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I Abstract

Existing depth separation results for constant-depth networks essentially show that certain
radial functions in R%, which can be easily approximated with depth 3 networks, cannot
be approximated by depth 2 networks, even up to constant accuracy, unless their size is
exponential in d. However, the functions used to demonstrate this are rapidly oscillating,
with a Lipschitz parameter scaling polynomially with the dimension d (or equivalently,
by scaling the function, the hardness result applies to O(1)-Lipschitz functions only when
the target accuracy e is at most poly(1/d)). In this paper, we study whether such depth
separations might still hold in the natural setting of O(1)-Lipschitz radial functions, when ¢
does not scale with d. Perhaps surprisingly, we show that the answer is negative: In contrast
to the intuition suggested by previous work, it is possible to approximate O(1)-Lipschitz
radial functions with depth 2, size poly(d) networks, for every constant e. We complement
it by showing that approximating such functions is also possible with depth 2, size poly(1/€)
networks, for every constant d. Finally, we show that it is not possible to have polynomial
dependence in both d,1/e simultaneously. Overall, our results indicate that in order to
show depth separations for expressing O(1)-Lipschitz functions with constant accuracy —
if at all possible — one would need fundamentally different techniques than existing ones in
the literature.

1. Introduction

In the past few years, several works provided separation results between depth 2 and depth
3 networks: There are functions f and distributions p on R?, which are

e Hard to approximate with a depth 2 network: Ex.,,[(N2(x)— f(x))?] > ¢ for some absolute
¢ > 0, using any depth 2, width poly(d) network Nj(x) := Zfﬁlly(d) wo(w; x + b;) (for
some parameters {v;, w;, b;} and univariate activation function o).

e Easy to approximate with a depth 3 network: For any € > 0, it holds that Ex.,[(N3(x) —
f(x))?] < e (or sometimes even supy |N3(x) — f(x)| < €) for some depth 3, width
poly(d, 1/¢) neural network network N3(x) := Zf:()llyw’l/ ) uio (Ni(x) 4+ b;) (where each
N& is a depth 2, width poly(d, 1/¢) network, and o is a standard activation such as a
ReLU).
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Moreover, these “hard” functions have a simple form: They are essentially radial functions
of the form f(x) = g(||x||) for a univariate function g. Such radial functions are of interest
in learning theory, since there are function classes that are essentially a mixture of radial
functions (e.g. Gaussian kernels), and they are essential primitives in expressing functions
which involve Euclidean distances. Overall, these results appear to provide a clear separa-
tion between the required widths of depth 2 and depth 3 networks, in terms of the dimension
d.

However, a closer inspection of the constructions above reveals that in fact, this is not
so clear. The reason is that the functions which are shown to be provably hard for depth
2 networks are rapidly oscillating, and require a Lipschitz constant (at least) polynomial in
d to even approximate. Having such rapidly oscillating functions is not always a natural
regime, since we are often interested in functions whose Lipschitz parameter is independent
of the dimension. Nevertheless, previous work seems to suggest such separation results still
hold when approximating O(1)-Lipschitz functions.

Our Results. In this paper, we show that perhaps surprisingly, such separation results
break when considering O(1)-Lipschitz radial functions: For any constant e, it is possible
to approximate radial functions using poly(d)-width, depth 2 networks. We prove this
result for networks employing any activation function o(-) which satisfies the following
mild assumption (taken from Eldan and Shamir (2016)), which implies that the activation
can be used to approximate univariate functions well. This assumption is satisfied for all
standard activations, such as ReLU and sigmoidal functions (see reference above for further
discussion):

Assumption 1 Given the activation function o, there is a constant ¢, > 1 (depend-
ing only on o) such that the following holds: For any L-Lipschitz function f : R — R
which is constant outside a bounded interval [—R, R], and for any 0, there exist scalars
a,{oi, Bi,vitie,, where w < ca%, such that the function h(z) = a + Y ;" cio(Bix — ;)
satisfies sup,ep | f(x) — h(x)] < 4.

We now formally state our main result:

Theorem 1 Suppose o : R — R satisfies Assumption 1. Then for any € > 0 and any
1-Lipschitz radial function f(x) = (||x||), there exists a depth 2 neural network N with
o activations and width exp (O (72 log(d/e€))) satisfying supyep, |N(x) — f(x)| < €, where
By = {X ceRe: ||x|| < 1}, and the big O notation hides a constant that depends solely on
.

We complement this by showing that for constant dimension d, approximation of any O(1)-
Lipschitz radial function is possible with poly(1/¢)-width, depth 2 networks:

Theorem 2 Suppose f(x) = ¢(||x||) is a 1-Lipschitz radial function on By. Then there
exists a depth 2 ReLU mneural network N of width n = exp (O (dlog(1/e€))) such that

SUpe, /(%) — N(x)| < c.

Furthermore, we show that any even radial monomial, namely a radial function of the
form x — ||x] |2k, for any fixed natural k, can be approximated to accuracy € using a depth
2 network of width polynomial in both d and 1/e:
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Theorem 3 Suppose 0 : R — R satisfies Assumption 1. Then for any € > 0 and
any natural k > 1, there exists a depth 2 neural network N with o activations of width

exp (O (k*log (d/e))) satisfying supyep, |N(x) — |1x|[%| < €, where the big O notation hides

a constant that depends solely on o.

Finally, we formally prove (using a reduction from Eldan and Shamir (2016); Daniely
(2017), and using their assumptions) that it is impossible to obtain a general polynomial
dependence on both d and 1/e in our setting. More formally, we have the following two
theorems:

Theorem 4 The following holds for some positive universal constants c1,co, and any
depth 2 network employing a ReLU activation function. Consider the 1-Lipschitz function

f(x) = ﬁsin <2ﬂ'd3 ]|x||g> on By. Suppose N is a depth 2 network of width w(d,1/¢),

with weights bounded by %, and satisfying supxep, [N (x) — f(x)| < € for any ¢ > 0 and
any d > 2. Then for any d > c1,

w(d, 101 exp(2)71-3d3) > 2cgdlogd'
In particular, depth 2 networks of width poly(d,1/e€) cannot approzimate f to accuracy e.

Theorem 5 The following holds for some positive universal constants ci,cs,cs,cq, and
any network employing an activation function satisfying Assumptions 1 and 2 in Eldan and
Shamir (2016). Let f(x) = max {0, — ||x|| + 1}. For any d > ci1, there exists a continuous
probability distribution ~ on R?, such that for any € > 0, and any depth 2 neural network
N satisfying ||[N(x) — f(X)||1, () < € and having width w(d,1/€), it must hold that

w(d, c2d®) > 3 exp(eqd).
In particular, depth 2 networks of width poly(d,1/€) cannot approximate f to accuracy e.

Overall, these results show that to approximate radial functions with depth 2 networks,
their width can be polynomial in either d or 1/e, but generally not in both.
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