmpty() implies self.association.ocllsTypeOf(
AssociationClass)

context AssociationEnd inv
outermostclassofanAssociationfanAssociationEndmustbeequaltotheoutermostclassofthetypeofthesameAssociationEndf

self.ejbEnd1_r3—>notEmpty() or self.ejpEnd2_r3—>notEmpty() or self.
ejbDataAssociation—>notEmpty() implies self.association.
getOuterMostContainer() = self.type.getOuterMostContainer()

context AssociationEnd inv
lowerEJBAssociationEnd1mustbeOfromUMLAssociationEndEmEJBAssociationusingRule10

self.ejbEnd1_r3—>notEmpty() or self.ejbEnd2_r3—>notEmpty() or self.
ejbDataAssociation—>notEmpty() implies self.ejbEnd1_r3.lower = '0’

context AssociationEnd inv upperEJBAssociationEnd1lmustbex
fromUMLAssociationEndEmEJBAssociationusingRulel10:

self.ejbEnd1_r3—>notEmpty() or self.ejpEnd2_r3—>notEmpty() or self.
ejbDataAssociation—>notEmpty() implies self.ejbEnd1_r3.upper = '’

context AssociationEnd inv
lowerdEJBAssociationEnd2mustbelfromUMLAssociationEndEmEJBAssociationusingRule10

self.ejbEnd1_r3—>notEmpty() or self.ejpEnd2_r3—>notEmpty() or self.
ejbDataAssociation—>notEmpty() implies self.ejpbEnd2_r3.lower = '1’
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context AssociationEnd inv
upperEJBAssociationEnd2mustbelfromUMLAssociationEndEmEJBAssociationusingRule10

self.ejpbEnd1_r3—>notEmpty() or self.ejbEnd2_r3—>notEmpty() or self.
ejbDataAssociation—>notEmpty() implies self.ejpbEnd2_r3.upper = '1’

context AssociationEnd inv
compositionAssociationEnd1mustbefalsefromUMLAssociationEndEmEJBAssociationusingRule10

self.ejbEnd1_r3—>notEmpty() or self.ejbEnd2_r3—>notEmpty() or self.
ejbDataAssociation—>notEmpty() implies self.ejbEnd1_r3.composition = false

context AssociationEnd inv
bothEJBAssociationEndsmusthavethesameEJBDataAssociationfromUMLAssociationEndEmEJBAssociationusingRule!

self.ejbEnd1_r3—>notEmpty() or self.ejbEnd2_r3—>notEmpty() or self.
ejbDataAssociation—>notEmpty() implies self.ejbEnd1_r3.association = self.

ejbDataAssociation and self.ejpbEnd2_r3.association = self.ejpbDataAssociation

context AssociationEnd inv
upperAssociationEndmustbedifferentthanlfromUMLAssociationEndEmEJBAssociationusingRule1l

self.ejbEnd_r4—>notEmpty() implies self.upper <> '1’

context AssociationEnd inv
associationofAssociationEndmustbeanAssociationClassfromUMLAssociationEndEmEJBAssociationusingRulell

self.ejbEnd_r4—>notEmpty() implies self.association.ocllsTypeOf(AssociationClass)

context AssociationEnd inv
outermostAssociationmustbeequaloutermost TypeAssociationEndfromUMLAssociationEndEmEJBAssociationusingRul

self.ejbEnd_r4—>notEmpty() implies self.association.getOuterMostContainer() <> self
.type.getOuterMostContainer()

context AssociationEnd inv
lowerEJBAssociation2EndmustbelfromUMLAssociationEndEmEJBAssociationusingRulell

self.ejbEnd_r4—>notEmpty() implies self.ejbEnd_r4.lower = 1’

context AssociationEnd inv
upperEJBAssociationEnd2mustbelfromUMLAssociationEndEmEJBAssociationusingRulell

self.ejbEnd_r4—>notEmpty() implies self.ejpbEnd_r4.upper = '1’
context Class inv everyoutermostClassbecamesEntityComponent:
self.ejbEntityComponent—>notEmpty() or self.ejpDataClass—>notEmpty() or self.

ejbDataSchema—>notEmpty() or self.ejbServingAttribute—>notEmpty() implies
self.isOuterMostContainer()
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context Class inv
ServingAttributemustbelongtoEntityComponentfromUMLClassToEJBEntityComponent

self.ejbEntityComponent—>notEmpty() or self.ejbDataClass—>notEmpty() or self.
ejbDataSchema—>notEmpty() or self.ejbServingAttribute—>notEmpty() implies
self.ejbServingAttribute.classifier = self.ejbEntityComponent

context Class inv
ServingAttributeTypemustbeDataClassfromUMLClass ToEJBEntityComponent:
self.ejbEntityComponent—>notEmpty() or self.ejbDataClass—>notEmpty() or self.
ejbDataSchema—>notEmpty() or self.ejbServingAttribute—>notEmpty() implies
self.ejbServingAttribute.type = self.ejbDataClass

context Class inv
DataClassPackagemustbeDataSchemafromUMLClassToEJBEntityComponent:

self.ejbEntityComponent—>notEmpty() or self.ejbDataClass—>notEmpty() or self.
ejbDataSchema—>notEmpty() or self.ejbServingAttribute—>notEmpty() implies
self.ejpDataClass.package = self.ejpbDataSchema

context DataType inv verifyUMLDataTypethatmustbetransformedtoEJBKeyClass:
self.ejbDataType—>notEmpty()

context Class inv validatelfEveryClasswastransformedtoEJBKeyClass:
self.ejbKeyClass—>notEmpty() and self.ejbld—>notEmpty()

context AssociationClass inv
verifyUMLAssociationClassthatmustbetransformedtoEJBKeyClass:
self.ejbKeyClass—>notEmpty()

context Class inv verifyUMLClassthatmustbetransformedtoEJBEntityComponent:

not self.feature—>exists(end : AssociationEnd | end.composition = true) implies self.
ejbEntityComponent—>notEmpty() and self.ejbDataClass—>notEmpty() and self
.ejpbDataSchema—>notEmpty() and self.ejbServingAttribute—>notEmpty()

context Class inv verifyUMLClassthatmustbetransformedtoEJBDataClass:
self.feature—>exists(end : AssociationEnd | end.composition = true) implies self.
ejbDataClass2—>notEmpty()

context Association inv
verifyUMLAssociationthatmustbetransformedtoEJBDataAssociation:

self.ends—>exists(end | end.composition = true) implies self.ejpDataAssociation—>
notEmpty()

context AssociationClass inv
verifyUMLAssociationClassthatmustbetransformedtoEJBDataClass:
self.ejbKeyClass—>notEmpty()

context Attribute inv verifyUMLAttributethatmustbetransformedtoEJBAttribute:
self.ejbAttribute—>notEmpty()
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context AssociationEnd inv
verifyUMLAssociationEndthatmustbetransformedtoEJBDataEndusingRule8:

self.classifier.getOuterMostContainer() = self.type.getOuterMostContainer() implies
self.ejbEnd_r1—>notEmpty()

context AssociationEnd inv
verifyUMLAssociationEndthatmustbetransformedtoEJBDataEndusingRule9:

self.classifier.getOuterMostContainer() <> self.type.getOuterMostContainer() implies
self.ejbEnd_r2—>notEmpty()

context AssociationEnd inv
verifyUMLAssociationEndthatmustbetransformedtoEJBAssociationusingRule10:

self.upper <> '1" and self.association.ocllsTypeOf(AssociationClass) and self.
association.getOuterMostContainer() = self.type—>first().
getOuterMostContainer() implies self.ejbEnd1_r3—>notEmpty() and self.
ejbEnd2_r3—>notEmpty() and self.ejpDataAssociation—>notEmpty()

context AssociationEnd inv
verifyUMLAssociationEndthatmustbetransformedtoEJBAssociationusingRulel1:

self.upper <> '1" and self.association.ocllsTypeOf(AssociationClass) and self.
association.getOuterMostContainer() <> ae.type—>first().
getOuterMostContainer() implies self.ejbEnd_r4—>notEmpty()

context Operation inv verifyUMLOperationthatmustbetransformedtoBusinessMethod:
self.businessMethod—>notEmpty()

context Parameter inv verifyUMLParamenterthatmustbetransformedtoEJBParameter:
self.ejbParameter—>notEmpty()

context Set inv verifyUMLSetthatmustbetransformedtoEJBSet:
self.ejbSet—>notEmpty()
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26



Modeling Define syntax and

language’s & Jko semantics of a modeling
designer el language

Model Define the relation
transformation’s s & N Qg) between two or more
developer modeling languages
Model Model an application and
transformation’s & ‘L'( 33\0 ) use it in a transformer
user

Fig. 3: Types of users that may benefit from the transformation contract approach
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former that applies the design pattern.
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Fig. 8: UML class diagram representing a meeting manager system
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Fig. 9: Part of the transfomation result generated by UMLtoEJB for the meeting
example
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000 UMLtoE)BPad

File Actions GraphViz Consistency Help

Language-oriented Software Engineering Research Group Source | Joined | Target

LSE@UFF - Instituto de Computagao - Brazil

Query Tool over Models and Metamodels
[-YoTe Mensagem
Problems occurred during parse and validation step:

\j// Can't validate UML domain.

Invalid invariant names:
- restrictionMinimunOneAssociationEndPerAssociation;

Query:

Result

More details in the log file.

2011-05-30 15:49:48,945 ERROR InvariantError (PrincipalJFrame.java:615)

- Invariant errors:

2011-05-30 15:49:48,953 ERROR InvariantError (PrincipalJFrame.java:617)

- context Association inv restrictionMinimunOneAssociationEndPerAssociation:
Association.allInstances()->forAll(a : Association | a.end->size() >= 1)
Failed objects: ID648801234b48385212c5256123c80000000000000000D21 ;

Fig. 10: Identifying ill-formed models
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File Actions GraphViz Consistency Help

Language-oriented Software Engineering Research Group
LSE@UFF - Instituto de Computagdo - Brazil
Query Tool over Models and Metamodels

Query:

Association.allinstances()
~>select(a : Association | not (a.end->size() >= 1))

Result

Set { ID648801234 12¢52561 1}

1 [ prmive| [ prmive | [ eger Pimte | [raer prmive| PR Avsered
[rame vea | [mame Douote | e Umimneaieged [ namezimager | | __vame: |

Fig. 11: Understanding the error in an ill-formed model
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000 UMLtoE)BPad

File Actions GraphViz Consistency Help

Language-oriented Software Engineering Research Group Source | Joined Target
LSE@UFF - Instituto de Computagao - Brazil
Query Tool over Models and Metamodels
8,00,

Query:

Problems occurred during parse and validation step:

\j// Can't validate UML domain.

Invalid invariant names:
- noCyclesinClassHierarchy:

Result

More details in the log file.

2011-05-30 15:16:06,583 ERROR InvariantError (PrincipalJFrame.java:615)
- Invariant errors:
2011-05-30 15:16:06,606 ERROR InvariantError (PrincipalJFrame.java:617)
- context Class inv noCyclesinClassHierarchy:
Class.allInstances()->forAll(c : Class | c.inheritsFrom->

forAll(r : Class | r.superPlus()->excludes(c)))
Failed objects: ID648801234b48385212¢5256123c80000000000000000D0D,
ID648801234b48385212¢5256123c80000000000000000CEA,
ID6488012351a2c16212c4abba32780000000000000000CE2;

Fig. 12: Identifying invalid models
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File Actions GraphViz Consistency Help

Language-oriented Software Engineering Research Group
LSE@UFF - Instituto de Computagdo - Brazil
Query Tool over Models and Metamodels

Joined | Target

i

Query: 0D02 : Operation
(Class.allinstances () am e : findy Usernamefndpas sworg
~>select(c : Class | not c. forAll(r : Class | r.sup ) sty public
.name

TS
Result

Bag { 'Role', 'User', "Person’ |

0028 : Operation
name :findyType

wisiility : public

Fig. 13: Understanding the error in an invalid model
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