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Abstract

The Wasserstein distances are a set of metrics on probability distributions supported on R¢ with ap-
plications throughout statistics and machine learning. Often, such distances are used in the context
of variational problems, in which the statistician employs in place of an unknown measure a proxy
constructed on the basis of independent samples. This raises the basic question of how well mea-
sures can be approximated in Wasserstein distance. While it is known that an empirical measure
comprising i.i.d. samples is rate-optimal for general measures, no improved results were known for
measures possessing smooth densities. We prove the first minimax rates for estimation of smooth
densities for general Wasserstein distances, thereby showing how the curse of dimensionality can
be alleviated for sufficiently regular measures. We also show how to construct discretely supported
measures, suitable for computational purposes, which enjoy improved rates. Our approach is based
on novel bounds between the Wasserstein distances and suitable Besov norms, which may be of
independent interest. !
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1. Introduction

Wasserstein distances are an increasingly common tool in statistics and machine learning. These
distances are a special case of the problem of optimal transport, one of the foundational problems
of optimization (Kantorovitch, 1942; Monge, 1781), and a very important topic in analysis (Villani,
2008). Their recent popularity can be traced back to their empirical success on a wide range of
practical problems (see, e.g., Peyré and Cuturi, 2017, for a survey).

In many modern applications, a Wasserstein distance is used as a loss function in an optimization
problem over measures. Solving such problems involves optimizing functionals of the form v —
Wy (v, iv) where p is unknown. Given n i.i.d. samples from p, one therefore seeks an estimator fi,,
such that W), (fin, 1) is as small as possible. Much of the statistics literature adopts the plug-in
approach and focuses on using the empirical distribution fi,, as an estimator. In this case, the rates of
convergence are of order n~/%, and the sample size required for a particular precision is exponential
in the dimension, a phenomenon known as the curse of dimensionality.

Our work shows that a wavelet estimator achieves substantially better rates of convergence when
p possesses a smooth density. We give minimax-optimal rates over Besov classes B; ([0, 1]4), and
we show that the optimal rates depend strongly on whether the density in question is bounded
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away from 0. Indeed, we show that the optimal rate for general densities is strictly worse than the
corresponding rate for densities bounded below, no matter the smoothness. Our bounds are obtained
via a new technical result, which shows that if two probability measures on [0, 1]¢ have densities
bounded away from zero, then the Wasserstein distance between them can be controlled by a Besov
norm of negative smoothness.

Algorithmic aspects are an important part of optimal transport problems. For practical appli-
cations, the proposed estimators must therefore also be computationally tractable. We describe a
method to produce computationally tractable atomic estimators via resampling from any estimator
that outperforms the empirical distribution, under minimal assumptions. We study the computa-
tional cost of this method, compared to the cost of using the empirical distribution with n atoms,
and exhibit a trade-off between computational cost and statistical precision.
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