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Abstract
We show that minimum-norm interpolation in the Reproducing Kernel Hilbert Space correspond-
ing to the Laplace kernel is not consistent if input dimension is constant. The lower bound holds
for any choice of kernel bandwidth, even if selected based on data. The result supports the em-
pirical observation that minimum-norm interpolation (that is, exact fit to training data) in RKHS
generalizes well for some high-dimensional datasets, but not for low-dimensional ones.
Keywords: List of keywords

1. Introduction

Can a method perfectly fitting the training data perform well out-of-sample? In the last few years,
this question was raised in the context of over-parametrized neural networks (Zhang et al., 2016;
Belkin et al., 2018b), kernel methods (Belkin et al., 2018b; Liang and Rakhlin, 2018), and local
nonparametric rules (Belkin et al., 2018a,c). Experiments on a range of real and synthetic datasets
confirm that procedures attaining zero training error do not necessarily overfit and can generalize
well (Wyner et al., 2017; Zhang et al., 2016; Belkin et al., 2018b; Liang and Rakhlin, 2018). In
particular, Kernel Ridge Regression

f̂ ∈ argmin
f∈H

1

n

n∑
i=1

(f(xi)− yi)2 + λ ‖f‖2H (1)

performs “unreasonably well” in the regime λ = 0, even though the solution (generally) interpolates
the data. HereH is a Reproducing Kernel Hilbert Space (RKHS) corresponding to a kernelK, ‖·‖H
is the corresponding RKHS norm, and (x1, y1), . . . , (xn, yn) ∈ Rd × R are the training data. Since
the argmin in (1) is not unique when λ = 0, we consider the minimum-norm interpolating solution

argmin
f∈H

‖f‖H (2)

s.t. f(xi) = yi, i = 1, . . . , n

The conditions under which interpolation, such as Kernel “Ridgeless” Regression, performs
well are poorly understood. (Liang and Rakhlin, 2018) studied the high-dimensional regime n �
d, explicating (under additional assumptions) a phenomenon of implicit regularization, due to the
curvature of the kernel function, high dimensionality, and favorable geometric properties of the
training data, as quantified by the spectral decay of the kernel and covariance matrices.
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The mechanism of implicit regularization in (Liang and Rakhlin, 2018) relies on high dimen-
sionality d of the input space, and it is unclear whether such a “blessing of high dimensionality” is
necessary for good out-of-sample performance of interpolation. Perhaps there is a different mech-
anism that leads to generalization of minimum-norm interpolants (2) for any dimensionality of the
input space? Our experiments suggest that this is not the case: minimum-norm interpolant does not
appear to perform well in low dimensions. The present paper provides a theoretical justification for
this observation. We show that the estimation error of (2) with the Laplace kernel does not converge
to zero as the sample size n increases, unless d scales with n.

We chose to study the Laplace kernel

Kc(x, x
′) = cde−c‖x−x

′‖ (3)

for several reasons. First, Belkin et al. (2018b) argue that Laplace kernel regression, in comparison
to Gaussian kernel regression, is more similar to ReLU neural networks. More precisely, the non-
linearities introduced by the Laplace kernel allow SGD to have a large “computational reach”. For
instance, as argued in (Belkin et al., 2018b), the number of epochs required to fit natural vs random
labels for Laplace kernel is well-aligned with the corresponding behavior in ReLU networks. Sec-
ond, for small c, the minimum-norm interpolant in d = 1 corresponds to simplicial interpolation of
Belkin et al. (2018a), and it may be possible to borrow some of the intuition from the latter paper
for higher dimensions. Finally, the RKHS norm corresponding to Laplace kernel can be related to
a Sobolev norm, facilitating the development of the lower bound in this paper. We also note that
non-differentiability of the kernel function at 0 puts it outside of the assumptions made by (Liang
and Rakhlin, 2018); however, a closer look at (El Karoui, 2010) reveals that it is enough to assume
differentiability in a neighborhood of 0. Hence, the upper bounds of (Liang and Rakhlin, 2018) can
be extended to the case of Laplace kernel, under the high-dimensional scaling d � n.

The “width” parameter c in (3) plays an important role. In particular, the upper bounds of (Liang
and Rakhlin, 2018) were only shown in the specific regime of this parameter, c �

√
d. The choice

of c presents a key difficulty for proving a lower bound: perhaps a clever data-dependent choice
can yield a good estimator even in low-dimensional situations? We prove a strong lower bound: no
choice of c can make the interpolation method (2) consistent if d is a constant.

The main theorem can be informally summarized as follows. If Yi are noisy observations of
f∗(Xi) at random points Xi, i = 1, . . . , n, the minimum-norm interpolant f̂c — for the case of the
Laplace kernel with any data-dependent choice of width c — is inconsistent, in the sense that with
probability close to 1,

EX∼P(f̂c(X)− f∗(X))2 ≥ Ωd(1).

Here P is the marginal distribution of X and X1, . . . , Xn, f∗ is the regression function, and the
order notation Ωd stresses the fact that d is a constant. The standard decomposition

E(f̂c(X)− f∗(X))2 = E(f̂c(X)− Y )2 − E(f∗(X)− Y )2

implies the same lower bound for excess loss.

2. Main Results

Let f∗ be an unknown smooth function over Ω = BRd(0, 1) that is not identically zero, and P an
unknown distribution over Ω with probability density function ρ bounded as

0 < cρ ≤ ρ ≤ Cρ. (4)
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Suppose X1, · · · , Xn are sampled i.i.d. according to P , and

Yi = f∗(Xi) + ξi (5)

with ξi assumed to be i.i.d. noise with P(ξi = +1) = P(ξi = −1) = 1
2 . We shall use S to denote

the collection {(Xi, Yi)}ni=1.

Theorem 1 Let f̂c be the minimum-norm solution (2) interpolating (Xi, Yi), with respect to Laplace
kernel Kc(x, y) = cde−c‖x−y‖. For fixed n and odd dimension d, with probability at least 1 −
O
(

1√
n

)
over the draw of S ,

∀c > 0, EX∼P(f̂c(X)− f∗(X))2 ≥ Ωd(1). (6)

Remark 2 We emphasize that the lower bound holds for any data-dependent choice c. The require-
ment that d be odd is for technical simplicity, and we believe that our results can be extended to
even dimensions by using more complicated tools in harmonic analysis. The assumption of binary
noise process is for brevity, and the noise magnitude can be changed by simple rescaling.

For regularized least squares (1), the parameter λ > 0 leads to a control of the norm of f̂ .
In the absence of explicit regularization, such a complexity control is more difficult to establish.
Intuitively, the norm of the solution can be greatly affected by distances between datapoints, since
the interpolating solution fits the noisy function values (separated by a constant), implying a large
derivative if datapoints are close. More precisely, given the values X1, . . . , Xn, we define

ri := min(min
j 6=i
‖Xi −Xj‖, dist(Xi, ∂Ω)) (7)

for each i = 1, . . . , n. Analyzing the behavior of the random variables ri underlies the main proofs
in this paper. While it is known that E[ri] . n−1/d (Györfi et al., 2006), our proofs require more
delicate control of the tails of powers of these variables, including control of the inverse r−1

i . As
we show, the estimation error can be related to these random quantities, via Gagliardo-Nirenberg
interpolation inequalities and control of higher-order derivatives.

More precisely, we show the following estimates on the random variables ri:

Proposition 3 There are constants C1, C2 depending on d, such that with probability 1−O( 1√
n

),
the following holds for all −1 ≤ k ≤ d:

C1n
− k

d ≤ 1

n

n∑
i=1

rki ≤ C2n
− k

d . (8)

As a consequence, we can show that, with high probability, for at least a constant proportion of the
dataset, the minimal distances ri are, up to an absolute constant, of size n−1/d.

Proposition 4 For any 0 < α < 1, there is constant C ′1, C
′
2 depending on α, d, such that with

probability 1−O( 1√
n

), we have

|{i : C ′1/
d
√
n ≤ ri ≤ C ′2/ d

√
n}| ≥ αn. (9)
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In particular, the Lipschitz constant of the interpolating solution is necessarily at least n1/d. On
the other hand, the tight control of ri’s, together with properties of the RKHS corresponding to
Laplace kernel, implies that the RKHS norm squared of the solution is O(n1+ 1

d ), as we prove in
Proposition 19. This should be contrasted with the lower bound of Ω(exp{cn1/d}) for the norm
of any interpolating solution with respect to the Gaussian kernel given in (Belkin et al., 2018b,
Theorem 1).

3. Proof

We start with a high-level outline of the proof:

(i) We show that in odd dimension d, the RKHS norm has an explicit form, equal to a Sobolev
norm.

(ii) As the RKHS norm becomes the Sobolev norm, we can control “smoothness” of f̂c by control-
ling the RKHS norm. Since f̂c and f∗ differ on pointsXi by the amount ξi, and both functions
are “smooth”, we can choose small regions around Xi such that the squared loss over these
regions can be lower bounded. Unfortunately, the lower bound becomes vacuous as c goes to
infinity. Hence, we need a different strategy for “large” c.

(iii) When c is large, the RKHS norm approximates the L2-norm of Rd. We then show that after c
passes a certain threshold, the L2-norm of f̂c becomes smaller than a constant fraction of the
norm of f∗, implying a lower bound on the total squared loss.

(iv) Remarkably, the two distinct lower bounds in (ii) and (iii) cover all the choices of c, a result
that is not immediately evident.

More specifically, we shall show that

Proposition 5 (First Method) Fix a positive constant A > 0. Then with probability at least 1 −
Od,ρ,A

(
1√
n

)
, for any c ≤ A d

√
n we have

L(f̂c) , E
(
f̂c(X)− f∗(X)

)2
≥ Ωd,ρ,f∗,A (1) . (10)

Proposition 6 (Second Method) There exists a constant B = B(d, ρ, f∗) > 0 independent of n
such that with probability at least 1−Od,ρ

(
1√
n

)
, for any c > B d

√
n we have

E
(
f̂c(X)− f∗(X)

)2
≥ Ωd,ρ,f∗ (1) . (11)

Now we take the constant A in the first method to be equal to B and combine the two proposi-
tions, concluding that with high probability

∀c ∈ R, L(f̂c) ≥ Ω(1), (12)

concluding the proof of Theorem 1.
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Intuition The two modes of failure described in Propositions 5 and 6 are illustrated in Figure 1.
For “small” value of c, the solution creates an overly smooth (essentially piece-wise linear) interpo-
lation, while for “large” values, the function behaves more similarly to a collection of thin spikes.
In the first case, the non-vanishing (with n) MSE is due to the inability of the interpolated solution
to smoothly track the true regression function, while in the second case the solution has an L2(Ω)
norm that is only a fraction of the corresponding norm of the true regression function. The key mes-
sage of the paper is that in low dimensions there is no “middle ground” (that is, a choice of c) that
would make the interpolation rule consistent as n increases. It is worth emphasizing again that the
low-dimensional intuition does not carry over to high dimensions, and the MSE of the interpolated
solution can be small, under various conditions on the eigenvalue decay of the sample covariance
matrix (Liang and Rakhlin, 2018).

Figure 1: The two modes of failure of minimum-norm interpolation in low dimension. Regression
function f∗ depicted in blue, noisy observations are depicted in red, and the minimum-
norm interpolation with respect to Laplace kernel – in green. Left: c = 1/10. Right:
c = 10.

3.1. Notation

We work with the RKHSHc corresponding to the Laplace kernel (3). The subscript emphasizes our
focus on the width c. The inner product in Hc is denoted by 〈f, g〉Hc

, and ‖f‖2Hc
= 〈f〉Hc

denotes
the squared norm. We will be using the scaling as described in Proposition 7 in Section 4 so that

〈f〉Hc =

d+1
2∑
i=0

(d+1
2

i

)
c−2i〈f〉i = ‖f‖L2(Rd) +

d+1
2∑
i=1

(d+1
2

i

)
c−2i〈f〉i (13)

where
〈f〉i ,

∫
Rd

|Ff |2‖p‖2idp = Cd,i‖Dif‖2L2(Rd), (14)

with Ff denoting the Fourier transform of f .

3.2. First Method: Control of Hölder Continuity

Proof [of Proposition 5]
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Denoting f , f̂c − f∗,

E
(
f̂c(X)− f∗(X)

)2
≥ Ωd,ρ

(
‖f‖2L2(Ω)

)
. (15)

Hence, we need only to give a lower bound for ‖f‖2L2(Ω). From Proposition 18, for any I ⊂ [n],

‖f‖2L2(Ω) ≥ min

1,Ωd


 min

i∈I
r−d−1
i

∑
i∈I

rdi f(Xi)
2

max
i∈I

r−d−1
i + cd+1〈f〉Hc


d∑
i∈I

rdi f(Xi)
2


 . (16)

We will now prove Proposition 5 by giving upper bounds for max
i∈I

r−d−1
i and cd+1〈f〉Hc and

lower bounds for min
i∈I

r−d−1
i and

∑
i∈I

rdi f(Xi)
2.

Estimate A. From Proposition 4, with probability 1−Od,ρ( 1√
n

) there is a subset I ⊂ [n] of size at

least 9
10n such that

Ωd,ρ

(
n−

1
d

)
≤ min

i∈I
ri ≤ max

i∈I
ri ≤ Od,ρ

(
n−

1
d

)
. (17)

Hence,
Ωd,ρ

(
n

d+1
d

)
≤ min

i∈I
r−d−1
i ≤ max

i∈I
r−d−1
i ≤ Od,ρ

(
n

d+1
d

)
. (18)

Estimate B. Note that for any i,

f(Xi)
2 = (f̂c(Xi)− f∗(Xi)

2 = (Yi − f∗(Xi))
2 = ξ2

i = 1, (19)

Then applying equation (17) we get

∑
i∈I

rdi f(Xi)
2 ≥ Ωd,ρ

(∑
i∈I

(
n−

1
d

)d
· 1

)
≥ Ωd,ρ,f∗,A(1). (20)

Estimate C. From Proposition 19 in the Appendix, with probability 1−Od,ρ
(

1√
n

)

cd+1〈f̂c〉Hc ≤ cd+1

(
1

3
‖f∗‖2L2(Ω) +Od,ρ,f∗

(
d
√
n

c

(
1 +

d
√
n

c

)d))
≤ Od,ρ,f∗

(
cd+1 + d

√
n
(
c+ d
√
n
)d)

≤ Od,ρ,f∗
(
Ad+1n

d+1
d + d

√
n
(
A d
√
n+ d
√
n
)d)

= Od,ρ,f∗,A

(
n

d+1
d

)
.

(21)

It then follows that

cd+1〈f〉Hc ≤ 2cd+1〈f̂c〉Hc + 2cd+1〈f∗〉Hc ≤ Od,ρ,f∗,A(n
d+1
d ). (22)
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We are now ready to put all these estimates together. With probability 1−Od,ρ
(

1√
n

)
min

i∈I
r−d−1
i

∑
i∈I r

d
i f(Xi)

2

max
i∈I

r−d−1
i + cd+1〈f〉Hc

d∑
i∈I

rdi f(Xi)
2 ≥ Ωd,ρ,f∗,A(1). (23)

As a result, with probability at least 1−Od,ρ,f∗,A
(

1√
n

)
,

L(f̂c) = E
(
f̂c(X)− f∗(X)

)2
≥ Ωd,ρ,f∗,A (1) . (24)

3.3. Second Method: Control of L2 norm

The lower bound in this regime boils down to proving an upper bound on the L2(Ω) norm of the
interpolated solution as compared to the L2(Ω) norm of f∗. Proposition 19 proves this fact by
constructing another interpolating solution whose RKHS norm can be explicitly controlled. Since
f̂c is the minimal norm solution, the result follows by triangle inequality.
Proof [of Proposition 6]

We need only to show the existence of B such that

∀c > B d
√
n, ‖f̂c − f∗‖2L2(Ω) ≥ Ωd,ρ,f∗ (1) . (25)

From equation (131) in Proposition 19 in the Appendix,

〈f̂c〉Hc ≤
1

3
‖f∗‖2L2(Ω) +Od,ρ,f∗

(
d
√
n

c

(
1 +

d
√
n

c

)d)

≤ 1

3
‖f∗‖2L2(Ω) +Od,ρ,f∗

(
1

B

(
1 +

1

B

)d)
.

(26)

Then for B = B(d, ρ, f∗) large enough,

〈f̂c〉Hc ≤
1

3
‖f∗‖2L2(Ω) +

1

3
‖f∗‖2L2(Ω) ≤

2

3
‖f∗‖2L2(Ω). (27)

Now, by triangle inequality,

‖f̂c − f∗‖L2(Ω) ≥ ‖f∗‖L2(Ω) − ‖f̂c‖L2(Ω) ≥

(
1−

√
2

3

)
‖f∗‖L2(Ω) = Ωd,ρ,f∗ (1) (28)

as desired. This completes the proof.

We presented brief proofs of the lower bounds, postponing much of the technical details to the
Appendix. Next section is devoted to analyzing the RKHS corresponding to the Laplace kernel,
and, in particular, to proving a succinct expression for the RKHS norm.
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4. Explicit form of the RKHS norm

In this section, we provide an expression, up to constant factors, for the RKHS norm corresponding
to the Laplace kernel, along with the associated eigenfunctions and eigenvalues. We believe these
estimates will be useful for future study of interpolation and other methods with Laplace kernels.
Notably, the expansions provided in the next proposition are finite (with only (d+2)/2 terms), given
the choice of the basis, as opposed to infinite-dimensional expansions for the Gaussian kernel.

Proposition 7 Consider the kernel Kc(x, y) = cde−c‖x−y‖ in Rd with d odd. The corresponding
RKHS norm is given by

〈f〉Hc ∼
∫
Rd

|Ff |2(1 + ‖p‖2/c2)
d+1
2 dp ∼

d+1
2∑
i=0

(d+1
2

i

)
c−2i〈f〉i. (29)

where
〈f〉i =

∫
Rd

|Ff |2‖p‖2idp = Cd,i‖Dif‖2L2(Rd). (30)

and the Fourier transformation F is chosen such that

〈f〉0 = ‖f‖2L2(Ω). (31)

As scaling does not change the output of the algorithm, we take the convention that

〈f〉Hc =

d+1
2∑
i=0

(d+1
2

i

)
c−2i〈f〉i = ‖f‖L2(Rd) +

d+1
2∑
i=1

(d+1
2

i

)
c−2i〈f〉i (32)

Proof Consider the integral operator

TKf(x) =

∫
y
K(x, y)f(y)dy. (33)

We have
〈f, g〉Hc = 〈f, T−1

K g〉L2(Rd). (34)

An eigenspace-decomposition of TK immediately gives the form of the inner product in the RKHS.
Since Kc(x, y) = k(x − y) with k(x) = cde−c‖x‖, it is easy to verify that the family {hp(x) =
eip·x}p∈Rd are eigenfunctions of TK :

TKhp(x) =

∫
y
k(x− y)eip·ydy = λ(p)hp(x) (35)

where
λ(p) =

∫
y
k(x− y)eip·(y−x)dy =

∫
x
k(x)e−ip·xdx. (36)

Therefore, the inner product of RKHS can be written as

〈f, g〉Hc =

∫
x,p,y

1

λ(p)−1
f(x)∗hp(x)hp(y)∗g(y)dxdpdy (37)
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which can be further rewritten as:

〈f, g〉Hc =

∫
p

1

λ(p)−1
Ff(p)∗Fg(p)dp. (38)

Now for λ(p), we have
λ = Fk. (39)

In fact, λ(p) can be explicitly computed (see e.g. (Stein and Weiss, 1971, Thm 1.4)):

λ(p) = cd
∫
Rd

e−c‖x‖e−ipxdx

=

∫
Rd

e−‖x‖e−ipx/cdx

The last expression is equal to∫
Rd

(
1√
π

∫ ∞
0

e−η
√
η
e−‖x‖

2/4ηdη

)
e−ipx/cdx

=
1√
π

∫ ∞
0

e−η
√
η

(∫
Rd

e−‖x‖
2/4ηe−ipx/cdx

)
dη

=
1√
π

∫ ∞
0

e−η
√
η

(4πη)d/2e−η‖p‖
2/c2dη

=
2dπ(d−1)/2Γ(d+1

2 )

(1 + ‖p‖2/c2)(d+1)/2
.

Then

λ(p)−1 =
(1 + ‖p‖2/c2)(d+1)/2

2dπ(d−1)/2Γ(d+1
2 )

=

(d+1)/2∑
i=0

( d+1
2
i

)
‖p‖2i/c2i

2dπ(d−1)/2Γ(d+1
2 )

(40)

and ∫
p

1

λ(p)−1
Ff(p)∗Fg(p)dp =

∫
p

(d+1)/2∑
i=0

( d+1
2
i

)
‖p‖2i/c2i

2dπ(d−1)/2Γ(d+1
2 )
Ff(p)∗Fg(p)dp (41)

=

(d+1)/2∑
i=0

( d+1
2
i

)
/c2i

2dπ(d−1)/2Γ(d+1
2 )

∫
p
‖p‖2iFf(p)∗Fg(p)dp, (42)

implying the result.

5. Discussion

We have presented theoretical evidence that minimum-norm interpolation with Laplacian kernel
is not consistent if d does not scale with n. On the other hand, in the high-dimensional scaling
regime n � d, (Liang and Rakhlin, 2018) exhibited a phenomenon of implicit regularization that
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allows, under a number of additional assumptions, the estimation error to be small. The interaction
of dimensionality, sample size, and eigenvalue decays for the population and sample covariance
matrices is complex, and identifying all the regimes when interpolation succeeds is still a largely
unexplored area. In particular, our lower bound becomes vacuous as soon as d starts to scale with
n. It would be interesting to understand the minimal scaling of d along with assumptions on the
underlying distribution that allow minimum-norm interpolation to succeed.

Partial motivation for the study of interpolation methods comes from the recent successes of
neural networks. These overparametrized models are typically trained to achieve zero error on the
training data (Zhang et al., 2016; Belkin et al., 2018b), yet perform well out-of-sample. Recent
work connecting sufficiently wide neural networks and the effective kernel (Mei et al., 2018; Chizat
and Bach, 2018; Daniely, 2017; Jacot et al., 2018; Du et al., 2018) suggests that interpolating neural
networks can be studied through the lens of kernel methods. In particular, it can be shown that the
limiting solutions in such cases are, in fact, minimum-norm interpolants with respect to the corre-
sponding kernel. Hence, further study of strengths and limitations of minimum-norm interpolation
can shed light on performance of neural networks.
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Appendix A. Bounds of Average Separation

A.1. Main Claims

Proof [of Proposition 4] With probability at least 1 − O( 1√
n

) for all −1 ≤ k ≤ d, for constants
C1, C2,

C1n
− k

d ≤ 1

n

n∑
i=1

rki ≤ C2n
− k

d . (43)

Let β = 1− 1
2(1− α) = 1+α

2 . Let I1 be a subset of [n] of size ceil(βn) such that ∀i ∈ I1, j ∈
[n] \ I1, ri ≥ rj . Let r = mini∈I1 ri. Then

C2
d
√
n ≥ 1

n

∑
i

r−1
i ≥

1

n

∑
i∈I1

r−1
i ≥

1

n

βn

r
=
β

r
. (44)

It then follows that r ≥ C2/(β d
√
n). Take C ′1 = C2/β. Hence, for any i ∈ I1, ri ≥ C ′1/

d
√
n.

Similarly, there is a subset I2 of [n] of size ceil(βn) such that ∀i ∈ I2, ri ≥ C ′2/
d
√
n. Note that

|I1 ∩ I2| ≥ αn, concluding the proof.

In the rest of this section, we prove Proposition 3. Since we have the inequality(
1

n

n∑
i=1

r−1
i

)−k
≤ 1

n

n∑
i=1

rki ≤

(
1

n

n∑
i=1

rdi

) k
d

(45)

for all −1 ≤ k ≤ d, we need only to prove that with high probability

1

n

n∑
i=1

rdi . n−1 (46)
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and
1

n

n∑
i=1

r−1
i . n

1
d . (47)

A.2. Average of rdi
The following is always true:

n∑
i=1

rdi .
n∑
i=1

m(B(Xi,
1

2
ri)) ≤ m(Ω) . 1 (48)

Then the result follows.

A.3. Average of r−1
i

A.3.1. STRATEGY

We shall use Chebyshev’s inequality to bound average of r−1
i , and thus we need to estimate Cov(r−1

i , r−1
j ).

This step is not direct because ri, rj are not independent: both depend on Xi and Xj .
We define r̃i, r̃j for any fixed pair of (i, j) such that

• r̃i = ri, r̃j = rj with high probability

• r̃i is independent w.r.t Xj , r̃j is independent w.r.t Xi

We will then show that Cov(r̃i, r̃j) is small and that the difference between Cov(ri, rj) and
Cov(r̃i, r̃j) is small. Applying Chebyshev’s inequality then yields the result.

A.3.2. UPPER BOUND FOR E[r−1
i ] AND E[r−2

i ]

P(ri < r) = 1−mP(B(Xi, r)
c)n ≤ nmP(B(Xi, r)) . nrd. (49)

Then

Er−1
i = E

∫ ∞
0

I(r−1
i > s)ds

=

∫ ∞
0

EI(r−1
i > s)ds

=

∫ ∞
0

P(r−1
i > s)ds

≤
∫ ∞

0
min(1, Cdns

−d)ds

= s0 + Cdns
1−d
0 /(d− 1) where Cdns−d0 = 1

=
d

d− 1
s0

=
d

d− 1
d
√
Cdn

(50)
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and

1

2
Er−2

i = E
∫ ∞

0
sI(r−1

i > s)ds

=

∫ ∞
0

sEI(r−1
i > s)ds

=

∫ ∞
0

sP(r−1
i > s)ds

≤
∫ ∞

0
smin(1, Cdns

−d)ds

=
1

2
s2

0 + Cdns
2−d
0 /(d− 2) where Cdns−d0 = 1

=

(
1

2
+

1

d− 2

)
s2

0

=

(
1

2
+

1

d− 2

)
( d
√
Cdn)2.

(51)

Hence,

Er−2
i ≤

d

d− 2
(Cdn)

2
d (52)

A.3.3. ESTIMATE OF COV( 1
r̃i
, 1
r̃j

)

Define

r̃i := min(min
k 6=i,j

|Xk −Xi|, dist(∂Ω, Xi)) (53)

and
r̃j := min(min

k 6=i,j
|Xk −Xj |, dist(∂Ω, Xj)) (54)

Then
ri = min(r̃i, |Xi −Xj |), rj = min(r̃j , |Xi −Xj |) (55)

and r̃j is independent of Xi and r̃i is independent of Xj .

E[
1

r̃ir̃j
]− E[

1

r̃i
]E[

1

r̃j
]

= EXi,Xj [E[
1

r̃ir̃j
|Xi, Xj ]]− EXi [E[

1

r̃i
|Xi]]EXj [E[

1

r̃j
|Xj ]]

= EXi,Xj [E[
1

r̃ir̃j
|Xi, Xj ]]− EXi

[
E
[

1

r̃i
|Xi

]
EXj

[
E[

1

r̃j
|Xj ]

]]
= EXi,Xj

[
E[

1

r̃ir̃j
|Xi, Xj ]

]
− EXi,Xj

[
E
[

1

r̃i
|Xi

]
E
[

1

r̃j
|Xj

]]
(indep. between Xi and Xj)

= EXi,Xj

[
E
[

1

r̃ir̃j

∣∣∣Xi, Xj

]
− E

[
1

r̃i

∣∣∣Xi, Xj

]
E
[

1

r̃j

∣∣∣Xi, Xj

]]
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where we used independence between r̃i and Xj and between r̃j and Xi. The last expression can
be written as

= EXi,Xj

[
E
[∫ ∞

0
dsI(r̃−1

i > s)

∫ ∞
0

dtI(r̃−1
j > t)

∣∣∣Xi, Xj

]

−
(
E
∫ ∞

0
dsI(r̃−1

i > s)
∣∣∣Xi, Xj

)(
E
∫ ∞

0
dtI(r̃−1

j > t)
∣∣∣Xi, Xj

)]

= EXi,Xj

[∫ ∞
0

ds

∫ ∞
0

dtE
[
I(r̃−1

i > s, r̃−1
j > t)

∣∣∣Xi, Xj

]
−
∫ ∞

0
E
[
I(r̃−1

i > s)
∣∣∣Xi, Xj

]
ds

∫ ∞
0

E
[
I(r̃−1

j > t)
∣∣∣Xi, Xj

]
dt

]

= EXi,Xj

[∫ ∞
0

∫ ∞
0

(
P
[
r̃−1
i > s, r̃−1

j > t
∣∣∣Xi, Xj

]
− P

[
r̃−1
i > s

∣∣∣Xi, Xj

]
P
[
r̃−1
j > t

∣∣∣Xi, Xj

] )
dsdt

]
.

Now,

P[r−1
i > s, r−1

j > t|Xi, Xj ]]

= 1− P[r−1
i < s|Xi, Xj ]]− P[r−1

j < t|Xi, Xj ]] + P[r−1
i < s, r−1

j < t|Xi, Xj ]

P[r−1
i > s|Xi, Xj ]P[r−1

j > t|Xi, Xj ]

= 1− P[r−1
i < s|Xi, Xj ]− P[r−1

j < t|Xi, Xj ] + P[r−1
i < s|Xi, Xj ]P[r−1

j < t|Xi, Xj ]

(56)

Then

E[
1

r̃ir̃j
]− E[

1

r̃i
]E[

1

r̃j
]

= EXi,Xj

[∫ ∞
0

∫ ∞
0

(
P
[
r̃−1
i > s, r̃−1

j > t
∣∣∣Xi, Xj

]
− P

[
r̃−1
i > s

∣∣∣Xi, Xj

]
P
[
r̃−1
j > t

∣∣∣Xi, Xj

] )
dsdt

]
= EXi,Xj

[∫ ∞
0

∫ ∞
0

(
P
[
r̃−1
i < s

∣∣∣Xi, Xj

]
P
[
r̃−1
j < t

∣∣∣Xi, Xj

]
− P

[
r̃−1
i < s, r̃−1

j < t
∣∣∣Xi, Xj

] )
dsdt

]
= EXi,Xj

[∫ ∞
0

∫ ∞
0

(
mP(B(Xi, s

−1)c)n−2mP(B(Xj , t
−1)c)n−2

−mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2
)
dsdt

]
= EXi,Xj

[∫ ∞
R−1

0

∫ ∞
R−1

0

(
mP(B(Xi, s

−1)c)n−2mP(B(Xj , t
−1)c)n−2

−mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2
)
dsdt

]
(57)

where R0 = diam(Ω) is a constant depending only on d.
When s−1 + t−1 < |Xi −Xj |, we have

B(Xi, s
−1) ∪B(Xj , t

−1) = B(Xi, s
−1) tB(Xj , t

−1) (58)
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where t means disjoint union. Then

mP(B(Xi, s
−1)c)mP(B(Xj , t

−1)c)−mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)

= mP(B(Xi, s
−1)c)mP(B(Xj , t

−1)c)−mP((B(Xi, s
−1) tB(Xj , t

−1))c)

= (1−mP(B(Xi, s
−1)))(1−mP(B(Xj , t

−1)))− (1−mP(B(Xi, s
−1))−mP(B(Xj , t

−1)))

= mP(B(Xi, s
−1))mP(B(Xj , t

−1))

≥ 0

(59)

Since for 0 ≤ x ≤ y ≤ 1, xn−2 − yn−2 ≤ (n− 2)xn−3(x− y), we have

0 ≤ mP(B(Xi, s
−1)c)n−2mP(B(Xj , t

−1)c)n−2 −mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2

≤ (n− 3)mP(B(Xi, s
−1)c)n−3mP(B(Xj , t

−1)c)n−3mP(B(Xi, s
−1))mP(B(Xj , t

−1))

≤ (n− 3)

(
max(0, 1− Cd

sd
)

)n−3(
max(0, 1− Cd

td
)

)n−3 C ′d
sd
C ′d
td

(60)

where Cd, C ′d are constants such that for any B(x, r) ⊂ Ω

Cdr
d ≤ mP(B(x, r)) ≤ C ′drd. (61)

When s−1 >
‖Xi−Xj‖

2 , we have

mP(B(Xi, s
−1)c)n−2mP(B(Xj , t

−1)c)n−2 −mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2

≥ mP(B(Xi, s
−1)c)n−2mP(B(Xj , t

−1)c)n−2 −mP((B(Xi, s
−1))c)n−2

≥ mP(B(Xi, s
−1)c)n−2 ·min{1, (n− 2)mP(B(Xj , t

−1))}
≥ −(max(0, 1− Cds−d))n−2 min(1, (n− 2)C ′dt

−d)

(62)

and

mP(B(Xi, s
−1)c)n−2mP(B(Xj , t

−1)c)n−2 −mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2

≤ mP(B(Xi, s
−1)c)n−2mP(B(Xj , t

−1)c)n−2 − (1−mP(B(Xi, s
−1))−mP(B(Xj , t

−1)))n−2

≤ (n− 2)mP(B(Xi, s
−1)c)n−3mP(B(Xj , t

−1)c)n−3mP(B(Xi, s
−1))mP(B(Xj , t

−1))

≤ (n− 3)

(
max(0, 1− Cd

sd
)

)n−3(
max(0, 1− Cd

td
)

)n−3 C ′d
sd
C ′d
td

(63)

Then

− (max(0, 1− Cds−d))n−2 min(1, (n− 2)C ′dt
−d)

≤ mP(B(Xi, s
−1)c)n−2mP(B(Xj , t

−1)c)n−2 −mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2

≤ (n− 3)

(
max(0, 1− Cd

sd
)

)n−3(
max(0, 1− Cd

td
)

)n−3 C ′d
sd
C ′d
td

(64)
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Similarly for t−1 >
‖Xi−Xj‖

2 , we have

− (max(0, 1− Cdt−d))n−2 min(1, (n− 2)C ′ds
−d)

≤ mP(B(Xi, s
−1)c)n−2mP(B(Xj , t

−1)c)n−2 −mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2

≤ (n− 3)

(
max(0, 1− Cd

sd
)

)n−3(
max(0, 1− Cd

td
)

)n−3 C ′d
sd
C ′d
td

(65)

The upper bound are the same in all three cases, but the lower bounds are different.

Upper bound for Cov(r̃−1
i , r̃−1

j ) We now put the above calculations together and estimate

Cov(r̃−1
i , r̃−1

j )

= E[
1

r̃ir̃j
]− E[

1

r̃i
]E[

1

r̃j
]

= EXi,Xj

[∫ ∞
0

∫ ∞
0

(
mP(B(Xi, s

−1)c)n−2mP(B(Xj , t
−1)c)n−2

−mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2
)
dsdt

]
= EXi,Xj

[∫ ∞
R−1

0

∫ ∞
R−1

0

(
mP(B(Xi, s

−1)c)n−2mP(B(Xj , t
−1)c)n−2

−mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2
)
dsdt

]
≤ EXi,Xj

∫ ∞
R−1

0

∫ ∞
R−1

0

(n− 3)

(
max(0, 1− Cd

sd
)

)n−3(
max(0, 1− Cd

td
)

)n−3 C ′d
sd
C ′d
td
dsdt

≤ EXi,Xj

R2
0

4

∫ ∞
R−1

0

∫ ∞
R−1

0

(n− 3)

(
max(0, 1− Cd

sd
)

)n−3(
max(0, 1− Cd

td
)

)n−3 C ′d
sd−1

C ′d
td−1

dsdt

≤ EXi,Xj

R2
0

4

∫ ∞
0

∫ ∞
0

(n− 3)

(
max(0, 1− Cd

sd
)

)n−3(
max(0, 1− Cd

td
)

)n−3 C ′d
sd−1

C ′d
td−1

dsdt

=
R2

0

4

n− 3

d2(n− 2)2
(C ′d/Cd)

2

= O

(
1

n

)
(66)
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Lower bound for Cov(r̃−1
i , r̃−1

j )

E[
1

r̃ir̃j
]− E[

1

r̃i
]E[

1

r̃j
]

= EXi,Xj

[∫ ∞
0

∫ ∞
0

(
mP(B(Xi, s

−1)c)n−2mP(B(Xj , t
−1)c)n−2

−mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2
)
dsdt

]

= EXi,Xj


∫ ∞

2
‖Xi−Xj‖

∫ ∞
2

‖Xi−Xj‖

· · · dsdt

︸ ︷︷ ︸
A

+

∫ ∞
0

∫ 2
‖Xi−Xj‖

0
· · · dsdt︸ ︷︷ ︸

B

+

∫ 2
‖Xi−Xj‖

0

∫ ∞
0
· · · dsdt︸ ︷︷ ︸

C


(67)

(a) lower bound of A.

A ≥ 0 (68)

(b) lower bound of B.

B ≥ −
∫ 2
‖Xi−Xj‖

0

∫ ∞
0

(max(0, 1− Cds−d))n−2 min(1, (n− 2)C ′dt
−d)dtds

≥ − 2

‖Xi −Xj‖

(
max

{
0, 1− Cd

(
‖Xi −Xj‖

2

)d})n−2 ∫ ∞
0

min(1, (n− 2)Cdt
−d)dt

≥ − 2

‖Xi −Xj‖

(
max

{
0, 1− Cd

(
‖Xi −Xj‖

2

)d})n−2
1

d− 1
((n− 2)Cd)

1
d .

(69)

Note that
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E

 2

‖Xi −Xj‖

(
max

{
0, 1− Cd

(
‖Xi −Xj‖

2

)d})n−2 ∣∣∣∣∣Xi


=

∫ R0

0

2

r

(
max

{
0, 1− Cd

(r
2

)d})n−2

dµ‖Xi−Xj‖|Xi
(r)

.
∫ R0

0

2

r

(
max

{
0, 1− Cd

(r
2

)d})n−2

rd−1dr

.
∫ R0

0

(
max

{
0, 1− R0

2d
rd−1

})n−2

rd−2dr

=

∫ Rd−1
0

0

(
max

{
0, 1− R0

2d
rd−1

})n−2 1

d− 1
d(rd−1)

.
1

n

(70)

As a result,

EXi,XjB &
1

n
(71)

(c) Similarly for C, we have

EXi,XjC &
1

n
(72)

Combining all the above inequalities, we have

E[
1

r̃ir̃j
]− E[

1

r̃i
]E[

1

r̃j
] &

1

n
. (73)

Upper bound for |Cov( 1
r̃i
, 1
rj

)|

|Cov(
1

r̃i
,

1

rj
)| = |E[

1

r̃ir̃j
]− E[

1

r̃i
]E[

1

r̃j
]| . 1

n
. (74)

A.3.4. ESTIMATE FOR THE DIFFERENCE BETWEEN COV( 1
r̃i
, 1
rj

) AND COV( 1
r̃i
, 1
rj

)

Upper bound for E|r̃−1
i − r

−1
i |2 We have

|r̃−1
i − r

−1
i | ≤

1

‖Xi −Xj‖
I{‖Xi −Xj‖ < r̃i}. (75)

Conditioned on Xi, ‖Xi −Xj‖ and r̃i are, in fact, independent. Then

E[|r̃−1
i − r

−1
i |

2|Xi, r̃i] ≤ E[
1

‖Xi −Xj‖2
I{‖Xi −Xj‖ < r̃i}|Xi, r̃i]

. E[r̃d−2
i |Xi, ri]

(76)

Hence,

E[|r̃−1
i − r

−1
i |

2 ≤ Er̃d−2
i ≤ E[r̃di ]

d−2
d . n−

d−2
d (77)
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A.3.5. UPPER BOUND FOR E|r̃−1
i r̃−1

j − r
−1
i r−1

j |

E|r̃−1
i r̃−1

j − r
−1
i r−1

j | ≤ E|r̃−1
i r̃−1

j − r̃
−1
i r−1

j |+ E|r̃−1
i r−1

j − r
−1
i r−1

j |

≤
√

E[r̃−2
i ]
√

E[|r̃−1
j − r

−1
j |2] +

√
E[r−2

j ]

√
E[|r̃−1

i − r
−1
i |2]

≤
√

E[r−2
i ]
√

E[|r̃−1
j − r

−1
j |2] +

√
E[r−2

j ]

√
E[|r̃−1

i − r
−1
i |2]

.
√
n2/d

√
n−

d−2
d

≤ n−
d−4
2d

(78)

A.3.6. UPPER BOUND FOR |E[r̃−1
i ]E[r̃−1

j ]− E[r−1
i ]E[r−1

j ]|

First,

‖E[r̃−1
i ]− E[r−1

i ]‖ ≤
√
E[(r̃−1

i − r
−1
i )2] . n−

d−2
2d (79)

and
Er̃−1

i ≤ Er−1
i . n

1
d . (80)

Then

|E[r̃−1
i ]E[r̃−1

j ]− E[r−1
i ]E[r−1

j ]|
= |E[r̃−1

i ]E[r̃−1
j ]− E[r̃−1

i ]E[r−1
j ]|+ |E[r̃−1

i ]E[r−1
j ]− E[r−1

i ]E[r−1
j ]|

= E[r̃−1
i ]|E[r̃−1

j ]− E[r−1
j ]|+ E[r−1

j ]|E[r̃−1
i ]− E[r−1

i ]|

. n−
d−4
2d .

(81)

A.3.7. UPPER BOUND FOR THE DIFFERENCE BETWEEN COV( 1
r̃i
, 1
rj

) AND COV( 1
r̃i
, 1
rj

)

|Cov(
1

r̃i
,

1

rj
)− Cov(

1

r̃i
,

1

rj
)|

= |E[r̃−1
i ]E[r̃−1

j ]− E[r−1
i ]E[r−1

j ] + E[r̃−1
i ]E[r̃−1

j ]− E[r−1
i ]E[r−1

j ]|
≤ |E[r̃−1

i ]E[r̃−1
j ]− E[r−1

i ]E[r−1
j ]|+ |E[r̃−1

i ]E[r̃−1
j ]− E[r−1

i ]E[r−1
j ]|

. n−
d−4
2d .

(82)

A.3.8. ESTIMATE OF COV( 1
ri
, 1
rj

)

Cov(
1

ri
,

1

rj
) . Cov(

1

r̃i
,

1

r̃j
) + n−

d−4
2d . n−

d−4
2d (83)
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A.3.9. UPPER BOUND OF VAR( 1
n

n∑
i=1

r−1
i )

Var(
1

n

n∑
i=1

r−1
i ) ≤ 1

n2

n∑
i=1

Var(r−1
i ) +

1

n2

n∑
i=1,j=1,i 6=j

Cov(r−1
i , r−1

j )

≤ 1

n2

n∑
i=1

E(r−2
i ) +

1

n2

n∑
i=1,j=1,i 6=j

Cov(r−1
i , r−1

j )

. n−
2
d
−1 + n−

d−4
2d

. n−
d−4
2d

(84)

A.3.10. FINAL STEP: CHEBYSHEV’S INEQUALITY

By Chebyshev’s inequality

P[
1

n

n∑
i=1

r−1
i > An

1
d + E[

1

n

n∑
i=1

r−1
i ]] ≤ (A2n

2
d )−1Var(

1

n

n∑
i=1

r−1
i ) . A−2n−

1
2 (85)

since

E[
1

n

n∑
i=1

r−1
i ] = Er−1

1 . n
1
d . (86)

This concludes the proof.

Appendix B. Inequalities for Functions

B.1. Gagliardo-Nirenberg interpolation inequalities

Here we quote the statements of Gagliardo-Nirenberg inequalities from (Leoni, 2017). Note that
here the term “interpolation” has nothing to do with our notion of interpolation.

Theorem 8 (Gagliardo-Nirenberg interpolation for RN , general case, Theorem 12.87 in Leoni (2017))

Let 1 ≤ p, q ≤ ∞,m ∈ N, k ∈ N0, with 0 ≤ k < m, and let θ, r be such that

0 ≤ θ ≤ 1− k/m (87)

and

(1− θ)
(

1

p
− m− k

N

)
+ θ

(
1

q
+
k

N

)
=

1

r
∈ (−∞, 1]. (88)

Then there exists a constant c = c(m,N, p, q, θ, k) > 0 such that

|∇ku|r ≤ c‖u‖θLq(RN )‖∇
mu‖1−θ

Lp(RN )
(89)

for every u ∈ Lq(RN ) ∩ Ẇm,p(RN ), with the following exceptional cases:

(i) If k = 0,mp < N, and q =∞, we assume that u vanishes at infinity.
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(ii) If 1 < p < ∞ and m − k − N/p is a nonnegative integer, then (89) only holds for 0 < θ ≤
1− k/m

Theorem 9 (Gagliardo-Nirenberg interpolation for domains, Theorem 13.61 in Leoni (2017))
Let Ω ⊂ RN be an open set with uniformly Lipschitz continuous boundary (with parameters ε, L,
M), let 0 < l < ε/(4(1 + L)), let m, k ∈ N, with m ≥ 2 and 1 ≤ k < m, and let 1 ≤ p, q, r ≤ ∞
be such that p ≤ q and

k

m

1

p
+

(
1− k

m

)
1

q
=

1

r
. (90)

If p < q, assume further that Ω is bounded.
Then for every u ∈ Lq(Ω) ∩ Ẇm,p(Ω),

‖∇ku‖Lr(Ω) ≤ cl−k|Ω|1/r−1/q‖u‖Lq(Ω) + c‖u‖1−k/mLq(Ω) ‖∇
mu‖k/mLp(Ω) (91)

if p < q, while
‖∇ku‖Lp(Ω) ≤ cl−k‖u‖Lp(Ω) + c‖u‖1−k/mLp(Ω) ‖∇

mu‖k/mLp(Ω) (92)

if p = q. Here, c > 0 is a constant depending on m,N, p, q.

Remark 10 Two remarks about notation:

• the notation | · |r is defined by

|u|r :=


‖u‖Lr(RN ) if r > 0,

‖∇nu‖L∞(RN ) if r < 0 and a = 0,

|∇nu|C0,a(RN ) if r < 0 and 0 < a < 1,

(93)

where if r < 0 we set n := floor(−N/r) and a := −n − N/r ∈ [0, 1), provided the right-
hand sides are well-defined.

• Ẇm,p(Ω) is the homogeneous Sobolev space and it coincides with the Sobolev spaceWm,p(Ω)
when Ω is a domain with finite measure.

Remark 11
For our purposes, we need the inequality in two cases:

(i) The domain is Rd with d odd, r = q = 2, k = 1,m = d+1
2 , θ = 0, then

1×

(
1

p
−

d+1
2 − 1

d

)
+ 0×

(
1

2
+

1

d

)
=

1

2
∈ (−∞, 1]. (94)

which implies
p = 2d (95)

Then
m− k −N/p =

d+ 1

2
− 1− d

2d
=
d− 2

2
(96)

is not an integer because d is odd.

Therefore, our case is not exceptional and from equation (89), we get

‖Du‖L2d(Rd) ≤ Cd‖D
d+1
2 u‖L2(Rd) (97)
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(ii) The domain is Ω = supp P = B(0, 1), when N = d is odd, r = q = p = 2, 0 ≤ k ≤
d+1

2 ,m = d+1
2 , then

k

m

1

p
+

(
1− k

m

)
1

q
=

1

r
(98)

holds. Then

‖Dku‖L2(Ω) ≤ Ck,d‖D
d+1
2 u‖αL2(Ω)‖u‖

1−α
L2(Ω)

+ C ′k,d‖u‖L2(Ω). (99)

Since
‖D

d+1
2 u‖L2(Ω) ≤ ‖D

d+1
2 u‖L2(Rd), (100)

from equation (92) we have

‖Dku‖L2(Ω) ≤ Ck,d‖D
d+1
2 u‖αL2(Rd)‖u‖

1−α
L2(Ω)

+ C ′k,d‖u‖L2(Ω). (101)

Note the theorem itself doesn’t cover k = 0, d+1
2 but equation (101) holds trivially in the two

cases when p = q = r.
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B.2. Morrey’s inequality

Theorem 12 (Morrey’s inequality)
Suppose u : Rd → R has weak derivative Du in L2d(Rd)

sup
x∈Rd,r>0

1√
r

∣∣∣∣∣u(x)− −
∫
B(x,r)

u(y)dy

∣∣∣∣∣ ≤ Cd‖Du‖L2d(Rd) (102)

If in addition, u ∈ Lq(Rd), combining with Gagliardo-Nirenberg interpolation inequality for
Rd (equation 89), we have

sup
x∈Rd,r>0

1√
r

∣∣∣∣∣u(x)− −
∫
B(x,r)

u(y)dy

∣∣∣∣∣ ≤ Cd‖D d+1
2 u‖L2(Rd) (103)

Remark 13 Here the notation −
∫
B(x,r) means the average over the ballB(x, r), i.e. 1

|B(x,r)|
∫
B(x,r).

Remark 14 This version of Morrey’s inequality is basically a middle step of Lemma 12.47 in
(Leoni, 2017) (although it is a cube instead of a ball there) and the proof is simple enough to
be written down below.

Proof For any x ∈ Rd, r > 0

∣∣∣∣∣u(x)− −
∫
B(x,r)

u(y)dy

∣∣∣∣∣ =

∣∣∣∣∣ −
∫
B(x,r)

(u(x)− u(y))dy

∣∣∣∣∣
=

∣∣∣∣∣ −
∫
B(x,r)

∫ 1

0

d

dt

(
u(x)− u(x+ t(y − x))

)
dtdy

∣∣∣∣∣
≤ −
∫
B(x,r)

∫ 1

0
‖y − x‖‖Du(x+ t(y − x))‖dtdy

=

∫ 1

0

(
−
∫
B(x,r)

‖y − x‖‖Du(x+ t(y − x))‖dy

)
dt

=

∫ 1

0
t−1

(
−
∫
B(x,tr)

‖y − x‖‖Du(y)‖dy

)
dt

≤
∫ 1

0
t−1

(
−
∫
B(x,tr)

‖y − x‖
2d

2d−1dy

) 2d−1
2d
(
−
∫
B(x,tr)

‖Du(y)‖2ddy

) 1
2d

dt

≤ Od

(∫ 1

0
t−1
(
r

2d
2d−1 t

2d
2d−1

) 2d−1
2d

(
r−dt−d

∫
Rd

‖Du(y)‖2ddy
) 1

2d

dt

)

≤ Od
(√

r‖Du‖L2d(Rd)

∫ 1

0
t−

1
2dt

)
= Od

(√
r‖Du‖L2d(Rd)

)
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B.3. Local Hölder Continuity around Samples

Definition 15 (Measure of Local Hölder Continuity around Samples) For sample set S and in-
dex set I ⊂ [n], we introduce the following measure of local Hölder continuity around samples

[f ]η,S,I =
∑
i∈I

sup
x∈Rd,r>0

1

r

(
f(x)η

(
x−Xi

ri

)
− −
∫
B(x,r)

f(y)η

(
y −Xi

ri

)
dy

)2

(104)

where η(x) =


1, ‖x‖ ≤ 1

4

e
1− 1

2−4‖x‖ , 1
4 < ‖x‖ <

1
2

0, ‖x‖ ≥ 1
2

Lemma 16 For any subset I ⊂ [n], β ∈ (0, 1) and f ∈ L2(Ω)

‖f‖2L2(Ω) ≥
3

4

βdπ
d
2

2dΓ(d2 + 1)

(∑
i∈I

rdi f(Xi)
2 − 4β[f ]η,S,I max

i∈I
rd+1
i

)
. (105)

Proof We write

‖f‖2L2(Ω) ≥
∑
i∈I

∫
B(Xi,βri/2)

f(x)2dx (106)

≥
∑
i∈I

∫
B(Xi,βri/2)

f(x)2η

(
x−Xi

ri

)2

dx (107)

≥
∑
i∈I

1

|B(Xi, βri/2)|

(∫
B(Xi,βri/2)

f(x)η

(
x−Xi

ri

)
dx

)2

. (108)

Writing this expression as a normalized integral, we get

∑
i∈I
|B(Xi, βri/2)|

(
−
∫
B(Xi,βri/2)

f(x)η

(
x−Xi

ri

)
dx

)2

(109)

≥
∑
i∈I
|B(Xi, ri/2)|

3

4
f(Xi)

2 − 3

(
f(Xi)− −

∫
B(Xi,βri/2)

f(x)η

(
x−Xi

ri

)
dx

)2
 (110)

≥ 3

4

∑
i∈I
|B(Xi, βri/2)|f(Xi)

2 − 3[f ]η,S,I sup
i∈I

βriB(Xi, βri/2) (111)

=
3

4

βdπ
d
2

2dΓ(d2 + 1)

(∑
i∈I

rdi f(Xi)
2 − 4β[f ]η,S,I max

i∈I
rd+1
i

)
. (112)
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Lemma 17 For any subset I ⊂ [n], we have

[f ]η,S,I ≤ Od
((

1 + ‖f‖2L2(Ω)

)(
cd+1〈f〉Hc + max

i∈I
r−d−1
i

))
. (113)

Proof
Define ηi by

ηi(x) = η

(
x−Xi

ri

)
(114)

and
A = max{c〈f〉

1
d+1

Hc
,max
i∈I

r−1
i } (115)

We prove our lemma by first proving the following inequalities:

(a) [f ]η,S,I ≤ Od
(∑
i∈I
‖D

d+1
2 (fηi)‖2L2(Rd)

)

(b)
∑
i∈I
‖D

d+1
2 (fηi)‖2L2(Rd)

≤ Od

 d+1
2∑
j=0

Ad+1−2j‖Djf‖2
L2(Rd)


(c) ‖Djf‖L2(Rd) ≤ Od

((
1 + ‖f‖L2(Ω)

)
Aj
)

and then it follows that

[f ]η,S,I ≤ Od
((

1 + ‖f‖2L2(Ω)

)(
cd+1〈f〉Hc + max

i∈I
r−d−1
i

))
. (116)

Inequality (a). This is a direct application of Morrey’s inequality (equation (103)).

Inequality (b). Using Leibnitz rule we have

‖D
d+1
2 (fηi)‖2L2(Rd) ≤ Od

 ∑
|α|= d+1

2

∑
0≤β≤α

‖Dα−βηiD
βf‖2L2(Rd)

 . (117)

Since the function Dα−βηiD
βf is supported within the ball B(Xi, ri), we have

‖D
d+1
2 (fηi)‖2L2(Rd) = Od

 ∑
|α|= d+1

2

∑
0≤β≤α

‖Dα−βηiD
βf‖2L2(B(Xi,ri))

 . (118)

By Hölder inequality,

‖D
d+1
2 (fηi)‖2L2(Rd) ≤ Od

 ∑
|α|= d+1

2

∑
0≤β≤α

‖Dα−βηi‖2L∞(B(Xi,ri))
‖Dβf‖2L2(B(Xi,ri))

 . (119)
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Using the fact that
‖Dβηi‖L∞(Rd) ≤ Cdr

−|β|
i , (120)

we then get

‖D
d+1
2 (fηi)‖2L2(Rd) = Od

 ∑
|α|= d+1

2

∑
0≤β≤α

‖Dβf‖2L2(B(Xi,ri))

r
2|α−β|
i


≤ Od

 d+1
2∑
j=0

‖Djf‖2L2(B(Xi,ri))

rd+1−2j
i


≤ Od

 d+1
2∑
j=0

‖Djf‖2L2(B(Xi,ri))

min
i∈I

rd+1−2j
i

 .

(121)

Then we have

∑
i∈I
‖D

d+1
2 (fηi)‖2L2(Rd) ≤ Od

 d+1
2∑
j=0

∑
i∈I
‖Djf‖2L2(B(Xi,ri))

min
i∈I

rd+1−2j
i


≤ Od

 d+1
2∑
j=0

‖Djf‖2L2(Ω)

min
i∈I

rd+1−2j
i


≤ Od

 d+1
2∑
j=0

Ad+1−2j‖Djf‖2L2(Ω)

 .

(122)

Inequality (c). Here use Gagliardo-Nirenberg interpolation inequality for domains (equation (101))
and the fact

‖D
d+1
2 f‖2L2(Ω) ≤ ‖D

d+1
2 f‖2L2(Rd) ≤ c

d+1〈f〉Hc , (123)

we have

‖Djf‖L2(Ω) ≤ Od
(
‖D

d+1
2 f‖

2j
d+1

L2(Ω)
‖f‖

1− 2j
d+1

L2(Ω)
+ ‖f‖L2(Ω)

)
≤ Od

(
cj〈f〉

j
d+1

Hc
‖f‖

1− 2j
d+1

L2(Ω)
+ ‖f‖L2(Ω)

)
≤ Od

((
1 + ‖f‖L2(Ω)

)
Aj
)
.

(124)

Proposition 18 For any subset I ⊂ [n] and f ∈ L2(Ω), we have

‖f‖2L2(Ω) ≥ min

1,Ωd


min

i∈I
r−d−1
i

∑
i∈I r

d
i f(Xi)

2

max
i∈I

r−d−1
i + cd+1‖f‖Hc

d∑
i∈I

rdi f(Xi)
2


 . (125)
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Proof Without loss of generality suppose that ‖f‖2L2(Ω) ≤ 1. Then from Lemma 17, there is a
constant Cd such that

[f ]η,S,I ≤ Cd
(
cd+1‖f‖Hc + max

i∈I
r−d−1
i

)
. (126)

From Lemma 16, we have for any β ∈ (0, 1):

‖f‖2L2(Ω) ≥
3

4

βdπ
d
2

2dΓ(d2 + 1)

(∑
i∈I

rdi f(Xi)
2 − 4β[f ]η,S,I max

i∈I
rd+1
i

)

≥ 3

4

βdπ
d
2

2dΓ(d2 + 1)

(∑
i∈I

rdi f(Xi)
2 − 4βCd max

i∈I
rd+1
i

(
cd+1‖f‖Hc + max

i∈I
r−d−1
i

))
.

(127)

Taking

β =
max
i∈I

r−d−1
i

∑
i∈I r

d
i f(Xi)

2

8Cd

(
cd+1‖f‖Hc + max

i∈I
r−d−1
i

) , (128)

we get

‖f‖2L2(Ω) ≥
3

4

βdπ
d
2

2dΓ(d2 + 1)

(∑
i∈I

rdi f(Xi)
2 − 1

2

∑
i∈I

rdi f(Xi)
2

)

≥ 3

8

π
d
2

2dΓ(d2 + 1)

 min
i∈I

r−d−1
i

∑
i∈I r

d
i f(Xi)

2

8Cd

(
cd+1‖f‖Hc + max

i∈I
r−d−1
i

)

d∑
i∈I

rdi f(Xi)
2

≥ Ωd


min

i∈I
r−d−1
i

∑
i∈I r

d
i f(Xi)

2

cd+1‖f‖Hc + max
i∈I

r−d−1
i

d∑
i∈I

rdi f(Xi)
2

 .

(129)

B.4. Upper Bound on 〈f̂c〉Hc

Proposition 19 With probability at least 1 − Od,ρ( 1√
n

), for any c > 0 there is a function g inter-
polating S such that

〈g〉Hc ≤
1

3
‖f∗‖2L2(Ω) +Od,ρ,f∗

(
d
√
n

c

(
1 +

d
√
n

c

)d)
. (130)

Since f̂c has the smallest RKHS norm among all interpolating functions, we have

〈f̂c〉Hc ≤
1

3
‖f∗‖2L2(Ω) +Od,ρ,f∗

(
d
√
n

c

(
1 +

d
√
n

c

)d)
. (131)
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Proof Define ri = min
j 6=i
‖Xi −Xj‖ and

η(x) =


1, ‖x‖ ≤ 1

4

e
1− 1

2−4‖x‖ , 1
4 < ‖x‖ <

1
2

0, ‖x‖ ≥ 1
2

(132)

and for α ∈ (0, 1
2) take

gα(x) :=

n∑
i=1

Yiη

(
x−Xi

αri

)
. (133)

First,

‖gα‖2L2(Rd) =
∑
i

Y 2
i ‖ηXi,αri‖2L2(Rd)

= αd‖η‖2L2(Rd)

∑
i

Y 2
i r

d
i

≤ αd‖η‖2L2(Rd)

∑
i

(‖f∗‖L∞(Ω) + 1)2rdi

≤ αd‖η‖2L2(Rd)(‖f
∗‖L∞(Ω) + 1)2

∑
i

rdi

≤ 2d|Ω|
|Bd(1)|

αd‖η‖2L2(Rd)(‖f
∗‖L∞(Ω) + 1)2

≤ Od(αd)

(134)

Therefore, we can take α to be a constant dependent only on d and f∗ such that

‖gα(x)‖2L2(Rd) ≤
1

3
‖f∗‖2L2(Ω) (135)

Since

〈η
(
x−Xi

αri

)
〉k = αd−2krd−2k

i 〈η〉k (136)

and

〈u, v〉Hc = 0, if supp u ∩ supp v = ∅ (137)

then for k ∈ N we have

〈g〉Hc = ‖g‖2L2(Rd) +
n∑
i=1

Y 2
i (αri)

d−2k〈η〉k. (138)

So when d is odd,
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〈g〉Hc = ‖g‖2L2(Rd) +

d+1
2∑

k=1

n∑
i=1

(d+1
2

k

)
Y 2
i c
−2k(αri)

d−2k〈η〉k

≤ 1

3
‖f∗‖2L2(Rd) +

d+1
2∑

k=1

n∑
i=1

(d+1
2

k

)(
‖f∗‖L∞(Ω) + 1

)2
c−2k(αri)

d−2k〈η〉k

≤ 1

3
‖f∗‖2L2(Rd) +Od,ρ

(‖f∗‖L∞(Ω) + 1
)2 d+1

2∑
k=1

n∑
i=1

c−2k(αri)
d−2k


≤ 1

3
‖f∗‖2L2(Rd) +Od,ρ,f∗

 d+1
2∑

k=1

n∑
i=1

c−2krd−2k
i

 .

(139)

From Proposition 3, with probability at least 1−Od,ρ
(

1√
n

)
we have

n∑
i=1

rd−2k
i ≤ Od,ρ

(
n2k/d

)
. (140)

Then with the same probability,

〈g〉Hc ≤
1

3
‖f∗‖2L2(Ω) +Od,ρ,f∗

(
d
√
n

c

(
1 +

d
√
n

c

)d)
. (141)
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