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Abstract
We study the dynamics of gradient descent on objective functions of the form f(

∏k
i=1 wi) (with

respect to scalar parametersw1, . . . , wk), which arise in the context of training depth-k linear neural
networks. We prove that for standard random initializations, and under mild assumptions on f , the
number of iterations required for convergence scales exponentially with the depth k. We also show
empirically that this phenomenon can occur in higher dimensions, where each wi is a matrix. This
highlights a potential obstacle in understanding the convergence of gradient-based methods for
deep linear neural networks, where k is large.
Keywords: Deep Learning, linear neural networks, gradient descent

1. Introduction

One of the biggest open problems in theoretical machine learning is to explain why deep artifi-
cial neural networks can be efficiently trained in practice, using simple gradient-based methods.
Such training requires optimizing complex, highly non-convex objective functions, which seem in-
tractable from a worst-case viewpoint. Over the past few years, much research has been devoted to
this question, but it remains largely unanswered.

Trying to understand simpler versions of this question, significant attention has been devoted
to linear neural networks, which are predictors mathematically defined as x 7→

∏k
i=1Wix, with

W1, . . . ,Wk being a set of parameter matrices, and k being the depth parameter (e.g. Saxe et al.
(2013); Kawaguchi (2016); Hardt and Ma (2016); Lu and Kawaguchi (2017); Bartlett et al. (2018);
Laurent and Brecht (2018)). The optimization problem associated with training such networks can
be formulated as

min
W1,...,Wk

F (W1, . . . ,Wk) := f

(
k∏
i=1

Wi

)
(1)

for some function f . Although much simpler than general feedforward neural networks (which
involve additional non-linear functions), it is widely believed that Eq. (1) captures important as-
pects of neural network optimization problems. Moreover, Eq. (1) has a simple algebraic structure,
which makes it more amenable to analysis. In particular, it is known that when f is convex and
differentiable, Eq. (1) has no local minima except global ones (see Laurent and Brecht (2018) and
references therein). In other words, if an optimization algorithm converges to some local minimum,
then it must converge to a global minimum.
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Importantly, this no-local-minima result does not imply that gradient-based methods indeed
solve Eq. (1) efficiently: Even when they converge to local minima (which is not always guar-
anteed, say in case the parameters diverge), the number of required iterations might be arbitrar-
ily large. To study this question, Bartlett et al. (2018) recently considered the special case where
F (W1, . . . ,Wk) := 1

2‖
∏k
i=1Wi − Y ‖2F (where ‖ · ‖F is the Frobenius norm) for square matrices

W1, . . . ,Wk, Y , using gradient descent starting specifically from Wi = I for all i. In this setting,
the authors prove a polynomial-time convergence guarantee when Y is positive semidefinite. On the
other hand, when Y is symmetric and with negative eigenvalues, it is shown that gradient descent
with this initialization will never converge. Although these results provide important insights, they
crucially assume that each Wi is initialized exactly at the identity I . Since in practice parameters
are initialized randomly, it is natural to ask whether such results hold with random initialization.
Indeed, even though gradient descent might fail to converge with a specific initialization, it could
be that even a tiny random perturbation is sufficient for polynomial-time convergence1. More re-
cently, Arora et al. (2018a) considered gradient descent on a similar objective, and managed to prove
strong polynomial-time convergence guarantees under certain assumptions about the initialization.
However, as the authors discuss (in section 3.2.1), these assumptions are not generally satisfied
for standard initialization approaches. In another recent related work, Ji and Telgarsky (2018) show
that for certain classification problems on linearly separable data (corresponding to a suitable choice
of f in Eq. (1)), gradient descent asymptotically converges to a globally optimal objective value.
However, the result only applies to particular choices of f , and more importantly, is asymptotic and
hence does not imply a finite-time convergence guarantee. Thus, analyzing the finite-time conver-
gence of gradient descent on Eq. (1), with standard random initializations, remains a challenging
open problem.

In this paper, we consider a simpler special case of Eq. (1), where the matrices W1, . . . ,Wk are
all scalars:

min
w∈Rk

F (w) := f

(
k∏
i=1

wi

)
. (2)

Our main and perhaps surprising result is that even in this relatively simple setting, gradient descent
with random initialization can require exp(Ω(k)) iterations to converge. This holds under mild
conditions on the function f , and with standard initializations (including Xavier initialization and
any reasonable initialization close to (1, . . . , 1)). We complement this by showing that exp(Õ(k)) ·
max{1, log(1/ε)} iterations are also sufficient for convergence to an ε-optimal point. Moreover,
in Sec. 4 we present experiments which strongly suggest that this phenomenon is not unique to
one-dimensional networks, and at least in some cases, the same exponential dependence can also
occur in multi-dimensional networks (i.e., Eq. (1) where each Wi is a d × d matrix, d > 1). The
take-home message is that even if we focus on linear neural networks, natural objective functions
without any spurious local minima, and random initializations, the associated optimization problems
can sometime be intractable for gradient descent to solve, when the depth is large.

Before continuing, we emphasize that our results do not imply that gradient-based methods
cannot learn deep linear networks. What they do imply is that one would need to make additional

1. For example, consider the objective F (w1, w2) = (w1w2+1)2 where w1, w2 ∈ R. It is an easy exercise to show that
gradient descent starting from any w1 = w2 > 0 (and sufficiently small step sizes) will converge to the suboptimal
saddle point (0, 0). On the other hand, polynomial-time convergence holds with random initialization (see Du et al.
(2018)).
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assumptions or algorithmic modifications to circumvent these negative results: For example, ex-
plicitly using the fact that the matrix sizes are larger than 1 – something which is not clear how
to do with current analyses – or having a fine-grained dependency on the variance of the random
initialization, as further discussed in Sec. 4. Alternatively, our results might be circumvented using
other gradient-based algorithms (for example, by adding random noise to the gradient updates or
using adaptive step sizes), or other initialization strategies. However, that would not explain why
plain gradient descent with standard random initializations is often practically effective on these
problems. Overall, we believe our results point to a potential obstacle in understanding the conver-
gence of gradient-based methods for linear networks: At the very least, one would have to rule out
one-dimensional layers, or consider algorithms other than plain gradient descent with standard ini-
tializations, in order to establish polynomial-time convergence guarantees for deep linear networks.

Finally, we note that our results provide a possibly interesting contrast to the recent work of
Arora et al. (2018b), which suggests that increasing depth can sometimes accelerate the optimization
process. Here we show that at least in some cases, the opposite occurs: Adding depth can quickly
turn a trivial optimization problem into an intractable one for gradient descent.

2. Preliminaries

Notation. We use bold-faced letters to denote vectors. Given a vector w, wj refers to its j-th
coordinate. ‖ · ‖, ‖ · ‖1 and ‖ · ‖∞ refer to the Euclidean norm, the 1-norm and the infinity norm
respectively. We let

∏k
i=1wi and

∏
iwi be a shorthand for w1 ·w2 · · ·wk. Also, we define a product

over an empty set as being equal to 1. Since our main focus is to study the dependence on the
network depth k, we use the standard notation O(·),Ω(·),Θ(·) to hide constants independent of k,
and Õ(·), Ω̃(·), Θ̃(·) to hide constants and factors logarithmic in k.

Gradient Descent. We consider the standard gradient descent method for unconstrained op-
timization of functions F in Euclidean space, which given an initialization point w(1), performs
repeated iterations of the form w(t + 1) := w(t) − η∇F (w(t)) for t = 1, 2, . . . (where ∇F (·) is
the gradient, and η > 0 is a step size parameter). For objectives as in Eq. (2), we have ∂

∂wj
F (w) =

f ′(
∏
iwi)

∏
j 6=iwi, and gradient descent takes the form

∀j, wj(t+ 1) = wj(t)− ηf ′
(∏

i

wi(t)

)∏
j 6=i

wi(t) .

Random Initialization. One of the most common initialization methods for neural networks
is Xavier initialization (Glorot and Bengio, 2010), which in the setting of Eq. (1) corresponds to
choosing each entry of each d × d matrix Wi independently from a zero-mean distribution with
variance 1/d (usually uniform or Gaussian). This ensures that the variance of the network outputs
(with respect to the initialization) is constant irrespective of the network size. Motivated by residual
networks, Hardt and Ma (2016) and Bartlett et al. (2018) consider initializing each Wi indepen-
dently at I , possibly with some random perturbation. In this paper we denote such an initialization
scheme as a near-identity initialization. Since we focus here on the case d = 1 as in Eq. (2), Xavier
initialization corresponds to choosing each wi independently from a zero-mean, unit-variance dis-
tribution, and near-identity initialization corresponds to choosing each wi close to 1.

3



EXPONENTIAL CONVERGENCE TIME OF GRADIENT DESCENT FOR ONE-DIMENSIONAL LINEAR NETWORKS

3. Exponential Convergence Time for Gradient Descent

For our negative results, we impose the following mild conditions on the function f in Eq. (2):

Assumption 1 f : R → R is differentiable, Lipschitz continuous and strictly monotonically in-
creasing on any interval [−1

2 , z) where z > 0. Moreover, infp∈[− 1
2
,∞) f(p)− infp∈R f(p) > 0.

Here, we assume that f is fixed, and our goal is to study the convergence time of gradient descent
on Eq. (2) as a function of the depth k. Some simple examples satisfying Assumption 1 in the
context of machine learning include f(x) = (x + 1)2 and f(x) = log(1 + exp(x)) (e.g., squared
loss and logistic loss with respect to the input/output pair (1,−1), respectively). We note that this
non-symmetry with respect to positive/negative values is completely arbitrary, and one can prove
similar results if their roles are reversed.

3.1. Xavier Initialization

We begin with the case of Xavier initialization, where we initialize all coordinates of w in Eq. (2)
independently from a zero-mean, unit variance distribution. We will consider any distribution which
satisfies the following:

Assumption 2 w1(1), . . . , wk(1) are drawn i.i.d. from a zero-mean, unit variance distribution
such that

1. Pr(w1(1) ∈ [−a, a]) ≤ c1a for all a ≥ 0

2. E[|w1(1)|] ≤ 1− c2

where c1, c2 > 0 are absolute constants independent of k.

The first part of the assumption is satisfied for any distribution with bounded density. As to the
second part, the following lemma shows that it is satisfied for uniform and Gaussian distributions
(with an explicit c2), and in fact for any non-trivial distribution (with a distribution-dependent c2):

Lemma 1 The following hold:

• If w is drawn from a zero-mean, unit-variance Gaussian, then E[|w|] < 0.8 .

• If w is drawn from a zero-mean, unit-variance uniform distribution, then E[|w|] < 0.9 .

• If w is drawn from any zero-mean, unit variance distribution not supported on a single value,
then E[|w|] < 1.

Proof The first two parts follow from standard results on Gaussian and uniform distributions. As
to the third part, by Jensen’s inequality and the fact that

√
· is a strictly concave function, E[|w|] =

E[
√
w2] <

√
E[w2] = 1.

With such an initialization, we now show that gradient descent is overwhelmingly likely to take
at least exponential time to converge:
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Theorem 2 The following holds for some positive constants c, c′ independent of k: Under Assump-
tions 1 and 2, if gradient descent is ran with any step size η ≤ exp(ck), then with probability at least
1 − exp(−Ω(k)) over the initialization, the number of iterations required to reach suboptimality
less than c′ is at least exp(Ω(k)).

In the above, Ω(·) hides dependencies on the absolute constants in the theorem statement and the
assumptions. The proof is presented in Sec. 5.

The intuition behind the theorem is quite simple: Under our assumptions, it is easy to show that
the product of any Ω(k) coordinates from w1(1), . . . , wk(1) is overwhelmingly likely to be expo-
nentially small in k. Since the derivative of our objective w.r.t. anywj has the form f ′(

∏
iwi)

∏
i 6=j wi,

it follows that the gradient is exponentially small in k. Moreover, we show that the gradient is ex-
ponentially small at any point within a bounded distance from the initialization (which is the main
technical challenge of the proof, since the gradient is by no means Lipschitz). As a result, gradient
descent will only make exponentially small steps. Assuming we start from a point bounded away
from a global minimum, it follows that the number of required iterations must be exponentially
large in k.

We note that the observation that Xavier initialization leads to highly skewed values in deep
enough networks is not new (see Saxe et al. (2013); Pennington et al. (2017)), and has motivated
alternative initializations such as orthogonal initialization2. Our contribution here is to rigorously
analyze how this affects the optimization process for our setting.

3.2. Near-Identity Initialization

We now turn to consider initializations where each wi is initialized close to 1. Here, it will be con-
venient to make deterministic rather than stochastic assumptions on the initialization point (which
are satisfied with high probability for reasonable distributions):

Assumption 3 For some absolute constants c1, c2, c3 > 0 independent of k, gradient descent is
initialized at a point w(1) which satisfies maxj |wj(1)− 1| ≤ k−c1 and c2 ≤

∏
iwi(1) ≤ c3.

To justify this assumption, note that if w1(1), . . . , wk(1) are chosen i.i.d. and not in the range
of 1± k−c1 for some c1 > 0, then their product is likely to explode or vanish with k.

Theorem 3 The following holds for some positive constants c, c′ independent of k: Under As-
sumptions 1 and 3, if gradient descent is ran with any positive step size η ≤ c, then the number of
iterations required to reach suboptimality less than c′ is at least exp(Ω(k)).

As before, Ω(·) hides dependencies on the absolute constants in the theorem statement, as well as
those in the assumptions.

The formal proof appears in the appendix. To help explain its intuition, we provide in Figure 1
the actual evolution of wj(t) for a typical run of gradient descent, when F (w) = F (w1, . . . , w7) =
1
2(
∏7
i=1wi + 1)2 and we initialize all coordinates reasonably close to 1. Recall that for any wj(t),

2. It is interesting to note that in our setting, orthogonal initialization amounts to choosing each wi in {−1,+1}, which
can easily cause non-convergence, e.g. for F (w1, . . . , wk) = (

∏
i wi−y)2 when y

∏
i wi(1) < 0 and small enough

step sizes.
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Figure 1: The left figure plots F (w(t)) as a function of iteration t, for F (w) = (
∏7
i=1wi + 1)2.

The right figure plots w1(t), w2(t), . . . , w7(t) as a function of t. Best viewed in color.

the gradient descent updates take the form

∀j, wj(t+ 1) = wj(t)− η

(∏
i

wi(t) + 1

)∏
i 6=j

wi(t) ,

where
∏
iwi(1) > 0. Thus, initially, all parameters wj(t) decrease with t, as to be expected.

However, as their value fall to around or below 1, their product decreases rapidly to exp(−Ω(k)).
Since the gradient of each wj(t) scales as

∏
i 6=j wi(t), the magnitude of the gradients becomes very

small, and the algorithm makes only slow progress. Eventually, one of the parameters becomes
negative, in which case all other parameters start increasing, and the algorithm converges. However,
by a careful analysis, the length of the slow middle phase can be shown to be exponential in the
depth / number of parameters k.

3.3. A Positive Result

Having established that the number of iterations is at least exp(Ω(k)), we now show that this is
nearly tight. Specifically, we prove that gradient descent indeed converges in the settings studied so
far, with a number of iterations scaling as exp(Õ(k)) (this can be interpreted as a constant for any
constant k). For simplicity, we prove this in the case where f(

∏
iwi) = 1

2(
∏
iwi − y)2, but the

technique can be easily generalized to other convex f under mild conditions. We note that the case
of y > 0 and each wi initialized to 1 is covered by the results in Bartlett et al. (2018). However,
here we show a convergence result for other values of y, and even if wi are not all initialized at 1.

We will use the following assumptions on our objective and parameters:

Assumption 4 The following hold for some absolute positive constants c1, c2, c3, c4 independent
of k:
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• y = −c1 < 0

• The initialization w1(1), . . . , wk(1) satisfies the following:

– |wi(1)| ≤ c2 and
∏
iwi(1) > y

– minj 6=j′
∣∣|wj(1)| − |wj′(1)|

∣∣ ≥ k−c4
– maxj,j′

∣∣∣∏i/∈{j,j′}wi(1)
∣∣∣ ≤ c4

The assumptions y < 0 and
∏
iwi(1) > y ensure that the objective satisfies the conditions of

our negative results, for both Xavier and near-identity initializations (the other cases can be studied
using similar techniques).

Theorem 4 Consider the objective F (w) = 1
2 (
∏
iwi − y)2. Under Assumption 4, for any step

size η = k−c for some large enough constant c > 0, and for any ε > 0, the number of gradient
descent iterations t required for F (wt) ≤ ε is at most exp

(
Õ(k)

)
·max{1, log(1/ε)}.

The proof of the theorem appears in the appendix. Intuitively, it considers a similar situation
as in Thm. 3, but with a careful analysis, shows that the algorithm still makes continuous progress
(albeit exponentially small at certain phases).

4. Multi-Dimensional Networks

So far, we showed that for one-dimensional linear neural networks, gradient descent can easily
require exponentially many iterations (in the depth of the network) to converge. However, these
results are specific to the case where the parameter matrix Wi of each layer is one-dimensional,
and do not necessarily extend to higher dimensions. A possibly interesting exception is when
F (W1, . . . ,Wk) = ‖

∏
iWi − Y ‖2F , and both Y and the initialization W1(1), . . . ,Wk(1) are diag-

onal matrices. In that case, it is easy to show that the matrices produced by gradient descent remain
diagonal, and the objective can be rewritten as a sum of independent one-dimensional problems for
which our results would apply. However, this reasoning fails for non-diagonal initializations and
target matrices Y .

In this section, we study experimentally whether our theoretical results for one-dimensional net-
works might also extend to multi-dimensional ones. In particular, we consider the multi-dimensional
generalization of the objective function studied earlier:

F (W1, . . . ,Wk) =
1

2

∥∥∥∥∥
k∏
i=1

Wi − Y

∥∥∥∥∥
2

F

,

where W1, . . . ,Wk are d × d square matrices (for d = 25), Y = −I (I being the identity matrix),
and ‖ · ‖F is the Frobenius norm. We ran gradient descent on this objective using three initialization
strategies:

1. Xavier initialization: Each entry of each matrix Wi was initialized independently from a
zero-mean Gaussian with variance 1

d .
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Figure 2: Mean and Standard Deviation of the log number of iterations required for convergence,
over 50 trials, for each initialization strategy and depth parameter k ∈ {2, 3, . . . , 8}.
‘NC’ refers to the percentage of runs (for a given initialization and depth) which did not
converge after 109 iterations, if any. Note that when some trials did not converge, the bars
actually under-estimate the mean convergence time if all trials were ran till convergence
(since they only represent runs which took a log number of iterations less than log(109) =
20.72...).

2. Near-Identity initialization: Each Wi was initialized as I + M where each entry of M
was sampled independently from a zero-mean Gaussian with variance 1

dk . Up to numerical
constants, this is the largest variance which ensures that E[(

∏k
i=1Wi)(

∏k
i=1Wi)

>] remains
bounded independent of d, k. To see this, note that had we used variance c

dk for some con-
stant c, then E[WiW

>
i ] =

(
1 + c

k

)
I and thus E[(

∏k
i=1Wi)(

∏k
i=1Wi)

>] =
(
1 + c

k

)k
I ≈

exp(c)I .

3. Near-Identity initialization with smaller variance: Each Wi was initialized as above, except
that the variance of each entry in the matrix M was 1

(dk)2
.

For each random initialization strategy, and for depth parameter k ∈ {2, 3, . . . , 8} , we ran 50
trials of gradient descent, with a step size3 of 10−3, until either one of the following two stopping
conditions occured:

• The objective value dropped below 0.1 (or equivalently, ‖
∏k
i=1Wi−Y ‖F ≤

√
1/5, a rather

mild requirement).

• The number of iterations exceeded 109 iterations, in which case the algorithm was deemed to
have failed to converge (note that from a practical viewpoint, one billion iterations is exceed-
ingly large considering our problem size).

3. Our results did not seem to change significantly by taking other bounded step sizes.
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In Figure 4, we plot the mean and standard deviation for the logarithm of the number of iterations
required to make the objective value less than 0.1 (among the 50 trials which converged). We also
point out the percentage of trials which did not converge, if any.

The figure strongly suggests that using both Xavier initialization and near-identity initialization
with small variance, the required runtime scales exponentially with the depth (recall that the y-axis
is in log scale). This indicates that the phenomenon of exponential scaling with depth is not just an
artifact of one-dimensional networks, and can also occur in multi-dimensional networks, even with
reasonable random initializations. On the flip side, when performing near-identity initialization with
a large enough variance, we did not observe such an exponential scaling (as evidenced in the middle
plot in the figure). Moreover, based on some additional experiments with other objective functions,
it appears that although gradient descent can sometime require exponential time to converge, this
phenomenon is not particularly common. A possible explanation to this is that in one dimension,∏
iwi had to change sign, and hence pass through zero (see Figure 1). This brought the iterates to a

“flat” region with exponentially small gradients. In contrast, in multiple dimensions, to continuously
change

∏
iWi from a matrix to some other matrix, it is always possible to go “around” any particular

point. Our experiments suggest that gradient descent indeed avoids problematic flat regions in
many cases, but not always. Overall, it seems quite possible that for multi-dimensional networks,
the exponential runtime dependence on the depth can be avoided under reasonable assumptions –
however, some such assumptions would be necessary, and would need to exclude either objectives
of the type we studied here, or some of the initializations. For example, such an analysis might need
to explicitly separate between one-dimensional and multi-dimensional networks, or between near-
identity initialization with variance 1/dk and with variance 1/(dk)2 (which are both polynomially
large in d, k), and how to do so with existing analyses is currently unclear.

5. Proof of Thm. 2

In this section, we provide the proof of Thm. 2. The proofs for all our other theorems (which are
longer and hence do not fit in the main paper) are provided in the appendix.

The proof is based on the following two lemmas:

Lemma 5 Suppose w1, . . . , wk are drawn i.i.d. from a distribution such that E[|w1|] ≤ a for some
a > 0. Then

Pr

max
j

∣∣∣∣∣∣
∏
i 6=j

wi

∣∣∣∣∣∣ ≥ ka(k−1)/2

 ≤ a(k−1)/2

Proof For any fixed j, by Markov’s inequality and the i.i.d. assumption,

Pr

∣∣∣∣∣∣
∏
i 6=j

wi

∣∣∣∣∣∣ ≥ ka(k−1)/2

 ≤
E
[
|
∏
i 6=j wi|

]
ka(k−1)/2

=
(E[|w1|])k−1

ka(k−1)/2
≤ ak−1

ka(k−1)/2
=

1

k
a(k−1)/2 .

Taking a union bound over all j = 1, 2, . . . , k, the result follows.

Lemma 6 Let α, β, δ > 0 be fixed. Let w ∈ Rk such that maxj

∣∣∣∏i 6=j wi

∣∣∣ ≤ α and mini |wi| ≥ δ.

Then for any v such that ‖v − w‖ ≤ δ√
k−1

log(β/α), it holds that |
∏
i vi| ≤ β‖v‖∞ as well as

‖∇F (v)‖ ≤ supp:|p|≤β‖v‖∞ |f
′(p)| ·

√
kβ.
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Proof We claim that it is enough to prove the following:

∀w,v ∈ Rk s.t. max
j

∣∣∣∣∣∣
∏
i 6=j

wi

∣∣∣∣∣∣ ≤ α , min
i
|wi| ≥ δ , max

j

∣∣∣∣∣∣
∏
i 6=j

vi

∣∣∣∣∣∣ > β

it holds that ‖v −w‖ > δ√
k − 1

log(β/α) . (3)

Indeed, this would imply that for any w satisfying the conditions above, and any v s.t. ‖v −w‖ ≤
δ√
k−1

log(β/α), we must have maxj

∣∣∣∏i 6=j vi

∣∣∣ ≤ β, and therefore |
∏
i vi| ≤ β‖v‖∞, as well as

‖∇F (v)‖ = supp:|p|≤β‖v‖∞ |f
′(p)| · ‖(

∏
i 6=1 vi, . . . ,

∏
i 6=k vi)‖ ≤ supp:|p|≤β‖v‖∞ |f

′(p)|
√
kβ by

definition of F , as required.
To prove Eq. (3), we first state and prove the following auxiliary result:

∀w,v ∈ Rk−1 s.t. ∀i vi ≥ wi ≥ 0 ,
∏
i

wi ≤ α , min
i
wi ≥ δ ,

∏
i

vi > β

it holds that ‖v −w‖ > δ√
k − 1

log(β/α) . (4)

This statement holds by the following calculation:

‖v −w‖ ≥ 1√
k − 1

‖v −w‖1 =
1√
k − 1

·
∑
i

(vi − wi)

(∗)
≥ 1√

k − 1

∑
i

wi (log(vi)− log(wi)) ≥
δ√
k − 1

∑
i

(log(vi)− log(wi))

=
δ√
k − 1

log

(∏
i vi∏
iwi

)
>

δ√
k − 1

log

(
β

α

)
,

where (∗) is due to the fact that log(·) is 1/z-Lipschitz in [z,∞), and the assumption that vi ≥
wi ≥ 0.

It remains to explain how Eq. (4) implies Eq. (3). Indeed, let w,v be any two vectors in Rk
which satisfy the conditions of Eq. (3). Now, suppose we transform them into vectors w′,v′ ∈ Rk−1

by the following procedure:

• Change the sign of every wi and vi to be positive

• For any i such that vi < wi, change vi to equal wi.

• Drop a coordinate j which maximizes |
∏
i 6=j vi|.

It is easy to verify that the resulting vectors w′,v′ satisfy the conditions of Eq. (4), and ‖v′−w′‖ ≤
‖v −w‖. Therefore, by Eq. (4), ‖v −w‖ ≥ ‖v′ −w′‖ ≥ δ√

k−1
log(β/α) as required.

With these two lemmas in hand, we turn to prove the theorem. By Lemma 5 and Assumption 2,
we have

Pr

max
j

∣∣∣∣∣∣
∏
i 6=j

wi(1)

∣∣∣∣∣∣ ≥ exp(−2Ck)

 ≤ exp(−C ′k) .

10
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for some fixed constants C,C ′ > 0 and any large enough k. Moreover, again by Assumption 2, it
holds for any i that Pr(|wi(1)| ≤ exp(−Ck)) ≤ O(exp(−Ck)), so by a union bound,

Pr(min
i
|wi| < exp(−Ck)) ≤ O(k exp(−Ck)).

Finally, by Assumption 2, Markov’s inequality and a union bound,

Pr(‖w(1)‖∞ ≥ exp(Ck)) ≤ k exp(−Ck)

Combining the last three displayed equations with a union bound, and applying Lemma 6 (with
α = exp(−2Ck)), β = 2α, and δ = exp(−Ck)), we get the following: With probability at least
1− exp(−C ′k)−O(k exp(−Ck))− k exp(−Ck) = 1− exp(−Ω(k)) over the choice of w(1),

• ‖w(1)‖∞ ≤ exp(Ck).

• For any v at a distance at most exp(−Ck) log(2)√
k−1

from w(1), we have

‖v‖∞ ≤ ‖w(1)‖∞ + exp(−Ck)
log(2)√
k − 1

≤ O(exp(Ck)) ,

∣∣∣∣∣∏
i

vi

∣∣∣∣∣ ≤ β‖v‖∞ = 2 exp(−2Ck) · O (exp(Ck)) = O (exp (−Ck))

and

‖∇F (v)‖ ≤ sup
p:|p|≤β‖v‖∞

|f ′(p)| ·
√
kβ ≤ sup

p:|p|≤O(exp(−Ck))
|f ′(p)| · 2

√
k exp(−2Ck)

= O
(√

k exp(−2Ck)
)
.

This has two implications:

1. Since the gradient descent updates are of the form w(t + 1) = w(t) − η∇F (w(t)), and we
can assume η ≤ exp(Ck/2) by the theorem’s conditions, the number of iterations required
to get to a distance larger than exp(−Ck) log(2)√

k−1
from w(1) is at least

exp(−Ck) log(2)√
k−1

exp(Ck/2) · O(
√
k exp(−2Ck))

= Ω

(
exp(Ck/2)

k

)
,

which is at least exp(Ω(k)) iterations.

2. As long as we are at a distance smaller than the above, |
∏
i vi| ≤ O(exp(−Ck)) ≤

exp(−Ω(k)). In particular,
∏
i vi ≥ −1/2 for large enough k, so by Assumption 1 and

definition of F , we have that F (v)− infv F (v) is lower bounded by a constant independent
of k.

Overall, we get that with probability at least 1− exp(−Ω(k)), we initialize at some region in which
all points are at least Ω(1) suboptimal, and at least exp(Ω(k)) iterations are required to escape it.
This immediately implies our theorem.

11
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Appendix A. Additional Proofs

A.1. Proof of Thm. 3

We begin with the following auxiliary lemma, and then turn to analyze the dynamics of gradient
descent in our setting.

Lemma 7 For any positive scalars α,w1, . . . , wk such that miniwi > α,

∏
i

(wi − α) ≤

(∏
i

wi

)1/k

− α

k

.

Proof Taking the k-th root and switching sides, the inequality in the lemma is equivalent to proving(∏
i

(wi − α)

)1/k

+ α ≤

(∏
i

wi

)1/k

.

Letting ai = wi − α, and bi = α for all i, the above is equivalent to proving that(∏
i

ai

)1/k

+

(∏
i

bi

)1/k

≤

(∏
i

(ai + bi)

)1/k

,

namely that the sum of the geometric means of two positive sequences (ai) and (bi) is at most the
geometric mean of their sum (ai + bi). This follows from the superadditivity of the geometric mean
(see Steele (2004, Exercise 2.11))

Lemma 8 If miniwi(t) ≥ C and
∏
iwi(t) ≤ C ′ for some positive constants C,C ′, then for any

j, j′,

|wj(t+ 1)2 − wj′(t+ 1)2| ≤ |wj(t)2 − wj′(t)2|+ C ′′η2

(∏
i

wi(t)

)2

,

where C ′′ is some constant dependent only on C,C ′ and the function f .

Proof By definition,

wj(t+ 1)2 − wj′(t+ 1)2

=

wj(t)− ηf ′(∏
i

wi(t)

)∏
i 6=j

wi(t)

2

−

wj′(t)− ηf ′
(∏

i

wi(t)

)∏
i 6=j′

wi(t)

2

= wj(t)
2 − wj′(t)2 + η2f ′

(∏
i

wi(t)

)2
∏

i 6=j
wi(t)

2

−

∏
i 6=j′

wi(t)

2
= wj(t)

2 − wj′(t)2 + η2

(∏
i

wi(t)

)2

· f ′
(∏

i

wi(t)

)2(
1

wj(t)2
− 1

wj′(t)2

)
.
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By assumption, 0 ≤
∏
iwi(t) ≤ C ′ and maxj

1
wj(t)2

≤ 1
C2 . Therefore, by our assumptions on f ,

the displayed equation above implies that

|wj(t+ 1)2 − wj′(t+ 1)2| ≤ |wj(t)2 − wj′(t)2|+ C ′′η2

(∏
i

wi(t)

)2

for some constant C ′′ > 0 dependent on C,C ′ and f as required.

Lemma 9 Suppose that at some iteration t, for some constant C independent of k, it holds that
maxiwi(t) ≤ C and

∏
iwi(t) ≤ β for some β ∈ (0, C). Then after at most τ ≤ 1 +O(1) · β

1/k−1

ηk
iterations, if minj wj(r) ≥ 1/2 for all r = t, t+ 1, . . . , t+ τ , then

• Each wi(r) as well as
∏
iwi(r) monotonically decrease in r = t, t+ 1, . . . , t+ τ

• For all r = t, t+ 1, . . . , t+ τ − 1, maxj |wj(r + 1)− wj(r)| ≤ O(1) · ηβ

•
∏
iwi(t+ τ) ≤ β · exp(−1).

In the above, O(1) hides constants dependent only on C and the function f .

Proof If
∏
iwi(t) ≤ β · exp(−1), we can pick τ = 0, and the lemma trivially holds. Otherwise, let

τ be the smallest (positive) index such that
∏
iwi(t) ≤ β · exp(−1) (if no such index exists, take

τ = ∞, although the arguments below imply that τ must be finite). Since we assume wi(r) for all
i are positive, and f is monotonically increasing,

wj(r + 1) = wj(r)− ηf ′
(∏

i

wi(r)

)∏
i 6=j

wi(r) ≤ wj(r),

so wj(r) monotonically decreases in r. Moreover, these are all positive numbers by assumption, so∏
iwi(r) monotonically decreases in r as well. This shows the first part of the lemma.

As to the second part, the displayed equation above, the fact that wj(r) and
∏
iwi(r) decrease

in r, and our assumptions on f imply that for any r < t+ τ ,

wj(r + 1) = wj(r)− ηf ′
(∏

i

wi(r)

)∏
i 6=j

wi(r) = wj(r)−
η

wj(r)
f ′

(∏
i

wi(r)

)∏
i

wi(r)

= wj(r)−Θ(1) · ηβ .

where Θ(1) hides constants dependent only on f and C. As to the third part of the lemma, fix some
s < τ , and repeatedly apply the displayed equation above for r = t, t+ 1, . . . , t+ s, to get that that
wj(t+ s) ≤ wj(t)−Θ(1) · ηβs (which is still ≥ 1/2 by the lemma assumptions). In that case,

∏
i

wi(t+ s) ≤
∏
i

(wi(t)−Θ(1) · ηβs)
(∗)
≤
(
β1/k −Θ(1) · ηβs

)k
= β

(
1−Θ(1) · ηβ1−1/ks

)k
≤ β exp

(
−Θ(1) · ηβ1−1/ksk

)
15
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where (∗) follows from Lemma 7 and the fact that
∏
iwi(t) ≤ β. The right hand side in turn

is at most β · exp(−1) for any s ≥ C ′β1/k−1/ηk for some constant C ′. In particular, if τ >
1 + C ′β1/k−1/ηk, then by choosing s s.t. τ > s ≥ C ′β1/k−1/ηk, we get that

∏
iwi(t + s) ≤

β · exp(−1) even though s < τ , which contradicts the definition of τ . Hence τ ≤ 1 +C ′β1/k−1/ηk
as stated in the lemma.

Combining Lemma 8 and Lemma 9, we have the following:

Lemma 10 For any constants C > 0 and index T , if
∏
iwi(1) ≤ C and wi(t) ≥ 1

2 for all
i = 1, . . . , k and t = 1, 2, . . . , T , then for all such t,

• Each wi(t) as well as
∏
iwi(t) monotonically decrease in t.

• maxj |wj(t+ 1)− wj(t)| ≤ O(1) · η

• maxj,j′ |wj(t)− wj′(t)| ≤ k−Ω(1) +O(1) ·
(
η2 + η

k

)
.

In the above, O(·) hides constants dependent only on C and the constants in Assumptions 1 and 3.

Proof The first two parts of the lemma follow from Lemma 9 and the fact that by Assumption 3,
wi(1) ≤ 1 + k−Ω(1) ≤ O(1). As to the last part, define t0 ≤ t1 ≤ . . . ≤ ts (where t0 = 1) as the
first indices ≤ T such that for all r = 0, . . . , s,

∏
iwi(tr) ≤ (

∏
iwi(1)) exp(−r) (where s is taken

to be as large as possible). By Lemma 9, we have the following:

• For all r = 0, . . . , s− 1, |tr+1 − tr| ≤ 1 +O(1) · exp(−r)1/k−1

ηk .

• |T − ts| ≤ 1 +O(1) · exp(−s)1/k−1

ηk .

• For all r = 0, . . . , s− 1 and any tr ≤ t ≤ tr+1, we have
∏
iwi(t) ≤ O(1) · exp(−r).

Combining this with Lemma 8, it follows that for any j, j′, and any r = 0, . . . , s− 1,

|wj(tr+1)2 − wj′(tr+1)2| ≤ |wj(tr)2 − wj′(tr)2|+O(1) · η2 exp(−2r) ·

(
1 +

exp(−r)1/k−1

ηk

)

≤ |wj(tr)2 − wj′(tr)2|+O(1) ·
(
η2 exp(−2r) +

η exp(−r)
k

)
,

as well as

|wj(T )2 − wj′(T )2| ≤ |wj(ts)2 − wj(ts)2|+O(1) ·
(
η2 exp(−2s) +

η exp(−s)
k

)
.

Repeatedly applying the last two displayed equations, and using Assumption 3, we get that

|wj(T )2 − wj′(T )2| ≤ |wj(1)2 − wj′(1)2|+O(1) ·

(
η2

s∑
r=0

exp(−2r) +
η

k

s∑
r=0

exp(−r)

)
≤ k−Ω(1) +O(1) ·

(
η2 +

η

k

)
.
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Since |wj(T )2−wj′(T )2| = |wj(T )+wj′(T )| · |wj(T )−wj′(T )| ≥ |wj(T )−wj′(T )| (as we have
miniwi(T ) ≥ 1/2 by assumption), we get that |wj(T ) − wj′(T )| ≤ k−Ω(1) +O(1) ·

(
η2 + η

k

)
as

required.

With Lemma 10 in hand, we can now prove the theorem. Let T be the largest index such that
miniwi(t) ≥ 1/2 for all t = 1, 2, . . . , T (and∞ if this holds for all t). It follows that

∏
iwi(t) ≥ 0,

and therefore, by Assumption 1, F (w(t)) − infw F (w) is at least a constant independent of k
for all t = 1, 2, . . . , T . Thus, to prove the theorem, it is enough to show that if T < ∞, then
T ≥ exp(Ω(k)).

By Assumption 3 and Lemma 10, we have that w1(1) ≥ 1 − k−Ω(1), |w1(t + 1) − w1(t)| ≤
O(1) · η, and maxj |wj(t) − w1(t)| ≤ k−Ω(1) + O(1) ·

(
η2 + η

k

)
. On the other hand, if T < ∞,

then miniwi(T + 1) < 1/2. Therefore, if k is large enough and η is small enough, there exists
some iteration t ≤ T such that wj(t) ∈ [2/3, 3/4] for all j. This means that

∏
iwi(t) ≤ (3/4)k =

exp(−Ω(k)). Thus, by Lemma 9 (with β = exp(−Ω(k)), from iteration t till iteration T , each wj
decreases by at most O(1) · ηβ ≤ exp(−Ω(k)) at each iteration. By assumption, at iteration T + 1,
there is some wj(T + 1) < 1/2, so we must have T − t ≥ (2/3−1/2)/ exp(−Ω(k)) = exp(Ω(k))
as required.

A.2. Proof of Thm. 4

To prove the theorem, we first state and prove the following key lemma:

Lemma 11 For any initialization w(1) and any (σ1, . . . , σk) ∈ {−1,+1}k, let v(1),v(2), . . .
denote the iterates produced by gradient descent starting from v(1) := (σ1w1(1), . . . , σkwk(1)),
w.r.t. the function

Fσ(v) :=
1

2

(∏
i

vi − σy

)2

,

where σ :=
∏
i σi. Then for any t ≥ 1,

v(t) = (σ1w1(t), . . . , σkwk(t)) and F (w(t)) = Fσ(v(t)) .

Proof We prove the lemma by induction. The base case (t = 1) is immediate from the definitions
and the fact that

Fσ(v(1)) =
1

2

(∏
i

σiwi(1)− σy

)2

=
1

2

(
σ
∏
i

wi(1)− σy

)2

= F (w(1)) .

Assuming that the induction hypothesis holds for t, and recalling that σ =
∏
i σi, we have for any

j ∈ {1, . . . , k} that

vj(t+ 1) = vj(t)−

(∏
i

vi(t)− σy

)∏
i 6=j

vi(t) = σjwj(t)− σ

(∏
i

wi(t)− y

)∏
i 6=j

σiwi(t)

= σj

wj(t)−(∏
i

wi(t)− y

)∏
i 6=j

wi(t)

 = σjwj(t+ 1) .
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As a result,

Fσ(v(t+ 1)) =
1

2

(∏
i

vi(t+ 1)− σy

)2

=
1

2

(
σ
∏
i

wi(t+ 1)− σy

)2

= F (w(t+ 1)) .

This establishes the inductive step for t+ 1, hence proving the lemma.

The lemma implies that for studying the dynamics of gradient descent starting from any initial
point (w1(1), . . . , wk(1)), we can arbitrarily change the signs of its coordinates, as long as the
sign of y is changed accordingly. In particular, we will assume without loss of generality that all
w1(1), . . . , wk(1) are positive (again, as long as the sign of y is fixed accordingly). The proof then
proceeds as follows:

• The simplest case is when after the sign transformations, y > 0. By our assumptions, this
implies that both y and

∏
iwi(1) switched from being negative (and satisfying

∏
iwi(1) > y)

to positive, hence we now have y >
∏
iwi(1) > 0. In that case, Lemma 13 below implies

that exp(Õ(k)) log(1/ε) iterations suffice.

• The case y < 0 (which by our assumptions, implies y < 0 <
∏
iwi(1)) is more involved:

First, we show that after t = exp(Õ(k)) iterations, one (and only one) of the coordinates of
w(t) becomes non-positive (Lemma 15). Then, we show that after at most one additional iter-
ation, that non-positive coordinate becomes negative and bounded away from 0 (Lemma 16),
the other coordinates remaining strictly positive. By Lemma 11, we can then argue that at that
time point, the dynamics become the same as the scenario where y > 0, and all coordinates
of the iterate are strictly positive. Again applying Lemma 13, we get that exp(Õ(k)) log(1/ε)
additional iterations suffice for convergence.

A.2.1. THE CASE y >
∏
iwi(1) > 0

We will need the following auxiliary lemma:

Lemma 12 For any a > 0, b ≥ 0, log(a+ b) ≤ log(a) + b
a .

Proof Since log(1 + z) ≤ z for all z ≥ 0, we have log(a + b) = log(a(1 + b/a)) = log(a) +
log(1 + b/a) ≤ log(a) + b/a.

Lemma 13 Fix some γ ≥ δ > 0. Suppose that y > 0, and gradient descent on F is initialized at
some w(1) such that

∏
iwi(1) ∈ [0, y), wj∗(1) ≥ δ for some j∗ ∈ arg miniwi(1), and wj(1) ≥ γ

for all j 6= j∗. Assuming step size η ≤ δ2/2ky2, we have that F (w(t)) ≤ ε for any t ≥ log(y2/2ε)

kδ2γ2(k−2)η
.

Proof Let

W :=

{
w ∈ Rk :

∏
i

wi(1) ∈ [0, y) , min
i
wi(1) ≥ δ , ∀j 6= j∗ wj(1) ≥ γ

}

denote the set of points in Rk which satisfy the initialization conditions of the lemma.
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First, we show that if the step size η is small enough, then gradient descent will remain in W
forever. For that, it is enough to show that for any w ∈ W , the update w′ := w−η∇F (w) produced
by gradient descent is inW as well. By definition ofW , it is easily verified that w′i ≥ wi > 0 for
all i, so the only non-trivial condition to verify is that

∏
j w
′
j < y. To show this, we note that by

Lemma 12,

log

∏
j

w′j

 =
∑
j

log(w′j) =
∑
j

log

wj + η(y −
∏
i

wi)
∏
i 6=j

wi


≤
∑
j

log(wj) + η(y −
∏
i

wi)
∑
j

∏
i 6=j wi

wj

= log

∏
j

wj

+ η(y −
∏
i

wi)

(∏
i

wi

)∑
j

1

w2
j

< log

∏
j

wj

+ η(y −
∏
i

wi)y
∑
j

1

δ2

= log

∏
j

wj

+ η
yk

δ2

(
y −

∏
i

wi

)
.

Thus, to ensure that
∏
j w
′
j < y (or equivalently, log(

∏
j w
′
j) < log(y)), it is enough to ensure that

log

∏
j

wj

+ η
yk

δ2

(
y −

∏
i

wi

)
≤ log(y) .

Rearranging the above, we require that

η
yk

δ2
≤

log(y)− log(
∏
j wj)

y −
∏
j wj

.

By the mean value theorem and the fact that
∏
j wj < y, the right hand side can be lower bounded

by minz∈(0,y] log′(z) = 1/y, so it is enough to require

η
yk

δ2
≤ 1

y
⇒ η ≤ δ2

ky2
,

which indeed holds by assumption.
Having established that gradient descent will remain in W forever, we now establish that the

objective F has a 2ky2

δ2
-Lipschitz gradient onW: Indeed, the Hessian of F at any w ∈ W can be

easily verified to equal

(∇2F (w))r,s =

{
(
∏
iwi − y)

∏
i wi

wrws
+

∏
i w

2
i

wrws
r 6= s∏

i w
2
i

w2
r

r = s
.
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Since w ∈ W , it follows that magnitude of each entry in the k× k Hessian is at most y · y
δ2

+ y2

δ2
=

2y2/δ2, and therefore its spectral norm (which is at most the Frobenius norm) can be upper bounded
by 2ky2/δ2.

The final ingredient we need is that F satisfies

‖∇F (w)‖2 ≥ 2kδ2γ2(k−2)F (w)

for any w ∈ W (this type of inequality is known as the Polyak-Łojasiewicz condition, which ensures
linear convergence rates for gradient descent on possibly non-convex functions – see Polyak (1963);
Karimi et al. (2016)). This follows from ‖∇F (w)‖2, by definition, being equal to

(
∏
i

wi − y)2
∑
j

∏
i 6=j

wi

2

= 2F (w)
∑
j

∏
i 6=j

wi

2

≥ 2F (w)k
(
δγk−2

)2
.

Collecting these ingredients, we can now perform a standard analysis using the Polyak-Łojasiewicz
condition: If we do a gradient step to get from w ∈ W to w′ ∈ W (i.e. w′ := w − η∇F (w)), and
assuming η ≤ δ2/2ky2, then

F (w′) ≤ F (w) +∇F (w)>(w′ −w) +
ky2

δ2
‖w′ −w‖2

= F (w)− η‖∇F (w)‖2 +
ky2

δ2
‖η · ∇F (w)‖2

= F (w)− η
(

1− ky2

δ2
η

)
‖∇F (w)‖2

≤ F (w)− η · 1

2
· 2kδ2γ2(k−2)F (w)

=
(

1− kδ2γ2(k−2)η
)
F (w) ≤ exp(−kδ2γ2(k−2)η)F (w) .

Applying this inequality t times, we get that

F (w(t)) ≤ exp
(
−kδ2γ2(k−2)ηt

)
F (w(1)) ≤ y2

2
exp

(
−kδ2γ2(k−2)ηt

)
.

Equating the bound above to the target accuracy ε and solving for t, the result follows.

A.2.2. THE CASE y < 0 <
∏
iwi(1)

We first state the following auxiliary lemma, which establishes that the gaps between coordinates
are monotonically increasing under suitable assumptions.

Lemma 14 Fix some coordinate indices j, j′ and iteration t, and suppose that wj(t) ≤ wj′(t),
miniwi(t) ≥ 0, and y < 0. Then wj′(t)− wj(t) ≤ wj′(t+ 1)− wj(t+ 1).
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Proof Dropping the (t) index to simplify notation, we have by definition that wj′(t+1)−wj(t+1)
equalswj′ − η

(∏
i

wi − y

)∏
i 6=j′

wi

−
wj − η(∏

i

wi − y

)∏
i 6=j

wi


=
(
wj′ − wj

)
− η

(∏
i

wi − y

)∏
i 6=j′

wi −
∏
i 6=j

wi


=
(
wj′ − wj

)
− η

(∏
i

wi − y

)(
wj − wj′

) ∏
i/∈{j,j′}

wi =
(
wj′ − wj

)1 + η

(∏
i

wi − y

) ∏
i/∈{j,j′}

wi

 .

Since y < 0 and wi ≥ 0 for all i, the above is at least wj′ − wj = wj′(t)− wj(t) as required.

Lemma 15 Suppose y < 0, and that w(1) has positive entries which satisfy the theorem assump-
tions. If η ≤ k−C for some sufficiently large constant C, then the following hold for some iteration
t0 ≤ exp(Õ(k))/η:

• There exists a unique j∗ = arg miniwi(t0), and −O(1) · η ≤ wj∗(t0) ≤ 0.

• minj 6=j∗ wj(t0) ≥ k−O(1), maxj 6=j∗ wj(t0) ≤ O(1), and maxj
∏
i/∈{j,j∗}wi(t0) ≤ O(1).

It is important to note that the constants hidden in the O(·) notation do not depend on η (although
they may depend on C).
Proof By Lemma 14 and the theorem assumptions, the following holds for all iterations t =
1, 2, . . . , T where mini,t<T wi(t) ≥ 0: There exists a unique j∗ = arg miniwi(1), wj∗(t) re-
mains the unique smallest value among w1(t), . . . , wk(t), and its distance from any other coordi-
nate (which was initially k−O(1)) is monotonically increasing in t. In particular, for any t < T ,
minj 6=j∗ wj(t) ≥ k−O(1). As a result, recalling that y < 0, we have for all t < T that

wj∗(t+ 1) = wj∗(t)− η

(∏
i

wi(t)− y

) ∏
i 6=j∗

wi(t) ≤ wj∗(t)− η

(∏
i

wi(t)− y

)(
k−O(1)

)k−1

≤ wj∗(t) + ηy exp(−Õ(k)) ≤ wj∗(t)− η · exp(−Õ(k)) .

We also assume that initiallywj∗(1) ≤ O(1). Therefore, after at most t0 = exp(Õ(k))/η iterations,
we will have wj∗(t0) ≤ 0 for the first time.

It remains to show that wj∗(t0) ≥ −O(1) · η, as well as the second bullet in the lemma. To
that end, we note that up till iteration t0, for any j, both wj(t) and

∏
i 6=j wi(t) are monotonically

decreasing in t, and moreover, t0 > 1 (since wj∗(t0) ≤ 0 and we assume wj∗(1) > 0). Thus, by
Assumption 4,

wj∗(t0) = wj∗(t0 − 1)− η

(∏
i

wi(t0 − 1)− y

) ∏
i 6=j∗

wi(t0 − 1)

> 0− η

(∏
i

wi(1)− y

) ∏
i 6=j∗

wi(1) ≥ − η · O(1) .
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Using this inequality, we have for any j 6= j∗

wj(t0) = wj∗(t0) + (wj(t0)− wj∗(t0)) ≥ − η · O(1) + k−O(1) ,

which is at least k−O(1) if η ≤ k−C for some sufficiently large constant C. Finally, since wj(t) for
any j 6= j∗ is positive and monotonically decreasing up to iteration t0, we have wj(t0) ≤ wj(1) ≤
O(1) and

∏
i/∈{j,j∗}wi(t0) ≤

∏
i/∈{j,j∗}wi(1) ≤ O(1) by Assumption 4.

Lemma 16 Under the conditions of Lemma 15,

• There exists a unique j∗ = arg miniwi(t0 + 1), and wj∗(t0 + 1) ≤ − η · exp(−Õ(k)).

• minj 6=j∗ wj(t0 + 1) ≥ k−O(1) and
∏
i 6=j∗ wi(t0 + 1) ≤ O(1).

Proof By Lemma 15, we have
∏
iwi(t0) ≤ 0, as well as

∏
iwi(t0) = wj∗(t0)·wj(t0)·

∏
i/∈{j,j∗}wi(t0) ≥

−O(1) · η (where j is arbitrary). This implies that for sufficiently small η, y2 ≤
∏
iwi(t0) ≤ 0. By

definition of the gradient descent update, it follows that wj∗(t0 + 1) ≤ wj∗(t0) and for all j 6= j∗,
wj(t0 +1) ≥ wj(t0), which implies that j∗ remains the unique coordinate with smallest value as we
move from iteration t0 to iteration t0+1, as well as minj 6=j∗ wj(t0+1) ≥ minj 6=j∗ wj(t0) ≥ k−O(1).

We now turn to prove wj∗(t0 +1) ≤ −η ·exp(−Õ(k)). Using the fact that y2 ≤
∏
iwi(t0) ≤ 0

as noted earlier,

wj∗(t0+1) = wj∗(t0)−η

(∏
i

wi(t0)− y

) ∏
i 6=j∗

wi(t0) ≤ 0+η·y
2
·
(
k−O(1)

)k−1
≤ −η·exp(−Õ(k)) .

Finally, to prove
∏
i 6=j∗ wi(t0 + 1) ≤ O(1), we have by definition that for any j 6= j∗,

wj(t0 + 1) = wj(t0)− η

(∏
i

wi(t0)− y

)
wj∗(t0) ·

∏
i/∈{j,j∗}

wi(t0) .

Using the fact that y2 ≤
∏
iwi(t0) ≤ 0 as shown earlier, and noting that by Lemma 15, |wj∗(t0)| ≤

O(1) · η and
∣∣∣∏i/∈{j,j∗}wi(t0)

∣∣∣ ≤ O(1), it follows from the displayed equation above that wj(t0 +

1) ≤ wj(t0) +O(1) · η2. Therefore,

∏
i 6=j∗

wi(t0 + 1) ≤
∏
i 6=j∗

(
wi(t0) +O(1) · η2

)
≤

∏
i 6=j∗

(
wi(t0)

(
1 +
O(1)η2

wi(t0)

))
.

Since minj 6=j∗ wj(t0) ≥ k−O(1) (where the O(1) does not depend on η), then by picking η ≤ k−C

for a sufficiently largeC, the above is at most
(∏

i 6=j∗ wi(t0)
)(

1 + O(1)
k

)k−1
≤
(
wj(t0)

∏
i/∈{j,j∗}wi(t0)

)
·

O(1) ≤ O(1), where we used Lemma 15 and where j is arbitrary.
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A.2.3. PUTTING EVERYTHING TOGETHER

As discussed at the beginning of the proof, we can assume w.l.o.g. that w1(1), . . . , wk(1) are
all positive (and in fact, miniwi(1) ≥ k−O(1) by our assumptions), and only consider the cases
y >

∏
iwi(1) > 0 and y < 0 <

∏
iwi(1).

• If y >
∏
iwi(1) > 0, we can apply Lemma 13 with γ = δ = k−O(1) and any η = k−c for

some large enough constant c, to get a convergence to an ε-optimal solution in exp(Õ(k)) ·
max{1, log (1/ε)} iterations.

• If y < 0 <
∏
iwi(1), and assuming η = k−c for some large enough constant c > 0, then

Lemma 15 and Lemma 16 together tell us that after at most exp(Õ(k)) iterations, we get to
an iteration t = t0 + 1 where wj∗(t) ≤ − exp(−Õ(k)) for some j∗, wj(t) ≥ k−O(1) for all
j 6= j∗, and 0 >

∏
iwi(t) ≥ −O(1) ·η ≥ −O(1) ·k−Ω(1) > y for large enough k. Therefore,

by Lemma 11, the dynamics of gradient descent from this time point is identical to case where
we switch the signs of y and wj∗ , so that y > 0, wj∗(t) ≥ exp(−Õ(k)), wj(t) ≥ k−O(1)

for all j 6= j∗, and y >
∏
iwi(t) > 0 for large enough k. Now applying Lemma 13 with

δ = exp(−Õ(k)), γ = k−O(1), and any step size η = k−c for some large enough c, we
get that exp(Õ(k)) ·max{1, log(1/ε)} additional iterations suffice for convergence. Overall,
exp(Õ(k)) ·max{1, log(1/ε)} iterations are sufficient.
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