
Proceedings of Machine Learning Research vol 99:1–12, 2019 32nd Annual Conference on Learning Theory

The All-or-Nothing Phenomenon in Sparse Linear Regression

Galen Reeves GALEN.REEVES@DUKE.EDU
Department of ECE and Department of Statistical Science, Duke University

Jiaming Xu JIAMINGXU.868@DUKE.EDU
The Fuqua School of Business, Duke University

Ilias Zadik IZADIK@MIT.EDU

Operations Research Center, MIT

Editors: Alina Beygelzimer and Daniel Hsu

Abstract
We study the problem of recovering a hidden binary k-sparse p-dimensional vector β from n

noisy linear observations Y = Xβ + W where Xij are i.i.d. N (0, 1) and Wi are i.i.d. N (0, σ2).
A closely related hypothesis testing problem is to distinguish the pair (X,Y ) generated from this
structured model from a corresponding null model where (X,Y ) consist of purely independent
Gaussian entries. In the low sparsity k = o(

√
p) and high signal-to-noise ratio k/σ2 = Ω (1)

regime, we establish an “All-or-Nothing” information-theoretic phase transition at a critical sample
size n∗ = 2k log (p/k) / log

(
1 + k/σ2

)
, resolving a conjecture of Gamarnik and Zadik (2017a).

Specifically, we show that if lim infp→∞ n/n∗ > 1, then the maximum likelihood estimator almost
perfectly recovers the hidden vector with high probability and moreover the true hypothesis can be
detected with a vanishing error probability. Conversely, if lim infp→∞ n/n∗ < 1, then it becomes
information-theoretically impossible even to recover an arbitrarily small but fixed fraction of the
hidden vector support, or to test hypotheses strictly better than random guess.

Our proof of the impossibility result builds upon two key techniques, which could be of inde-
pendent interest. First, we use a conditional second moment method to upper bound the Kullback-
Leibler (KL) divergence between the structured and the null model. Second, inspired by the cele-
brated area theorem, we establish a lower bound to the minimum mean squared estimation error of
the hidden vector in terms of the KL divergence between the two models.1

Keywords: Sparse linear regression; conditional second moment method; area theorem

1. Introduction

In this paper, we study the information-theoretic limits of the Gaussian sparse linear regression
problem. Specifically, for n, p, k ∈ N with k ≤ p and σ2 > 0 we consider two independent
matrices X ∈ Rn×p and W ∈ Rn×1 with Xij

i.i.d.∼ N (0, 1) and Wi
i.i.d.∼ N (0, σ2), and observe

Y = Xβ +W, (1)

where β is assumed to be uniformly chosen at random from the set {v ∈ {0, 1}p : ‖v‖0 = k} and
independent of (X,W ). The problem of interest is to recover β given the knowledge of X and Y .
Our focus will be on identifying the minimal sample size n for which the recovery is information-
theoretic possible.

1. Extended abstract. Full version appears as [arXiv reference, 1903.05046]

c© 2019 G. Reeves, J. Xu & I. Zadik.



THE ALL-OR-NOTHING PHENOMENON IN SPARSE LINEAR REGRESSION

The problem of recovering the support of a hidden sparse vector β ∈ Rp given noisy linear
observations has been extensively analyzed in the literature, as it naturally arises in many contexts
including subset regression, e.g. Chapman and Hall (1990), signal denoising, e.g. Chen et al. (2001),
compressive sensing, e.g. Candes and Tao (2005), Donoho (2006), information and coding theory,
e.g. Joseph and Barron (2012), as well as high dimensional statistics, e.g. Wainwright (2009b,a).
The assumptions of Gaussianity of the entries of (X,W ) are standard in the literature. Further-
more, much of the literature (e.g. Aeron et al. (2010), Ndaoud and Tsybakov (2018), Wang et al.
(2010)) assumes a lower bound βmin > 0 for the smallest magnitude of a nonzero entry of β, that is
mini:βi 6=0 |βi| ≥ βmin, as otherwise identification of the support of the hidden vector is in principle
impossible. In this paper we adopt a simplifying assumption by focusing only on binary vectors β,
similar to other papers in the literature such as Aeron et al. (2010), Gamarnik and Zadik (2017a)
and Gamarnik and Zadik (2017b). In this case recovering the support of the vectors is equivalent to
identifying the vector itself.

To judge the recovery performance we focus on the mean squared error (MSE). That is, given
an estimator β̂ as a function of (X,Y ), define mean squared error as

MSE
(
β̂
)
, E

[
‖β̂ − β‖2

]
,

where ‖v‖ denotes the `2 norm of a vector v. In our setting, one can simply choose β̂ = E [β], which
equals k

p (1, 1, . . . , 1)>, and obtain a trivial MSE0 = E
[
‖β − E [β] ‖2

]
, which equals k

(
1− k

p

)
.

We will adopt the following two natural notions of recovery, by comparing the MSE of an estimator
β̂ to MSE0.

Definition 1 (Strong and weak recovery) We say that β̂ = β̂(Y,X) ∈ Rp achieves

• strong recovery if lim supp→∞MSE
(
β̂
)
/MSE0 = 0;

• weak recovery if lim supp→∞MSE
(
β̂
)
/MSE0 < 1.

The fundamental question of interest in this paper is when n as a function of (p, k, σ2) is such that
strong/weak recovery is information-theoretically possible.

The focus of this paper will be on sublinear sparsity levels, that is on k = o (p). A great amount
of literature has been devoted on the study of the problem in the linear regime where n, k, σ = Θ(p).
One line of work has provided upper and lower bounds on the accuracy of support recovery as a
function of the problem parameters, e.g. Aeron et al. (2010); Reeves and Gastpar (2012, 2013);
Scarlett and Cevher (2017). Another line of work has derived explicit formulas for the minimum
MSE (MMSE) E

[
‖β − E [β | X,Y ] ‖2

]
. These formulas were first obtained heuristically using

the replica method from statistical physics Tanaka (2002); Guo and Verdú (2005) and later proven
rigorously in Reeves and Pfister (2016); Barbier et al. (2016). However, to our best of knowledge,
none of the rigorous techniques of Reeves and Pfister (2016); Barbier et al. (2016) apply when k =
o(p). Although there has been significant work focusing directly on the sublinear sparsity regime,
the identification of the exact information theoretic threshold of this fundamental statistical problem
remains largely open (see Section 1.2 for a detailed discussion). Obtaining a tight characterization
of the information-theoretic threshold is the main contribution of this work.

Towards identifying the information theoretic limits of recovering β, and out of independent in-
terest, we also consider a closely related hypothesis testing problem, where the goal is to distinguish
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the pair (X,Y ) generated according to (1) from a model where both X and Y are independently
generated. More specifically, given two independent matrices X ∈ Rn×p and W ∈ Rn×1 with
Xij

i.i.d.∼ N (0, 1) and Wi
i.i.d.∼ N (0, σ2), we define

Y , λW, (2)

where λ > 0 is a scaling parameter. We refer to the Gaussian linear regression model (1) as the
planted model, denoted by P = P (X,Y ), and (2) as the null model denoted by Qλ = Qλ(Y,X).
We focus on characterizing the total variation distance TV (P,Qλ) for various values of λ. One
choice of particular interest is λ =

√
k/σ2 + 1, under which E

[
Y Y >

]
= (k + σ2)I in both the

planted and null models.
Analogous to recovery, we adopt the following two natural notions of testing Perry et al. (2016);

Alaoui et al. (2017).

Definition 2 (Strong and weak detection) Fix two probability measures P,Q on our observed data
(Y,X). We say a test statistic T (X,Y ) with a threshold τ achieves

• strong detection if

lim sup
p→∞

[P(T (X,Y ) < τ) + Q(T (X,Y ) ≥ τ)] = 0,

• weak detection, if

lim sup
p→∞

[P(T (X,Y ) < τ) + Q(T (X,Y ) ≥ τ)] < 1.

Note that strong detection asks for the test statistic to determine with high probability whether
(X,Y ) is drawn from P or Q, while weak detection, similar to weak recovery, only asks for the test
statistic to strictly outperform the random guess. Recall that

inf
T ,τ

[P(T (X,Y ) < τ) + Q(T (X,Y ) ≥ τ)] = 1− TV(P,Q).

Thus equivalently, strong detection is possible if and only if lim infp→∞TV(P,Q) = 1, and weak
detection is possible if and only if lim infp→∞TV(P,Q) > 0. The fundamental question of interest
is when n as a function of (p, k, σ2) is such that strong/weak detection is information-theoretically
possible.

1.1. Overview of the Main Results

Of fundamental importance is the following sample size:

n∗ ,
2k log(p/k)

log(1 + k/σ2)
. (3)

In this work, we establish that n∗ is a sharp phase transition point for the recovery of β when
k = o(

√
p) and the signal-to-noise ratio k/σ2 is above a sufficiently large constant. We state our

main contribution in the following Theorem, which summarizes all the main results stated in the
arXiv version of the current paper Reeves et al. (2019).
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Theorem 3 (All-or-Nothing Phase Transition) Let δ ∈ (0, 1/2) and ε ∈ (0, 1) be two arbitrary
but fixed constants. Then there exists a constant C(δ, ε) > 0 only depending only δ and ε, such that
if k/σ2 ≥ C(δ, ε), then

(a) When k ≤ p 1
2
−δ and

n < (1− ε)n∗,
both weak recovery of β from (Y,X) ∼ P and weak detection between P and Qλ0 are

information-theoretically impossible, where λ0 =
√

k
σ2 + 1.

(b) When k = o(p) and
n > (1 + ε)n∗,

both strong recovery of β from (Y,X) ∼ P and (†) strong detection between P and Qλ are
information-theoretically possible for any λ > 0.

(†): strong detection requires an additional assumption 1 + k/σ2 ≤ (k log (p/k))1−η for
some arbitrarily small but fixed constant η > 0.

Our results establishes as a corollary a conjecture from (Gamarnik and Zadik (2017a)) where the
recovery problems is studied under the additional assumptions log k = o (log p) and k/σ2 → +∞
as p → +∞. In (Gamarnik and Zadik (2017a)) it is predicted that the sharp all-or-nothing phase
transitions takes places at the sample size

nconj =
2k log p

log(1 + 2k/σ2)
.

Note that our result implies the conjecture because under the additional assumptions log k =
o (log p) and k/σ2 → +∞ as p→ +∞, the phase transition point n∗ defined in (3) can be straight-
forwardly checked to satisfy n∗/nconj → 1, as p→ +∞.

Note that the theorem above assumes σ > 0. In the extreme case where σ = 0, n∗ trivializes
to zero and we can directly argue that one sample suffices for strong recovery. In fact, for any
β ∈ {0, 1}p and Y1 = 〈X1, β〉 for X1 ∼ N (0, Ip), we can identify β as the unique binary-valued
solution of Y1 = 〈X1, β〉, almost surely with respect to the randomness of X (see e.g. Gamarnik
and Zadik (2018))

Note that the first part of the above result focuses on k ≤ p1/2−δ. It turns out that this is
not a technical artifact and k = o

(
p1/2

)
is needed for n∗ to be the weak detection sample size

threshold. The sharp information-theoretic threshold for either detection or recovery is still open
when k = Ω

(
p1/2

)
and k = o(p).

The phase transition role of n∗ According to our main result, the rescaled minimum mean
squared error of the problem, MMSE/MSE0, exhibits a step behavior asymptotically. Loosely
speaking, when n < n∗ it equals to one and when n > n∗ it equals to zero. We next intuitively
explain why such a step behavior for sparse high dimensional regression occurs at n∗, using ideas
related to the area theorem Méasson et al. (2008); Kudekar et al. (2017) The approach described
below is similar to the one used previously for linear regression Reeves and Pfister (2016).

First let us observe that n∗ is asymptotically equal to the ratio of entropy H(β) = log
(
p
k

)
and

Gaussian channel capacity 1
2 log(1 + k/σ2). We explore this coincidence in the following way. Let
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In , I(Y n
1 ;X,β) denote the mutual information between β and (Y n

1 ;X) with a total of n linear
measurements. Using the chain rule for the mutual information and that the mutual information in
the Gaussian channel under a second moment constraint is maximized by the Gaussian input distri-
bution, it follows that the increment of mutual information In+1 − In ≤ 1

2 log(1 + MMSEn/σ
2),

where MMSEn denotes the minimum MSE with n measurements (see for example the second
part of Lemma 15 in Reeves and Pfister (2016) where the difference 1

2 log(1 + MMSEn/σ
2) −

(In+1 − In) is proven to be equal to the KL divergence between two distributions). In particular,
all the increments are between zero and 1

2 log(1 + k/σ2) and by telescopic summation for any n:

In ≤
n

2
log(1 + k/σ2), (4)

with equality only if for all m < n, MMSEm = k. This is illustrated in Fig. 1 where we plot n
against In+1 − In.

Suppose now that we have established that strong recovery is achieved with n∗ = H(β)
1
2
log(1+k/σ2)

samples. Then strong recovery and standard identities connecting mutual information and entropy
implies that

In∗ = H(β) =
n∗

2
log(1 + k/σ2).

In particular, (4) holds with equality, which means for all n ≤ n∗ − 1, MMSEn = k. In particular,
for all n < n∗, weak recovery is impossible. This area theorem is the key underpinning our converse
proof of the weak recovery.

1
2
log

(
1 + k

σ2

)

H(β)

0 n

In+1 − In

1

•

2

•

n∗• • • •

•

Figure 1: The phase transition diagram in Gaussian sparse linear regression. The y-axis is the
increment of mutual information with one additional measurement. The area of blue
region equals the entropy H(β) ∼ k log(p/k).

1.2. Comparison with Related Work

The information-theoretic limits of high-dimensional sparse linear regression have been studied
extensively and there is a vast literature of multiple decades of research. In this section we focus
solely on the Gaussian and binary setting and furthermore on the results applying to high values of
signal-to-noise ratio and sublinear sparsity.
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Information-theoretic Negative Results for weak/strong recovery For the impossibility direc-
tion, previous work (Aeron et al., 2010, Theorem 5.2) has established that as p → ∞, achieving
MSE(β̂) ≤ d for any d ∈ [0, k] is information-theoretically impossible if

n ≤ 2p
h2(k/p)− h2(d/p)

log (1 + k/σ2)
,

where h2(α) = −α logα − (1 − α) log(1 − α) for α ∈ [0, 1] is the binary entropy function. This
converse result is proved via a simple rate-distortion argument (see, e.g. Wu and Xu (2018) for an
exposition). In particular, given any estimator β̂(X,Y ) with MSE(β̂) ≤ d, we have

p (h2(k/p)− h2(d/p)) ≤ inf
MSE(β̃)≤d

I(β̃;β) ≤ I(β̂;β) ≤ I(X,Y ;β) ≤ n

2
log
(
1 + k/σ2

)
.

Notice that since k = o(p) the result implies that if n ≤ (1− o (1))n∗, strong recovery, that
is d = o(k), is information-theoretically impossible and if n = o(n∗), weak recovery, that is
d ≤ (1− ε)k for an arbitrary ε ∈ (0, 1), is impossible.

More recent work (Scarlett and Cevher, 2017, Corollary 2) further quantified the fraction of
support that can be recovered when n < (1− ε)n∗ for some fixed constant ε > 0. Specifically with
k = o(p) and any scaling of k/σ2, if n < (1 − ε)n∗, then the fraction of the support of β that can
be recovered correctly is at most 1− ε with high probability; thus strong recovery is impossible.

Restricting to the Maximum Likelihood Estimator (MLE) performance of the problem, it is
shown in Gamarnik and Zadik (2017a) that under significantly small sparsity k = O

(
exp

(√
log p

))

and k/σ2 → +∞, if n ≤ (1−ε)n∗, the MLE not only fails to achieve strong recovery, but also fails
to weakly recover the vector, that is recover correctly any positive constant fraction of the support.

Our result (part (a) of Theorem 3) establishes that the MLE performance is fundamental. It im-
proves upon the negative results in the literature by identifying a sharp threshold for weak recovery,
showing that if k = o

(√
p
)
, k/σ2 ≥ C for some large constant C > 0, and n ≤ (1− ε)n∗, then

weak recovery is information-theoretically impossible by any estimator β̂(Y,X). In other words,
no constant fraction of the support is recoverable under these assumptions.

Information-theoretic Positive Results for weak/strong recovery In the positive direction, pre-
vious work (Akcakaya and Tarokh, 2010, Theorem 1.5) shows that when k = o(p), k/σ2 = Θ(1),
and n > Ck/σ2k log(p − k) for some Ck/σ2 , it is information theoretically possible to weakly re-
cover the hidden vector. Albeit very similar to our results, our positive result (part (b) of Theorem
3) identifies the explicit value of Ck/σ2 for which both weak and strong recovery are possible, that
is Ck/σ2 = 2/ log

(
1 + k/σ2

)
for which Ck/σ2k log(p/k) = n∗.

In Gamarnik and Zadik (2017a) it is shown that when k = O
(
exp

(√
log p

))
and k/σ2 → +∞

then if n ≥ (1 + ε)n∗ for some fixed ε > 0, strong recovery is achieved by the MLE of the problem.
We improve upon this result with our result mentioned in part (b) of Theorem 3 by showing that
when n ≥ (1+ε)n∗ for some fixed ε > 0 and any k ≤ cp for some c > 0, then there exists a constant
C > 0 such that k/σ2 ≥ C the MLE achieves strong recovery. In particular, we significantly relax
the assumption from Gamarnik and Zadik (2017a) by showing that MLE achieves strong recovery
with (1 + ε)n∗ samples for (1) any sparsity level less than cp and (2) finite but large values of
signal-to-noise ratio.

6



THE ALL-OR-NOTHING PHENOMENON IN SPARSE LINEAR REGRESSION

Exact asymptotic characterization of MMSE for linear sparsity For both weak and strong
recovery, the central object of interest is the MMSE E

[
‖β − E [β | X,Y ] ‖2

]
and its asymptotic

behavior. While the asymptotic behavior of the MMSE remains a challenging open problem when
k = o(p), it has been accurately understood when k = Θ(p) and k/σ2 = Θ(1).

To be more specific, consider the asymptotic regime where k = εp, σ2 = k/γ, and n =
δp, for fixed positive constants ε, γ, δ as p → +∞. The asymptotic minimum mean-square error
(MMSE) can be characterized explicitly in terms of (ε, γ, δ). This characterization was first obtained
heuristically using the replica method from statistical physics Tanaka (2002); Guo and Verdú (2005)
and later proven rigorously Reeves and Pfister (2016); Barbier et al. (2016). More specifically, for
fixed (ε, γ), let the asymptotic MMSE as a function of δ be defined by

Mε,γ(δ) = lim
p→∞

E
[
‖β − E [β | X,Y ] ‖2

]

E [‖β − E [β] ‖2] .

The results in Reeves and Pfister (2016); Barbier et al. (2016) lead to an explicit formula for
Mε,γ(δ). Furthermore, they show that for ε ∈ (0, 1) and all sufficiently large γ ∈ (0,∞),Mε,γ(δ)
has a jump discontinuity as a function of δ. The location of this discontinuity, denoted by δ∗ =
δ∗(ε, γ), occurs at a value that is strictly greater than the threshold n∗/p. Furthermore, at the dis-
continuity, the MMSE transitions from a value that is strictly less than the MMSE without any obser-
vations to a value that is strictly positive, i.e.,Mε,γ(0) > limδ↑δ∗Mε,γ(δ) > limδ↓δ∗Mε,γ(δ) > 0.

To compare these formulas to the sub-linear sparsity studied in this paper, one can consider the
limiting behavior ofMε,γ(δ) as ε = k/p decreases to zero. Note that the comparison is qualitative
in the following sense; in the work by Reeves and Pfister (2016); Barbier et al. (2016) the coeffi-
cients of β are generated i.i.d. according to a Bernoulli (k/p) distribution, while in this paper we
consider β to be chosen according to a uniform prior over the the space of binary k-sparse vectors.
Nevertheless, it can be verified thatMε,γ(δ) converges indeed to a step zero-one function as ε→ 0
and the jump discontinuity transfers indeed to the critical value n∗/p which makes the behavior
consistent with the results in this paper. However, an important difference is that the results in this
paper are derived directly under the scaling regime k = o(p) whereas the derivation described above
requires one to first take the asymptotic limit p → ∞ for fixed (ε, γ) and then take ε → 0. Since
the limits cannot interchange in any obvious way, the results in this paper cannot be derived as a
consequence of the rigorous results in Reeves and Pfister (2016); Barbier et al. (2016). Finally, it
should be mentioned that taking the limit ε→ 0 for the replica prediction suggests the step behavior
for all values of signal-to-noise ratio γ (see Figure 2). In the current work, we rigorously establish
the step behavior in the high signal-to-noise ratio regime. The proof of the step behavior when the
signal-to-noise ratio is low remains an open problem.

Sparse Superposition Codes Constructing an algorithm for recovering a binary k-sparse β from
(Y = Xβ+W,X) receives a lot of attention from a coding theory point of view. The reason is that
such recovery corresponds naturally to a code for the memoryless additive Gaussian white noise
(AWGN) channel with signal-to-noise ratio equal to k/σ2. Specifically in this context achieving
strong recovery of a uniformly chosen binary k-sparse β with (1 + ε)n∗ samples, for arbitrary
ε > 0, corresponds exactly to capacity-achieving encoding-decoding mechanism of

(
p
k

)
∼ (pe/k)k

messages through a AWGN channel. A recent line of work has analyzed a similar mechanism
where (p/k)k messages are encoded through k-block-sparse vectors; that is the vector β is designed
to have at most one non-zero value in each of k block of entries indexed by ibp/kc, ibp/kc +
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Figure 2: The limit of the replica-symmetric predicted MMSEMε,γ(·) as ε→ 0 for signal-to-noise
ratio (snr) γ equal to 2 (left curve) and equal to 10 (right curve).

1, · · · , (i+ 1)bp/kc − 1 for i = 0, 1, 2, . . . , k − 1. It has shown that by using various polynomial-
time decoding mechanisms, such as adaptive successive decoding Joseph and Barron (2012), Joseph
and Barron (2014), a soft-decision iterative decoder Barron and Cho (2012), Cho (2014) and finally
Approximate Message Passing techniques Barbier and Krzakala (2014, 2017); Rush et al. (2017),
one can strongly recover the hidden k-block-sparse vector with (1 + ε)n∗ samples and achieve
capacity. Their techniques are tailored to work for any k = p1−c with c ∈ (0, 1) and also require the
vector to have carefully chosen non-zero entries, that is the hidden vector is not assumed to simply
be binary. In this work, part (b) of Theorem 3 establishes that under the simple assumption on β
being binary and arbitrarily (not block) k-sparse it suffices to make strong recovery possible with
(1 + ε)n∗ samples when k = o(p). Nevertheless, our decoding mechanism requires a search over
the space of k-sparse binary vectors and therefore is not in principle polynomial-time. The design
of a polynomial-time recovery algorithm for this task and (1 + ε)n∗ samples remains largely an
open problem (see Gamarnik and Zadik (2017a)).

Information-theoretic limits up to constant factors for exact recovery Although exact recovery
is not our focus, we briefly mention some of the rich literature on the information-theoretic limits
for the exact recovery of β, i.e., P

{
β̂ = β

}
→ 1 as p→∞ (see, e.g. Wainwright (2009b); Fletcher

et al. (2009); Rad (2011); Wang et al. (2010); Ndaoud and Tsybakov (2018) and the references
therein). Clearly since exact recovery implies weak and strong recovery, the sample sizes required
to be achieve exact recovery are in principle no smaller than n∗.

Specifically, it has been shown in (Wainwright, 2009b, Theorem 1) that the maximum likeli-
hood estimator achieves exact recovery if n ≥ Ω

(
log
(
p−k
k

)
+ σ2 log(p− k)

)
and n − k → +∞.

Conversely, n > max{f1(p, k), . . . , fk(p, k), k} is shown in (Wang et al., 2010, Theorem 1) to be

necessary for exact recovery, where fm(p, k) = 2
log (p−k+m

m )−1
log
(
1+

m(p−k)
p−k+m

/σ2
) . In the special regime where k

and σ are fixed constants, it has been shown in (Jin et al., 2011, Theorem 1) that exact recovery is
information-theoretically possible if and only if n ≥ (1 + o(1))n∗. Notice that this result achieves
exact recovery for approximately n∗ sample size, but in this case of constant k it can be easily seen
that the two notions of exact and strong recovery coincide.
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Computationally, it has been shown in (Wainwright, 2009a, Section IV-B) that LASSO achieves
exact recovery in polynomial-time if n ≥ 2k log(p− k). More recently, it is shown in (Ndaoud and
Tsybakov, 2018, Theorem 3.2, Corollary 3.2) that exact recovery can be achieved in polynomial-
time, provided that k = o(p), σ ≥

√
3, and n ≥ Ω

(
k log ep

k + σ2 log p
)
.

2. Conclusion and Future Work

In this paper, we establish an All-or-Nothing information-theoretic phase transition for recovering a
k-sparse vector β ∈ {0, 1}p from n independent linear Gaussian measurements Y = Xβ+W with
noise variance σ2. In particular, we show that the MMSE normalized by the trivial MSE jumps from
1 to 0 at a critical sample size n∗ = 2k log(p/k)

log(1+k/σ2)
within a small window of size εn∗. The constant

ε > 0 can be made arbitrarily small by increasing the signal-to-noise ratio k/σ2. Interestingly, the
phase transition threshold n∗ is asymptotically equal to the ratio of entropy H(β) and the AWGN
channel capacity 1

2 log
(
1 + k/σ2

)
. Towards establishing this All-or-Northing phase transition, we

also study a closely related hypothesis testing problem, where the goal is to distinguish this planted
model P from a null model Qλ where (X,Y ) are independently generated and Yi

i.i.d.∼ N
(
0, λ2σ2

)
.

When λ = λ0 =
√
k/σ2 + 1, we show that the sum of Type-I and Type-II testing errors also jumps

from 1 to 0 at n∗ within a small window of size εn∗.
Our impossibility results for n ≤ (1 − ε)n∗ apply under a crucial assumption that k ≤ p1/2−δ

for some arbitrarily small but fixed constant δ > 0. This naturally implies for Ω
(
p1/2

)
≤ k ≤ o (p),

two open problems for the identification of the detection and the recovery thresholds, respectively.
For detection, as established in the Appendix of the arXiv version of the current paper Reeves

et al. (2019), k = o
(
p1/2

)
is needed for n∗ being the detection threshold, because weak detection is

achieved for all n = Ω (n∗) when k = Ω(p1/2), that is the weak detection threshold becomes o (n∗).
The identification of the precise detection threshold when Ω(p1/2) ≤ k ≤ o (p) is an interesting
open problem.

For recovery, however, we believe that the recovery threshold still equals n∗ when Ω
(
p1/2

)
≤

k ≤ o(p). To prove this, we propose to study the detection problem where both the (condi-
tional) mean and the covariance are matched between the planted and null models. Specifically,
let us consider a slightly modified null model Q with the matched conditional mean EQ [Y |X] =
EP [Y |X] = k

pX1 and the matched covariance EQ
[
Y Y >

]
= EP

[
Y Y >

]
, where 1 denotes the

all-one vector. For example, if X,W are defined as before and Y , k
pX1 + λW with λ equal to√

k
σ2 + 1− k2

p , then both the mean and covariance constraints are satisfied. It is an open problem
whether this new null model is indistinguishable from the planted model P when n ≤ (1− ε)n∗
and Ω

(
p1/2

)
≤ k ≤ o(p). If the answer is affirmative, then we may follow the analysis road map

in this paper to further establish the impossibility of recovery.
Finally, another interesting question for future work is to understand the extent to which the

All-or-Nothing phenomenon applies beyond the binary vectors setting or the Gaussian assumptions
on (X,W ). In this direction, some recent work Reeves (2017) has shown that under mild conditions
on the distribution of β, the distance between the planted and null models can be bounded in term
of “exponential moments” similar to the ones used for the proof of the main results which can be
found in the arXiv version of the current paper Reeves et al. (2019).

9



THE ALL-OR-NOTHING PHENOMENON IN SPARSE LINEAR REGRESSION

Acknowledgment

G. Reeves is supported by the NSF Grants CCF-1718494 and CCF-1750362. J. Xu is supported by
the NSF Grants CCF-1850743, IIS-1838124, and CCF-1856424.

References

Shuchin Aeron, Venkatesh Saligrama, and Manqi Zhao. Information theoretic bounds for com-
pressed sensing. IEEE Transactions on Information Theory, 56(10):5111–5130, October 2010.
doi: 10.1109/TIT.2010.2059891.

Mehmet Akcakaya and Vahid Tarokh. Shannon-theoretic limits on noisy compressive sampling.
IEEE Transactions on Information Theory, 56(1):492–504, December 2010. doi: 10.1109/TIT.
2009.2034796.

Ahmed El Alaoui, Florent Krzakala, and Michael I Jordan. Finite size corrections and likelihood
ratio fluctuations in the spiked Wigner model. arXiv preprint arXiv:1710.02903, 2017.

J. Barbier and F. Krzakala. Replica analysis and approximate message passing decoder for superpo-
sition codes. In 2014 IEEE International Symposium on Information Theory, pages 1494–1498,
June 2014. doi: 10.1109/ISIT.2014.6875082.

J. Barbier and F. Krzakala. Approximate message-passing decoder and capacity achieving sparse
superposition codes. IEEE Transactions on Information Theory, 63(8):4894–4927, Aug 2017.
ISSN 0018-9448. doi: 10.1109/TIT.2017.2713833.

Jean Barbier, Mohamad Dia, Nicolas Macris, and Florent Krzakala. The mutual information in
random linear estimation. In Proceedings of the Allerton Conference on Communication, Control,
and Computing, Monticello, IL, 2016.

A. R. Barron and S. Cho. High-rate sparse superposition codes with iteratively optimal estimates.
Proc. IEEE Int. Symp. Inf. Theory, 2012.

Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE transactions on
information theory, 51(12):4203–4215, 2005.

Alan Miller. Chapman and Hall. Subset selection in regression. Chapman and Hall, 1990.

Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decomposition by
basis pursuit. SIAM Rev., 43(1):129–159, January 2001. ISSN 0036-1445. doi: 10.1137/
S003614450037906X. URL http://dx.doi.org/10.1137/S003614450037906X.

S. Cho. High-dimensional regression with random design, including sparse superposition codes.
Ph.D. dissertation, Dept. Statist., Yale Univ., New Haven, CT, USA, 2014.

David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–
1306, 2006.

Alyson K. Fletcher, Sundeep Rangan, and Vivek K Goyal. Necessary and sufficient conditions
for sparsity pattern recovery. IEEE Transactions on Information Theory, 55(12):5758–5772,
November 2009. doi: 10.1109/TIT.2009.2032726.

10

http://dx.doi.org/10.1137/S003614450037906X


THE ALL-OR-NOTHING PHENOMENON IN SPARSE LINEAR REGRESSION

David Gamarnik and Ilias Zadik. High dimensional linear regression with binary coefficients: Mean
squared error and a phase transition. Conference on Learning Theory (COLT), 2017a. URL
https://arxiv.org/abs/1701.04455.

David Gamarnik and Ilias Zadik. Sparse high dimensional linear regression: Algorithmic barrier
and a local search algorithm. arXiv Preprint, 2017b. URL https://arxiv.org/abs/
1711.04952.

David Gamarnik and Ilias Zadik. High dimensional linear regression using lattice basis reduction.
In Advances in Neural Information Processing Systems (NIPS), 2018.
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Rüdiger L Urbanke. Reed–muller codes achieve capacity on erasure channels. IEEE Trans-
actions on Information Theory, 63(7):4298–4316, 2017.
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