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Abstract
We introduce and study a class of probabilistic generative models, where the latent object is a
finite-dimensional diffusion process on a finite time interval and the observed variable is drawn
conditionally on the terminal point of the diffusion. We make the following contributions:

We provide a unified viewpoint on both sampling and variational inference in such generative
models through the lens of stochastic control.

We quantify the expressiveness of diffusion-based generative models. Specifically, we show
that one can efficiently sample from a wide class of terminal target distributions by choosing the
drift of the latent diffusion from the class of multilayer feedforward neural nets, with the accuracy
of sampling measured by the Kullback–Leibler divergence to the target distribution.

Finally, we present and analyze a scheme for unbiased simulation of generative models with
latent diffusions and provide bounds on the variance of the resulting estimators. This scheme can
be implemented as a deep generative model with a random number of layers.

1. Introduction and informal summary of results

Recently there has been much interest in using continuous-time processes to analyze discrete-time
algorithms and probabilistic models (Wibisono et al., 2016; Li et al., 2017; Mandt et al., 2017; Chen
et al., 2018; Yang et al., 2018). In particular, diffusion processes have been examined as a way
towards a better understanding of first- and second-order optimization methods, as they afford an
analysis of behavior over non-convex landscapes using a rich array of techniques from the mathe-
matical physics literature (Li et al., 2017; Raginsky et al., 2017; Zhang et al., 2017). Gradient flows
and diffusions have also found a role in the analysis of deep neural nets, where they are interpreted
as describing the limiting case of infinitely many layers, with each layer being ‘infinitesimally thin’
(e.g., Chen et al. (2018); Li et al. (2018)). As in the case of optimization, continuous-time frame-
works enable the use of a different set of tools for studying standard questions of relevance, such as
sampling and inference, i.e., forward and backward passes through the network.

In this work, we consider a class of generative models where the latent object X = {Xt}t∈[0,1]
is a d-dimensional diffusion and the observable object Y is a random element of some space Y:

dXt = b(Xt, t; θ) dt+ dWt, X0 = x (1.1a)

Y ∼ q(·|X1) (1.1b)

c© 2019 B. Tzen & M. Raginsky.



SAMPLING AND INFERENCE IN GENERATIVE MODELS WITH LATENT DIFFUSIONS

where (1.1a) is a d-dimensional Itô diffusion process whose drift b(·, ·; θ) is a member of some
parametric function class, such as multilayer feedforward neural nets, and (1.1b) prescribes an ob-
servation model for generating Y conditionally on X1. To the best of our knowledge, generative
models of this form were first considered by Movellan et al. (2002) as a noisy continuous-time
counterpart of recurrent neural nets. More recently, Hashimoto et al. (2016) and Ryder et al. (2018)
investigated the use of discrete-time recurrent neural nets to approximate the population dynamics
of biological systems that are classically modeled by diffusions. It is natural to view (1.1) as a
continuum limit of deep generative models introduced by Rezende et al. (2014) — in fact, as we
explain in Section 4, one can simulate a model of the above form using a deep generative model with
a random number of layers. Alternatively, one can think of (1.1) as a neural stochastic differential
equation, in analogy to the neural ODE framework of Chen et al. (2018).

There are three main questions that are natural to ask concerning the usefulness of such models:
How expressive can they be? How might one sample from such a diffusion process? How might
one perform inference on it? As our first contribution, we provide a unified view of sampling
and inference through the lens of stochastic control. In particular, by adding a control ut to the
drift of some reference diffusion, one can obtain a desired distribution at t = 1, and the minimal-
cost control that yields exact sampling is given by the so-called Föllmer drift (Föllmer, 1985; Dai
Pra, 1991; Lehec, 2013; Eldan and Lee, 2018). Complementarily, we show that any control ut
added to the drift b(·, t; θ) in (1.1a) leads to a variational upper bound on the log-likelihood of
a given tuple of observations (y1, . . . , yn). Variational inference then reduces to minimizing the
expected control cost over a tractable class of controls. While we provide a unifying viewpoint
that captures both sampling and inference, we emphasize that this is a synthesis of a number of
existing results, and serves as a conceptual underpinning and motivation for our subsequent analysis.
Specifically, after establishing that diffusion-based generative models can be effectively worked
with, we explore their expressive power vis-à-vis neural nets: We show that, if the target density
of X1 can be efficiently approximated using a neural net, then the corresponding Föllmer drift can
also be efficiently approximated by a neural net, such that the terminal law of the diffusion with
this approximate drift is ε-close to the target density in Kullback–Leibler divergence. Finally, we
investigate unbiased simulation methods for generative models with underlying diffusion processes
and provide bounds on the variance of the resulting estimators.

1.1. Method of analysis: an overview

To arrive at the unified perspective of sampling and inference, we begin by formulating a stochastic
control problem that captures all of our desiderata: sampling from a target probability law µ at
terminal time t = 1; a set of tractable controls that might be used to take it there; and an appropriate
notion of cost with that captures both the ‘control effort’ and the terminal cost that quantifies the
discrepancy between the final probability law and the target measure µ.

Our first result, stated in Theorem 1, is an explicit characterization of the value function of this
control problem, which has a free-energy interpretation and can be understood from an information-
theoretic viewpoint: the Kullback–Leibler divergence between the law of the path of the uncon-
trolled diffusion and that of the path of the controlled diffusion is the expected total work done by
the control. The negative free energy with respect to the uncontrolled process is a lower bound on
that of the controlled process after accounting for the work done, and equality is achieved by the
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optimal control. As pointed out above, this result is a synthesis of a number of existing results, and
its main purpose is to motivate the use of controlled diffusions in probabilistic generative modeling.

We next examine the expressiveness of these generative models, which refers to their ability to
generate samples from a given target distribution forX1 when the observation model q(·|·) in (1.1b)
is fixed. In Theorem 4, we provide quantitative guarantees for obtaining approximate samples
from a given target distribution µ for X1 when the drift b in (1.1a) is restricted to be a multilayer
feedforward neural net. Specifically, we show that, if the density f of µ with respect to the standard
Gaussian measure on Rd can be efficiently approximated by a feedforward neural net, then the
corresponding Föllmer drift can also be approximated efficiently by a neural net. Moreover, this
approximate Föllmer drift yields a diffusion {X̂t}, such that µ̂ = Law(X̂1) satisfies D(µ||µ̂) ≤ ε
for a given accuracy ε > 0. Under some assumptions on the smoothness of f and ∇f and on
their uniform approximability by neural nets, the proof proceeds as follows: First, we show that the
Föllmer drift can be approximated by a neural net uniformly over a given compact subset of Rd and
for all t ∈ [0, 1]. Then, to show that the terminal distribution resulting from this approximation is
ε-close to µ in KL-divergence, we use Girsanov’s theorem to relateD(µ‖µ̂) to the expected squared
error between the Föllmer drift and its neural-net approximation.

Finally, we discuss the issue of unbiased simulation with the goal of estimating expected values
of functions of X1. The standard Euler–Maruyama scheme (Graham and Talay, 2013, Chap. 7)
is straightforward, but produces a biased estimator. Typically, one uses Monte Carlo sampling to
reduce the variance; if the estimator is biased, then the variance will be reduced by a factor of
N1−δ for some δ ∈ (0, 1), instead of the optimal reduction by the factor of N , for N Monte
Carlo runs. One way to obtain an unbiased estimator is to employ a random discretization of the
time interval [0, 1], where the sampling times are generated by a point process on the real line.
Unbiased simulation schemes of this type have been proposed and analyzed by Bally and Kohatsu-
Higa (2015), Andersson and Kohatsu-Higa (2017), and Henry-Labordère et al. (2017). Our final
result, Theorem 6, builds on the latter work and presents an unbiased, finite-variance simulation
scheme. Conceptually, the simulation scheme can be thought of as a deep latent Gaussian model in
the sense of Rezende et al. (2014), but with a random number of layers. Unfortunately, the variance
of the resulting estimator can exhibit exponential dependence on dimension. We show why this is
the case via an analysis of the moment-generating function of the point process used to generate the
random mesh and propose alternatives to reduce the variance.

1.2. Notation

The Euclidean norm of a vector x ∈ Rd will be denoted by ‖x‖, the transpose of a vector or a matrix
will be indicated by (·)T. The d-dimensional Euclidean ball of radius R centered at the origin will
be denoted by Bd(R). The standard Gaussian measure on Rd will be denoted by γd. The Euclidean
heat semigroup Qt, t ≥ 0, acts on measurable functions f : Rd → R as follows:

Qtf(x) :=

∫
Rd

f(x+
√
tz)γd(dz) = E[f(x+

√
tZ)], Z ∼ γd. (1.2)

A function g : Rd× [0, 1]→ R is of class C2,1 if it is twice continuously differentiable in the space
variable x ∈ Rd and once continuously differentiable in the time variable t ∈ [0, 1].
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2. Exact sampling and variational inference: a unified stochastic control viewpoint

Before addressing the specific questions posed in the Introduction, we aim to demonstrate that both
sampling and variational inference in generative models of the form (1.1) can be viewed through
the lens of stochastic control. We give a brief description of the relevant ideas in Appendix A; the
book by Fleming and Rishel (1975) is an excellent and readable reference.

2.1. A stochastic control problem

Let (Ω,F, {Ft},P) be a probability space with a complete and right-continuous filtration {Ft}, and
let W = {Wt} be a standard d-dimensional Brownian motion adapted to {Ft}. Consider the Itô
diffusion process

dXt = b(Xt, t) dt+ dWt, t ∈ [0, 1]; X0 = x0 (2.1)

where the drift b : Rd× [0, 1]→ Rd is sufficiently well-behaved (say, bounded and Lipschitz). Then
the process {Xt} admits a transition density, i.e., a family of functions ps,t : Rd×Rd → R+ for all
0 ≤ s < t ≤ 1, such that, for all points x, y ∈ Rd and all Borel sets A ⊂ Rd,

P[Xt ∈ A|Xs = x] =

∫
A
ps,t(x, y) dy (2.2)

(see, e.g., Protter (2005, Chap. V)).
Consider the following stochastic control problem: Let U be the set of controls, i.e., measurable

functions u : Rd × [0, 1]→ Rd. Any u ∈ U defines a diffusion process Xu = {Xu
t }t∈[0,1] by

dXu
t =

(
b(Xu

t , t) + u(Xu
t , t)

)
dt+ dWt, t ∈ [0, 1]; Xu

0 = x0. (2.3)

We say that Xu is a diffusion controlled by u. Let a function g : Rd → (0,∞) be given. For each
u ∈ U, we define the family of cost-to-go functions

Ju(x, t) := E

[
1

2

∫ 1

t
‖us‖2 ds− log g(Xu

1 )

∣∣∣∣∣Xu
t = x

]
, x ∈ Rd, t ∈ [0, 1] (2.4)

where us is shorthand for u(Xu
s , s). The value functions v : Rd × [0, 1]→ R+ are defined by

v(x, t) := inf
u∈U

Ju(x, t), (2.5)

and we say that a control u∗ ∈ U is optimal if Ju
∗
(x, t) = v(x, t) for all x and t. The following

theorem is, essentially, a synthesis of the results of Pavon (1989) and Dai Pra (1991):

Theorem 1 Consider the control problem (2.4). The value function v is given by

v(x, t) = − logE[g(X1)|Xt = x], (2.6)

where the conditional expectation is with respect to the uncontrolled diffusion process (2.1). More-
over, the optimal control u∗ is given by u∗(x, t) = −∇v(x, t), where the gradient is taken with
respect to the space variable x ∈ Rd, and the corresponding controlled diffusion {X∗t } = {Xu∗

t }
has the transition density

p∗s,t(x, y) = ps,t(x, y) exp
(
v(x, s)− v(y, t)

)
, (2.7)

where ps,t(·) is the transition density (2.2) of the uncontrolled process.
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This result, proved in Appendix A, also admits an information-theoretic interpretation. Let P0

denote the probability law of the path X[0,1] of the uncontrolled diffusion process (2.1) and let Pu

denote the corresponding object for the controlled diffusion (2.3). SinceX andXu differ from each
other by a change of drift, the probability measures Pu and P0 are mutually absolutely continuous,
and the Radon–Nikodym derivative dPu/ dP0 is given by the Girsanov formula (Protter, 2005)

dPu

dP0
= exp

(
−
∫ 1

0
uT
t dWt +

1

2

∫ 1

0
‖ut‖2 dt

)
, (2.8)

where uT
t dWt :=

∑d
i=1 ui,t dWi,t, with ui,· and dWi,· denoting the ith coordinates of u and W

respectively. From (2.8), we can calculate the Kullback–Leibler divergence between Pu and P0:

D(Pu‖P0) = EPu

[
log

dPu

dP0

]
= E

[
1

2

∫ 1

0
‖ut‖2 dt

]
. (2.9)

Therefore, by Theorem 1, for any control u ∈ U, we can write

− logE[g(X1)|X0 = x] ≤ D(Pu‖P0)−E[log g(Xu
1 )|Xu

0 = x], (2.10)

with equality if and only if u = u∗. An inequality of this form holds more generally for real-valued
measurable functions of the entire path X[0,1] (Boué and Dupuis, 1998).

We will now demonstrate how both the problem of sampling and the problem of variational
inference can be addressed via the above theorem.

2.2. Exact sampling: the Föllmer drift

Recall that, in the context of exact sampling, the objective is to construct a diffusion process
{Xt}t∈[0,1], such that X1 has a given target distribution µ. We will consider the case when µ
is absolutely continuous with respect to the standard Gaussian measure γd and let f denote the
Radon–Nikodym derivative dµ/ dγd. This problem goes back to a paper of Schrödinger (1931); for
rigorous treatments, see, e.g., Jamison (1975), Föllmer (1985), Dai Pra (1991), Lehec (2013), Eldan
and Lee (2018). The derivation we give below is not new (see, e.g., Dai Pra (1991, Thm. 3.1)), but
the route we take is somewhat different in that we make the stochastic control aspect more explicit.

We take b(x, t) ≡ 0 andX0 = 0 in (2.1). Then the diffusion process {Xt} is simply the standard
d-dimensional Brownian motion {Wt}, which has the Gaussian transition density

ps,t(x, y) =
1

(2π(t− s))d/2
exp

(
− 1

2(t− s)
‖x− y‖2

)
.

Now consider the control problem (2.4) with g = f . By Theorem 1, the value function v is given
by v(x, t) = − logE[f(W1)|Wt = x], and can be computed explicitly. For 0 ≤ t < 1, we have

e−v(x,t) = E[f(W1)|Wt = x]

=
1

(2π(1− t))d/2

∫
Rd

f(y) exp

(
− 1

2(1− t)
‖x− y‖2

)
dy

= Q1−tf(x),
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where Q denotes the Euclidean heat semigroup (1.2). Hence, v(x, t) = − logQ1−tf(x), and the
optimal diffusion process {X∗t } has the drift u∗(x, t) = −∇v(x, t) = ∇ logQ1−tf(x). Following
Lehec (2013) and Eldan and Lee (2018), we will refer to u∗ as the Föllmer drift in the sequel.

It remains to show that X∗1 ∼ µ. Using the formula (2.7) for the transition density of X∗

together with the fact that e−v(y,1) = f(y) and e−v(0,0) = E[f(W1)] =
∫
f dγd = 1, we see that

p∗0,1(0, y) dy = f(y)γd(dy). Then, for any Borel set A ⊆ Rd,

P[X∗1 ∈ A] =

∫
A
p∗0,1(0, y) dy =

∫
A
f(y)γd(dy) = µ(A).

Moreover, using the entropy inequality (2.10), we can show that the Föllmer drift is optimal in
the following strong sense: Consider any control u ∈ U with Xu

0 = 0 and with the property that
Law(Xu

1 ) = µ. For any such control,

E[log f(Xu
1 )|Xu

0 = 0] =

∫
Rd

dµ log f =

∫
Rd

dµ log
dµ

dγd
= D(µ‖γd),

while clearly logE[f(W1)] = 0. Therefore, it follows from (2.10) that, for any such control u,

D(Pu‖P0) =
1

2
E

[∫ 1

0
‖ut‖2 dt

]
≥ D(µ‖γd),

with equality if and only if u = u∗. Thus, the Föllmer drift has the minimal ‘energy’ among all
admissible controls that induce the distribution µ at t = 1, and this energy is precisely the Kullback–
Leibler divergence between µ and the standard Gaussian measure γd (Dai Pra, 1991; Lehec, 2013;
Eldan and Lee, 2018).

2.3. Variational inference

We now turn to the problem of variational inference. We are given an n-tuple of observations
y = (y1, . . . , yn) ∈ Yn, and wish to upper-bound the negative log-likelihood

Ln(y; θ) :=
1

n

n∑
i=1

L(yi; θ),

where L(y; θ) := − logE[q(y|X1)] and {Xt} is the diffusion process (1.1).
We take b = b(·, ·; θ) in (2.1) and consider the control problem (2.4) with g(x) = q(y|x) for

some fixed y ∈ Y. Then, by Theorem 1, any control u ∈ U gives rise to an upper bound on L(y; θ):

L(y; θ) ≤ E

[
1

2

∫ 1

0
‖ut‖2 dt− log q(y|Xu

1 )

∣∣∣∣∣Xu
0 = x

]
=: F u(y; θ),

where the quantity on the right-hand side can be thought of as the variational free energy that
depends on the choice of the control u, and equality is achieved when u = u∗. While the structure
of the optimal control u∗ is described in Theorem 1, it may not be possible to derive it in closed
form. However, we can fix a class Ũ ⊂ U of tractable suboptimal controls and upper-bound L(y; θ)
by infu∈Ũ F

u(y; θ). For example, we can take Ũ to consist of all controls of the form u(x, t) =
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φ − b(x, t; θ) for some φ ∈ Rd. In that case, Xu
t is the sum of the Brownian motion Wt and the

affine drift x+ tφ, and consequently

F u(y; θ) = E

[
1

2

∫ 1

0
‖φ− b(x+ tφ+Wt; θ)‖2 dt− log q(y|x+ φ+W1)

]
,

where the expectation is taken with respect to the standard Brownian motion W . Another possiblity
is to consider controls of the form u(x, t) = Ax−b(x, t; θ), for someA ∈ Rd×d. The corresponding
controlled diffusion is the Ornstein–Uhlenbeck process Xu

t = eAtx +
∫ t
0 e

A(t−s) dWs, and the
variational free energy can be minimized over A ∈ Rd×d.

3. Expressiveness

Now that we have shown that generative models of the form (1.1) allow for both sampling and
variational inference, we turn to the analysis of their expressiveness. Specifically, our objective is to
show that, by working with a suitable structured class of drifts b(·, ·; θ), we can achieve approximate
sampling from a rich class of distributions at the terminal time t = 1.

Let µ be the target probability measure for X1. We assume that µ is absolutely continuous with
respect to γd and let f denote the Radon–Nikodym derivative dµ/ dγd. From Section 2.2 we know
that the diffusion process governed by the Itô SDE

dXt = b(Xt, t) dt+ dWt, X0 = 0 (3.1)

with the Föllmer drift b(x, t) = ∇ logQ1−tf(x) has the property that µ = Law(X1), and, more-
over, it is optimal in the sense that it minimizes the ‘energy’ 1

2

∫ 1
0 E‖ut‖2 dt among all adapted

drifts {ut} that result in distribution µ at time t = 1. The main result of this section is as follows: If
the Radon–Nikodym derivative f can be approximated efficiently by multilayer feedforward neural
nets, then, for any ε > 0, there exists a drift b̂(x, t) = b̂(x, t; θ) that can be implemented exactly by a
neural net whose parameters θ do not depend on time or space, and the terminal law µ̂ := Law(X̂1)
of the diffusion process

dX̂t = b̂(X̂t, t) dt+ dWt, X̂0 = 0 (3.2)

is an ε-approximation to µ in the KL-divergence: D(µ‖µ̂) ≤ ε. Moreover, the size of the neural net
that implements the approximate Föllmer drift b̂ can be estimated explicitly in terms of the size of a
suitable approximating neural net for f .

We begin by imposing some assumptions on f . The first assumption is needed to guarantee
enough regularity for the Föllmer drift:

Assumption 1 The function f is differentiable, both f and ∇f are L-Lipschitz, and there exists a
constant c ∈ (0, 1], such that f ≥ c everywhere.

This assumption is satisfied, for example, by Gibbs measures of the form µ(dx) =

Z−1e−
1
2
‖x‖2−F (x) dx with a differentiable potential F : Rd → R+, such that both F and ∇F

are Lipschitz, and F is bounded from above; see Appendix B for details.
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Next, we introduce the assumptions pertaining to the approximability of f by neural nets. Let
σ : R→ R be a fixed nonlinearity. Given a vector w ∈ Rn and scalars α, β, define the function

Nσ
w,α,β : Rn → R, Nσ

w,α,β(x) := α · σ
(
wTx+ β

)
.

For ` ≥ 2, we define the class Nσ
` of `-layer feedforward neural nets with activation function σ

recursively as follows: Nσ
2 consists of all functions of the form x 7→

∑m
i=1N

σ
wi,αi,βi

(x) for all
m ∈ N, w1, . . . , wm ∈ Rd, α1, . . . , αm, β1, . . . , βm ∈ R, and, for each ` ≥ 2,

Nσ
`+1 :=

⋃
k≥1

⋃
m≥1

{
x 7→

m∑
i=1

Nσ
wi,αi,βi

(h1(x), . . . , hk(x)) :

α1, . . . , αm, β1, . . . , βm ∈ R, w1, . . . , wm ∈ Rk, h1, . . . , hk ∈ Nσ
`

}
.

Thus, each element of Nσ
` is a function that represents computation by a directed acyclic graph,

where each node receives inputs u1, . . . , uk, performs a computation of the form (u1, . . . , uk) 7→
σ(w1u1 + . . .+ wkuk + β), and communicates the outcome of the computation to all the nodes in
the next layer. We refer to ` as the depth of the neural net, and define the size of the neural net as the
total number of nodes in its computation graph. We will denote by Nσ

`,s the collection of all neural
nets with depth ` and size s. All these definitions extend straightforwardly to the case of neural nets
with vector-valued output and to the case where each node may have a different activation function.

We assume that the activation function σ is differentiable and universal, in the sense that any
univariate Lipschitz function which is nonconstant on a bounded interval can be approximated ar-
bitrarily well by an element of Nσ

2 :

Assumption 2 The activation function σ : R → R is differentiable. Moreover, there exists a
constant cσ > 0 depending only on σ, such that the following holds: For any L-Lipschitz function
h : R → R which is constant outside the interval [−R,R] and for any δ > 0, there exist real
numbers a, {(αi, βi, γi)}mi=1, where m ≤ cσ RLδ , such that the function

h̃(x) = a+

m∑
i=1

αiσ(βix+ γi) (3.3)

satisfies supx∈R |h̃(x)− h(x)| ≤ δ.

Remark 2 Apart from differentiability, this is the same assumption made by Eldan and Shamir
(2016). For example, it holds for differentiable sigmoidal activation functions, i.e., monotonic
functions that satisfy limu→−∞ σ(u) = a and limu→+∞ σ(u) = b for some a 6= b. The popular
rectified linear unit (or ReLU) activation function u 7→ u ∨ 0 is universal in the above sense but not
differentiable. However, we can replace it by the differentiable softplus function u 7→ log(1 + ecu),
where increasing the value of c > 0 results in finer approximations to the ReLU. Also, note that the
function h̃ differs from the elements of Nσ

2 by the presence of the constant term a. However, the
constant function x 7→ a can be implemented by Nσ

0,a/σ(z),z , for any z ∈ R such that σ(z) 6= 0.
Thus, we will refer to functions of the form (3.3) as 2-layer neural networks of size m+ 1.

We also make the following assumption regarding approximability of f by neural nets:
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Assumption 3 For any R > 0 and ε > 0, there exists a neural net f̂ ∈ Nσ
`,s with `, s ≤

poly(1/ε, d, L,R), such that

sup
x∈Bd(R)

|f(x)− f̂(x)| ≤ ε and sup
x∈Bd(R)

‖∇f(x)−∇f̂(x)‖ ≤ ε. (3.4)

Remark 3 Typical results on neural net approximation are concerned with approximating a given
function uniformly on a given compact set. By contrast, Assumption 3 requires uniform approx-
imability of both f and its gradient∇f on a compact set by some neural net f̂ and its gradient∇f̂ .
Such simultaneous approximation guarantees can also be found in the literature, see, e.g., Hornik
et al. (1990); Yukich et al. (1995); Li (1996). See Safran and Shamir (2017) for a discussion of
various trade-offs between depth and width (maximum number of neurons per layer) in neural net
approximation.

We are now in a position to state the main result of this section:

Theorem 4 Suppose Assumptions 1–3 are in force. Let L denote the maximum of the Lipschitz
constants of f and∇f . Then, for any 0 < ε < 16L2/c2, there exists a neural net v̂ : Rd × [0, 1]→
Rd with size polynomial in 1/ε, d, L, c, 1/c, such that the activation function of each neuron is an
element of the set {σ, σ′,ReLU}, and the following holds: If {X̂t}t∈[0,1] is the diffusion process
governed by the Itô SDE

dX̂t = b̂(X̂t, t) dt+ dWt, X̂0 = 0 (3.5)

with the drift b̂(x, t) = v̂(x,
√

1− t), then µ̂ := Law(X̂1) satisfies D(µ‖µ̂) ≤ ε.

3.1. The proof of Theorem 4

The proof relies on three key steps: First, we show that the heat semigroup Qtf(x) can be ap-
proximated by a finite sum of the form 1

N

∑
n≤N f(x +

√
tzn) uniformly for all x ∈ Bd(R) and

all t ∈ [0, 1], where z1, . . . , zN ∈ Rd lie in a ball of radius O(
√
d logN). This result is stated in

Appendix C and proved using empirical process methods. Next, replacing f with a suitable neural
net approximation f̂ , we build on this result to show that the Föllmer drift ∇ logQ1−tf(x) can be
approximated by a neural net using σ, σ′, and ReLU as activation functions. This is the content
of Theorem 5 below (the proof is given in Appendix D). The third step uses Girsanov theory to
upper-bound the approximation error that results from replacing the Föllmer drift by this neural net.

Theorem 5 Let 0 < ε < 4L/c andR > 0 be given. Then there exists a neural net v̂ : Rd×[0, 1]→
Rd of size polynomial in 1/ε, d, L,R, c, 1/c, such that the activation function of each neuron is an
element of the set {σ, σ′,ReLU}, and the following holds:

sup
x∈Bd(R)

sup
t∈[0,1]

∥∥∥v̂(x,
√
t)−∇ logQtf(x)

∥∥∥ ≤ ε
and

max
i∈[d]

sup
x∈Rd

sup
t∈[0,1]

|v̂i(x,
√
t)| ≤ 2L

c
.

9
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We now complete the proof of Theorem 4. For any R > 0, Theorem 5 guarantees the existence
of a neural net v̂ : Rd × [0, 1]→ Rd that satisfies

sup
x∈Bd(R)

sup
t∈[0,1]

∥∥∥v̂(x,
√
t)−∇ logQtf(x)

∥∥∥ ≤ √ε (3.6)

and

max
i∈[d]

sup
x∈Rd

sup
t∈[0,1]

|v̂i(x,
√
t)| ≤ 2L

c
. (3.7)

Let µ := Law(X[0,1]) and µ̂ := Law(X̂[0,1]). The Girsanov formula gives

D(µ‖µ̂) =
1

2

∫ 1

0
E‖b(Xt, t)− b̂(Xt, t)‖2 dt,

where the interchange of the integral and the expectation follows from Fubini’s theorem because
both b and b̂ are bounded by Lemma 9 in Appendix B and (3.7). We now proceed to estimate the
integrand. For each t ∈ [0, 1],

E‖b(Xt, t)− b̂(Xt, t)‖2

= E
[
‖b(Xt, t)− b̂(Xt, t)‖2 · 1{Xt ∈ Bd(R)}

]
+ E

[
‖b(Xt, t)− b̂(Xt, t)‖2 · 1{Xt 6∈ Bd(R)}

]
=: T1 + T2,

where T1 ≤ ε by (3.6). To estimate T2, we first observe that, since the Föllmer drift is bounded in
norm by L/c by Lemma 9, we have

P

{
sup
t∈[0,1]

‖Xt‖ ≥ R

}
≤
√
d+ L/c

R

(Bubeck et al., 2018, Lemma 3.8). Therefore,

T2 ≤
9dL2

c2
·
√
d+ L/c

R
.

Choosing R large enough to guarantee T2 ≤ ε and putting everything together, we obtain
D(µ‖µ̂) ≤ ε. Therefore, D(µ‖µ̂) ≤ D(µ‖µ̂) ≤ ε by the data processing inequality.

4. Unbiased simulation

Now that we have shown that generative models with latent diffusions are capable of expressing a
rich class of probability distributions, we turn to the problem of unbiased simulation. Specifically,
given a function g : Rd → R, we wish to estimate the expectation E[g(X1)|X0 = x], where
X = {Xt}t∈[0,1] with X0 = x is a diffusion process of the form (1.1). The simplest approach is to
use the Euler–Maruyama scheme: Fix a partition 0 = t0 < t1 < . . . < tn < tn+1 = 1 of [0, 1] and
define the Itô process {X̃t}t∈[0,1] by X̃0 = x and

X̃t = X̃ti +

∫ t

ti

b(X̃ti , ti; θ) ds+

∫ t

ti

dWs, t ∈ (ti, ti+1], i = 0, . . . , n. (4.1)

10
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In particular, for each 1 ≤ i ≤ n+ 1,

X̃ti = X̃ti−1 + b(X̃ti−1 , ti−1; θ)(ti − ti−1) +Wti −Wti−1 .

We can then estimate the expectation E[g(X1)] by g(X̃tn+1) ≡ g(X̃1), but this estimate is biased:
if g is, say, bounded, then

|E[g(X1)]−E[g(X̃1)]| ≤ Cg(x) · max
0≤i≤n

(ti+1 − ti),

where Cg(x) > 0 is some constant that depends on g and on the starting point x (Graham and
Talay, 2013). Recently, several authors (Bally and Kohatsu-Higa, 2015; Andersson and Kohatsu-
Higa, 2017; Henry-Labordère et al., 2017) have studied unbiased simulation of SDEs using Euler–
Maruyama schemes with random partitions, where the partition breakpoints are generated by a Pois-
son point process on the real line. In this section, we build on this line of work and present a scheme
for unbiased simulation in the context of generative models of the form (1.1) that uses random
partitions generated by arbitrary renewal processes (Kallenberg, 2002, Chap. 9) with sufficiently
well-behaved densities of interrenewal times. Our analysis closely follows that of Henry-Labordère
et al. (2017), but we provide a more refined analysis of the variance of the resulting estimators.

We first describe the simulation procedure. In what follows, we will drop the index θ from
the drift to keep the notation clean. Let τ1, τ2, . . . be i.i.d. nonnegative random variables with an
absolutely continuous distribution whose support contains the interval [0, 1 + ε] for some ε > 0.
Let Fτ and fτ denote the cdf and the pdf of τ1. Let T0 = 0 and

Tk :=

 k∑
i=1

τi

 ∧ 1, k ≥ 1 and N := max{k : Tk < 1}.

Define a process X̂ = {X̂t}t∈[0,1] with X̂0 = x as the Euler–Maruyama scheme (4.1) on the random
partition 0 = T0 < T1 < . . . < TN < TN+1 ≡ 1 of [0, 1], and let

ψ̂ :=
1

1− Fτ (1− TN )
·
(
g(X̂1)− g(X̂TN )1{N>0}

)
·
N∏
k=1

1

fτ (Tk − Tk−1)
Ŵk, (4.2)

where

Ŵk :=

(
b(X̂Tk , Tk)− b(X̂Tk−1

, Tk−1)
)T(
WTk+1

−WTk

)
Tk+1 − Tk

.

This process can be interpreted as a deep generative model in the sense of Rezende et al. (2014),
but with a random number of layers. Specifically, let ξ1, ξ2, . . .

i.i.d.∼ γd be independent of {τi}, and
define X̂(0), X̂(1), . . . , X̂(N+1) recursively by taking X̂(0) = x and

X̂(k+1) = X̂(k) + b(X̂(k), Tk) · (Tk+1 − Tk) + (Tk+1 − Tk)1/2ξk+1, k = 0, 1, . . . , N.

Then

ψ̂
d
= g(X̂(N+1)) · 1

1− Fτ (1− TN )
·
N∏
k=1

(
b(X̂(k), Tk)− b(X̂(k−1), Tk−1)

)T

ξk+1

fτ (Tk − Tk−1) · (Tk+1 − Tk)1/2
,

where d
= denotes equality of probability distributions. We are now ready to state our main result on

unbiased simulation (see Appendix E for the proof):

11
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Theorem 6 Suppose that the drift b(x, t) is uniformly bounded, Lipschitz in x, and 1
2 -Hölder in t,

i.e., for some constants b∞ > 0 and Lb > 0,

‖b(x, t)‖ ≤ b∞ and ‖b(x, s)− b(y, t)‖ ≤ Lb
(
‖x− y‖+ |s− t|1/2

)
. (4.3)

for all x, y ∈ Rd and all s, t ∈ [0, 1]. Suppose also that
1

fτ (s)
≤ Ceas, s ∈ (0, 1) (4.4)

for some constantsC > 0 and a ≥ 0. Then, for any Lipschitz-continuous g : Rd → R with Lipschitz
constant Lg, ψ̂ is an unbiased estimator of E[g(X1)|X0 = x] with

Var[ψ̂] ≤
(

ea

1− Fτ (1)

)2

KMN (κ), (4.5)

where K = poly(|g(x)|, Lb, Lg, b∞, d), κ = log poly(C,Lb, Lg, b∞, d), and MN (θ) :=
E[exp(θN)] is the moment-generating function of N .

For example, the type of drift used in the construction of Section 3 has the property (4.3). The
key implication of Theorem 6 is that the variance of the estimator ψ̂ is controlled by the moment-
generating function of N , and is therefore related to the tail behavior of the sums Sk :=

∑k
i=1 τi. In

some cases, one can calculate MN in closed form. For instance, if we take τ1, τ2, . . .
i.i.d.∼ Exp(λ)

for some λ > 0, then the estimator (4.2) reduces to the one introduced by Henry-Labordère et al.
(2017). Since Fτ (s) = 1 − e−λs and fτ (s) = λe−λs for s ≥ 0, (4.4) holds with C = 1/λ and
a = λ; moreover, N ∼ Pois(λ) with

MN (θ) = exp
(
λ(eθ − 1)

)
.

Thus, Var[ψ̂] grows like exp(d2), as already observed by Henry-Labordère et al. (2017). One way
to reduce the variance is to choose the τi’s with lighter tails. To see this, we need estimates of ΛN ;
the following lemma provides a computable upper bound:

Lemma 7 Let Mτ denote the moment-generating function of τ . Then

MN (θ) ≤ 1 + eθ inf
β>0

{
(β + 1)eθβ +

∞∑
k=0

(
eθ+1Mτ (−β)

)k}
. (4.6)

As an example, suppose τ1, τ2, . . . are i.i.d. samples from the uniform distribution on [0, T ] for some
T > 1. Then

Mτ (−β) =
1

βT
(1− e−βT ),

and it is a matter of straightforward but lengthy algebra to show that Mτ (−β) ≤ e−2(θ+1) for all β
satisfying

e−βT ≥ 2
(

1 + e−2(θ+1) log 2− (2θ + 3)e−2(θ+1)
)
.

Using this in (4.6) yields the estimate MN (θ) . epoly(θ). The density of a Uniform(0, T ) ran-

dom variable clearly satisfies (4.4). Thus, applying Theorem 6 to the estimator (4.2) with τi
i.i.d.∼

Uniform(0, T ), we see that its variance scales quasipolynomially in d, i.e., Var[ψ̂] . epolylog(d).
However, choosing τi’s with lighter tails will generally lead to larger values of N , i.e., a deeper
generative model will be needed.
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Appendix A. The proof of Theorem 1

We first need some background on controlled diffusion processes, see, e.g., Fleming and Rishel
(1975). As in Section 2, let U be the set of controls, where each u ∈ U defines a controlled
diffusion governed by the Itô SDE

dXu
t =

(
b(Xu

t , t) + u(Xu
t , t)

)
dt+ dWt, t ∈ [0, 1]; Xu

0 = x0.

Let c : Rd × Rd → R+ and c̃ : Rd → R+ be given. For each u ∈ U, we define the cost-to-go
functions

Ju(x, t) := E

[∫ 1

t
c(Xu

s , us) ds+ c̃(Xu
1 )

∣∣∣∣∣Xu
t = x

]
, x ∈ Rd, t ∈ [0, 1] (A.1)

where us is shorthand for u(Xu
s , s). The value functions v : Rd × [0, 1]→ R+ are defined in (2.5).

In general, finding an optimal control is difficult. However, a sufficient condition for optimality
is given by the so-called verification theorem from the theory of controlled diffusions (see, e.g.,
Chap. VI of Fleming and Rishel (1975)): Suppose that there exists a function v ∈ C2,1(Rd× [0, 1])
that solves the Cauchy problem

∂v(x, t)

∂t
+ Ltv(x, t) = − min

α∈Rd

{
αT∇v(x, t) + c(x, α)

}
on Rd × [0, 1]; g(·, 1) = c̃(·) (A.2)

where Lt is the (time-varying) generator of the diffusion (2.1):

Lth(x, t) := b(x, t)T∇h(x, t) +
1

2
tr∇2h(x, t) (A.3)

for any h ∈ C2,1(Rd × [0, 1]), and where the gradient and the Hessian are taken with respect to the
‘space variable’ x ∈ Rd. Then v is the value function for (A.1), and the optimal control u∗ is given
by

u∗(x, t) = arg min
α∈Rd

{
αT∇v(x, t) + c(x, α)

}
. (A.4)

The PDE (A.2) is called the Bellman equation associated to the control problem (A.1).

Remark 8 In fact, the control (A.4) is optimal among a much wider class of adapted controls, i.e.,
all stochastic processes {ut}t∈[0,1] adapted to the filtration {Ft}. The class U defined above consists
of so-called Markov controls, where ut is a deterministic function of Xu

t and t. In that case, the
controlled diffusion Xu is a Markov process.

We now turn to the proof of Theorem 1. The first step is to use the logarithmic transformation
due to Fleming (1978); see also Fleming and Sheu (1985); Sheu (1991). Consider the function
h(x, t) := E[g(X1)|Xt = x]. By the Feynman–Kac formula (Kallenberg, 2002, Thm. 24.1), this
function is a C2,1 solution of the Cauchy problem

∂h

∂t
+ Lth = 0 on Rd × [0, 1]; h(·, 1) = g(·). (A.5)

13
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It is a matter of simple calculus to verify that v(x, t) = − log h(x, t) solves the Cauchy problem

∂v

∂t
+ Ltv =

1

2
‖∇v‖2 on Rd × [0, 1]; v(·, 1) = − log g(·). (A.6)

Moreover, using the variational representation

1

2
‖∇v‖2 = − min

α∈Rd

{
αT∇v +

1

2
‖α‖2

}
,

where the optimizer is given by α∗ = −∇v, it is readily verified that (A.6) is the Bell-
man equation (A.2) associated to the control problem (2.4). Hence, by the verification theo-
rem, v(x, t) = − log h(x, t) is the value function we seek, and the optimal control is given by
u∗(x, t) = −∇v(x, t).

Now consider the diffusion process

dX∗t =
(
b(X∗t , t) +∇ log h(X∗t , t)

)
dt+ dWt,

which satisfies

− logE[g(X1)|Xt = x] = E

[
1

2

∫ 1

T
‖∇ log h(X∗s , s)‖2 ds− log g(X∗1 )

∣∣∣∣∣X∗t = x

]

= min
u∈U

E

[
1

2

∫ 1

t
‖us‖2 ds− log g(Xu

1 )

∣∣∣∣∣Xu
t = x

]
.

Since h solves (A.5), the transition density of {X∗t } is given by (2.7) by a result of Jamison (1975)
and Dai Pra (1991).

Appendix B. Regularity properties of f and the Föllmer drift

We first show that Assumption 1 holds for Gibbs measures

µ(dx) = Z−1e−
1
2
‖x‖2−F (x) dx

with sufficiently well-behaved potentials F . Suppose that F : Rd → R+ is differentiable, and both
F and ∇F are L-Lipschitz. Then f = dµ/ dγd = const · e−F , and the Lipschitz continuity of f
follows from the Lipschitz continuity of u 7→ e−u on [0,∞):

|e−F (x) − e−F (y)| ≤ |F (x)− F (y)| ≤ L‖x− y‖.

Likewise, the Lipschitz continuity of ∇f follows from the Lipschitz continuity of ∇F : since
∇e−F = −e−F∇F , we have

‖∇e−F (x) −∇e−F (y)‖ ≤ e−F (x)‖∇F (x)−∇F (y)‖+ ‖∇F (y)‖|e−F (x) − e−F (y)|
≤ (L+ L2)‖x− y‖.

Finally, suppose thatF is also bounded from above, F ≤ a for some a > 0. Then f ≥ c everywhere,
where 0 < c ≤ 1 because both µ and γd are probability measures.

We will also need the following simple lemma:

14
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Lemma 9 (Regularity of the Föllmer drift) Under Assumption 1, the Föllmer drift b(x, t) =
∇ logQ1−tf(x) is bounded in norm by L/c and is Lipschitz with Lipschitz constant L/c + L2/c2,
where L is the maximum of the Lipschitz constants of f and ∇f .

Proof The heat semigroup Qtf(x) = E[f(x +
√
tZ)], Z ∼ γd, commutes with the gradient

operator: for any differentiable and Lipschitz f : Rd → R, ∂iQtf = Qt∂if for all i ∈ [d] (Stroock,
2008, Corollary 2.2.8). Therefore, since f(x) ≥ c and ‖∇f(x)‖ ≤ L for all x, we haveQtf(x) ≥ c
and ‖∇Qtf(x)‖ ≤ L for all x ∈ Rd and all t ≥ 0. Consequently, for any x ∈ Rd and t ∈ [0, 1]

‖b(x, t)‖ =

∥∥∥∥∇Q1−tf(x)

Q1−tf(x)

∥∥∥∥ ≤ L

c
.

Also, since∇f is Lipschitz, ‖∇Qtf(x)−∇Qtf(x′)‖ ≤ L‖x−x′‖ for any x, x′ ∈ Rd and t ∈ [0, 1],
and thus

‖b(x, t)− b(x′, t)‖ =

∥∥∥∥∇Q1−tf(x)

Q1−tf(x)
− ∇Q1−tf(x′)

Q1−tf(x′)

∥∥∥∥
≤ ‖∇Q1−tf(x)−∇Q1−tf(x′)‖

Q1−tf(x′)
+ ‖b(x, t)‖ · |Q1−tf(x)−Q1−tf(x′)|

Q1−tf(x′)

≤

(
L

c
+
L2

c2

)
‖x− x′‖,

and the proof is complete.

Appendix C. Uniform approximation of the heat semigroup by a finite sum

In this appendix, we prove the following result, which is used in the proof of Theorem 5:

Theorem 10 For any ε > 0 and any R > 0, there exist N = poly(1/ε, d, L,R) points
z1, . . . , zN ∈ Rd, for which the following holds:

max
n≤N
‖zn‖ ≤ 8

√
(d+ 6) logN

sup
x∈Bd(R)

sup
t∈[0,1]

∣∣∣∣∣∣ 1

N

N∑
n=1

f(x+
√
tzn)−Qtf(x)

∣∣∣∣∣∣ ≤ ε
sup

x∈Bd(R)

sup
t∈[0,1]

∥∥∥∥∥∥ 1

N

N∑
n=1

∇f(x+
√
tzn)−∇Qtf(x)

∥∥∥∥∥∥ ≤ ε
We gather some preliminaries first. We recall the definition of the Orlicz exponential norm of

order 2 (Giné and Nickl, 2016, Sec. 2.3): for a real-valued random variable U ,

‖U‖ψ2
:= inf

{
c > 0 : E exp

(
|U |
c

)2

≤ 2

}
.
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The ψ2 norm dominates the L2 norm ‖U‖2 := (E|U |2)1/2: ‖U‖2 ≤ ‖U‖ψ2 . A simple application
of Markov’s inequality leads to the following tail bound:

P
[
|U | ≥ t‖U‖ψ2

]
≤ 1

et2 − 1
. (C.2)

Lemma 11 Let U = ‖Z‖, where Z ∼ γd. Then ‖U‖ψ2 ≤
√
d+
√

6.

Proof If F : Rd → R is 1-Lipschitz, then the centered random variable ξ = F (Z) − EF (Z) has
subgaussian tails (Boucheron et al., 2013, Theorem 5.6):

P
{
|ξ| ≥ t

}
≤ 2e−t

2/2 for all t > 0.

This implies that ‖ξ‖ψ2 ≤
√

6 (Giné and Nickl, 2016, Eq. (2.25)). Taking F (Z) = U and using the
triangle inequality, we obtain

‖U‖ψ2 ≤ EU + ‖U −EU‖ψ2 ≤
√
d+
√

6,

where EU ≤ ‖U‖2 =
√
d by Jensen’s inequality.

Let U1, . . . , UN , N ≥ 2, be a collection of (possibly dependent) random variables with finite ψ2

norms. Then we have the following maximal inequality:∥∥∥∥max
j≤N
|Uj |

∥∥∥∥
ψ2

≤ 4
√

logN max
j≤N
‖Uj‖ψ2 , (C.3)

(Lemma 2.3.3 in Giné and Nickl (2016)).
We also need some results on suprema of empirical processes. Let G be a class of real-valued

functions on some measurable space Z. We say that a positive function F : Z→ R+ is an envelope
of G if |g(z)| ≤ F (z) for all g ∈ G and z ∈ Z. Let Z1, . . . , ZN be i.i.d. random elements of Z
with probability law P and denote by PN the corresponding empirical distribution, i.e., PN (A) =
N−1

∑
n≤N 1{Zn∈A} for all measurable sets A ⊂ Z. We will use the linear functional notation

for expectations, i.e., Pg := EP [g(Z)] and PNg := EPN
[g(Z)] = N−1

∑
n≤N g(Zn). We are

interested in the quantity

‖PN − P‖G := sup
g∈G
|PNg − Pg|,

which is a random variable under standard regularity assumptions on G, such as separability. The
expected supremum E‖PN −P‖G is controlled by the covering numbers of G. The L2(Q) covering
numbers of G with respect to a probability measure Q on Z are defined by

N(G, L2(Q), ε) := min
{
K : there exist f1, . . . , fK ∈ L2(Q)

such that sup
g∈G

min
k≤K
‖g − fk‖L2(P ) ≤ ε

}
.

The Koltchinskii–Pollard ε-entropy of G is given by

H(G, F, ε) := sup
Q

√
log 2N(G, L2(Q), ε‖F‖L2(Q)),

where the supremum is over all probability measuresQ supported on finitely many points of Z. Then
we have the following bound on the expectation of ‖PN − P‖G (Theorem 3.54 and Eq. (3.177) in
Giné and Nickl (2016)):
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Lemma 12 Let G be a class of functions containing 0, such that

J(G, F ) :=

∫ ∞
0

H(G, F, ε) dε <∞.

Let Z1, . . . , ZN be i.i.d. copies of a random element Z of Z with probability law P , such that
F ∈ L2(P ). Then

E‖PN − P‖G ≤
8
√

2J(G, F )‖F‖L2(P )√
N

.

We also have the following generalization of Talagrand’s concentration inequality to unbounded
classes of functions, due to Adamczak (2008) (see also Sec. 2.3 in Koltchinskii (2011)):

Lemma 13 Let G be a class of real-valued functions on Z with envelope F . Then there exists an
absolute constant C > 0, such that, for any γ > 0,

P

‖PN − P‖G ≥ C
[
E‖PN − P‖G + σP (G)

√
γ

N
+

∥∥∥∥max
n≤N

F (Zn)

∥∥∥∥
ψ2

√
γ

N

] ≤ e−γ ,
where

σ2P (G) := sup
g∈G

(
Pg2 − (Pg)2

)
.

With these preliminaries out of the way, we have the following result:

Lemma 14 Let g : Rd → R be L-Lipschitz with respect to the Euclidean norm. Let Z1, . . . , ZN
be i.i.d. copies of a d-dimensional random vector Z, such that U := ‖Z‖ has finite ψ2 norm. Then
there exists an absolute constant C > 0, such that, for any γ > 0,

sup
x∈Bd(R)

sup
t∈[0,1]

∣∣∣∣∣∣ 1

N

N∑
n=1

g(x+
√
tZi)−E[g(x+

√
tZ)]

∣∣∣∣∣∣
≤ C

[
16L
√

6πRd((R ∨ 1) + ‖U‖ψ2)√
N

+ 5L
(
(R ∨ 1) + ‖U‖ψ2

)√ γ

N

]
(C.4)

with probability at least 1− e−γ .

Proof For each x ∈ Rd and t ≥ 0 let gx,t(z) := g(x +
√
tz). Let P denote the probability law of

Z. Since PNgx,t − Pgx,t = PN (gx,t − g0,0)− P (gx,t − g0,0) for all x, t, where g0,0(·) = g(0) is a
constant, we can replace each gx,t with ḡx,t := gx,t − g0,0, introduce the function class G := {ḡx,t :

x ∈ Bd(R), t ∈ [0, 1]}, and analyze the empirical process supremum

‖PN − P‖G = sup
x∈Bd(R)

sup
t∈[0,1]

|PN ḡx,t − P ḡx,t|.

17
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Define the function F (z) := L((R ∨ 1) + ‖z‖). Since ‖ · ‖2 ≤ ‖ · ‖ψ2 , F ∈ L2(P ). By Lipschitz
continuity, for all z ∈ Rd, x ∈ Bd(R), t ∈ [0, 1], we have

|ḡx,t(z)| ≤ |g(x+
√
tz)− g(0)| ≤ L‖x+

√
tz‖ ≤ F (z),

so F is a square-integrable envelope of G. Moreover, for any probability measure Q supported on
finitely many points in Rd and for all x, x′ ∈ Bd(R) and t, t′ ∈ [0, 1],

‖ḡx,t − ḡx′,t′‖L2(Q) ≤ ‖F‖L2(Q) · (‖x− x′‖+ |t− t′|1/2).

Thus we can estimate the L2(Q) covering numbers of G by

N(G, L2(Q), ε‖F‖L2(Q)) ≤ N(Bd(R), ‖ · ‖, ε/2) ·N([0, 1], | · |, ε2/4).

Using standard volumetric estimates on the covering numbers of `2 balls, we obtain the following
bound on the Koltchinskii–Pollard entropy of G:

H(G, F, ε) ≤

(
4d log

2
√

3R

ε

)
+

where (u)+ := u ∨ 0, and therefore

J(G, F ) =

∫ ∞
0

H(G, F, ε) dε ≤ 2
√

3πRd.

Lemma 12 then gives

E‖PN − P‖G ≤
8
√

2J(G)‖F‖L2(P )√
N

≤
16
√

6πRd‖F‖L2(P )√
N

=
16L
√

6πRd((R ∨ 1) + ‖U‖2)√
N

≤
16L
√

6πRd((R ∨ 1) + ‖U‖ψ2)√
N

(C.5)

Furthermore, we estimate

σP (G) ≤ ‖F‖L2(P )

≤ ‖F (Z)‖ψ2

= ‖L((R ∨ 1) + U)‖ψ2

≤ L
(
(R ∨ 1) + ‖U‖ψ2

)
(C.6)

and ∥∥∥∥max
j≤N

F (Zj)

∥∥∥∥
ψ2

= L

∥∥∥∥(R ∨ 1) + max
j≤N

Uj

∥∥∥∥
ψ2

≤ L(R ∨ 1) + 4L
√

logN‖U‖ψ2 , (C.7)
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where we have used the triangle inequality for ‖·‖ψ2 , as well as the maximal inequality (C.3). Using
the estimates (C.5), (C.6), and (C.7) in Adamczak’s inequality, we obtain (C.4).

We are now ready to prove Theorem 10. The proof is via the probabilistic method. Let ε > 0
and R > 0 be given, and choose

N =


(
C
√
d

ε
· L
(

(R ∨ 1) +
√
d+
√

6
)
·
(

16
√

6πRd+ 5
√

log 4(d+ 1)
))2

 ,
where C > 0 is the absolute constant in the bound of Lemma 14. Let Z1, . . . , ZN be i.i.d. copies
of Z ∼ γd, and observe that E[f(x +

√
tZ)] = Qtf(x) and E[∂if(x +

√
tZ)] = ∂iQtf(x) =

Qt∂if(x) for all x ∈ Rd, t ≥ 0, and i ∈ [d]. Define the events

E0 :=

{
max
n≤N
‖Zn‖ ≥ 8

√
(d+ 6) logN

}

E1 :=

 sup
x∈Bd(R)

sup
t∈[0,1]

∣∣∣∣∣∣ 1

N

N∑
n=1

f(x+
√
tZn)−Qtf(x)

∣∣∣∣∣∣ ≥ ε


E2 :=

max
i∈[d]

sup
x∈Bd(R)

sup
t∈[0,1]

∣∣∣∣∣∣ 1

N

N∑
n=1

∂if(x+
√
tZn)− ∂iQtf(x)

∣∣∣∣∣∣ ≥ ε√
d

 .

We will show that P{E0 ∪E1 ∪E2} < 1, which will imply that there exists at least one realization
of Z1, . . . , ZN verifying the statement of the theorem.

By Lemma 11, U = ‖Z‖ satisfies ‖U‖ψ2 ≤
√
d +
√

6, and therefore U∗N := maxn≤N Un
satisfies ‖U∗N‖ψ2 ≤

√
32(d+ 6) logN by the maximal inequality (C.3). Consequently, it follows

from (C.2) that

P{E0} ≤ P{U∗N ≥
√

2‖U∗N‖ψ2} ≤
1

e2 − 1
≤ 1

4
.

Moreover, since the function f and all of its partial derivatives are L-Lipschitz, Lemma 14 (with
γ = log 4(d+1)) and the union bound give P{E1∪E2} ≤ 1/4. Therefore, P{E0∪E1∪E2} ≤ 1/2.

Appendix D. The proof of Theorem 5: uniform approximation of the Föllmer drift
by a neural net

We first collect a few preliminaries.

Lemma 15 (cheap gradient principle, Griewank and Walther (2008)) Let f : Rd → R be im-
plementable by a neural net with differentiable activation function σ : R→ R, where the neural net
has size (number of nodes) m and depth (number of layers) `. Then each coordinate of the gradient
∇f can be computed by a neural net that has size O(m + `), and where the activation function of
each neuron is an element of the set {σ, σ′}.

Lemma 16 (approximating multiplication and reciprocals) Let σ : R → R be an activation
function satisfying Assumption 2. Then:
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1. For any M > 0 and any δ > 0, there exists a 2-layer neural net g : R2 → R of size
m ≤ 8cσ

M2

δ + 1, such that

sup
x,y∈[−M,M ]

|g(x, y)− xy| ≤ δ. (D.1)

2. For any 0 < a ≤ b < ∞ and any δ > 0, there exists a 2-layer neural net q : R → R of size
m ≤ cσ b

a2δ
+ 1, such that

sup
x∈[a,b]

∣∣∣∣q(x)− 1

x

∣∣∣∣ ≤ δ. (D.2)

Remark 17 These approximations suffice for our purposes. However, if one uses the ReLU activa-
tion function x 7→ x ∨ 0, then both multiplication and reciprocals can be ε-approximated by neural
nets with size and depth polylogarithmic in 1/ε (Yarotsky, 2017; Telgarsky, 2017).

Proof For multiplication, we first consider the function x 7→ x2 ∧ (4M2), which is 4M -Lipschitz
and constant outside the interval [−2M, 2M ]. Assumption 2 then grants the existence of a univariate
function g0 : R → R of the form (3.3) with m ≤ 4cσ

M2

δ satisfying |g0(x) − x2| ≤ 2δ for all
x ∈ [−M,M ]. The desired approximation g : R2 → R is given by

g(x, y) =
1

4

(
g0(x+ y)− g0(x− y)

)
,

which is a 2-layer neural net with size m ≤ 8cσ
M2

δ + 1. Indeed, using the polarization identity
4xy = (x+ y)2 − (x− y)2, we have

sup
x,y∈[−M,M ]

|g(x, y)− xy|

≤ 1

4
sup

x,y∈[−M,M ]

∣∣∣g0(x+ y)− (x+ y)2
∣∣∣+

1

4
sup

x,y∈[−M,M ]

∣∣∣g0(x− y)− (x− y)2
∣∣∣

≤ δ.

For approximating the reciprocal, consider the univarite function

x 7→ 1

a
1{x < a}+

1

x
1{a ≤ x ≤ b}+

1

b
1{x > b},

which is (1/a2)-Lipschitz and constant outside of the interval [−b, b]. The existence of the function
q with the stated properties follows immediately from Assumption 2.

We now prove Theorem 5. Let δ = c2ε
16L . By Theorem 10, there exist points z1, . . . , zN ∈ Rd

with N = poly(1/δ, d, L,R), such that RN,d := maxn≤N ‖zn‖ ≤ 8
√

(d+ 6) logN , and the
function ϕ : Rd × [0, 1]→ R defined by

ϕ(x, t) :=
1

N

N∑
n=1

f(x+ tzn)
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satisfies

sup
x∈Bd(R)

sup
t∈[0,1]

|ϕ(x,
√
t)−Qtf(x)| ≤ δ and sup

x∈Bd(R)

sup
t∈[0,1]

‖∇ϕ(x,
√
t)−∇Qtf(x)‖ ≤ δ.

By Assumption 3, there exists a neural net f̂ : Rd → R be that approximates f and the gradient of
f to accuracy δ on the blown-up ball Bd(R+RN,d). Then the function

ϕ̂ : Rd × [0, 1]→ R, ϕ̂(x, t) :=
1

N

N∑
n=1

f̂(x+ tzn)

can be computed by a neural net of size N · poly(1/δ, d, L,R), such that

sup
x∈Bd(R)

sup
t∈[0,1]

|ϕ̂(x,
√
t)−Qtf(x)|

≤ sup
x∈Bd(R)

sup
t∈[0,1]

|ϕ̂(x,
√
t)− ϕ(x,

√
t)|+ sup

x∈Bd(R)

sup
t∈[0,1]

|ϕ(x,
√
t)−Qtf(x)|

≤ sup
x∈Bd(R+RN,d)

|f̂(x)− f(x)|+ sup
x∈Bd(R)

sup
t∈[0,1]

|ϕ(x,
√
t)−Qtf(x)| ≤ 2δ

and

sup
x∈Bd(R)

sup
t∈[0,1]

‖∇ϕ̂(x,
√
t)−∇Qtf(x)‖

≤ sup
x∈Bd(R)

sup
t∈[0,1]

‖∇ϕ̂(x,
√
t)−∇ϕ(x,

√
t)‖+ sup

x∈Bd(R)

sup
t∈[0,1]

‖∇ϕ(x,
√
t)−∇Qtf(x)‖

≤ sup
x∈Bd(R+RN,d)

‖∇f̂(x)−∇f(x)‖+ sup
x∈Bd(R)

sup
t∈[0,1]

‖∇ϕ(x,
√
t)−∇Qtf(x)‖ ≤ 2δ.

Since f is L-Lipschitz and bounded below by c, we have c ≤ Qtf(x) ≤ L(‖x‖+
√
d) + f(0) for

any x ∈ Rd and t ∈ [0, 1]. Therefore, on Bd(R)× [0, 1],

c

2
≤ ϕ̂(x,

√
t) ≤ L(R+

√
d) + f(0) +

c

2

where we have used the fact that δ ≤ c/4. Without loss of generality, we may assume that L ≥ 1.
Then, for any x ∈ Bd(R) and t ∈ [0, 1],∥∥∥∇ log ϕ̂(x,

√
t)−∇ logQtf(x)

∥∥∥
=

∥∥∥∥∥∇ϕ̂(x,
√
t)

ϕ̂(x,
√
t)
− ∇Qtf(x)

Qtf(x)

∥∥∥∥∥
≤ 1

ϕ̂(x,
√
t)
‖∇ϕ̂(x,

√
t)−∇Qtf(x)‖+

∥∥∥∥∇Qtf(x)

Qtf(x)

∥∥∥∥ |ϕ̂(x,
√
t)−Qtf(x)|

ϕ̂(x,
√
t)

≤ 2L

c
· 2δ +

L

c
· 2

c
· 2δ

≤ ε

2
,
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where we have used Lemma 9 to bound ‖∇Qtf
Qtf
‖ ≤ L/c. In other words, ∇ log ϕ̂(x,

√
t) ap-

proximates ∇ logQtf(x) to accuracy ε/2 uniformly on Bd(R) × [0, 1]. It remains to approximate
∇ log ϕ̂(x,

√
t) by a neural net to accuracy ε/2.

To that end, we first represent ∇ log ϕ̂(x,
√
t) as a composition of several elementary oper-

ations and then approximate each step by a neural net. Specifically, the computation of vi =
∂i log ϕ̂(x,

√
t) can be represented as a computation graph with the following structure:

1. Compute a = ϕ̂(x,
√
t).

2. Compute bi = ∂iϕ̂(x,
√
t).

3. Compute r = 1/a.

4. Compute vi = rbi.

Given x and
√
t, a is computed by a neural net with activation function σ, of size poly(1/δ, d, L,R)

and depth poly(1/δ, d, L,R). Therefore, by the cheap gradient principle (Lemma 15), bi can be
computed by a neural net of size poly(1/δ, d, L,R), where the activation function of each neuron
is an element of the set {σ, σ′}. Next, since a takes values in [c/2, L(R +

√
d) + f(0) + c/2], by

Lemma 16 the reciprocal r = 1/a can be computed to accuracy ε/(4L
√
d) by a 2-layer neural net

with activation function σ and of size

O

(
4

c2
·
(
L(R+

√
d) + f(0) + c/2

)
· 4L
√
d

ε

)
≤ poly(1/ε, d, L,R, c, 1/c)

Let r̂ denote the resulting approximation. Then, since |bi| ≤ 2L and |r̂| ≤ 2/c+ ε/(4L
√
d) ≤ 4/c,

by Lemma 16 the product r̂bi can be approximated to accuracy ε/4
√
d by a 2-layer neural net with

activation function σ and with at most

O

(
(4/c ∨ 2L)2 · 4

√
d

ε

)
≤ poly(1/ε, d, L, 1/c)

neurons. The overall accuracy of approximation is

|v̂i − vi| ≤ |v̂i − r̂bi|+ |r̂bi − rbi| ≤
ε

2
√
d
.

Thus, the vector v = (v1, . . . , vd) can be ε/2-approximated by ṽ(x,
√
t), where ṽ : Rd×[0, 1]→ Rd

is a neural net with vector-valued output that has the size poly(1/ε, d, L,R, c, 1/c). Finally, since
supx∈Bd(R) supt∈[0,1] |ṽi(x,

√
t)| ≤ 2L/c, the function

v̂i(x,
√
t) := min{max{ṽi(x,

√
t),−2L/c}, 2L/c}

is continuous, takes values in [−2L/c, 2L/c] and coincides with ṽi on Bd(R) × [0, 1]. Moreover,
the min and max operations can each be implemented exactly using O(1) ReLU neurons.
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Appendix E. Proof of Theorem 6

E.1. Unbiasedness

We follow the strategy of Henry-Labordère et al. (2017) and construct a sequence {ψn}n≥0 of
unbiased estimators, such that E[ψn]

n→∞−−−→ E[ψ], where ψ := limn→∞ ψn. By a standard approx-
imation argument, we can assume that g is bounded and Lipschitz.

Let ∆T
k := Tk − Tk−1 and ∆W

k := WTk −WTk−1
, for k ≥ 1. For each n ≥ 0, let

ψn := g(X̂1) ·
1

1− Fτ (∆T
n+1)

N∧n∏
k=1

(
b(X̂Tk , Tk)− b(X̂Tk−1

, Tk−1)
)T

∆W
k+1

fτ (∆T
k )∆T

k+1

· 1{N≤n}

+

n+1∏
k=1

1

fτ (∆T
k )
·
(
b(X̂Tn+1 , Tn+1)− b(X̂Tn , Tn)

)T

∇h(X̂Tn+1 , Tn+1) ·
∆W
n+1

∆T
n+1

· 1{N>n},

(E.1)

where h(x, t) := E[g(X1)|Xt = x]. We will show that E[ψn] = E[g(X1)] for all n and that the
sequence {ψn}n≥0 is uniformly integrable. Then it will follow from the dominated convergence
theorem that

ψ = lim
n→∞

ψn =
1

1− Fτ (1− TN )
· g(X̂1) ·

N∏
k=1

1

fτ (Tk − Tk−1)
Ŵk (E.2)

is also an unbiased estimator. Observe that the estimator ψ̂ defined in (C.2) differs from ψ: instead
of g(X̂1), we have g(X̂1) − g(X̂N )1{N>0}. Just as in Henry-Labordère et al. (2017), the term
proportional to g(X̂N )1{N>0} serves as a control variate to ensure that ψ̂ has finite variance. Indeed,
since E[∆W

N+1|TN ] = 0, it is easy to see that

E

 1

1− Fτ (1− TN )
· g(X̂N )1{N>0} ·

N∏
k=1

1

fτ (Tk − Tk−1)
Ŵk

 = 0,

and therefore E[ψ̂ − ψ] = 0.
Given x, v ∈ Rd and t ∈ [0, 1], consider the constant-drift diffusion process {X̃t,x,v

s }s∈[t,1] with
X̃t,x,v
t = x and

dX̃t,x,v
s = v ds+ dWs, s ∈ [t, 1].

This process has the infinitesimal generator

Lvh(x, t) := vT∇h(x, t) +
1

2
tr∇2h(x, t), ∀h ∈ C2,1(Rd × [0, 1]).

Then, by Dynkin’s formula (Kallenberg, 2002, Lemma 19.21), for any t ≤ s ≤ 1,

h(X̃t,x,v
s , s) = h(X̃t,x,v

t , t) +

∫ s

t

{
∂

∂r
+ Lv

}
h(X̃t,x,v

r , r) dr +M t
s, (E.3)
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where {M t
s}s∈[t,1] is a martingale. In particular, let h ∈ C2,1(Rd × [0, 1]) be a bounded solution of

the Cauchy problem

∂h

∂t
+ Lth = 0, h(·, 1) = g(·) (E.4)

where

Lth(x, t) := b(x, t)T∇h(x, t) +
1

2
tr∇2h(x, t).

Rewriting (E.4) as

∂h

∂t
+ Lvh = (v − b)Th, h(·, 1) = g(·)

and using this in (E.3), we obtain the formula

h(X̃t,x,v
s , s)

= g(X̃t,x,v
1 ) +

∫ 1

s

(
b(X̃t,x,v

r , r)− v
)T∇h(X̃t,x,v

r , r) dr +M t
s −M t

1, t ≤ s ≤ 1.

In particular, since h(x, t) = E[g(X1)|Xt = x] by the Feynman–Kac formula, we have

h(x, t) = E

[
g(X̃t,x,v

1 ) +

∫ 1

t

(
b(X̃t,x,v

s , s)− v
)T∇h(X̃t,x,v

s , s) ds

]
, (E.5)

where E[M t
t −M t

1] = 0 since Mh,t is a martingale.
Using Eq. (E.5) with t = 0 and v = v0 := b(x, 0), we have

h(x, 0) = E

[
g(X̃0,x,v0

1 ) +

∫ 1

0

(
b(X̃t,x,v

s , s)− b(x, 0)
)T∇h(X̃t,x,v

s , s) ds

]
.

Recalling that T1 = τ1 ∧ 1 is independent of the Brownian motion {Wt} and P[T1 ≥ 1] = P[τ1 ≥
1] = 1− Fτ (1), we have

E[g(X̃0,x,v0
1 )] =

1

1− Fτ (1)
E[g(X̃0,x,v0

1 )1{T1≥1}], (E.6)

and

E

[∫ 1

0

(
b(X̃0,x,v0

s , s)− b(x, 0)
)T∇h(X̃0,x,v0

s , s) ds

]

= E

[
1

fτ (T1)

(
b(X̃0,x,v0

T1
, T1)− b(x, 0)

)T∇h(X̃0,x,v0
T1

, T1)1{T1<1}

]
. (E.7)

Since the process X̃0,x,v0 coincides with X̂ on [0, T1], it follows from (E.6) and (E.7) that

h(x, 0)

= E

[
1

1− Fτ (∆T
1 )
g(X̂1)1{T1≥1} +

1

fτ (∆T
1 )

(
b(X̂T1 , T1)− b(X̂T0 , T0)

)T∇h(X̂T1 , T1)1{T1<1}

]
(E.8)

= E[ψ0],
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where the last equality follows from the fact that T1 = ∆T
1 ≥ 1 if and only if N = 0.

By Lemma 18 in Section E.3,

∇h(x, 0)

= E

[
g(X̃0,x,v0

1 )W1 +

∫ 1

0

((
b(X̃t,x,v

s , s)− b(x, 0)
)T∇h(X̃t,x,v

s , s)
)Ws

s
ds

]

= E

[
1

1− Fτ (1)
g(X̂1)

∆W
1

∆T
1

1{T1≥1}

+
1

fτ (∆T
1 )

((
b(X̂T1 , T1)− b(X̂T0 , T0)

)T∇h(X̂T1 , T1)
) ∆W

1

∆T
1

1{T1<1}

]
(E.9)

Moreover, if we change the initial condition from t = 0, v = v0 to t = T1, v = v1 := b(X̂T1 , T1),
then it follows from (E.9) that, conditionally on (X̂T1 , T1), whenever T1 < 1,

∇h(X̂T1 , T1) = E

[
1

1− Fτ (∆T
2 )
g(X̂1)

∆W
2

∆T
2

1{T2≥1}

+
1

fτ (∆T
2 )

((
b(X̂T2 , T2)− b(X̂T1 , T1)

)T∇h(X̂T2 , T2)
) ∆W

2

∆T
2

1{T2<1}

∣∣∣∣∣X̂T1 , T1

]
.

(E.10)

Substituting (E.10) into (E.8) and using the fact that the event {T1 < 1 ≤ T2} is equivalent to
{N = 1}, we have h(x, 0) = E[ψ1]. Repeating this procedure, we have

E[g(X1)|X0 = x] = h(x, 0) = E[ψn], n ≥ 0.

We claim that the sequence {ψn}n≥0 is uniformly integrable. To see this, first observe that, for each
k, E[‖∆W

k+1‖||Tk+1] ≤ (∆T
k+1d)1/2. Then the uniform integrability follows from the boundedness

of b, g,∇h, and from Lemma 19 in Section E.3. Therefore, taking the limit as n→∞, we obtain

E[g(X1)|X0 = x] = lim
n→∞

E[ψn] = E

[
lim
n→∞

ψn

]
= E[ψ],

where the second equality follows from the dominated convergence theorem.

E.2. Variance

Let L := Lb∨Lg. For 1 ≤ k ≤ N + 1, let ∆X̂
k := X̂Tk+1

− X̂Tk denote the increments of X̂ . Since
TN+1 = 1, we have

∣∣∣g(X̂1)− g(X̂TN )1{N>0}

∣∣∣ ≤
|g(x)|+ L|∆X̂

1 |, N = 0

L|∆X̂
N+1|, N > 0

which gives∣∣∣g(X̂1)− g(X̂TN )1{N>0}

∣∣∣ ≤ |g(x)|1{N=0} + L

(√
∆T
N+1 + ‖∆X̂

N+1‖
)
.
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Using this and (4.4), we can upper-bound ψ̂ as follows:

|ψ̂| ≤ ea

1− Fτ (1)
·
(
|g(x)|+ L

(√
∆T

1 + ‖∆X̂
1 ‖
))
·
N∏
k=1

CL
(√

∆T
k+1 + ‖∆X̂

k+1‖
)

∆T
k+1

· ‖∆W
k+1‖,

where, for k ≥ 0,

‖∆X̂
k+1‖ = ‖b(X̂Tk , Tk) ·∆

T
k+1 + ∆W

k+1‖
≤ b∞∆T

k+1 + ‖∆W
k+1‖.

Let Fk := σ(Tj , X̂j : 1 ≤ j ≤ k). Then, since Law(∆W
k+1|Fk) = Law((∆T

k+1)
1/2Z|Fk), where

Z ∼ γd is independent of Fk ∨ σ(Tk+1), we have

E

[(
(∆T

k+1)
1/2 + ‖∆X̂

k+1‖
∆T
k+1

· ‖∆W
k+1‖

)2∣∣∣∣∣Fk
]

≤ Ek

[(
b∞∆T

k+1 + (∆T
k+1)

1/2(1 + ‖Z‖)
∆T
k+1

·
√

∆T
k+1‖Z‖

)2∣∣∣∣∣Fk
]

≤ E
[
(1 + b∞ + ‖Z‖)2‖Z‖2

]
=: κ.

Therefore, we can estimate

E[ψ̂2] ≤
(

ea

1− Fτ (1)

)2

·E
[(
|g(x)|+ L(1 +

√
d)
)2]
·E
[
exp(κN)

]
.

E.3. Auxiliary lemmas

The following lemma is a straightforward consequence of the Gaussian integration-by-parts formula
∇xE[f(x+ Z)] = E[f(x+ Z)Z], Z ∼ γd, for any C1 function f : Rd → R:

Lemma 18 (Henry-Labordère et al. (2017)) Let ν be a positive measure on [0, 1]. Let ϕ : Rd ×
[0, 1]→ R be a continuous function, such that∫ 1

0
E

[∥∥∥∥ϕ(x+ vt+Wt)
Wt

t

∥∥∥∥] ν(dt) <∞.

Then

∇x

(∫ 1

0
E[ϕ(x+ vt+Wt)]ν(dt)

)
=

∫ 1

0
E

[
ϕ(x+ vt+Wt)

Wt

t

]
ν(dt)

The next lemma is used to show that the sequence {ψn} is uniformly integrable:

Lemma 19 For any C > 0,

E

 CN

1− Fτ (∆T
N+1)

N∏
k=1

1

fτ (∆T
k )(∆T

k+1)
1/2

 <∞. (E.11)
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Proof For each n ≥ 0, define the n-simplex

Sn :=
{

(s1, s2, . . . , sn) ∈ [0, 1]n : 0 < s1 < . . . < sn < 1
}

with s0 ≡ 0 and sn+1 ≡ 1. Consider the partial sums Sk :=
∑k

i=1 τi. Since the τi’s are i.i.d., the
conditional joint density of (S1, S2, . . . , Sn) given N = n is equal to

qn(s1, s2, . . . , sn) =
1

P[N = n]
· (1− Fτ (1− sn)) ·

n∏
k=1

fτ (sk − sk−1), (s1, . . . , sn) ∈ Sn

where we have set s0 ≡ 0. Then a calculation similar to the one in Appendix B of Andersson and
Kohatsu-Higa (2017) leads to

E

 CN

1− Fτ (∆T
N+1)

N∏
k=1

1

fτ (∆T
k )(∆T

k+1)
1/2


=
∑
n≥0

P[N = n] · Cn
∫
Sn

1

1− Fτ (sn)

n∏
k=1

1

fτ (sk − sk−1)(sk+1 − sk)1/2
qn(s1, . . . , sn) ds

≤
∑
n≥0

Cn
∫
Sn

n∏
k=0

1

(sk+1 − sk)1/2
ds

=
√
π · E1/2,1/2(C

√
π),

where ds is the Lebesgue measure on Sn and

Eα,β(z) :=

∞∑
k=0

zk

Γ(β + αk)
, z ∈ C, α, β > 0 (E.12)

is the Mittag–Leffler function (Erdélyi et al., 1955). When α and β are both real and positive, the
series in (E.12) converges for all values of z ∈ C, which completes the proof.

Appendix F. Proof of Lemma 7

For each t ≥ 0, let Nt := max{k : Sk < t ≤ Sk+1}. Then N1 = N and Tn = Sn for n ≤ N .
Moreover, {Nt}t≥0 is a renewal process with renewal times {Sk}k≥0 and i.i.d. interrenewal times
with pdf fτ . The moment-generating function of Mt can be upper-bounded as follows (Glynn and
Whitt, 1994):

E[eθNt ] ≤ 1 + eθ
∞∑
k=0

eθkP[Sk < t]. (F.1)

Let t = 1 and fix some β > 0. Then
∞∑
k=0

eθkP[Sk < 1] =
∑
k≤β

eθkP[Sk < 1] +
∑
k>β

eθkP[Sk < 1]

≤ (β + 1)eθβ +

∞∑
k=0

eθkP[Sk < kβ−1].
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Using Markov’s inequality and the fact that the τi’s are i.i.d., we can further estimate

P[Sk < kβ−1] = P[k − βSk > 0] ≤ ekE
[
e−βSk

]
=
(
eMτ (−β)

)k
.

Substituting these estimates into (F.1) and optimizing over β, we get (4.6).
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Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi. Higher Transcen-
dental Functions, volume III. McGraw-Hill, New York, 1955.

28



SAMPLING AND INFERENCE IN GENERATIVE MODELS WITH LATENT DIFFUSIONS

Wendell H. Fleming. Exit probabilities and optimal stochastic control. Applied Mathematics and
Optimization, 4:329–346, 1978.

Wendell H. Fleming and Raymond W. Rishel. Deterministic and Stochastic Optimal Control.
Springer, 1975.

Wendell H. Fleming and Sheunn-Jyi Sheu. Stochastic variational formula for fundamental solutions
of parabolic PDE. Applied Mathematics and Optimization, 13:193–204, 1985.
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