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Abstract
In this paper we study the two inference problems of detection and reconstruction in the context
of planted structures in sparse Erdős-Rényi random graphs G(n, λ/n) with fixed average degree
λ > 0. Motivated by a problem of communication security, we focus on the case where the planted
structure consists in the addition of a tree graph.

In the case of planted line graphs, we establish the following phase diagram for detection and
reconstruction. In a low density region where the average degree λ of the original graph is below
some critical value λc = 1, both detection and reconstruction go from impossible to easy as the
line length K crosses some critical value K∗ = ln(n)/ ln(1/λ), where n is the number of nodes
in the graph. In a high density region where λ > λc, detection goes from impossible to easy as K
goes from o(

√
n) to ω(

√
n). In contrast, reconstruction remains impossible so long as K = o(n).

We then consider planted D-ary trees of varying depth h and 2 ≤ D ≤ O(1). For these
we identify a low-density region λ < λD, where λD is the threshold for emergence of the D-
core in Erdős-Rényi random graphs G(n, λ/n) for which the following holds. There is a threshold
h∗ = g(D) ln(ln(n)) with the following properties. Detection goes from impossible to feasible as
h crosses h∗. Interestingly, we show that only partial reconstruction is feasible at best for h ≥ h∗.
We conjecture a similar picture to hold for D-ary trees as for lines in the high-density region
λ > λD, but confirm only the following part of this picture: Detection is easy for D-ary trees of
size ω(

√
n), while at best only partial reconstruction is feasible for D-ary trees of any size o(n).

These results provide a clear contrast with the corresponding picture for detection and recon-
struction of low rank planted structures, such as dense subgraphs and block communities. In the
examples we study, there is i) an absence of hard phases for both detection and reconstruction, and
ii) a discrepancy between detection and reconstruction, the latter being impossible for a wide range
of parameters where detection is easy. The latter property does not hold for previously studied low
rank planted structures.

c© 2019 L. Massoulié, L. Stephan & D. Towsley.
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1. Introduction

This paper is concerned with the detection of additional structures planted in a graph initially with-
out structure (such as an Erdős-Rényi graph) and, in case such a structure is detected, with the
reconstruction of the corresponding structure. We focus on planted structures that consist in a su-
perimposed graph, and more specifically on superimposed trees.

A first motivation for this focus stems from the following application scenario. Assume that the
original graph without planted structure represents normal communications among agents, while
the superimposed graph represents communications among a subset of attackers who, when active,
connect directly among themselves to coordinate their activity. Detection then amounts to estimat-
ing whether an attack occurs, while reconstruction amounts to identifying the attackers in case of
an attack.

A second motivation is theoretical: previous work reviewed in Section 2 has shown that de-
tection and reconstruction of planted structures in graphs displays rich and intriguing behaviour,
with phases where the task is either impossible, computationally hard, or easy. It is important to
understand what causes such phases, and whether phases for detection always coincide with the
corresponding phase for reconstruction. Our present study sheds light on these questions, by show-
ing that in the cases of planted tree structures we consider, no hard phase occurs, while feasibility
phases of detection and reconstruction differ widely. In contrast, the latter property does not hold
for previously studied low rank planted structures.

More specifically, our contributions are as follows. In the particular case of planted line graphs,
we determine the complete phase diagram for detection and reconstruction: In a low density region
where the average degree λ of the original graph is below some critical value λc, both detection
and reconstruction go from impossible to easy as the line length K crosses some critical value
K∗ = f(λ) ln(n), where n is the number of nodes in the graph. In a high density region where
λ > λc, detection goes from impossible to easy as K goes from o(

√
n) to ω(

√
n). In contrast,

reconstruction remains impossible so long as K = o(n).
We then consider the case of D-ary trees for fixed D > 1, of height h. For these our results

provide a similar picture with significant differences. Specifically, there exists a limit height h∗ =
ln ln(D) +O(1) such that detection is impossible if h < h∗− ln(h∗), and easy for h > h∗+ Ω(1).
In that latter case, non-trivial reconstruction is feasible, but it must fail on a non-vanishing fraction
of the K attack nodes. In a high-density region λ > λD, we have again that detection is easy for
K = ω(

√
n), and that reconstruction must fail at least on a fraction of nodes.

The paper is organized as follows. We review related work in Section 2. We describe our model
and main results in Section 3. The proofs for planted lines and planted D-ary trees are in Sections
5 and 6 respectively, with detailed proofs of auxiliary results in the Appendix.

2. Related work

Planted clique detection and reconstruction has been the object of many works, see e.g. Dekel et al.
(2014), Deshpande and Montanari (2015), Barak et al. (2016) for recent results and surveys. A
central result in that context is that detection appears hard (i.e. no algorithm is known to succeed
at detection in polynomial time) for cliques of size o(

√
n) planted in G(n, 1/2). IT thresholds for

planted dense subgraph detection are developed in Verzelen and Arias-Castro (2015).
Computational hardness of planted clique is used in reduction arguments to show that other

planted structure detection problems are hard, eg sparse PCA Berthet and Rigollet (2013), and dense
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subgraph detection Hajek et al. (2015). The latter also displays IT-impossible phases, hard phases
and easy phases. A systematic development of such reductions between problems with planted
structure is initiated in Brennan et al. (2018).

Community detection and reconstruction has also been thoroughly studied, the seminal article
Decelle et al. (2011) introducing several conjectures on feasibility of detection and reconstruction
for the stochastic block model. Almost all conjectures in Decelle et al. (2011) have been verified in
subsequent works, in particular Mossel et al. (2015), Massoulié (2013), Mossel et al. (2013), Abbe
and Sandon (2016).

Presence of specific subgraphs in random graphs has been thoroughly studied, see e.g. Janson
et al. (2011). We leverage the corresponding techniques in our study of low density regions, for
which detection feasibility corresponds to absence of copies of the planted graph structure in the
original random graph.

Most planted structures considered so far were typically of “low rank” (e.g. planted dense
graph’s expected adjacency matrix is, up to diagonal terms, a rank one perturbation); in contrast,
adjacency matrices of trees and lines are not close to a low rank matrix. One notable exception is
the planted Hamiltonian cycle reconstruction addressed in Bagaria et al. (2018).

3. Model and main results

A total population of n agents interconnects according to one of the following two modalities. Under
the null hypothesis H0 the interconnection does not display any specific structure. We assume
that the corresponding graph G is an Erdős-Rényi G(n, p) graph, with edge probability p ∈ [0, 1]
taken equal to λ/n for some fixed λ > 0. We thus focus on sparse random graphs with average
degree O(1). Under the alternative hypothesis H1, the graph G is the union of a base graph G0

distributed according to G(n, p), with another graph G′ connecting a distinguished subset K of
nodes. Specifically, for a fixed graph Γ on node set [K] with edge set E , and an injective map
σ : [K] → [n] chosen uniformly at random and independently of G0, G′ consists of the nodes
K = {σ(i), i ∈ [K]} and edges {(σ(i), σ(j)), (i, j) ∈ E}.

We shall mostly focus on tree graphs Γ, and more specifically on D-ary trees, i.e. trees with a
distinguished root, or depth-0 node, and for each ` ∈ [h− 1], D` depth-` nodes being connected to
one parent at depth `− 1 and D children at depth `+ 1. The two exteme cases are a line graph for
D = 1 and a star for D = K − 1.

We are interested in answering, on the basis of an observed graph G, the following questions:
Q1 (Detection): For a given planted graph shape Γ (e.g. line, star, D-ary tree,. . .), under what

parameter regimes specified by λ and K is there a test that distinguishes H0 from H1 with error
probabilities of both kinds going to zero as n → ∞? This is an information-theoretic property
characterized by the likelihood ratio P1(G)

P0(G) , where Pi denotes the distribution of G uner Hi, i =

{0, 1}. Indeed by the Neyman-Pearson lemma, among tests with given probability of correctly
deciding H1, there is one which minimizes probability of erroneously rejecting H0 which decides
H1 if and only if the likelihood ratio L(G) := P1(G)

P0(G) is larger than some threshold τ . We can ask
the same question as Q1 when we restrict ourselves to tests that can be implemented in polynomial
time. This then corresponds to a computational property.

Q2 (Reconstruction): Can one reconstruct the planted structure G′, or at least a subset of its
constituent nodes? Several metrics of reconstruction accuracy are possible. We shall focus on the
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following overlap metric, which we now define for estimation procedures that produce a set K̂ of
K nodes in [n], aimed to estimate at best the actual set K of K nodes involved in the attack.

Definition 1 The overlap of a set K̂ estimating the actual ground truth K is by definition the ex-
pected size of their intersection, i.e.

ov(K̂) :=
∑
i∈[n]

P(i ∈ K̂ ∩ K).

We say that a particular reconstruction K̂ of size K fails if ov(K̂) = o(K), succeeds if ov(K̂) =
K(1− o(1)), and partially succeeds if ov(K̂) = cK(1− o(1)) for some c ∈ (0, 1).

Reconstruction (respectively, partial reconstruction) is then deemed feasible if there exists an esti-
mator K̂ that is successful (respectively, partially successful). These properties are of an information-
theoretic nature. Indeed the best possible overlap is achieved by the so-called Maximum a Poste-
riori (MAP) estimation procedure, and these properties are therefore determined by the overlap of
the MAP estimator. One can, as for detection, consider a computational version of reconstruction:
reconstruction (respectively, partial reconstruction) is easy when it can be achieved by an estimator
K̂ that is efficiently computable.

Before stating our results for planted lines andD-ary trees, we first consider planted star graphs,
for which a simpler picture holds:

Theorem 2 For any fixed λ > 0, a planted star of size K = ln(n)/ ln(ln(n))[1−ω(1/ ln(ln(n)))]
is not detectable, while both detection and reconstruction of a planted star of sizeK = ln(n)/ ln(ln(n))[1+
ω(1/ ln(ln(n)))] are easy.

K < ln(n)/ ln(1/λ) ln(n)/ ln(1/λ) < K � n/ ln(n)

Detection & reconstruction
IT impossible

Detection & reconstruction
easy

(a) Subcritical regime : λ < 1

K �
√
n

√
n� K � n

Detection & reconstruction
IT impossible

Detection easy
reconstruction IT impossible

(b) Supercritical regime : λ > 1

Table 1: Summary of results for planted line graph

The result for line graphs, summarized in Table 1, is

Theorem 3 (Line graphs) In the low-density region λ < λc = 1, detection and reconstruction are
impossible ifK = ln(n)/ ln(1/λ)−ω(ln(ln(n))), while both detection and reconstruction are easy
if K = ln(n)/ ln(1/λ) + ω(1) and K = o(n/ ln(n)).

In the high-density region λ > λc = 1, detection and reconstruction are impossible if K =
o(
√
n), detection is easy if K = ω(

√
n), while reconstruction is impossible for K = o(n).
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h < ln ln(n)/ ln(D) ln ln(n)/ ln(D) < h < ln(n)

Detection & reconstruction
IT impossible

Detection easy
complete reconstruction impossible

(c) Subcritical regime : λ < λD

h < ln(n)/2 ln(n)/2 < h < ln(n)

Detection unknown
complete reconstruction impossible

Detection easy
complete reconstruction impossible

(d) Supercritical regime : λ > λD

Table 2: Summary of results for planted D-ary tree

For D-ary trees, the results are similar. However the critical parameter λD defined in (11)
is the threshold for emergence of the D-core (see Moore and Mertens (2011)), and only partial
reconstruction is possible in the subcritical regime λ < λD. We consider D-ary trees Γ of depth h
with corresponding size K = Dh+1−1

D−1 ; the main results (in terms of h) are summarized in Table 2.

Theorem 4 (D-ary trees) In the low-density region λ < λD, there exist two parameters h and h̄
such that the following holds.

h̄ = ln ln(n)/ ln(D) + Θ(1), and h = h̄− 1 for almost all λ.
When h ≤ h−O(ln(h)), both detection and reconstruction are impossible with high probability.
Detection is easy whenever h ≥ h̄+O(1).

For any λ > 0, hence in both low-density and high-density regions, detection is easy whenever
K = ω(

√
n) while complete reconstruction is impossible for K = o(n).

4. Preliminary results

We now state three results that hold for arbitrary planted structures, and that will be used extensively.
The first is a characterization of the likelihood ratio P1

P0
:

Lemma 5 The likelihood ratio L(G) = P1(G)
P0(G) is given by L(G) = XΓ

E0(XΓ) , where XΓ denotes the
number of copies of Γ in G.

The second gives a generic detection process that succeeds for K large enough, and all planted
graph structures Γ that are connected.

Theorem 6 Assume that λ > 0, K = ω(
√
n), and the hidden graph is any connected subgraph on

K nodes, not necessarily a line. Then the total variation distance |P1 − P0|var between P0 and P1

goes to 1 as n→∞.
LetAi, i ∈ {1, 2, 3} denote the number of size i-connected components inG, λ̂ = (nA3)/(A1A2),

and k̂ = n−eλ̂A1. The test that decidesH1 if k̂ ≥ tn :=
√
K
√
n, andH0 otherwise is polynomial-

time computable and distinguishes with high probability graphs sampled from P1 or P0.

Remark 7 When λ is known, a simpler test based on the number of edges in the graph also suc-
ceeds. The test in Theorem 6 still applies even when λ is unknown. The proof further implies that
under P1, G can be distinguished from G(n, λ′/n) for any λ′ not necessarily equal to λ.
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Finally, it is important to note that, as evidenced in Banks et al. (2018), impossibility of detection
does not imply immediately that of reconstruction. Fortunately, in our setting, the following result
will imply the latter as soon as the former is proved :

Theorem 8 Assume that K = o(
√
n) that E0 (XΓ) = ω(1) and that E0

(
L2
)

= 1 + o(1). Then,
for every estimator K̂ of the planted set K, we have

ov(K̂) = o(K),

that is, reconstruction fails as well.

5. Proof strategy for planted paths

We say that the ordered set {i1, . . . , iK} of K distinct nodes in [n] is a K-path in G if and only if
the edges (i`, i`+1) are present in G for all ` = 1, . . . ,K − 1. The previous Lemma 5 yields, in the
case where Γ is the line graph, the following result, whose proof is in the appendix:

Lemma 9 For planted K-path, the likelihood ratio reads

L(G) :=
P1(G)

P0(G)
=

1

n(n− 1) · · · (n−K + 1)
|{K-paths in G}|

(
λ

n

)−K+1

· (1)

Moreover one has
E0(L2) = E0(xS), (2)

where x = n/λ, and S is a random variable counting the number of edges common to the K-path
(1−2−· · ·−K) and a randomK-path π chosen uniformly at random among the n(n−1) · · · (n−
K + 1) possible ones on node set [n].

5.1. Impossibility of detection

We have the following

Theorem 10 Assume that λ > 1 and K = o(
√
n), or alternatively that λ < 1 and K =

ln(n)/ ln(1/λ)− ω(ln(ln(n))). Then the total variation distance |P1 − P0|var between P0 and P1

goes to zero as n → ∞. Thus for any arbitrary test T (G) ∈ {0, 1}, P1(T (G) = 1) − P0(T (G) =
1)→ 0 as n→∞.

By a standard argument, the variation distance |P1−P0|var is upper-bounded by
√
E0(L2)− 1, and

thus the Theorem is a direct consequence of the following

Lemma 11 Assume that λ > 1 andK = o(
√
n), or alternatively that λ < 1 andK = ln(n)/ ln(1/λ)−

ω(ln(ln(n))). Then limn→∞ E0(L2) = 1.

The proof of Lemma 11 (details in the Appendix) is based on an analysis of expression (2). Set
Zt = 1 if edge (It, It+1) is part of path (1 · · ·K), Zt = 0 if it is not part of that path, but It+1 ∈ [K],
and finally Zt = −1 if It+1 /∈ [K], so that

E0(L2) = E0(x
∑K−1
t=1 Z+

t ) (3)

In order to upper-bound this expression, a key step is the following Lemma, which exhibits a
tractable upper bound involving a Markov chain:
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Lemma 12 Let n′ := n−K. The Markov chain {Z ′t}t≥1 taking values in {−1, 0, 1}with transition
probability matrix

P :=

 1−K/n′ K/n′ 0
1−K/n′ (K − 2)/n′ 2/n′

1−K/n′ (K − 1)/n′ 1/n′

 (4)

can be constructed jointly with process {Zt}t≥1 so that, for all m ≥ 1, one has

E0(x
∑m
t=1 Z

+
t ) ≤ E0(x

∑m
t=1 Z

′+
t ). (5)

Its proof is in the appendix, together with the analysis of the right-hand side of (5). The latter relies
on spectral analysis of a matrix derived from P in (4), which leverages perturbation arguments as
K/n → 0. It concludes the proof of Lemma 11 by showing that E0(L2) = 1 + o(1) under the
Lemma’s assumptions.

5.2. Easiness of detection and reconstruction, sparse case

Assume λ < 1 and K = ln(n)/ ln(1/λ) + ω(1). Detection is then easy: under P0, the expected
number of K-paths in the graph is o(1). A test which decides P1 if there is a K-path and P0

otherwise thus discriminates the two hypotheses with high probability. Presence of a K-path can
moreover be determined in polynomial time by running depth-first searches from each node in G.

For reconstruction, we need the following

Lemma 13 For λ < 1, K = ln(n)/ ln(1/λ) + ω(1) and K = o(n/ ln(n)), let C be the con-
nected component of the graph containing the longest path. Apply

√
K times a peeling operation

to C, which consists in removing all degree one nodes, to obtain set C ′. Under P1, set C ′ and its
intersection with the planted path both have with high probability size K ± o(K).

The Lemma readily implies a polynomial-time algorithm for reconstruction that achieves overlap
K − o(K): set C ′ can be obtained in polynomial time. By adding / removing o(K) nodes to it one
obtains a set of size K with overlap K − o(K).

5.3. Impossibility of reconstruction, dense case

We assume λ > 1 and K = ω(
√
n). We have seen that with high probability, observation of

G allows to determine whether or not an attack has taken place. We now assume that an attack
has indeed happened. We have the following result, showing the impossibility of efficient planted
structure reconstruction:

Theorem 14 Given λ > 1, K = ω(
√
n), K = o(n), and a realization G of the graph under P1,

any estimator K̂ of the ground truth achieves negligible overlap, i.e. ov(K̂) = o(K).

Its proof structure is as follows. Fix an arbitrary integer τ ≥ 1. We shall establish that necessarily

ov(K) ≤ K/(τ + 1) + o(K). (6)

Fix
L = C ln(n) for some suitable constant C, D � L and D2 � n

ln(n)
. (7)
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Condition on the event the attack path is precisely k1, . . . , kK =: kK1 . Chop the attack path into
K/(L+D) contiguous segments, each of length M := L+D.

Consider the `-th segment {k(`−1)M+1, . . . , k`M}. We shall construct, for some I(`) ∈ [(` −
1)M+1, (`−1)M+L], τ random paths of edges in the graphG of the form kI(`), I2(t, `), I3(t, `), . . . , ID(t, `), kI(`)+D
for t ∈ [τ ] such that the nodes I2(t, `), . . . , ID(t, `) are all distinct, none of them belongs to the at-
tack path, and such that the paths (k1, . . . , kK) =: kK1 and kI(`)1 , ID2 (t, `), kKI(`)+D are statistically
indistinguishable. More precisely, we have the following:

Lemma 15 There is a construction, for any ` ∈ [K/M ], of τ random paths

kI(`), I2(t, `), I3(t, `), . . . , ID(t, `), kI(`)+D, t ∈ [τ ],

such that for any i ∈ [(`− 1)M + 1, (`− 1)M + L], any τ disjoint ordered sets of D − 1 distinct
nodes iD2 (t), t ∈ [τ ] in [n] \ kK1 , we have

dvar(P1(G ∈ ·|K = kK1 , I(`) = i, (ID2 (t, `))t = (iD2 (t))t),P0(G ∈ ·|kK1 ∈ G, (ki, iD2 (t), ki+D)t ∈ G)) = ε = o(1).
(8)

This construction moreover verifies the following property. There is an event E such that P1(E) =
1−o(1), and such that, denoting |(∪t∈[τ ]I

D
2 (t, `))∩(∪t∈[τ ]I

D
2 (t, `′))| the number of common points

between the node sets ∪t∈[τ ]I
D
2 (t, `) and ∪t∈[τ ]I

D
2 (t, `′), one has:

∀` 6= `′ ∈ [K/M ], E1

(
|(∪t∈[τ ]I

D
2 (t, `)) ∩ (∪t∈[τ ]I

D
2 (t, `′))|1IE

)
= O

(
D2

n

)
. (9)

The Lemma’s proof idea is as follows. The τ non-overlapping alternative path segments, that we
refer to as a τ -path, are obtained by selecting uniformly at random one such τ -path among all present
in the graph. Then (8) is established by showing that the number of τ -paths concentrates. In turn,
this concentration is established by bounding the variance of the number of τ -paths. This is done
using the Markov chain bounding technique used in Lemma 12. The second part of the Lemma, (9),
requires further concentration results on the numbers of τ -paths, that follow from applying Janson’s
inequality Boucheron et al. (2013), p. 205, Theorem 6.31.

The proof idea of Theorem 14 (detailed in the appendix) is then as follows. The τ -paths of
Lemma 15 provide τ alternative K-paths to the actual planted path. These are “lures” for the
optimal MAP reconstruction algorithm, that must return on average as many points of each of these
lure paths as of the planted path. Since all these τ + 1 paths have intersection of negligible size, the
overlap achieved by MAP must necessarily be at most K/(τ + 1).

6. Proof strategy for planted D-ary trees

We assume here that Γ is a completeD-ary tree of sizeK and depth h, withD > 1 a fixed constant.
Under P0, the neighbourhood of a given vertex in G is close to a Galton-Watson process with

offspring law Poi(λ). The probability of the existence of an infinite D-ary subtree in this process is
the largest non-negative root p∗(D,λ) of the equation

p = ψD(λp), (10)

where
ψD(µ) := P(Poi(µ) ≥ D), µ ≥ 0.

7
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The behavior of the random graph differs based on whether the above probability is zero or not. We
define the critical threshold λD as

λD = sup
{
λ > 0

∣∣ p∗(D,λ) = 0
}

(11)

In the following, we focus on subcritical λ, that is whenever λ < λD.

6.1. Study of the Galton-Watson process

Let (T, o) be a rooted Galton-Watson tree with offspring law Poi(λ), with λ < λD. The following
Theorem characterizes the distribution of the maximum height of a D-ary tree rooted in o.

Theorem 16 Let (T, o) be a Galton-Watson tree as above, and n > 0. Let ph be the probability
that a D-ary tree of height h rooted in o is contained in T . Then, for almost all λ, there exists h∗
such that

ph∗+1 = o

(
1

n

)
(12)

ph∗ = Ω(n−c) for some c < 1 (13)

Moreover, as n→∞ one has h∗ = ln ln(n)
ln(D) +O(1).

Thus h∗ depends on λ only through terms of lower (constant) order. The Theorem’s proof,
detailed in the appendix, relies on the following

Lemma 17 The sequence ph satisfies the recurrence relation

p1 = 1

ph+1 = ψD(λph) for all h ≥ 1.

Necessarily 0 ≤ ph+1 ≤ ph for all h (since a tree of height h + 1 contains a tree of height h),
and therefore by continuity of ψD, ph converges as h → ∞ to the largest fixed point of (10). By
definition of λD, the only solution of this equation is p∞ = 0, and thus

lim
h→∞

ph = 0 (14)

Now, ψD(x) ∼ xD

D! as x→ 0, which implies that for h large enough, ph+1 ' C pDh , and thus
ph ' C εD

h
for some small ε > 0. A more rigorous version of this argument, as well as its use in

the proof of Theorem 16, is presented in the Appendix.

6.2. Coupling and application to planted trees

Following the insights from the previous section, we define the two thresholds h and h by :

h = inf

{
h > 0

∣∣∣ ph < 1

n

}
, h = sup

{
h > 0

∣∣∣ ph > ln(n)

n

}
·

Theorem 16 implies that h ∼ ln ln(n)
ln(D) , and that for almost all λ, h = h+1, and otherwise h = h+2.

Also, ph = o( 1
n) and ph = Ω(n−c) for some c > 1. The following Theorem connects the study

from section 6.1 to our planted tree problem:
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Theorem 18 Let G be a graph drawn according to P0, and h > 0. Then with high probability:
1. For h ≤ h, there are ω(1) D-ary trees of height h in G.
2. For h ≥ h+ C, where C is a large enough constant, there are no D-trees of height h in G.

The second part of this theorem yields an easy detection algorithm whenever h ≥ h+ Ω(1).

Corollary 19 Assume that Γ is a complete D-ary tree of height h, with h ≥ h+ Ω(1). Then w.h.p
under P0, XΓ = 0, and therefore the test T (G) = 1 iff XΓ > 0 discriminates between H0 and H1

correctly with high probability.

The two statements of Theorem 18 are a consequence of the following coupling lemma, whose
proof, as well as the full proof of the theorem, is deferred to the appendix :

Lemma 20 For a graph G and a vertex v in G, denote by (G, v)` the `-neighbourhood of v in G.
Similarly, let (T, o)` be the `-neighbourhood of o in the Galton-Watson process described above.

Then, under P0, assuming that ` = o(log(n)), the total distance variation between the law of
(G, v)` and that of (T, o)` goes to 0 as a negative power of n when n→∞.

Furthermore, for λ′ > λ, and (T ′, o′) a GW process with parameter λ′, then, provided the
`-neighbourhood of v is cycle-free, there exists a coupling between (G, v)` and (T ′, o′)` such that
(G, v)` ⊆ (T ′, o′)` with probability 1.

There is therefore a sharp cutoff in the probability of presence of tree of height h in G, and
we have already seen in Corollary 19 that it can be leveraged to obtain a detection algorithm when
h ≤ h. It remains however to study two aspects of the problem: reconstruction for h ≥ h, as well
as the possibility (or lack thereof) of detection when h ≤ h.

6.3. Likelihood ratio and detection for h ≤ h

We conjecture, as is the case when D = 1, that when h = h−ω(1), then the total variation distance
|P1 − P0|var goes to 0 when n → ∞. However, the Markov chain bounds used for lines cannot be
easily adapted to the current setting, and we only prove this result for h ≤ h− Ω(ln ln ln(n)) :

Theorem 21 Assume that Γ is a D-ary tree of height h, with D > 1 and

h ≤ h− ln(h)

ln(D)
+

ln
(
1− 1

D

)
ln(D)

.

Then, the total variation distance |P1 − P0|var goes to zero as n → ∞. Thus, for any test T (G) ∈
{0, 1}, P1(T (G) = 1)− P0(T (G) = 1)→ 0 as n→∞.

As before this is deduced from the following Lemma, shown in the Appendix:

Lemma 22 Under the same assumptions as Theorem 21, E0(L2)→ 1 as n→∞.

We believe the following stronger version of the Theorem to hold:

Conjecture 23 The result of Theorem 21 holds true for all h ≤ h.

If true, this conjecture would complete the bottom left part of the phase diagram for D-ary tree,
with a sharp threshold between undetectability and detection/reconstruction.

9



PLANTING TREES IN GRAPHS, AND FINDING THEM BACK

6.4. Reconstruction for large h

When λ < λD and h ≥ h, we have shown that under P0 there is w.h.p no copy of Γ inG. One could
therefore expect to be able to reconstruct Γ with overlap 1− o(1) ; however, this is not the case :

Theorem 24 Given λ > 0, h ≥ h such that K = o(n), and a realization G of the graph under P1,
the overlap achieved by any estimator K̂ of the attack is bounded above, i.e ov(K̂) ≤ (1− δ)K for
some δ > 0.

The proof is based on the fact that when D > 1, the leaves make up a positive proportion of Γ, and
they are hard to reconstruct with high precision. On the other hand, since there is no copy of Γ in G
w.h.p, one can still reasonably expect to achieve a partial reconstuction. This is the heuristic behind
our second conjecture :

Conjecture 25 For all h ≥ h, there exists a δ > 0 and an estimator (possibly random) K̂ such that
w.h.p ov(K̂) ≥ δK.
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Appendix A. Proof of preliminary results

A.1. Proof of Lemma 5

Let Γ1, . . . ,Γm be the copies of Γ in Kn the complete graph on [n], where, denoting Aut(Γ) the

automorphism group of Γ, m =

(
n

K

)
K!

|Aut(Γ)| . Then, by Bayes’ formula, letting e(G) denote the

number of edges in graph G, one has for any graph g:

P1(G = g) =
1

m

m∑
i=1

P0(G = g |Γi ∈ G) =
1

m

m∑
i=1

1IΓi∈g

(
λ

n

)e(g)−e(Γi)(
1− λ

n

)(n
2

)
−e(g)

=
1

m

(
λ

n

)−e(Γ) m∑
i=1

1IΓi∈g P0(G = g)

=
XΓ

E0[XΓ]
P0(G),

which completes the proof of Lemma 5.

A.2. Proof of Theorem 2

We first prove that planted stars of sizeK = ln(n)/ ln(ln(n))[1−ω(1/ ln(ln(n)))] are undetectable.
The number X of K-stars verifies

E0(X) = n

(
n− 1

K

)(
λ

n

)K
∼ nλ

K

K!
·

We will have undetectability if E0(L2) ∼ 1, or equivalently by symmetry arguments, if

E0(X|Γ1 ∈ G) ∼ E0(X),

where Γ1 is an arbitrary K-star, e.g. that made of edges (i,K + 1), i ∈ [K]. We decompose
E0(X|Γ1 ∈ G) into three termsM1, M2 andM3, the expected numbers ofK-stars centered respec-
tively: at node K + 1, at some node i ∈ [K], and finally at some node i ∈ [n] \ [K + 1]. Since M3

is upper-bounded by E0(X), it suffices to show that M1 and M2 are o(E0(X)). One has:

M2 = K
((

n−2
K−1

) (
λ
n

)K−1
+
(
n−2
K

) (
λ
n

)K−1
)

≤ 2K2

n E0(X)
� E0(X).

Also,
M1 =

∑K
`=0

(
K
`

)(
n−K−1
K−`

) (
λ
n

)K−`
≤
∑K

`=0

(
K
`

)
λ`

`!
≤ (1 + λ)K .

The desired result M1 � E0(X) will follow if

ln(n) +K ln(λ)− ln(K!)−K ln(1 + λ)→ +∞.

12
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The terms in K are of order at most ln(n)/ ln(ln(n)). By Stirling’s formula, this will therefore hold
provided ln(n)−K ln(K) = ω(ln(n)/ ln(ln(n))). By assumption,

K ln(K) ≤ ln(n)

ln(ln(n))
(1− ω(1/ ln(ln(n)))) ln(ln(n)) = ln(n)− ω(ln(n)/ ln(ln(n))),

hence the undetectability result.
Similarly for detectability, the assumption that K = ln(n)/ ln(ln(n))[1 + ω(1/ ln(ln(n)))]

entails that
ln(E0(X)) = K ln(λ) + ln(n)− ln(K!) = −ω(1).

Thus a test which decidesH1 if and only if there is a node inGwith degree at leastK succeeds with
high probability. Moreover, with high probability, only the centre of the planted star has degree at
least K. The reconstruction method which consists in choosing, besides the highest degree node, K
of its neighbours chosen uniformly at random, achieves an overlap ofK−o(K): indeed, conditional
on the planted star’s centre having initially Y neighbors in the original graph, the expected number
of nodes in the reconstructed set will be

1 +
K2

Y +K
≥ 1 +K(1− Y/K) = 1 +K − Y.

Its expectation is lower-bounded by K + 1− λ, and is thus K − o(K).

A.3. Proof of Theorem 6

Let k denote the size of the hidden connected component, with k = 0 under P0 and k = K under P1.
Let A1 count the number of isolated nodes in G, A2 the number of connected pairs (i, j) that form
an isolated component, and A3 the number of triplets (i, j, k) that form a connected component.

These quantities satisfy with high probability

A1 = e−λ(n−k) +O(
√
n), A2 =

(n− k)2

2

λ

n
e−2λ+O(

√
n), A3 =

(n− k)3

2

λ2

n2
e−3λ+O(

√
n).

(15)
Indeed, only the n−k nodes that are not part of the hidden connected graph can contribute to counts
of connected components of size 1, 2 or 3. (15) then follows from evaluation of the expectation and
variance of these quantities.

Set λ̂ = (nA3)/(A1A2). By (15), λ̂ = λ+O(n−1/2). Now form k̂ = n−eλ̂A1. Again by (15),
k̂ = n− (1−O(n−1/2))(n− k) +O(

√
n) = k +O(

√
n). Our test then decides H1 if k̂ ≥ tn and

H0 otherwise where tn is such that
√
n � tn � K, which is indeed satisfied for tn =

√
K
√
n).

This ensures that the test discriminates correctly between the two hypotheses with high probability.
Necessarily then, the variation distance |P0 − P1|var goes to 1 as n→∞.

A.4. Proof of Theorem 8

We first begin by a simple lemma, using the concentration of XΓ :

Lemma 26 Let IΓ be the proportion of pairs copies of Γ in G whose intersection is nonempty :

IΓ =
1

X2
Γ

∑
Γ′,Γ′′∈G

1IΓ′∩Γ′′ 6=∅,

13
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where Γ′ and Γ′′ range over all copies of Γ in G.
Then E0(IΓ) = o(1).

Proof (of Lemma 26). As in the proof of Lemma 5, let Γ1, . . . ,Γm be the copies of Γ in Kn, and
let Xi = 1IΓi∈G. Write

E0

(
X2

Γ

)
=
∑
i,j

E0 (XiXj) = E′ + E′′, (16)

where E′ is the sum over Γi,Γj having disjoint vertex sets.
We can easily compute E′ :

E′ =
(
n

K

)(
n−K
K

)(
K!

|Aut(Γ)|

)2

p2K−2 ∼ n2Kp2K−2

|Aut(Γ)|2
∼ E0 (XΓ)2

Since E0

(
L2
)

= 1 + o(1), it follows that

E′′

E0

(
X2

Γ

) = o(1). (17)

Now, it is straightforward to see that∑
Γ′,Γ′′∈G

1IΓ′∩Γ′′ 6=∅ =
∑

Γi∩Γj 6=∅

XiXj .

Recall that L = XΓ/E0(XΓ) ; we can decompose IΓ as follows :

IΓ = IΓ1IL2>1/2 + IΓ1IL2<1/2

=

∑
Γi∩Γj 6=∅XiXj

E0

(
X2

Γ

) · 1

L2
· 1IL2>1/2 + IΓ1IL<1/

√
2

We can now bound each term separately. The first one is straightforward since 1/L2 < 2
whenever the indicator variable is nonzero ; for the second one, notice that IΓ ≤ 1 and thus

E0(IΓ) ≤ E′′

E0

(
X2

Γ

) · 2 + P0

(
L <

1√
2

)
=

E′′

E0

(
X2

Γ

) · 2 + o(1),

having used the Bienaymé-Chebychev inequality to bound the second term.
Using (17) then completes the proof.

We can now move on to the proof of Theorem 8 ; we first transform the expression of ov(K̂) to
better suit our needs :

ov(K̂) =
∑
G

∑
K

P1(G,K)
∣∣∣K̂ ∩ K∣∣∣

=
∑
G

P1(G)
∑
K

P1(K |G)
∣∣∣K̂ ∩ K∣∣∣
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where K ranges over all K-subsets of [n] and G over all graphs on n vertices.
The second sum can be transformed as in the proof of Lemma 5 into :

ov(K̂) =
∑
G

P1(G)
∑
Γ′∈G

|K̂ ∩ Γ′|
XΓ

=
∑
G

P0(G)
∑
Γ′∈G

|K̂ ∩ Γ′|
XΓ

+ o(K),

since the conditions in Theorem 8 imply that |P1−P0|var = o(1) (see the remark after Theorem 10).
The sum now ranges over all copies of Γ in G.

This can now be expressed as an expectation :

ov(K̂) = E0

[∑
Γ′∈G

|K̂ ∩ Γ′|
XΓ

]
+ o(K)

=
∑
i∈[n]

E0

[
1Ii∈K̂

∑
Γ′∈G

1Ii∈Γ′

XΓ

]
+ o(K).

We can now finally use Lemma 26 : indeed,(∑
Γ′∈G

1Ii∈Γ′

XΓ

)2

=
1

X2
Γ

∑
Γ′,Γ′′∈G

1Ii∈Γ′1Ii∈Γ′′

≤ 1

X2
Γ

∑
Γ′,Γ′′∈G

1IΓ′∩Γ′′ 6=∅

= IΓ.

Therefore,

ov(K̂) ≤
∑
i∈[n]

E0

[
1Ii∈K̂

√
IΓ

]
+ o(K)

= KE0

[√
IΓ

]
+ o(K)

= o(K),

using Jensen’s inequality as well as Lemma 26. This completes the proof of Theorem 17.

Appendix B. Detailed proofs for planted paths

B.1. Proof of Lemma 9

Expression (1) follows directly from Lemma 5. In the display below, by
∑

(i1···iK) we mean sum-
mation over all the n(n− 1) · · · (n−K + 1) oriented paths (i1, . . . , iK) of length K over nodes in
[n]. Write:

E0(L2) =
∑

(i1···iK)

∑
(j1···jK)

(
(n/λ)K−1

n···(n−K+1)

)2
P0(paths (i1 · · · iK) and (j1 · · · jK) present in G)

=
∑

(i1···iK)

(
(n/λ)2(K−1)

n···(n−K+1)

)
P0(paths (i1 · · · iK) and (1 · · ·K) present in G)

=
(
n
λ

)K−1 P0( path π = (I1 · · · IK) present in G| path (1 · · ·K) present in G),
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where π = (I1 · · · IK) is a candidate path chosen uniformly at random from the n(n−1) . . . (n−K)
possible length-K paths. In the above we used symmetry to consider a single path (1 · · ·K) instead
of all paths (j1 · · · jK).

Note that conditionally on the event that path (1 · · ·K) be present in G and on the path π, the
probability that path π is also present inG is given by (λ/n)K−1−S , where S is the number of edges
in common between the two paths π and (1 · · ·K). This yields expression (2).

B.2. Proof of Lemma 12

Let Ft = σ(I1, . . . It). Recall that n′ = n − K. It is easily verified that we have the following
inequalities for all t = 2, . . . ,K − 1:

P(Zt = 1|Ft) ≤


1
n′ if Zt−1 = 1,
2
n′ if Zt−1 = 0,
0 if Zt−1 = −1.

Similarly we have

P(Zt ≥ 0|Ft) ≤
K

n′
·

Moreover it is easily seen that P(Z1 = 1) ≤ (K/n′)(2/n′), and P(Z1 ≥ 0) ≤ K/n′.
As in Lemma 12, we introduce the Markov chain {Z ′t}t≥1 on state space {−1, 0, 1} specified

by the initial distribution P(Z ′1 = 1) = (K/n′)(2/n′), P(Z ′1 ≥ 0) = K/n′ and by the transition
probability matrix P in (4), that we recall for convenience:

P =

 1−K/n′ K/n′ 0
1−K/n′ (K − 2)/n′ 2/n′

1−K/n′ (K − 1)/n′ 1/n′


The previous inequalities ensure that we can construct by induction over t a coupled version of the
two processes {Zt} and {Z ′t} such that Z1 ≤ Z ′1, and for t ≥ 1, if Z ′t = −1 then Zt = −1, and
furthermore we have the following implications:

Zt = −1 ⇒ Zt+1 ≤ Z ′t+1,
Zt = Z ′t ⇒ Zt+1 ≤ Z ′t+1,
(Zt, Z

′
t) = (1, 0) ⇒ Zt+1 ≤ Z ′t+1.

Thus the only situation when we can have Zt+1 > Z ′t+1 is when (Zt, Z
′
t) = (0, 1). That is to say,

for each time t + 1 when process Z hits 1 while chain Z ′ does not, then at time t chain Z ′ hits 1
while process Z does not.

Because of this, the number of times t at which process Z hits 1 is upper-bounded by the number
of times t at which chain Z ′ does. Thus (5) holds, concluding the proof of Lemma 12.

B.3. Proof of Lemma 11

By (5) and (3), E0(L2) is upper bounded by

E0(L2) ≤ E0x
∑K−1
s=1 Z′+s . (18)
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To evaluate this term, introduce the row vectorF (t) := {fz(t)}z∈{−1,0,1} where fz(t) := E0x
∑t
s=1 Z

′+
s 1IZ′t=z .

We then have

F (1) = (P(Z ′1 = −1),P(Z ′1 = 0), xP(Z ′1 = 1)) = (1−K/n′,K/n′(1− 2/n′), x(K/n′)(2/n′)),
(19)

together with the recurrence relation

F (t+ 1) = F (t)M, (20)

where

M =

 1−K/n′ K/n′ 0
1−K/n′ K/n′ − 2/n′ x2/n′

1−K/n′ K/n′ − 1/n′ x/n′


Recall now that x = n/λ and n′ = n−K, so that x/n′ is asymptotic to 1/λ. Thus the above matrix
M reads

M = M0 + (K/n)M1,

where

M0 =

 1 0 0
1 0 2/λ
1 0 1/λ

 , (21)

and the entries of matrix M1 are O(1). Note that M0 admits eigenvalues 0, 1/λ, 1 with respective
left eigenvectors

u0 := (1, 1,−2),
u1/λ := (−λ/(λ− 1), 0, 1),

u1 := (1, 0, 0).

We shall denote (µr, vr) the (eigenvalue,eigenvector) pair of M obtained by perturbation of the
eigenpair (r, ur) of M0, with r ∈ {0, 1/λ, 1}. By the Bauer-Fike theorem (see Bhatia (1997),
Theorem VI.25.1), |µr − r| = O(K/n) for all r.

Moreover Eq. (1.16), p. 67 in Kato (1966) implies that a normed left (resp., right) eigenvector of
M associated to an eigenvalue µr of M differs in norm from a normed left (resp., right) eigenvector
of M0 associated to eigenvalue r by O(K/n). We can thus chose vr = ur +O(K/n).

Let the decomposition of vector F (1) in the basis provided by the eigenvectors {vr} be given
by:

F (1) =
∑

r∈{0,1/λ,1}

αrvr.

Denote by e the all-ones 3× 1 column vector. The upper bound (18) on E0(L2) then gives

E0(L2) ≤ F (K − 1)e
= F (1)MK−2e
=

∑
r∈{0,1/λ,1} αrvrµ

K−2
r e.

(22)

By our choice of eigenvectors vr such that |vr − ur| = O(K/n), and the fact that

F (1) = (1 +O(K/n))u1 +O(K/n)u1/λ +O(K/n)u0,
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corresponding weights αr verify α1 = 1 +O(K/n), α1/λ = O(K/n), α0 = O(K/n).
In the case where λ > 1 and K = o(

√
n), (22) yields

E0(L2) ≤ o(1) + (1 + o(1))µK−2
1 = (1 + o(1))(1 +O(K/n))K−2 ≤ (1 + o(1))eO(K2/n).

The assumption that K = o(
√
n) then allows to conclude.

For λ < 1 and K = ln(n)/ ln(1/λ)− ω(ln(ln(n))), (22) yields

E0(L2) ≤ (1 + o(1)) (1 +O(K/n))K−2 +O(K/n) (1/λ+O(K/n))K−2 .

The first term is 1 + o(1)) since K2/n = o(1). The second term’s logarithm is equivalent to

ln(K)− ln(n) + (K − 2) ln(1/λ) ≤ ln(ln(n))− ln(ln(1/λ))− ω(ln(ln(n))),

and goes to −∞ by assumption.

B.4. Proof of Lemma 13

We place ourselves under P1 and condition on the fact that theK-path planted in the original Erdős-
Rényi graph G0 is kK1 . Denote for each i ∈ [K] by Ci the connected component of node ki in G0.
Denote by Ei the event that Ci ∩ {∪j 6=iCj} 6= ∅ and by E ′i the event that Ci contains a cycle.

A standard construction of connected components based on a random walk exploration implies
the existence of a constant c > 0 such that for all ` ≥ 0,

P(E ′i, |Ci| = `) ≤ λ`2

n P(|Ci| = `) ≤ λ`2

n e
−c`,

P(Ei, |Ci| = `) ≤ `K
n e
−c`,

P(|Ci| ≥ `) ≤ e−c`.
(23)

The first evaluation implies that with high probability, no Ci contains a cycle (i.e. no E ′i occurs)
when K = o(n). The second evaluation implies that the expected number of i ∈ [K] such that Ei
occurs and |Ci| ≥ ` is upper bounded, for some constant c′ > 0, by∑

i∈[K]

P(Ei, |Ci| ≥ `) ≤
K2

n
e−c

′`.

If K2 = o(n), then this implies that with high probability, no Ei occurs. Thus with high probability,
there is no cycle in the connected component C. Moreover, the third evaluation in (23) ensures that∑

i∈K
P(Ci ≥

√
K) ≤ Ke−c

√
K = o(1).

Thus the peeling process applied
√
K times to C returns exactly the plantedK-path, except for

√
K

nodes at each of its ends.
If on the other hand, K2 > o(n), we choose `∗ = θ ln(n) and deduce from (23) that with

probability 1 − O(n−2), say, there is no i ∈ [K] such that both Ei and |Ci| ≥ θ ln(n) hold. The
peeling process applied

√
K times to C then returns the planted path, shortened by no more than√

K nodes at each end, plus parts of the neighborhoods Ci for which Ei occurs. The expected
number of nodes returned that do not belong to the planted path is therefore no more than

KP(Ei)`∗ = O(
K2

n
)θ ln(n).

This is o(K) under the assumption that K = o(n/ ln(n)). The conclusion of the Lemma follows.
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B.5. Proof of Theorem 14

We show that Lemma 15 implies (6). First, the optimal overlap is achieved by the Maximum A
Posteriori (MAP) inference procedure, i.e. by putting in K̂ theK nodes with the highest probability,
conditional on the observed graph G, of being in K. The probability that node j belongs to K
conditional on G is proportional to the number of K-paths in G to which j belongs. We denote by
K∗ the corresponding set.

Second, when under the alternative distribution P2 := P0(G ∈ ·|kK1 ∈ G, (ki, iD2 , ki+D) ∈ G))
in (8), the joint distribution of the numbers of K-paths going through the nodes kK1 or through
the nodes in ki1, i

D
2 , k

K
i+D are statistically indistinguishable. Thus, letting N` (respectively N ′`) de-

note the number of points of k`M(`−1)M+1 (respectively, ki(`−1)M+1, i
D
2 , k

`M
i+D) that the MAP estimate

selects, one has:
E2(N`) = E2(N ′`).

Let alsoN ′t,` denote the number of points that the MAP estimate selects in kI(t,`)(`−1)M+1, I
D
2 (t, `), k`MI(t,`)+D.

Since each of these variables is bounded by M = L+D, the variation distance bound (8) implies

E1(N`) ≤ E1(N ′t,`) + εM.

Summing these inequalities over ` ∈ [K/M ] and t ∈ [τ ] yields

τ

K/M∑
`=1

E1(N`) = τ ov(K∗) ≤
τ∑
t=1

K/M∑
`=1

E1(N ′t,`) + ετK. (24)

However, it holds that:
K∑
i=1

1Iki∈K∗ +
∑

j∈∪t,`ID2 (t,`)

1Ij∈K∗ ≤ K.

This entails (using e.g. Bonferroni’s inequality):

K∑
i=1

1Iki∈K∗ +

K/M∑
`=1

D∑
r=2

∑
t∈[τ ]

1IIr(t,`)∈K∗ −
∑

`6=`′,`,`′∈[K/M ]

|(∪t∈[τ ]I
D
2 (`)) ∩ (∪t∈[τ ]I

D
2 (`′))| ≤ K.

Taking expectations and using the last statement (9) of the Lemma yields, separating evaluations on
event E and on its complementary set E :

ov(K∗) +

∑
t∈[τ ]

K/M∑
`=1

E1(N ′t,`)

− τL(K/M)− (K/M)2O(D2/n)− τKP1(E) ≤ K.

Summed with the previous equation (24), this gives:

(τ + 1) ov(K∗) ≤ K +Kτ
(
ε+ (L/M) + (K/n)(D/M)2 + P1(E)

)
.

The announced result follows from ε� 1, L� D, K = o(n) and P1(E) = o(1).
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B.6. Proof of Lemma 15, Equation (8)

We let πi denote the set of τ candidate paths (ki, i
D
2 (t, `), ki+D)t∈[τ ] of the graph, where for fixed

`, the {iD2 (t, `)}t∈[τ ] are distinct and in [n] \ kK1 . For i ∈ [(` − 1)M + 1, ` − 1)M + L] these can
all be used to construct the set of τ alternative paths in the `-th segment of kK1 . We denote by

π(`) = ∪i∈[(`−1)M+1,`−1)M+L]πi

the corresponding collection. Our construction simply amounts to choosing a set of τ paths (that
we shall call for short a τ -path) uniformly at random from π(`) in order to construct the alternative
τ -path for the `-th segment, and this independently for each segment.

Denote Zi = |πi|. Then

E1(Zi) = (n−K)(n−K − 1) · · · (n−K − τ(D − 1) + 1)

(
λ

n

)τD
∼ 1

nτ
λτD,

since we assumed in (7) that D ∼ C ln(n). Also, by symmetry,

E1Z
2
i =

∑
iD2 (t),jD2 (t) P1(∀t ∈ [τ ], (ki, i

D
2 (t), ki +D) ∈ G, (ki, jD2 (t), ki+D) ∈ G)

= E1(Zi)
∑

jD2 (t) P1(∀t ∈ [τ ], (ki, j
D
2 (t), ki+D) ∈ G|∀t ∈ [τ ], (ki, i

D
2 (t), ki+D) ∈ G),

where in the last expression we fixed an arbitrary choice (iD2 (t))t∈[τ ]. It follows that:

E1Z
2
i = (E1(Zi))

2E1((n/λ)S),

where S is the number of common edges between the fixed τ -path (ki, i
D
2 (t), ki+D)t∈[τ ] and the

τ -path (ki, J
D
2 (t), ki+D)t∈[τ ] where (JD2 (t))t∈[τ ] is chosen uniformly at random among (τ(D− 1))

sequences in [n] \ kK1 .
To control this second moment, we will condition on the number of common edges between

each path JD2 (t) in the randomly selected τ -path at its beginning and end with the beginning and
end of some of the fixed paths iD2 (t′), that we shall denote byXt and Yt. These satisfy the constraints
Xt, Yt ≥ 0, Xt + Yt ≤ D. For Xt + Yt < D, this forces the choice of Xt + Yt nodes among the
D − 1 to be chosen for path JD2 (t); for Xt + Yt = D, this forces all the D − 1 choices. Moreover,
conditionally on (Xt, Yt)t∈[τ ], the expectation of the variable (n/λ)S verifies

E1((n/λ)S |(Xt, Yt)t∈[τ ]) ≤ (n/λ)
∑
t∈[τ ] Xt+Yt(1 +O(D/n))τD,

by the Markov chain bounds in Lemma 12. By assumption, D �
√
n so that (1 + O(D/n))D =

1 + o(1). Thus, accounits for the τ !)2 choices of path correspondences between the beginnings and
ends of the planted and random paths:

E1Z
2
i ≤ (E1(Zi))

2(τ !)2
[
(n/λ)DnD−1 +

∑
x,y≥0,x+y<D(n/λ)x+yn−(x+y)(1 + o(1))

]τ
≤ (E1(Zi))

2(1 + o(1))(τ !)2[nλ−D + (
∑

x≥0 λ
−x)2]2

≤ (E1(Zi))
2(1 + o(1))(τ !)2

(
λ
λ−1

)2τ
,

where we used that nλ−D = o(1).
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We now evaluate E1(ZiZj) for i 6= j. The Markov chain bounding technique of Lemma 12
directly applies to give:

E1(ZiZj) ≤ (E(Zi))
2(1 + o(1)).

Finally we obtain:

Var(|π(`)|) = LVar(Zi) + L(L− 1)Cov(Zi, Zj)

≤ E1(Zi)
2

[
L(1 + o(1))(τ !)2

(
λ
λ−1

)2τ
+ L2o(1)

]
≤ E1(|π(`)|)2

[
O(1)
L + o(1)

]
.

Since by assumption L � 1, Tchebitchev’s inequality implies that the random variable |π(`)|
concentrates: for some suitable ε = o(1), one has

P1

(∣∣∣∣ |π(`)|
E1|π(`)|

− 1

∣∣∣∣ ≥ ε) ≤ ε.
Denote by A the event A := {| |π(`)|

E1|π(`)| − 1| ≤ ε}. It thus has probability at least 1 − ε. Consider
a bounded function f of the graph G. This concentration result allows us to establish the variation
distance bound (8) as follows. For some arbitrary candidate τ -path (i, iD2 (t))t∈[τ ], omitting for
brevity the argument t below, write:

E1(f(G)|A,K = kK1 , I(`) = i, ID2 (`) = iD2 ) =
E1[f(G)1IA1I(ki,iD2 ,ki+D)∈G

1
|π(`)| ]

E1(1IA1I(ki,iD2 ,ki+D)∈G
1
|π(`)|)

.

On A one has
1

E1|π(`)|
1

1 + ε
≤ 1

|π(`)|
≤ 1

E1|π(`)|
1

1− ε
.

This yields:

1− ε
1 + ε

E1[f(G)1IA1I(ki,iD2 ,ki+D)∈G]

P1((ki, iD2 , ki+D) ∈ G)
≤ E1(f(G)|A,K = kK1 , I(`) = i, ID2 (`) = iD2 ) ≤ 1 + ε

1− ε
E1[f(G)1I(ki,iD2 ,ki+D)∈G]

P1(A ∩ (ki, iD2 , ki+D) ∈ G)
.

By symmetry over all τ -paths in π(`), denoting by Z the total number of possible such τ -paths in it
(Z ∼ Lnτ(D−1)), one has

P1(A ∩ (ki, i
D
2 , ki+D) ∈ G) =

1

Z
E1(|π(`)|1IA).

However by definition of A this is no smaller than

1

Z
(1− ε)E1|π(`)|P1(A) ≥ (1− ε)2P1((ki, i

D
2 , ki+D) ∈ G).

Finally we obtain:

1−ε
1+ε

[
E1[f(G)|(ki, iD2 , ki+D) ∈ G]− ||f ||∞ε

]
≤ E1(f(G)|A,K = kK1 , I(`) = i, ID2 (`) = iD2 ) ≤ · · ·

· · · ≤ 1+ε
(1−ε)3E1[f(G)|(ki, iD2 , ki+D) ∈ G].

The result of Equation (8) follows.
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B.7. Proof of of Lemma 15, Equation (9)

We define the event E as, for some suitable constant α = Ω(1):

E := ∩`∈[K/M ]E`, where E` := {|π(`)| ≥ αE1|π(`)|}. (25)

In the below display we let ID2 (`) = ∪t∈[τ ]I
D
2 (t, `), and ID2 (`) ∩ ID2 (`′) the intersection of the two

corresponding sets of nodes. We then have for arbitrary ` 6= `′ ∈ [K/M ]:

E1(|ID2 (`) ∩ ID2 (`′)|1IE) =
∑
i

∑
j

E1

 1

|π(`)| · |π(`′)|
∑
iD2 ∈πi

∑
jD2 ∈πj

|iD2 ∩ jD2 |1IE


where the first summations are over i ∈ [M(` − 1) + 1,M(` − 1) + L] and j ∈ [M(`′ − 1) +
1,M(`′− 1) +L]. The expectation in the right-hand side does not depend on i and j, by symmetry.
Moreover, on E we can upper bound the fraction in the expectation by 1/(αE1|π(`)|)2. Thus fixing
some arbitrary i 6= j:

E1(|ID2 (`) ∩ ID2 (`′)|1IE) ≤ L2

(αE1|π(`)|)2E1

(∑
iD2 ∈πi

∑
jD2 ∈πj

|iD2 ∩ jD2 |
)

≤ L2

(αE1|π(`)|)2

∑
iD2 ,j

D
2
E1

(
1I(ki,iD2 ,ki+D)∈G1I(kj ,jD2 ,kj+D)∈G|iD2 ∩ jD2 |

)
,

where summation is over all pairs of lists iD2 and jD2 of τ(D−2) distinct elements in [n]\kK1 . Denote
by JD2 one such list selected uniformly at random, and by iD2 a fixed, arbitrary choice of one such list.
One then has, recalling the expression of E1|π(`)| = L(λ/n)τD(n−K) · · · (n−K−τ(D−1)+1):

E1(|ID2 (`) ∩ ID2 (`′)|1IE) ≤
1

α2
E1

((n
λ

)S
|iD2 ∩ JD2 |

)
, (26)

where S denotes the number of edges in common between the two τ -paths iD2 and JD2 .
As in Lemma 12, we now define the Markov chain {Z ′t}t≥0 on the three states {−1, 0, 1}, with

transition probabilities given by the matrix

P :=

 1−D/n′ D/n′ 0
1−D/n′ (D − 2)/n′ 2/n′

1−D/n′ (D − 1)/n′ 1/n′

 ,

where n′ = n−K−D, and with initial condition Z ′0 = −1. These states are interpreted as follows:
Z ′t = −1 if Jt+1 /∈ iD2 , Z ′t = 0 if Jt /∈ iD2 and Jt+1 ∈ iD2 , and Z ′t = 1 if Jt, Jt+1 ∈ iD2 . The same
coupling argument as for Lemma 12 implies, letting x = n/λ, the following, where the subscript in
the second expectation specifies the initial state of the Markov chain {Z ′t}:

E1

((n
λ

)S
|iD2 ∩ JD2 |

)
≤ E−1

x∑τ(D−1)
i=1 Z′+i

τ(D−1)∑
j=1

1IZ′j≥0

 .

We introduce the notation Fz(t) = (Fz,−1(t), Fz,0(t), Fz,1(t)), where

Fz,y(t) := Ez
(
x
∑t
s=1 Z

′+
s 1IZ′t=y

)
.
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It readily follows that
Fz(t) = (1Iz=−1, 1Iz=0, 1Iz=1)M t,

where

M :=

 1−D/n′ D/n′ 0
1−D/n′ (D − 2)/n′ x ∗ (2/n′)
1−D/n′ (D − 1)/n′ x/n′

 .

This matrix M reads, as previously, M0 +O(D/n) where M0 is given by (21).
Write then, using Markov’s property:

E−1

x∑τ(D−1)
i=1 Z′+i

τ(D−1)∑
j=1

1IZ′j≥0

 =

τ(D−1)∑
j=1

∑
z∈{0,1}

E−1

(
x
∑j
i=1 Z

′+
i 1IZ′j=z

)
Ez
(
x
∑τ(D−1)−j
i=1 Z′+i

)
=

τ(D−1)∑
j=1

∑
z∈{0,1}

F−1,z(j)
∑

y=−1,0,1

Fz,y(τ(D − 1)− j).

Previously given perturbation results give the existence of coefficients [βz,r]z∈{−1,0,1},r∈{0,1/λ,1} all
in O(1) such that

Fz(0) =
∑

r∈{0,1/λ,1}

βz,rvr.

It follows that
Fz(τ(D − 1)− j) =

∑
r∈{0,1/λ,1}

βz,rµ
τ(D−1)−j
r vr = O(1),

since |µr| ≤ 1 +O(D/n) and D2 � n. It follows that

E−1

(
x
∑τ(D−1)
i=1 Z′+i

∑τ(D−1)
j=1 1IZ′j≥0

)
=

τ(D−1)∑
j=1

F−1(j)

 0
1
1

×O(1)

=

τ(D−1)∑
j=1

∑
r∈{0,1/λ,1}

β−1,rµ
j
rvr

 0
1
1

×O(1).

Since F−1(0) = u1, it holds that β−1,1 = 1 +O(D/n), and β−1,r = O(D/n) for r = 0, 1/λ. The
terms with r = 0, 1/λ in the previous expression thus contribute at most O(D2/n). The terms with
r = 1 give

τ(D−1)∑
j=1

β−1,rµ
j
1v1

 0
1
1

×O(1) = O(D2/n),

by using the fact that v1 = (1, 0, 0) +O(D/n).
It remains to prove that the event E defined in (25) is such that P1(E) = 1− o(1). It will suffice

to prove that for all ` ∈ [K/M ], P1(E`) ≥ 1 − o(M/K). To show this we shall leverage Janson’s
inequality, as described in Boucheron et al. (2013), p.205, Theorem 6.31. Applied to the random
variable |π(`)|, it guarantees that for all 0 ≤ t ≤ E|π(`)| one has

P1(|π(`)| ≤ E|π(`)| − t) ≤ e−t2/(2∆), (27)
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where ∆ is the expected number of ordered pairs of τ -paths (P,Q) in π(`) that share at least an
edge. Paralleling our previous bound on the variance of |π(`)|, we distinguish the pairs of τ -paths
(P,Q) according to whether they share the same starting point i ∈ [(`− 1)M + 1, (`− 1)M + L]
or not to write ∆ = ∆1 + ∆2, and obtain:

∆1 ≤ Lλ
2Dτ

n2τ (1 + o(1))(τ !)2
(

λ
λ−1

)2τ2
,

∆2 ≤ L2 λ2Dτ

n2τ O
(
D2

n

)
.

We moreover have that E|π(`)| ∼ LλDτnτ , so that

(E|π(`)|)2

∆
≥ Ω(1)

1
L + D2

n

·

By our choices (7) for L and D, this lower bound is also Ω(1)L = CΩ(1) ln(n). Taking t =
(1− α)E|π(`)| for some α ∈ (0, 1) in (27), we obtain

P1 (|π(`)| ≤ αE|π(`)|) ≤ exp(−α2CΩ(1) ln(n)/2).

It readily follows that, for sufficiently large C, this probability can be made o(n−3) (say), which
suffices to conclude the proof of the Lemma.

Appendix C. Proofs for planted D-ary trees

C.1. Proof of Lemma 17

Proof The property p1 = 1 is trivial. For h ≥ 1, let Z Poi(λ) be the number of children of the
root o. Each of the Z children has independently a probability ph of being the root of a D-ary tree
of height h. Therefore, if we define Zh to be the number of such children, we have

L(Zh |Z) ∼ Bin(Z, ph).

By the splitting property of Poisson random variables, Zh follows the distribtution Poi(λph).
But T contains a D-ary tree of height h rooted in o if and only if Zh ≥ D, and the lemma follows.

C.2. Proof of Theorem 16

Proof Let h0 > 0 to be fixed later on ; there exists κ > 0 such that

(λx)D

D!
≤ ψD(λx) ≤ eκ(D−1)ph0

(λx)D

D!
(28)

for all x ≤ ε. Therefore, for h ≥ h0, one has

D ln(ph) + (D − 1)cλ,D ≤ ln(ph+1) ≤ D ln(ph) + (D − 1)(cλ,D + κ ph0). (29)

Iterating inequality (29), we get that for all h ≥ 0 :

Dh (ln(ph0) + cλ,D)− cλ,D ≤ ln(ph+h0) ≤ Dh (ln(ph0) + cλ,D + κ ph0)− cλ,D − κ ph0 (30)
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Choose h0 such that α := −(ln(ph0) + cλ,D + κ ph0) > 0, and let

h∗ =

 ln
(

ln(n)
α

)
ln(D)

+ h0

Then h∗ + 1 =
ln
(

ln(n)
α

)
ln(D) + h0 + δ for some δ > 0. Thus, using (30), we find

ln(ph∗+1) ≤ −Dδ ln(n)− cλ,D − κ ph0

which yields that ph∗+1 = o
(

1
n

)
as required.

On the other hand, for almost all λ there is a choice of h0 such that

h∗ <
ln
(

ln(n)
α

)
ln(D)

+ h0 − ln

(
α

ln(ph0) + cλ,D

)
by continuity of the right-hand side. Then, for some δ′ > 0, we have

ln(ph∗) ≥ −D−δ
′
ln(n)− cλ,D

which implies the second result of Theorem 16.

C.3. Proof of Lemma 20

This lemma is a classical result in sparse random graph theory (see e.g. Bordenave et al. (2015)) ;
we reproduce it here for the sake of self-containedness. First, a result on the size of neighbourhoods
in G :

Lemma 27 (Lemma 29 in Bordenave et al. (2015)) For a vertex v in G, let St(v) denote the size
of the t-neighbourhood of v. Then there exists a constant C such that with high probability, for
every vertex v ∈ G and t ≥ 0 :

St(v) ≤ C ln(n)αt

We’ll also use a bound on the number of vertices whose neighbourhood contains a cycle ; its
proof, as well as the preceding lemma, can be found in Bordenave et al. (2015).

Lemma 28 (Lemma 30 in Bordenave et al. (2015)) Assume that ` = o(ln(n)). Then w.h.p there
are at most ln(n)λ2` vertices whose `-neighbourhood contains a cycle. Moreover, with high proba-
bility the graph G is ` tangle-free, i.e. no vertex has more than one cycle in its `-neighbourhood.

We can now prove the first part of our lemma : consider the classical breadth-first exploration
process which starts with A0 = {v} and at step t ≤ 0, considers (if possible) a vertex vt ∈ At
at minimal distance from v and reveals its neighbors Nt+1 in [n] \

⋃
tAt. It then updates At+1 as

At ∪Nt+1 and repeats the process. We denote by Ft the filtration generated by A0, . . . , At.
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Proof (First part of Lemma 20). Let τ be the stopping time at which (G, v)` has been revealed.By
the two previous lemmas, with probability at least 1− cλ2`/n, the neighbourhood (G, v)` is a tree.
Therefore, we can mirror the discovery process in (T, o), where at each step we discover the children
of vt. To establish the desired coupling result, we then only need to focus on the number of children
of each node.

GivenFt, the number of discovered neighbors yt+1 of the node vt has distribution Bin(nt, λ/n),
where

nt = n−
t∑

s=0

ys

Therefore, given Ft, the total variation distance between the number of children of vt in (G, v)`
and in (T, o)` is ∣∣∣∣Bin(nt,

λ

n
)− Poi(λ)

∣∣∣∣
var

The Stein-Chen method (see for example Barbour and Chen (2005)) yields that∣∣∣∣Bin(nt,
λ

n
)− Poi

(
λ
nt
n

)∣∣∣∣
var

≤ λ

n
,

and a classical bound for Poisson law (see again Barbour and Chen (2005)) that∣∣∣Poi
(
λ
nt
n

)
− Poi(λ)

∣∣∣
var
≤ λ

(
1− nt

n

)
From Lemma 27, we find that nt ≥ n − C ln(n)λ` with probability greater than 1 − 1/n, and

thus

|Pt+1 −Qt+1|var ≤
λ

n
+ λ

C ln(n)λ`

n
,

where Pt+1 is the distribution of yt+1 given Ft and Qt+1 is a Poi(λ) random variable indepen-
dent of Ft. This finishes the proof of the first part of the lemma.

For the second part, note that there exists a coupling (X,X ′) such that X ∼ Poi(λ), X ′ ∼
Poi(λ′) and X ′ > X a.s. (take for example X ′ = X + Z where Z ∼ Poi(λ′ − λ)).

The proof is then straightforward : for every vertex v, we produce a coupling between the
exploration process of (G, v)` and (T ′, o′)` such that at each step t, the number of neighbors yt of
vt in G is less than in T ′.

C.4. Proof of Theorem 18

Proof We first apply the first part of Lemma 20 to ` = h = O(ln ln(n)). Then, for at least
n−O(ln(n)α) vertices v (for some α > 0), there is a coupling between (T, o)h and (G, v)h. Since
in (T, o)h, there is a copy of Γ in (T, o)h with probability Ω(n−c). It follows that w.h.p there is
ω(1) copies of Γ in G.

Now, assume that h = h+ C, where C is large enough such that for some λ′ > λ, there are no
trees of height h in (T ′, o′) with probability 1− o(1/n).

For every v ∈ G such that the h-neighbourhood of v is a tree, we can produce a coupling of
(G, v)h and (T ′, o′)h such that (G, v)h ⊆ (T ′, o′)h with probability 1. Thus, with high probability,
no vertex whose h-neighbourhood is a tree contains a copy of Γ in said neighbourhood.
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Assume now that there is one cycle in the h-neighbourhood of v. With high probability, there
is only one cycle going through v in the neighbourhood. Thus, there are only two vertices in the
neighbors of v whose offspring contains a cycle. With probability 1−O(n−c), no other neighbour
of v is the root of a D-ary tree of height h− 1. If D > 2, then there is no copy of Γ rooted in v ; if
D = 2, then both neighbors of v in the cycle must be roots of disjoints binary trees of size h− 1, in
which case the cycle edge does not help.

To summarize, the probability of presence of a copy of Γ rooted at v is upper bounded by o(1/n)
if the h-neighbourhood of v is cycle-free, and byO(n−c) if it is not. Since there areO(ln(n)α) such
vertices, w.h.p there is no copy of Γ in G.

C.5. Proof of Lemma 22

Proof In view of Lemma 5, we aim to bound the ratio

E0(L2) =
E0(X2

Γ)

E0(XΓ)2

. As before, let Γ1, . . . ,Γm be the copies of Γ in the complete graph Kn, and let Xi = 1IΓi∈G.
We follow the proof sketch from Bollobás (2001) : write

E0

(
X2

Γ

)
=
∑
i,j

E0 (XiXj) = E′ + E′′, (31)

where E′ is the sum over Γi,Γj having disjoint vertex sets.
We can easily compute E′ :

E′ =
(
n

K

)(
n−K
K

)(
K!

|Aut(Γ)|

)2

p2K−2 ∼ n2Kp2K−2

|Aut(Γ)|2
∼ E0 (XΓ)2

We therefore need to show that E′′ = o
(
E0 (XΓ)2

)
; to this end, note that if Γi and Γj are such

that v(Γi ∪ Γj) = s, then e(Γi ∩ Γj) ≤ 2K − s− 1 (since Γi ∩ Γj is a forest of size 2K − s) and
therefore e(Γi ∪ Γj) ≥ s− 1.

Grouping the terms of E′′ by the size of Γi ∪ Γj , we get

E′′ ≤
2K−1∑
s=K

(
n

s

)(
s

s−K, s−K, 2K − s

)(
K!

|Aut(Γ)|

)2(λ
n

)s−1

=
n

λ|Aut(Γ)|2
2K−1∑
s=K

ns λs

ns
K!2

(s−K)! 2(2K − s)!

=
n

λ|Aut(Γ)|2
2K−1∑
s=K

λs
K!2

(s−K)! 2(2K − s)!

(
1 +O

(
K2

n

))

≤ nλK−1(1 + o(1))

|Aut(Γ)|2
K−1∑
u=0

λu
K!2

u!2(K − u)!
,
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where we made the change of variables u = s−K. Now, write

K!2

u!2(K − u)!
=

(
K

u

)
K!

u!
≤
(
K

u

)
KK−u,

and we get

E′′ ≤ nλK−1KK

|Aut(Γ)|2
(1 + o(1))

K−1∑
u=0

(
K

u

)(
λ

K

)u
≤ nλK−1KK

|Aut(Γ)|2
(1 + o(1))

(
1 +

λ

K

)K
≤ nλK−1KKeλ

|Aut(Γ)|2
(1 + o(1))

= O

(
E0(XΓ)2 × KK

nλK

)
When K ≤ ln(n)

ln ln(n) , we find that E′′ = o
(
E0[XΓ]2

)
, as requested. But K = Dh+1−1

D−1 ≤ ln(n)
ln ln(n)

whenever

h ≤ h− ln(h)

ln(D)
+

ln
(
1− 1

D

)
ln(D)

,

which is the condition mentioned in Theorem 21.

C.6. Proof of Theorem 24

Proof For 0 ≤ p ≤ h, let Lp be the set of vertices at depth p of Γ, and Tp the set of vertices at depth
≤ p.

The strategy of proof is as follows : we aim to prove that there exists a universal constant δ such
that given G and

T := σ(Th−1) ⊂ G,
the location of the first h− 1 rows of Γ, we have with high probability on G

P1

(
(ov(K̂) ≤ (1− δ)K

∣∣∣ G, T ) = 1− o(1) (32)

In what follows, we will consider T to be fixed, and G drawn under P1.

Let ε > 0 to be adapted later, and consider two cases :

• |K̂ ∩ T | ≤ (1− ε)|T | : in this case, we easily get

ov(K̂) ≤ Dh + (1− ε)D
h − 1

D − 1

= K − εD
h − 1

D − 1

= K − εK − 1

D

= (1− ε

D
)K + o(K),
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from which equation (32) follows since ε is independent from G and T .

• if |K̂ ∩ T | > (1− ε)|T |, we need the following lemma :

Lemma 29 Let σ(Lh−1) = {i1, . . . iDh−1}, and define nk = |N (ik)| and mk = |K̂ ∩ N (ik)|.
Then

E1

(
|K̂ ∩ σ(Lh)|

∣∣∣ G, T ) = D
∑
k

mk

nk

Proof (of lemma 29). Given T , all vertices that are neighbours of a vertex in σ(Lh−1) are equally
likely to belong to Γ, since all D-ary trees in G have the same probability of generating G.

Therefore, given G, σ(Lh−1) = {i1, . . . iDh−1}, the random variable Nk = |K̂ ∩ K ∩ N (ik)|
follows a hypergeometric law of parameters (nk, D,mk). If follows that

E1(Nk) = D
mk

nk

Now, with high probability the neighbourhoodsN (ik) are disjoint and the variablesNk are thus
independent. Since |K̂ ∩ σ(Lh)| =

∑
kNk whenever the N (ik) are disjoint, the lemma follows.

We can now prove our main theorem : notice that |N (ik)| ∼ D + Poi(λ) since K = o(n), so
w.h.p a proportion α (for a universal constant α) of the ik are such that |N (ik)| ≥ D+1. Moreover,

S :=
∑
k

mk = K − |K̂ ∩ T | < Dh + ε|T | = (1 +
ε

D − 1
)Dh + o(Dh)

Thus, S ≤ (1 + ε′)Dh for some ε′ > 0.
Let I1 be the set of indices such that nk = D ; we have∑

k

mk

nk
=
∑
k∈I1

mk

nk
+
∑
k/∈I1

mk

nk

≤
∑
k∈I1

mk

D
+
∑
k/∈I1

mk

D + 1

Let S1 =
∑

k∈I1 mk ; we know that

S1 ≤ D|I1| ≤ D(1− α)Dh−1,

since mk ≤ nk = D on I1, which yields∑
k

mk

nk
≤ S1

D
+
S − S1

D + 1

=
S

D + 1
+

S1

D(D + 1)

≤ Dh−1

(
(1 + ε)

D

D + 1
+ (1− α)

1

D + 1

)
≤ Dh−1

(
1− α−Dε

D + 1

)
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Choosing ε such that α−Dε > 0, we eventually find

E1

(
|K̂ ∩ Lh|

∣∣∣ G, T ) ≤ (1− γ)Dh (33)

for some γ > 0.
Finally, we can bound K̂ ∩ K :

E1

(
|K̂ ∩ K|

∣∣∣ G, T ) ≤ |T |+ E1

(
|K̂ ∩ Lh|

∣∣∣ G, T )
≤ (1− γ)Dh + |T |
≤ K − γDh + o(Dh)

≤ (1− γD − 1

D
)K + o(K),

which completes the proof of Theorem 24.
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