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Abstract
We pose the question to what extent a learning algorithm behaves monotonically in the following
sense: does it perform better, in expectation, when adding one instance to the training set? We
focus on empirical risk minimization and illustrate this property with several examples, two where
it does hold and two where it does not. We also relate it to the notion of PAC-learnability.
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Introduction. Recently, there has been an increasing amount of attention on machine learning
algorithms that are presently referred to as robust or safe, meaning that even when assumptions are
violated, performance will not degrade significantly (Loog, 2010). The focus is mostly on settings
that are slightly different from supervised learning such as online learning (Koolen et al., 2016),
domain adaptation (Liu et al., 2015) and semi-supervised learning (Krijthe and Loog, 2017). The
open problem presented here makes the point that such robustness and safety properties are not even
fully understood for standard supervised learning and density estimation.

We focus on what we will refer to as the monotonicity of a learner’s performance: given one
additional training instance, to what extent can we expect a learner to improve? Or, equivalently,
when is the so-called learning curve monotone (Shalev-Shwartz and Ben-David, 2014)? While
this property is undoubtedly desirable, and most of us expect such behavior, there are surprising
counterexamples. This open problem asks to unravel this behavior.

Understanding theoretical properties of learning curves can set expectations for practitioners.
For example, if we know that a learner is monotone, but we observe the opposite in practice, we
know that this behaviour must have another explanation, such as a finite sampling effect.

Preliminaries and Related Work. Let Sn = (z1, . . . , zn) be a training set of size n, sampled
i.i.d. from an (unknown) distribution D over a domain Z . The learner A we consider performs
empirical risk minimization (ERM). Its output is A(Sn), i.e., a hypothesis h from a prespecified set
H that minimizes the empirical risk over Sn based on a loss function L : H × Z → R. In statis-
tical learning, performance is measured through this loss and the aim is to minimize the true risk
LD(h) = Ez∼D L(h, z). One can define classification problems, regression, and density estimation
in such terms.

Before we formally introduce the concept of monotonicity, we mention related works that al-
ready report on non-monotone learning behavior. Duin (1995) and Opper and Kinzel (1996) de-
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scribe the so-called peaking phenomenon for classification: when the dimensionality is approxi-
mately equal to the size of the training set, the risk in terms of the zero-one loss and mean squared er-
ror has a maximum (it peaks). This happens for models that require estimates of the (pseudo-)inverse
of the covariance matrix (Raudys and Duin, 1998), such as linear regression.

Loog and Duin (2012) describe what they call dipping: the evaluation risk attains a global
minimum for some finite n. Even for n→∞ the risk never recovers. This phenomenon can occur
when there is a mismatch between target (e.g. zero-one) and surrogate loss (e.g. hinge). Ben-David
et al. (2012) analyze this mismatch between surrogate and zero-one loss in more detail.

We focus on the setting where the loss the learner optimizes matches the loss it is evaluated with.
Thus the observed behaviour in our examples cannot be explained through the dipping phenomenon.
This makes our findings more unexpected and the open problem more appealing. Note, indeed, that
our learner A (performing ERM) is implicitly associated with a specific loss L and setH.

The Monotonicity Property. The idea is that with an additional instance a learner should improve
its performance in expectation over the training set. We need the following building block.

Definition 1 (local monotonicity) A learner A is locally or (D,n)-monotone with respect to a
distribution D and an n ∈ N if

E
Sn+1∼Dn+1

LD(A(Sn+1)) ≤ E
Sn∼Dn

LD(A(Sn)).

We may want to construct stronger properties from this, e.g. monotonicity for all n. Also, since the
distribution D is unknown, we may want monotonicity to hold for any D on the domain Z .

Definition 2 (Z-monotonicity) A learner A is Z-monotone if, for all n ∈ N and distributions D
on Z , it is (D,n)-monotone.

Examples. We now turn to some illustrations and consider to what extent they are Z-monotone.
In the remainder, we refer to Z-monotone as monotone. It will be clear from the context what Z is.

Example I: mean estimation of a normal distribution (monotone). We perform density esti-
mation with a normal distribution with fixed variance σ2 > 0 and unknown mean. The hypothesis
class is Hσ =

{
h : z 7→ 1√

2πσ2
exp

(
− (z−µ)2

2σ2

)
| µ ∈ R

}
. We choose the domain Z ⊂ [−1, 1].

This choice ensures that any distribution D has a finite mean and finite variance. We use negative
log-likelihood as loss. Thus ERM is equivalent to maximum likelihood (ML) estimation for this
setting. The optimum that ERM finds is µ = 1

n

∑
i zi. The expected risk equals

E
Sn∼D

LD(A(S)) =
1

2
log(2πσ2) +

σ2D
2σ2

(
1 +

1

n

)
,

where σ2D is the true variance of D. So the expected risk decreases monotonically in n.

Example II: variance estimation of a normal distribution (not monotone). We take the same
domain and loss function as in Example I, but now estimate the variance, while keeping the mean
fixed to 0. The hypothesis set becomes Hµ=0 =

{
h : z 7→ 1√

2πσ2
exp

(
− z2

2σ2

)
| σ > 0

}
and the

ML estimate equals σ = 1
n

∑
i z

2
i . This example does not obey the monotone principle. Consider

a distribution D that only has support on {1, 1
10}. Let D be given by the probability mass function

p(1) = α and p( 1
10) = 1 − α. For 0 < α < 0.0235 one can easily check numerically that

ES1 LD(A(S1)) < ES2 LD(A(S2)), showing that the monotonocity property does not hold.
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Figure 1: Non-monotone behavior as ob-
served in Example III.

Example III: linear regression (not monotone).
Take H = {h 7→ wx|w ∈ R} as hypothesis set
and use the mean squared error as loss function. We
choose the domain Z = X × Y , with X ⊂ [−1, 1]
and Y ⊂ [0, 1]. We define D through a probability
mass function p(x, y). Take p( 1

10 , 1) = 1 − α and
p(1, 1) = α, and p(x, y) = 0 otherwise. Again,
one can find numerically that ES1 LD(A(S1)) <
ES2 LD(A(S2)) for 0 < α < 0.0047. This shows
this learner is not monotone.

Figure 1 plots a rescaled version of the expected
risk against the sample size n for several settings.
The thick lines correspond to ERM. First of all, ob-
serve that by changing α, we can shift the peak. This
shows that the behaviour is unrelated to the peaking
behaviour (Duin, 1995), since peaking would occur
at n ≈ d = 1. Second, if we add λI to the empirical
covariance matrix, which corresponds to L2-regularization of w, we still observe non-monotone
behavior, now even for larger values of α (see the dashed lines in Figure 1).

Example IV: the memorize algorithm (monotone). Ben-David et al. (2011) introduced this
binary classifier. When evaluated on a test object x that is also present in the training set, this
learner returns the label of that training object. In case multiple training examples share the same x,
the majority vote is returned. In case the test object is not present in the training set, a default label
is returned. This learner is monotone for any distribution under the zero-one loss as it only updates
its decision on points that it observes.

Relation to Learnability. From learning theory we know that if the hypothesis class has finite
VC-dimension (or other appropriate complexity), the excess risk of ERM is bounded. This bound
will be tighter given a larger training set size n. PAC bounds hold with a particular probability, while
we are concerned with the risk in expectation over the sample. However, even bounds that hold in
expectation over the training sample will not rule out non-monotone behaviour. The expected risk
can go up as long as the expected risk stays below the upper bound. Thus high probability or
expected risk bounds are insufficient to guarantee monotonicity.

This is illustrated by our examples: Example VI is monotone but is not learnable (Shalev-
Shwartz and Ben-David, 2014). Example III is learnable if a regularizer is added to the objective of
ERM or if the hypothesis spaceH is restricted such that the norm of w is bounded. However, as we
have seen in Figure 1, we still can observe non-monotone behaviour in that case.

Open problem(s). First and foremost, we are interested to identify, especially for commonly em-
ployed learners, on which domainsZ they will or may not act monotonically. In view of the peaking
behaviour, Z-monotonicity for all n may be too strong for some settings. Perhaps monotonicity is
only possible if n is larger than some N that may depend on Z and A. For Examples II and III it
is an open problem whether they satisfy this weaker notion, and for which (smallest) N this notion
is satisfied. Other related notions of monotonicity may also be of interest. For example, instead
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of demanding a lower loss, we may require that the loss does not degrade too much. Or we can
demand the property to hold with high probability with respect to both samples.

More generally, we may ask: why and how does this behaviour occur? And maybe more impor-
tantly: how can we provably avoid non-monotone behaviour? What conditions does a learner need
to satisfy to be monotone? Perhaps particular loss functions lead to monotone learners? What if we
allow for learning under regularization or other strategies deviating from strict ERM, for example
improper learners or randomized decision rules?

Perhaps it is always possible to find a D for a given Z on which learners are non-monotone. In
that case, is it possible to avoid non-monotone behaviour under some assumptions on D? Realize-
ability or well-specification could be good candidate-assumptions onD. In fact, this raises the issue
to what extent well-specified statistical models can actually be proven to behave monotonically. For
instance, is Example II monotone if the problem is well-specified?

All in all, we believe the question of monotonicity of learning offers various tantalizing ques-
tions to study, some of which may yet have to be formulated.
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