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Abstract
We consider learning methods based on the regularization of a convex empirical risk by a squared
Hilbertian norm, a setting that includes linear predictors and non-linear predictors through positive-
definite kernels. In order to go beyond the generic analysis leading to convergence rates of the ex-
cess risk asO(1/

√
n) from n observations, we assume that the individual losses are self-concordant,

that is, their third-order derivatives are bounded by their second-order derivatives. This setting
includes least-squares, as well as all generalized linear models such as logistic and softmax re-
gression. For this class of losses, we provide a bias-variance decomposition and show that the
assumptions commonly made in least-squares regression, such as the source and capacity condi-
tions, can be adapted to obtain fast non-asymptotic rates of convergence by improving the bias
terms, the variance terms or both.
Keywords: Self-concordance, regularization, logistic regression, non-parametric estimation.

1. Introduction

Regularized empirical risk minimization remains a cornerstone of statistics and supervised learn-
ing, from the early days of linear regression (Hoerl and Kennard, 1976) and neural networks (Ge-
man et al., 1992), then to spline smoothing (Wahba, 1990) and more generally kernel-based meth-
ods (Shawe-Taylor and Cristianini, 2004). While the regularization by the squared Euclidean norm
is applied very widely, the statistical analysis of the resulting learning methods is still not complete.

The main goal of this paper is to provide a sharp non-asymptotic analysis of regularized em-
pirical risk minimization (ERM), or more generally regularized M -estimation, that is estimators
obtained as the unique solution of

min
θ∈H

1

n

n∑
i=1

`zi(θ) +
λ

2
‖θ‖2, (1)

where H is a Hilbert space (possibily infinite-dimensional) and `z(θ) is the convex loss associated
with an observation z and the estimator θ ∈ H. We assume that the observations zi, i = 1, . . . , n
are independent and identically distributed, and that the minimum of the associated unregularized
expected risk L(θ) is attained at a certain θ? ∈ H.
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In this paper, we focus on dimension-independent results (thus ultimately extending the analysis
in the finite-dimensional setting from Ostrovskii and Bach, 2018). For this class of problems, two
main classes of problems have been studied, depending on the regularity assumptions on the loss.

Convex Lipschitz-continuous losses (with respect to the parameter θ), such as for logistic re-
gression or the support vector machine, lead to general non-asymptotic bounds for the excess risk
of the form (Sridharan et al., 2009):

B2

λn
+ λ‖θ?‖2, (2)

where B is a uniform upper bound on the Lipschitz constant for all losses θ 7→ `z(θ). The bound
above already has a form that takes into account two separate terms: a variance term B2/(λn)
which depends on the sample size n but not on the optimal predictor θ?, and a bias term λ‖θ?‖2
which depends on the optimal predictor but not on the sample size n. All our bounds will have this
form but with smaller quantities (but asking fore more assumptions). Without further assumptions,
in Eq. (2), λ is taken proportional to 1/

√
n, and we get the usual optimal slow rate in excess risk of

O(1/
√
n) associated with such a general set-up (see, e.g., Cesa-Bianchi et al., 2015).

For the specific case of quadratic losses of the form `z(θ) = 1
2(y−θ ·Φ(x))2, where z = (x, y),

and y ∈ R and Φ(x) ∈ H, the situation is much richer. Without further assumptions, the same rate
O(1/

√
n) is achieved, but stronger assumptions lead to faster rates (Caponnetto and De Vito, 2007).

In particular, the decay of the eigenvalues of the Hessian E
[
Φ(x)⊗Φ(x)

]
(often called the capacity

condition) leads to an improved variance term, while the finiteness of some bounds on θ? for norms
other than the plain Hilbertian norms ‖θ?‖ (often called the source condition) leads to an improved
bias term. Both of these assumptions lead to faster rates than O(1/

√
n) for the excess risk, with

the proper choice of the regularization parameter λ. For least-squares, these rates are then optimal
and provide a better understanding of properties of the problem that influence the generalization
capabilities of regularized ERM (see, e.g. Smale and Zhou, 2007; Caponnetto and De Vito, 2007;
Steinwart et al., 2009; Fischer and Steinwart, 2017; Blanchard and Mücke, 2018).

Our main goal in this paper is to bridge the gap between Lipschitz-continuous and quadratic
losses by improving on slow rates for general classes of losses beyond least-squares. We first note
that: (a) there has to be an extra regularity assumption because of lower bounds (Cesa-Bianchi
et al., 2015), and (b) asymptotically, we should obtain bounds that approach the local quadratic
approximation of `z(θ) around θ? with the same optimal behavior as for plain least-squares.

Several frameworks are available for such an extension with extra assumptions on the losses,
such as “exp-concavity” (Koren and Levy, 2015; Mehta, 2016), strong convexity (Van de Geer,
2008) or a generalized notion of self-concordance (Bach, 2010; Ostrovskii and Bach, 2018). In this
paper, we focus on self-concordance, which links the second and third order derivatives of the loss.
This notion is quite general and corresponds to widely used losses in machine learning, and does
not suffer from constants which can be exponential in problem parameters (e.g., ‖θ?‖) when applied
to generalized linear models like logistic regression. See Sec. 1.1 for a comparison to related work.

With this self-concordance assumption, we will show that our problem behaves like a quadratic
problem corresponding to the local approximation around θ?, in a totally non-asymptotic way, which
is the core technical contribution of this paper. As we have already mentioned, this phenomenon
is naturally expected in the asymptotic regime, but is hard to capture in the non-asymptotic setting
without constants which explode exponentially with the problem parameters.

The paper is organized as follows: in Sec. 2, we present our main assumptions and informal
results, as well as our bias-variance decomposition. In order to introduce precise results gradually,
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we start in Sec. 3 with a result similar to Eq. (2) for our set-up to show that we recover with a
simple argument the result from Sridharan et al. (2009), which itself applies more generally. Then,
in Sec. 4 we introduce the source condition allowing for a better control of the bias. Finally, in
Sec. 5, we detail the capacity condition leading to an improved variance term, which, together with
the improved bias leads to fast rates (which are optimal for least-squares).

1.1. Related work

Fast rates for empirical risk minimization. Rates faster than O(1/
√
n) can be obtained with

a variety of added assumptions, such as some form of strong convexity (Sridharan et al., 2009;
Boucheron and Massart, 2011), noise conditions for classification (Steinwart and Scovel, 2007), or
extra conditions on the loss, such as self-concordance (Bach, 2010) or exp-concavity (Koren and
Levy, 2015; Mehta, 2016), whose partial goal is to avoid exponential constants. Note that Bach
(2010) already considers logistic regression with Hilbert spaces, but only for well-specified models
and a fixed design, and without the sharp and simpler results that we obtain in this paper.

Avoiding exponential constants for logistic regression. The problem of exponential constants
(i.e., leading factors in the rates scaling as eRD where D is the radius of the optimal predictor,
and R the radius of the design) is long known. In fact, Hazan et al. (2014) showed a lower bound,
explicitly constructing an adversarial distribution (i.e., an ill-specified model) for which the problem
manifests in the finite-sample regime with n = O(eRD). Various attempts to address this problem
are found in the literature. For example, Ostrovskii and Bach (2018, App. C) prove the optimal
d/n rate in the non-regularized d-dimensional setting but, multiplied with the curvature parameter ρ
which is at worst exponential but is shown to grow at most as (RD)3/2 in the case of Gaussian
design. Another approach is due to Foster et al. (2018): they establish “1-mixability” of the logistic
loss, then apply Vovk’s aggregating algorithm in the online setting, and then proceed via online-to-
batch conversion. While this result allows to obtain the fast O(d/n) rate (and its counterparts in the
nonparametric setting) without exponential constants, the resulting algorithm is improper (i.e., the
canonical parameter η = Φ(x) · θ?, see below, is estimated by a non-linear functional of Φ(x)).

A closely related approach is to use the notion of exp-concavity instead of mixability (Rakhlin
and Sridharan, 2015; Koren and Levy, 2015; Mehta, 2016). The two close notions are summarized
in the so-called central condition (due to Van Erven et al. (2015)) which fully characterizes when the
fast O(d/n) rates (up to log factors and in high probability) are available for improper algorithms.
However, when proper learning algorithms are concerned, this analysis requires η-mixability (or η-
exp-concavity) of the overall loss `z(θ) for which the η parameter scales with the radius of the set
of predictors. This scaling is exponential for the logistic loss, leading to exponential constants.

2. Main Assumptions and Results

Let Z be a Polish space and Z be a random variable on Z with distribution ρ. LetH be a separable
(non-necessarily finite-dimensional) Hilbert space, with norm ‖ · ‖, and let ` : Z × H → R be a
loss function, we denote by `z(·) the function `(z, ·). Our goal is to minimize the expected risk with
respect to θ ∈ H:

inf
θ∈H

L(θ) = E [`Z(θ)] .

Given (zi)
n
i=1 ∈ Zn, we will consider the following estimator based on regularized empirical risk

minimization given λ > 0 (note that the minimizer is unique in this case):
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θ̂?λ = arg min
θ∈H

1

n

n∑
i=1

`zi(θ) +
λ

2
‖θ‖2,

where we assume the following.

Assumption 1 (i.i.d. data) The samples (zi)1≤i≤n are independently and identically distributed
according to ρ.

The goal of this work is to provide upper bounds in high probability for the so-called excess risk

L(θ̂?λ)− inf
θ∈H

L(θ),

and thus to provide a general framework to measure the quality of the estimator θ̂?λ. Algorithms
for obtaining such estimators have been extensively studied, in both finite-dimensional regimes,
where a direct optimization over θ is performed, typically by gradient descent or stochastic versions
thereof (see, e.g., Bottou and Bousquet, 2008; Shalev-Shwartz et al., 2011) and infinite-dimensional
regimes, where kernel-based methods are traditionally used (see, e.g., Keerthi et al., 2005; Gerfo
et al., 2008; Dieuleveut and Bach, 2016; Tu et al., 2016; Rudi et al., 2017, and references therein).

Example 1 (Supervised learning) Although formulated as a general M -estimation problem (see,
e.g., Lehmann and Casella, 2006), our main motivation comes from supervised learning, with Z =
X ×Y where X is the data space and Y the target space. We will consider, as examples, losses with
both real-valued outputs but also the multivariate case. For learning real-valued outputs, consider
we have a bounded representation of the input space Φ : X → H (potentially implicit when using
kernel-based methods, Aronszajn, 1950). We will provide bounds for the following losses.

• The square loss `z(θ) = 1
2 (y − θ · Φ(x))2, which is not Lipschitz-continuous.

• The Huber losses `z(θ) = ψ(y − θ · Φ(x)) where ψ(t) =
√

1 + t2 − 1 or ψ(t) = log et+e−t

2
(Hampel et al., 2011), which are Lipschitz-continuous.

• The logistic loss `z(θ) = log(1 + e−yθ·Φ(x)) commonly used in binary classification where
y ∈ {−1, 1}, which is Lipschitz-continuous.

Our framework goes beyond real-valued outputs, and can be applied to all generalized linear mod-
els (GLM) (McCullagh and Nelder, 1989), including softmax regression: we consider a representa-
tion function Φ : X ×Y → H and an a priori measure µ on Y . The loss we consider in this case is

`z(θ) = −θ · Φ(x, y) + log
∫
Y exp (θ · Φ(x, y′)) dµ(y′),

which corresponds to the negative conditional log-likelihood when modelling y given x by the dis-
tribution p(y|x, θ) ∼ exp(θ·Φ(x,y))∫

Y exp(θ·Φ(x,y′))dµ(y′)
dµ(y). Our framework applies to all of these generalized

linear models with almost surely bounded features Φ(x, y), such as conditional random fields (Laf-
ferty et al., 2001).

We can now introduce the main technical assumption on the loss `.

Assumption 2 (Generalized self-concordance) For any z ∈ Z , the function `z(·) is convex and
three times differentiable. Moreover, there exists a set ϕ(z) ⊂ H such that it holds :

∀θ ∈ H, ∀h, k ∈ H,
∣∣∇3`z(θ)[k, h, h]

∣∣ ≤ sup
g∈ϕ(z)

|k · g| ∇2`z(θ)[h, h].
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This is a generalization of the assumptions introduced by Bach (2010), by allowing a varying
term supg∈ϕ(z) |k · g| instead of a uniform bound proportional to ‖k‖. This is crucial for the fast
rates we want to show.

Example 2 (Checking assumptions) For the losses in Example 1, this condition is satisfied with
the following corresponding set-function ϕ.

• For the square loss `z(θ) = 1
2 (y − θ · Φ(x))2, ϕ(z) = {0}.

• For the Huber losses `z(θ) = ψ(y− θ ·Φ(x)), if ψ(t) =
√

1 + t2− 1, then ϕ(z) = {3Φ(x)}
and if ψ(t) = log et+e−t

2 , then ϕ(z) = {2Φ(x)} (Ostrovskii and Bach, 2018). For the logistic
loss `z(θ) = log(1 + e−yθ·Φ(x)), we have ϕ(z) = {yΦ(x)} (here, ϕ(z) is reduced to a point).

• For generalized linear models,∇3`z(θ) is a third-order cumulant, and thus
∣∣∇3`z(θ)[k, h, h]

∣∣ ≤
Ep(y|x,θ)|k·Φ(x, y)−k·Ep(y′|x,θ)Φ(x, y′)|·|h·Φ(x, y)−h·Ep(y′|x,θ)Φ(x, y′)|2 ≤ 2 supy∈Y |k·
Φ(x, y)| ∇2`z(θ)[h, h]. Therefore ϕ(z) = {2Φ(x, y′), y′ ∈ Y} (which is not a singleton).

Moreover we require the following two technical assumptions to guarantee that L(θ) and its first
and second derivatives are well defined for any θ ∈ H.

Assumption 3 (Boundedness) There exists R ≥ 0 such that supg∈ϕ(Z) ‖g‖ ≤ R almost surely.

Assumption 4 (Definition in 0) |`Z(0)|, ‖∇`Z(0)‖ and Tr(∇2`Z(0)) are almost surely bounded.

The assumptions above are usually easy to check in practice. In particular, if the support of ρ
is bounded, the mappings z 7→ `z(0),∇`z(0),Tr(∇2`z(0)) are continuous, and ϕ is uniformly
bounded on bounded sets, then they hold. The main regularity assumption we make on our statistical
problems follows.

Assumption 5 (Existence of a minimizer) There exists θ? ∈ H such that L(θ?) = infθ∈H L(θ).

While Assumption 3 is standard in the analysis of such models (Caponnetto and De Vito, 2007;
Sridharan et al., 2009; Steinwart et al., 2009; Bach, 2014), Assumption 5 imposes that the model is
“well-specified”, that is, for supervised learning situations from Example 1, we have chosen a rich
enough representation Φ. It is possible to study the non-realizable case in our setting by requiring
additional technical assumptions (see Steinwart et al. (2009) or discussion after (6)), but this is out
of scope of this paper. Note that our well-specified assumption (for logistic regression for simplicity
of arguments) is weaker than requiring f?(x) = E [Y |X] being equal to θ? · Φ(x). We can now
introduce the main definitions allowing our bias-variance decomposition.

Definition 1 (Hessian, Bias, Degrees of freedom) Let Lλ(θ) = L(θ)+λ
2‖θ‖

2; define the expected
Hessian H(θ), the regularized Hessian Hλ(θ), the bias Biasλ and the degrees of freedom dfλ as:

H(θ) = E
[
∇2`Z(θ)

]
, and Hλ(θ) = H(θ) + λI, (3)

Biasλ = ‖Hλ(θ?)−1/2∇Lλ(θ?)‖, (4)

dfλ = E
[
‖Hλ(θ?)−1/2∇`Z(θ?)‖2

]
. (5)
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Assumptions Bias Variance Optimal λ Optimal Rate

None λ 1
λn n−1/2 n−1/2 Thm. 3 and Cor. 4

Source λ2r+1 1
λn n−

1
2r+2 n−

2r+1
2r+2 Thm. 5 and Cor. 7

Source + Capacity λ2r+1 1
λ1/αn

n−
α

2rα+α+1 n−
2rα+α

2rα+α+1 Thm. 8 and Cor. 9

Table 1: Summary of convergence rates, without constants except λ, for source condition (Asm. 6):
θ? ∈ Im(H(θ?)r), r ∈ (0, 1/2], capacity condition (Asm. 7): dfλ = O(λ−1/α), α ≥ 1 .

Note that the bias and degrees of freedom only depend on the optimum θ? ∈ H and not on the min-
imizer θ?λ of the regularized expected risk. Moreover, the degrees of freedom dfλ correspond to the
usual Fisher information term commonly seen in the asymptotic analysis of M -estimation (Van der
Vaart, 2000; Lehmann and Casella, 2006), and correspond to the usual quantities introduced in the
analysis of least-squares (Caponnetto and De Vito, 2007). Indeed, in the least-squares case, we
recover exactly Biasλ = λ‖C−1/2

λ θ?‖ and dfλ = Tr(CC−1
λ ), where C is the covariance operator

C = E [Φ(x)⊗ Φ(x)] and Cλ = C + λI .
Our results will rely on the quadratic approximation of the losses around θ?. Borrowing tools

from the analysis of Newton’s method (Nesterov and Nemirovskii, 1994), this will only be possible
in the vicinity of θ?. The proper notion of vicinity is the so-called radius of the Dikin ellipsoid,
which we define as follows:

rλ(θ) such that 1/rλ(θ) = sup
z∈supp(ρ)

sup
g∈ϕ(z)

‖Hλ
−1/2(θ)g‖. (6)

Our most refined bounds will depend whether the bias term is small enough compared to rλ(θ?). We
believe that in the non realizable setting, the results we obtain would still hold when the bias term
is smaller than the Dikin radius, although one would have to modify the definitions to incorporate
the fact that θ? is not inH. The following informal result summarizes all of our results.

Theorem 2 (General bound, informal) Let n ∈ N, δ ∈ (0, 1/2], λ > 0. Under Assumptions 1
to 5, whenever

n ≥ C0
R2dfλ log 2

δ

λ
,

then with probability at least 1− 2δ, it holds

L(θ̂?λ)− L(θ?) ≤ Cbias Bias
2
λ + Cvar

dfλ log 2
δ

n
,

where C0,Cbias and Cvar are either universal or depend only on R‖θ?‖.

This mimics a usual bias-variance decomposition, with a bias term Bias2λ and a variance term pro-
portional to dfλ/n. In particular in the rest of the paper we quantify the constants and the rates under
various regularity assumptions, and specify the good choices of the regularization parameter λ. In
Table 1, we summarize the different assumptions and corresponding rates.

3. Slow convergence rates

Here we bound the quantity of interest without any regularity assumption (e.g., source of capacity
condition) beyond some boundedness assumptions on the learning problem. We consider the various
bounds on the derivatives of the loss `:
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B1(θ) = sup
z∈supp(ρ)

‖∇`z(θ)‖, B2(θ) = sup
z∈supp(ρ)

Tr(∇2`z(θ)), B1 = sup
‖θ‖≤‖θ?‖

B1(θ), B2 = sup
‖θ‖≤‖θ?‖

B2(θ).

Example 3 (Bounded derivatives) In all the losses considered above, assume the feature represen-
tation (Φ(x) for the Huber losses and the square loss, yΦ(x) for the logistic loss, and Φ(x, y) for
GLMs) is bounded by R̄. Then the losses considered above apart from the square loss are Lipschitz-
continuous and B1 is uniformly bounded by R̄. For these losses, B2 is also uniformly bounded
by R̄2. Using Example 2, one can take R̄ to be equal to a constant times R (1/2 and 1/3 for the
respective Huber losses, 1 for logistic regression and 1/2 for canonical GLMs). For the square loss
(where R = 0 because the third-order derivative is zero), B2 ≤ R̄2 and B1 ≤ R̄‖y‖∞ + R̄2‖θ?‖,
where ‖y‖∞ is an almost sure bound on the output y.

Theorem 3 (Basic result) Let n ∈ N and 0 < λ ≤ B2. Let δ ∈ (0, 1/2]. If

n ≥ 512
(
‖θ?‖2R2 ∨ 1

)
log

2

δ
, n ≥ 24

B2

λ
log

8B2

λδ
, n ≥ 256

R2B
2
1

λ2
log

2

δ
,

then with probability at least 1− 2δ,

L(θ̂?λ)− L(θ?) ≤ 84
B

2
1

λn
log

2

δ
+ 2λ‖θ?‖2. (7)

This result shown in Appendix C.3 as a consequence of Thm. 23 (also see the proof sketch in Sec. 6)
matches the one obtained with Lipschitz-continuous losses (Sridharan et al., 2009) and the one for
least-squares when assuming the existence of θ? (Caponnetto and De Vito, 2007). The following
corollary (proved as Thm. 34 in Appendix E) gives the bound optimized in λ, with explicit rates.

Corollary 4 (Basic Rates) Let δ ∈ (0, 1/2]. Under Assumptions 1 to 5, when n ≥ N,λ =
C0

√
log(2/δ)/n, then with probability at least 1− 2δ,

L(θ̂?λ)− L(θ?) ≤ C1 n
−1/2 log1/2 2

δ
.

with C0 = 16B1 max(1, R), C1 = 48B1 max(1, R) max(1, ‖θ?‖2) and with N defined in Eq. (41)
and satisfyingN=O(poly(B1,B2, R‖θ?‖)) where poly denotes a polynomial function of the inputs.

Both bias and variance terms are of order O(1/
√
n) and we recover up to constants terms the result

of Sridharan et al. (2009). In the next section, we will improve both bias and variance terms to
obtain faster rates.

4. Faster Rates with Source Conditions

Here we provide a more refined bound, where we introduce a source condition on θ? allowing to
improve the bias term and to achieve learning rates as fast asO(n−2/3). We first define the localized
versions of B1,B2:

B?1 = B1(θ?), B?2 = B2(θ?),

and recall the definition of the bias

Biasλ = ‖Hλ(θ?)−1/2∇Lλ(θ?)‖. (8)

7
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Note that since θ? is the minimizer of L, we have∇L(θ?) = 0, so that∇Lλ(θ?) = ∇L(θ?)+λθ? =
λθ?, and Biasλ = λ‖Hλ(θ?)−1/2θ?‖. This characterization is always bounded by λ‖θ?‖2, but
allows a finer control of the regularity of θ?, leading to improved rates compared to Sec. 3.

Note that in the least-squares case, we recover exactly the bias of ridge regression Biasλ =

λ‖C−1/2
λ θ?‖, where C is the covariance operator C = E [Φ(x)⊗ Φ(x)].

Using self-concordance, we will relate quantities at θ? to quantities at θ?λ using:

tλ = sup
z∈supp(ρ)

sup
g∈ϕ(z)

|(θ?λ − θ?) · g|.

The following theorem, proved in Appendix D.4, relates Biasλ to the excess risk.

Theorem 5 (Decomposition with refined bias) Let n ∈ N, δ ∈ (0, 1/2], 0 < λ ≤ B?2. Whenever

n ≥ 41
B?2
λ

log
8�2

1B
?
2

λδ
, n ≥ 42

(B?1R)2

λ2
log

2

δ
,

then with probability at least 1− 2δ, it holds

L(θ̂?λ)− L(θ?) ≤ Cbias Bias
2
λ + Cvar

(B?1)2

λn
log

2

δ
, (9)

where �1 ≤ etλ/2,41 ≤ 2304e4tλ(1/2 ∨R‖θ?‖),42 ≤ 256e2tλ ,Cbias ≤ 6e2tλ ,Cvar ≤ 256e3tλ .

It turns out that the radius of the Dikin ellipsoid rλ(θ?) defined in Eq. (6) provides the suf-
ficient control over the constants above: when the bias is of the same order of the radius of the
Dikin ellipsoid, the quantities Cbias,Cvar,41,42 become universal constants instead of depending
exponentially on R‖θ?‖, as shown by the lemma below, proved in Lemma 26 in Appendix D.

Lemma 6 When Biasλ ≤ rλ(θ?)
2 then tλ ≤ log 2 else tλ ≤ 2R‖θ?‖.

Interestingly, regularity of θ?, like the source condition below, can induce this effect, allowing a
better dependence on λ for the bias term.

Assumption 6 (Source condition) There exists r ∈ (0, 1/2] and v ∈ H such that θ? = H(θ?)rv.

In particular we denote by L := ‖v‖. Assumption 6 is commonly made in least-squares regres-
sion (Caponnetto and De Vito, 2007; Steinwart et al., 2009; Blanchard and Mücke, 2018) and
is equivalent to requiring that, when expressing θ? with respect to the eigenbasis of H(θ?), i.e.,
θ? =

∑
j∈N αjuj , where λj , uj is the eigendecomposition of H(θ?), and αj = θ · uj , then αj

decays as λrj . In particular, with this assumption, defining βj = v · uj ,

Bias2λ = λ2
∑
j

α2
j

λj + λ
= λ2

∑
j

λ2r
j β

2
j

λj + λ
≤ λ2

(
sup
j

λ2r
j

λj + λ

)∑
j

β2
j ≤ λ1+2r‖v‖2.

Note moreover that H(θ?) 4 B?2C, meaning that the usual sufficient conditions leading to the
source conditions for least-squares also apply here. For example, for logistic regression, if the
log-odds ratio is smooth enough, then it is in H. So, when H corresponds to a Sobolev space of
smoothness m and the marginal of ρ on the input space is a density bounded away from 0 and
infinity with bounded support, then the source condition corresponds essentially to requiring θ? to

8
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be (1 + 2r)m-times differentiable (see discussion after Thm. 9 of Steinwart et al., 2009, for more
details). A precise example can be found in Sec. 4.1 of Pillaud-Vivien et al. (2018).

In conclusion, the effect of additional regularity for θ? as Assumption 6, has two beneficial
effects: (a) on one side it allows to obtain faster rates as shown in the next corollary, (b) as mentioned
before, somewhat surprisingly, it reduces the constants to universal, since it allows the bias to go
to zero faster than the Dikin radius (indeed, the squared radius r2λ(θ?) is always larger than λ/R2,
which is strictly larger than λ1+2r‖v‖2 if r > 0 and λ small enough). This is why we do not the get
exponential constants imposed by Hazan et al. (2014).

Corollary 7 (Rates with source condition) Let δ ∈ (0, 1/2]. Under Assumptions 1 to 5 and As-
sumption 6, whenever n ≥ N and λ = (C0/n)1/(2+2r), then with probability at least 1− 2δ,

L(θ̂?λ)− L(θ?) ≤ C1 n−
1+2r
2+2r log

2

δ
,

with C0 = 256 (B?1/L)2, C1 = 8 (256)γ((B?1)γL1−γ)2, γ = 1+2r
2+2r and with N defined in Eq. (48)

and satisfying N = O(poly(B?1,B
?
2, L, R, log(1/δ))).

The corollary above, derived in Appendix F, is obtained by minimizing in λ the r.h.s. side of Eq. (9)
in Thm. 5, and considering that when θ? satisfies the source condition, then Biasλ ≤ λ1+2rL, while
the variance is still of the form 1/(λn). When r is close to 0, the rate 1/

√
n is recovered. When

instead the target function is more regular, implying r = 1/2, a rate of n−2/3 is achieved. Two
considerations are in order: (a) the obtained rate is the same as least-squares and minimax optimal
(Caponnetto and De Vito, 2007; Steinwart et al., 2009; Blanchard and Mücke, 2018), (b) the fact
that regularized ERM is adaptive to the regularity of the function up to r = 1/2 is a byproduct of
Tikhonov regularization as already shown for the least-squares case by Gerfo et al. (2008). Using
different regularization techniques may remove the limit r = 1/2.

5. Fast Rates with both Source and Capacity Conditions

In this section, we consider improved results with a finer control of the effective dimension dfλ
(often called degrees of freedom), which, together with the source condition allows to achieve rates
as fast as 1/n:

dfλ = E
[
‖Hλ(θ?)−1/2∇`Z(θ?)‖2

]
,

As mentioned earlier this definition of dfλ corresponds to the usual asymptotic term inM -estimation.
Moreover, in the case of least-squares, it corresponds to the standard notion of effective dimension
dfλ = Tr(CC−1

λ ) (Caponnetto and De Vito, 2007; Blanchard and Mücke, 2018). Note that by
definition, we always have dfλ 6 B?1

2/λ, but we can have in general a much finer control. For ex-
ample, for least-squares, dfλ = O(λ−1/α) if the eigenvalues of the covariance operator C decay as
λj(C) = O(j−α), for α ≥ 1. Moreover note that since C is trace-class, by Asm. 3, the eigenvalues
form a summable sequence and so C satisfies λj(C) = O(j−α) with α always larger than 1.

Example 4 (Generalized linear models) For generalized linear models, an extra assumption makes
the degrees of freedom particularly simple: if the probabilistic model is well-specified, that is, there
exists θ? such that almost surely, p(y|x) = p(y|x, θ?) = exp(θ?·Φ(x,y))∫

Y exp(θ?·Φ(x,y′))dµ(y′)
, then from the usual

Bartlett identities (Bartlett, 1953) relating the expected squared derivatives and Hessians, we have
E [∇`z(θ?)⊗∇`z(θ?)] = H(θ?), leading to dfλ = Tr(Hλ(θ?)−1H(θ?)).
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As we have seen in the previous example there are interesting problems for which dfλ = Tr(H(θ?)+
λI)−1H(θ?)). Since we have H(θ?) � B?2C, dfλ still enjoys a polynomial decay depending on the
eigenvalue decay of C as observed for least-squares. In the finite-dimensional setting where H is
of dimension d, note that in this case, dfλ is always bounded by d. Now we are ready to state our
result in the most general form, proved in Appendix D.4.

Theorem 8 (General bound) Let n ∈ N, δ ∈ (0, 1/2], 0 < λ ≤ B?2. Whenever

n ≥ 41
B?2
λ

log
8�2

1B
?
2

λδ
, n ≥ 42

dfλ ∨ (Q?)2

rλ(θ?)2
log

2

δ
,

with (Q?)2 = B?1
2/B?2, then with probability at least 1− 2δ, it holds

L(θ̂?λ)− L(θ?) ≤ Cbias Bias
2
λ + Cvar

dfλ ∨ (Q?)2

n
log

2

δ
, (10)

where, Cbias,Cvar,�1 ≤ 414, 41, 42 ≤ 5184 when Biasλ ≤ rλ(θ?)/2;
otherwise Cbias, Cvar, �1 ≤ 256e6R‖θ?‖, 41, 42 ≤ 2304(1 +R‖θ?‖)2e8R‖θ?‖.

As shown in the theorem above, the variance term depends on dfλ/n, implying that, when dfλ has
a better dependence in λ than 1/λ, it is possible to achieve faster rates. We quantify this with the
following assumption.

Assumption 7 (Capacity condition) There exists α > 0 and Q ≥ 0 such that dfλ ≤ Qλ−1/α.

Assumption 7 is standard in the context of least-squares, (Caponnetto and De Vito, 2007) and in
many interesting settings is implied by the eigenvalue decay order of H(θ?), or C as discussed
above. In the following corollary we quantify the effect of dfλ in the learning rates.

Corollary 9 Let δ ∈ (0, 1/2]. Under Assumptions 1 to 5, Assumption 6 and Assumption 7, when
n ≥ N and λ = (C0/n)α/(1+α(1+2r)), then with probability at least 1− 2δ,

L(θ̂?λ)− L(θ?) ≤ C1n
− α(1+2r)

1+α(1+2r) log
2

δ
,

with C0 = 256(Q/L)2, C1 = 8(256)γ (Qγ L1−γ)2, γ = α(1+2r)
1+α(1+2r) and N defined in Eq. (48) and

satisfying N = O(poly(B?1,B
?
2, L,Q, R, log(1/δ))).

The result above is derived in Cor. 39 in Appendix F and is obtained by bounding Biasλ with λ1+2rL
due to the source condition, and dfλ with λ−1/α due to the capacity condition and then optimizing
the r.h.s. of Eq. (10) in λ. Note that (a) the learning rate under the considered assumptions is the
same as least-squares and minimax optimal (Caponnetto and De Vito, 2007), and (b) when α = 1
the same rate of Cor. 7 is achieved, which can be as fast as n−2/3, otherwise, when α � 1, we
achieve a learning rate in the order of 1/n, for λ = n−1/(1+2r).

6. Sketch of the proof

In this section we will use the notation ‖v‖A := ‖A1/2v‖, with v ∈ H and A a bounded positive
semi-definite operator on H. Here we prove that the excess risk decomposes using the bias term
Biasλ defined in Eq. (8) and a variance term Vλ, where Vλ is defined as

Vλ := ‖∇L̂λ(θ?λ)‖H−1
λ (θ?λ), with L̂λ(·) =

1

n

n∑
i=1

`zi(·) +
λ

2
‖ · ‖2,

which in turn is a random variable that concentrate in high probability to
√
dfλ/n.

10
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Required tools. To proceed with the proof we need two main tools. The first is a result on the
equivalence of norms of the empirical Hessian Ĥλ(θ) = ∇2L̂λ(θ) w.r.t. the true Hessian Hλ(θ) =
∇2Lλ(θ) for λ > 0 and θ ∈ H. The result is proven in Lemma 30 of Appendix D.3, using
Bernstein inequalities for Hermitian operators (Tropp, 2012), and essentially states that for δ ∈
(0, 1], whenever n ≥ 24B2(θ)

λ log 8B2(θ)
λδ , then with probability 1− δ, it holds

‖ · ‖Hλ(θ) ≤ 2‖ · ‖
Ĥλ(θ)

, ‖ · ‖
Ĥ−1
λ (θ)

≤ 2‖ · ‖H−1
λ (θ). (11)

The second result is about localization properties induced by generalized self-concordance on the
risk. We express the result with respect to a generic probability µ (we will use it with µ = ρ and
µ = 1

n

∑n
i=1 δzi). Let µ be a probability distribution with support contained in the support of ρ.

Denote by Lµ(θ) the risk Lµ(θ) = Ez∼µ[`z(θ)] and by Lµ,λ(θ) = Lµ(θ) + λ
2‖θ‖

2 (then Lµ,λ = Lλ
when µ = ρ, or L̂λ when µ = 1

n

∑n
i=1 δzi).

Proposition 10 Under Assumptions 2 to 4, the following holds: (a) Lµ,λ(θ),∇Lµ,λ(θ),Hµ,λ(θ)
are defined for all θ ∈ H, λ ≥ 0, (b) for all λ > 0, there exists a unique θ?µ,λ ∈ H minimizing Lµ,λ
overH, and (c) for all λ > 0 and θ ∈ H,

Hµ,λ(θ) � et0Hµ,λ(θ?µ,λ), (12)

Lµ,λ(θ)− Lµ,λ(θ?µ,λ) ≤ ψ(t0)‖θ − θ?µ,λ‖2Hµ,λ(θ?µ,λ), (13)

φ(t0)‖θ − θ?µ,λ‖Hµ,λ(θ) ≤ ‖∇Lµ,λ(θ)‖H−1
µ,λ(θ), (14)

(d) Eqs. (12) and (13) hold also for λ = 0, provided that θ?µ,0 exists. Here t0 := t(θ − θ?µ,λ) and
φ(t) = (1− e−t)/t, ψ(t) = (et − t− 1)/t2.

The result above is proved in Appendix B.1 and is essentially an extension of results by Bach (2010)
applied to Lµ,λ under Assumptions 2 to 4.

Sketch of the proof. Now we are ready to decompose the excess risk using our bias and vari-
ance terms. In particular we will sketch the decomposition without studying the terms that lead
to constants terms. For the complete proof of the decomposition see Thm. 28 in Appendix D.1.
Since θ? exists by Assumption 5, using Eq. (13), applied with µ = ρ and λ = 0, we have
L(θ) − L(θ?) ≤ ψ(t(θ − θ?))‖θ − θ?‖2H(θ?) for any θ ∈ H. By setting θ = θ̂?λ, we obtain

L(θ̂?λ)− L(θ?) ≤ ψ(t(θ̂?λ − θ?))‖θ̂?λ − θ?‖2H(θ?).

The term ψ(t(θ̂?λ − θ?)) will become a constant. For the sake of simplicity, in this sketch of proof
we will not deal with it nor with other terms of the form t(·) leading to constants. On the other
hand, the term ‖θ̂?λ − θ?‖2H(θ?) will yield our bias and variance terms. Using the fact that H(θ?) �
H(θ?) + λI =: Hλ(θ?), by adding and subtracting θ?λ, we have

‖θ?λ − θ?‖H(θ?) ≤ ‖θ?λ − θ?‖Hλ(θ?) ≤ ‖θ?λ − θ?‖Hλ(θ?) + ‖θ̂?λ − θ?λ‖Hλ(θ?),

so
L(θ̂?λ)− L(θ?) ≤ const. × (‖θ?λ − θ?‖2Hλ(θ?) + ‖θ̂?λ − θ?λ‖Hλ(θ?))

2.
By applying Eq. (12) with µ = ρ and θ = θ?, we have Hλ(θ?) � etλHλ(θ?λ) and so we further
bound ‖θ̂?λ − θ?λ‖Hλ(θ?) with etλ/2‖θ̂?λ − θ?λ‖Hλ(θ?λ) obtaining

L(θ̂?λ)− L(θ?) ≤ const. × (‖θ?λ − θ?‖Hλ(θ?) + etλ/2‖θ̂?λ − θ?λ‖Hλ(θ?λ))
2.

The term ‖θ?λ − θ?‖Hλ(θ?) will lead to the bias terms, while the term ‖θ̂?λ − θ?λ‖Hλ(θ?λ) will lead to
the variance term.

11
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Bounding the bias terms. Recall the definition of bias Biasλ = ‖∇Lλ(θ?)‖H−1
λ (θ?) and of the

constant tλ := t(θ? − θ?λ). We bound ‖θ? − θ?λ‖Hλ(θ?) by applying Eq. (14) with µ = ρ and θ = θ?

‖θ? − θ?λ‖Hλ(θ?) ≤ 1/φ(tλ) ‖∇Lλ(θ?)‖H−1
λ (θ?) = 1/φ(tλ) Biasλ.

Bounding the variance terms. To bound the term ‖θ̂?λ − θ?λ‖Hλ(θ?λ), we assume n large enough
to apply Eq. (11) in high probability. Thus, we obtain

‖θ̂?λ − θ?λ‖Hλ(θ?λ) ≤ 2‖θ̂?λ − θ?λ‖Ĥλ(θ?λ)
.

Applying Eq. (14) with µ = 1
n

∑n
i=1 δzi and θ = θ̂?λ, since Lµ,λ = L̂λ for the given choice of µ,

‖θ?λ − θ̂?λ‖Ĥλ(θ?λ)
≤ ‖∇L̂λ(θ?λ)‖

Ĥ−1
λ (θ?λ)

/ φ(t(θ?λ − θ̂?λ)),

and applying Eq. (11) in high probability again, we obtain

‖∇L̂λ(θ?λ)‖
Ĥ−1
λ (θ?λ)

≤ 2‖∇L̂λ(θ?λ)‖Hλ
−1(θ?λ).

Bias-variance decomposition. A technical part of the proof relates ‖∇L̂λ(θ?λ)‖Hλ
−1(θ?λ) with

‖∇L̂λ(θ?)‖Hλ
−1(θ?) =: Vλ, by many applications of Prop. 10. Here we assume it is done, obtaining

L(θ̂?λ)− L(θ?) ≤ const. × (Bias2λ + V 2
λ ).

From Vλ to
√

dfλ/n. By construction,∇L̂λ(θ?λ) = 1
n

∑n
i=1 ζi, with ζi := ∇`zi(θ?λ)+λθ?λ. More-

over since the zi’s are i.i.d. samples from ρ, E [ζi] = ∇Lλ(θ?λ). Finally since θ?λ is the minimizer of
Lλ, ∇Lλ(θ?λ) = 0. Thus ∇L̂λ(θ?λ) is the average of n i.i.d. zero-mean random vectors, and so the
variance of Vλ is exactly

E
[
V 2
λ

]
=

1

n
E
[
‖H−1/2

λ (θ?)∇`Z(θ?)‖2
]

=
dfλ
n
.

Finally, by using Bernstein inequality for random vectors (e.g., Yurinsky, 1995, Thm. 3.3.4), we
bound Vλ roughly with

√
dfλ log(2/δ)/n in high probability.

7. Conclusion

In this paper we have presented non-asymptotic bounds with faster rates than O(1/
√
n), for regu-

larized empirical risk minimization with self-concordant losses such as the logistic loss. It would
be interesting to extend our work to algorithms used to minimize the empirical risk, in particular
stochastic gradient descent or Newton’s method.
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Organization of the Appendix
A Setting, definitions, assumptions

B Preliminary results on self concordant losses

B.1 Basic results on self-concordance (proof of Proposition 10)
B.2 Localization properties for tλ (proof of Lemma 6)

C Main result, simplified

C.1 Analytic decomposition of the risk

C.2 Concentration lemmas

C.3 Final result (proof of Thm. 3)

D Main result, refined analysis

D.1 Analytic decomposition of the risk

D.2 Analytic decomposition of terms related to the variance

D.3 Concentration lemmas

D.4 Final result (proof of Thms. 5 and 8)

E Explicit bounds for the simplified case (proof of Cor. 4)

F Explicit bounds for the refined case (proof of Cors. 7 and 9)

G Additional lemmas

G.1 Self-concordance and sufficient conditions to define L

G.2 Bernstein inequalities for operators

Appendix A. Setting, definitions, assumptions

Let Z be a Polish space and Z a random variable on Z whith law ρ. Let H be a separable (non-
necessarily finite) Hilbert space and let ` : Z × H → R be a loss function; we denote by `z(·) the
function `(z, ·). Our goal is to solve

inf
θ∈H

L(θ), with L(θ) = E [`Z(θ)] .

Given (zi)
n
i=1 we will consider the following estimator

θ̂?λ = arg min
θ∈H

L̂λ(θ), with L̂λ(θ) :=
1

n

n∑
i=1

`zi(θ) +
λ

2
‖θ‖2.

The goal of this work is to give upper bounds in high probability to the so called excess risk

L(θ̂?λ)− inf
θ∈H

L(θ).
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In the rest of this introduction we will introduce the basic assumptions required to make θ̂?λ and
the excess risk well defined, and we will introduce basic objects that are needed for the proofs.

First we introduce some notation we will use in the rest of the appendix: let λ ≥ 0, θ ∈ H
and A be a bounded positive semidefinite Hermitian operator on H, we denote by I, the identity
operator and

‖f‖A := ‖A1/2f‖, (15)

Aλ := A + λI, (16)

`λz (θ) := `z(θ) +
λ

2
‖θ‖2, (17)

Lλ(θ) := L(θ) +
λ

2
‖θ‖2. (18)

Now we recall the assumptions we require on the loss function `, ρ, (zi)1≤i≤n.

Assumption 1 (i.i.d. data) The samples (zi)1≤i≤n are independently and identically distributed
according to ρ.

Assumption 8 (Generalized self-concordance) The mapping z 7→ `z(θ) is measurable for all
θ ∈ H and for any z ∈ Z , the function `z is convex and three times differentiable. Moreover, there
exists a set ϕ(z) ⊂ H such that it holds:

∀θ ∈ H, ∀h, k ∈ H,
∣∣∇3`z(θ)[k, h, h]

∣∣ ≤ sup
g∈ϕ(z)

|k · g| ∇2`z(θ)[h, h].

Assumption 3 (Boundedness) There exists R ≥ 0 such that supg∈ϕ(Z) ‖g‖ ≤ R almost surely.

Assumption 4 (Definition in 0) |`Z(0)|, ‖∇`Z(0)‖ and Tr(∇2`Z(0)) are almost surely bounded.

Introduce the following definitions.

Definition 11 Let λ > 0, θ ∈ H. We introduce

B1(θ) = sup
z∈supp(ρ)

‖∇`z(θ)‖, B2(θ) = sup
z∈supp(ρ)

Tr
(
∇2`z(θ)

)
. (19)

H(θ) = E
[
∇2`Z(θ)

]
, Hλ(θ) = H(θ) + λI. (20)

θ?λ = arg min
θ∈H

Lλ(θ). (21)

Proposition 12 Under Assumptions 3, 4 and 8, B1(θ),B2(θ), L(θ),∇L(θ),H(θ), θ?λ exist for any
θ ∈ H, λ > 0. Moreover∇L = E [∇`Z(θ)], H(θ) = ∇2L(θ) and H(θ) is trace class.

Proof We start by proving, using the assumptions, that B2,B1 and θ 7→ supz∈supp(ρ) |`z(θ)| are all
locally bounded (see Lemmas 41 to 43). This allows us to show that `z(θ),∇`z(θ) and Tr(∇2`z(θ))
are uniformly integrable on any ball of finite radius. The fact that θ?λ exists is due to the strong
convexity of the function Lλ.

17
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Proposition 13 Under Assumptions 1, 4 and 8, when λ > 0, θ̂?λ exists and is unique.

Proof By Assumption 1 we know that z1, . . . , zn are in the support of ρ. Thus, by Assumption 4,
1
n

∑n
i=1 `zi is finite valued in 0. Since 1

n

∑n
i=1 `zi is convex three times differentiable as a sum of

such functions, it is real-valued on H and hence L̂λ is real-valued on H; by strong convexity, θ̂?λ
exists and is unique.

Recall that we also make the following regularity assumption.

Assumption 5 (Existence of a minimizer) There exists θ? ∈ H such that L(θ?) = infθ∈H L(θ).

Finally we conclude with the following definitions that will be used later.

Definition 14 For θ ∈ H, denote by t(θ) the function

t(θ) = sup
z∈supp(ρ)

(
sup
g∈ϕ(z)

|θ · g|

)
,

and define

Biasλ = ‖∇Lλ(θ?)‖Hλ
−1(θ?), (22)

V̂arλ = ‖H1/2
λ (θ?λ)Ĥ

−1/2
λ (θ?λ)‖2 ‖∇L̂λ(θ?λ)‖H−1

λ (θ?λ), (23)

dfλ = E
[
‖∇`Z(θ?)‖2

Hλ
−1(θ?)

]
, (24)

tλ = t(θ? − θ?λ), (25)

rλ(θ) such that 1/rλ(θ) = sup
z∈supp(ρ)

(
sup
g∈ϕ(z)

‖g‖Hλ
−1(θ)

)
. (26)

Appendix B. Preliminary results on self concordant losses

In this section, we show how our definition/assumption of self concordance (see Assumption 8)
enables a fine control on the excess risk. In particular, we clearly relate the difference in function
values to the quadratic approximation at the optimum as well as the renormalized gradient. We start
by presenting a general bounds in Appendix B.1 before applying them to the problem of localizing
the optimum Appendix B.2.

B.1. Basic results on self-concordance

In this section, as in the rest of the appendix, we are under the conditions of Assumption 8. In this
section only, we give ourselves a probability measure µ on Z . We will apply the results of this
section to µ = ρ, ρ̂, δz , where ρ̂ = 1

n

∑n
i=1 δzi and z is sampled from ρ.

First of all, let us introduce the following notation. For any probability measure µ on Z and any
θ ∈ H, define

• Rµ = supz∈supp(µ)

(
supg∈ϕ(z) ‖g‖

)
,

18



FAST RATES FOR REGULARIZED EMPIRICAL RISK MINIMIZATION THROUGH SELF-CONCORDANCE

• tµ(θ) = supz∈supp(µ)

(
supg∈ϕ(z) |θ · g|

)
.

In order to be able to define Lµ(θ) = Eµ [`z(θ)] and to derive under the expectation, we assume
that Assumptions 3 and 4 are satisfied for µ (replace ρ by µ in the assumption).

Since µ and ` satisfy Assumptions 3, 4 and 8, Proposition 44 ensures that we can define
Lµ(θ) = Eµ [`z(θ)] and Lµ,λ(θ) = Lµ(θ) + λ

2‖θ‖
2, as well as their respective Hessians Hµ(θ)

and Hµ,λ(θ).

The following result is greatly inspired from results in (Bach, 2010) on generalized self concor-
dant losses, and their refinement in (Ostrovskii and Bach, 2018). However, while Eqs. (27), (29)
and (30) appear more or less explicitly, Eq. (28) provides an easier way to deal with certain bounds
afterwards and was not used in this form before.

Proposition 15 (using the self-concordance of `) Let θ0, θ1 ∈ H and λ ≥ 0. Assume that (`z)z
and µ satisfy Assumptions 3, 4 and 8. We have the following inequalities:

• Bounds on Hessians

Hµ,λ(θ1) � exp (tµ(θ1 − θ0))Hµ,λ(θ0). (27)

• Bounds on gradients (if λ > 0)

φ (tµ(θ1 − θ0)) ‖θ1 − θ0‖Hµ,λ(θ0) ≤ ‖∇Lµ,λ(θ1)−∇Lµ,λ(θ0)‖H−1
µ,λ(θ0), (28)

‖∇Lµ,λ(θ1)−∇Lµ,λ(θ0)‖H−1
µ,λ(θ0) ≤ φ (tµ(θ1 − θ0)) ‖θ1 − θ0‖Hµ,λ(θ0), (29)

where φ(t) = (et − 1)/t and φ(t) = (1− e−t)/t.

• Bounds on function values

Lµ,λ(θ1)− Lµ,λ(θ0)−∇Lµ,λ(θ0)(θ1 − θ0) ≤ ψ (tµ(θ1 − θ0)) ‖θ1 − θ0‖2Hµ,λ(θ0), (30)

where ψ(t) = (et − t− 1)/t2.

Proof First of all, note that for any µ and λ, given θ ∈ H and k, h ∈ H,

∣∣∇3Lµ,λ(θ)[h, k, k]
∣∣ =

∣∣∣Ez∼µ [∇3`λz (θ)[h, k, k]
]∣∣∣

≤ Ez∼µ
[∣∣∇3`z(θ)[h, k, k]

∣∣]
≤ Ez∼µ

[
sup
g∈ϕ(z)

|h · g| ∇2`z(θ)[k, k]

]
≤ tµ(h) Ez∼µ

[
∇2`z(θ)[k, k]

]
= tµ(h)∇2Lµ(θ)[k, k].

This yields the following fundamental inequality :∣∣∇3Lµ,λ(θ)[h, k, k]
∣∣ ≤ tµ(h) ∇2Lµ,λ(θ)[k, k]. (31)

We now define, for any t ∈ R, θt := θ0 + t(θ1 − θ0).

19



FAST RATES FOR REGULARIZED EMPIRICAL RISK MINIMIZATION THROUGH SELF-CONCORDANCE

Point 1. For the first inequality, let h ∈ H be a fixed vector, and consider the function ϕ : t ∈
R 7→ ∇2Lµ,λ(θt)[h, h]. Since ϕ′(t) = ∇3Lµ,λ(θt)[θ1 − θ0, h, h], using Eq. (31), we get that
ϕ′(t) ≤ tµ(θ1 − θ0) ϕ(t). Using Lemma 40, we directly find that ϕ(1) ≤ exp(tµ(θ1 − θ0))ϕ(0),
which, rewriting the definition of ϕ, yields

∇2Lµ,λ(θ1)[h, h] ≤ exp(tµ(θ1 − θ0))∇2Lµ,λ(θ0)[h, h].

This being true for any direction h, we have (27).

Point 2. To prove Eq. (28), let us look at the quantity (θ1−θ0) ·(∇Lµ,λ(θ1)−∇Lµ,λ(θ0)). Since
∇Lµ,λ(θ1)−∇Lµ,λ(θ0) =

∫ 1
0 ∇

2Lµ,λ(θt)(θ1 − θ0)dt, we have

(θ1 − θ0) · (∇Lµ,λ(θ1)−∇Lµ,λ(θ0)) =

∫ 1

0
∇2Lµ,λ(θt)[θ1 − θ0, θ1 − θ0]dt.

Applying Eq. (27) to θ0 and θt and the reverse, we find that

∀t ∈ [0, 1], e−tt
µ(θ1−θ0)∇2Lµ,λ(θ0) � ∇2Lµ,λ(θt).

Hence, integrating the previous equation, we have

(θ1 − θ0) · (∇Lµ,λ(θ1)−∇Lµ,λ(θ0)) ≥ φ (tµ(θ1 − θ0)) ‖θ1 − θ0‖2Hµ,λ(θ0).

Finally, bounding (θ1−θ0)·(∇Lµ,λ(θ1)−∇Lµ,λ(θ0)) by ‖θ1−θ0‖Hµ,λ(θ0) ‖∇Lµ,λ(θ1)−∇Lµ,λ(θ0)‖H−1
µ,λ(θ0),

and simplifying by ‖θ1 − θ0‖Hµ,λ(θ0), we obtain Eq. (28).

Point 3. To prove Eq. (29), first write

‖∇Lµ,λ(θ1)−∇Lµ,λ(θ0)‖H−1
µ,λ(θ0) = ‖

∫ 1

0
H
−1/2
µ,λ (θ0)Hµ,λ(θt)(θ1 − θ0)dt‖

= ‖
∫ 1

0
H
−1/2
µ,λ (θ0)Hµ,λ(θt)H

−1/2
µ,λ (θ0) H

1/2
µ,λ(θ0)(θ1 − θ0)dt‖

≤
(∫ 1

0
‖H−1/2

µ,λ (θ0)Hµ,λ(θt)H
−1/2
µ,λ (θ0)‖ dt

)
‖θ1 − θ0‖Hµ,λ(θ0).

Then apply Eq. (27) to have

∀t ∈ [0, 1], Hµ,λ(θt) � ett
µ(θ1−θ0)Hµ,λ(θ0).

This implies
∀t ∈ [0, 1], H

−1/2
µ,λ (θ0)Hµ,λ(θt)H

−1/2
µ,λ (θ0) � ettµ(θ1−θ0) I.

And hence in particular

∀t ∈ [0, 1], ‖H−1/2
µ,λ (θ0)Hµ,λ(θt)H

−1/2
µ,λ (θ0)‖ ≤ ettµ(θ1−θ0).

Finally, integrating this, we get∫ 1

0
‖H−1/2

µ,λ (θ0)Hµ,λ(θt)H
−1/2
µ,λ (θ0)‖ dt ≤ φ (tµ(θ1 − θ0)) .

Thus Eq. (29) is proved.
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Point 4. To prove Eq. (30), define ∀t ∈ R, ϕ(t) = Lµ,λ(θt)− Lµ,θ(θ0)− t ∇Lµ,λ(θ0)(θ1 − θ0)
We have ϕ′′(t) = ‖θ1 − θ0‖2Hµ,λ(θt)

≤ et t
µ(θ1−θ0)ϕ′′(0). Then using the fact that ϕ(0), ϕ′(0) = 0

and integrating this inequality two times, we get the result.

Proof of Proposition 10. First note that since the support of µ is included in the support of ρ,
Assumption 3 and Assumption 4 also hold for µ. Hence, since Assumptions 2 to 4 are satisfied, by
Proposition 44, Lµ,λ,∇Lµ,λ and ∇2Lµ,λ are well-defined.

Assuming the existence of a minimizer θ?µ,λ of Lµ,λ, the reported equations are the same than
those of Proposition 15 when taking θ1 = θ and θ0 = θ?µ,λ, with the fact that tµ(v) ≤ t(v) for any
v ∈ H since the support of µ is a subset of the support of ρ, and ∇Lµ,λ(θ?µ,λ) = 0. Note that since
Lµ,λ is defined onH, if λ > 0, then θ?µ,λ always exists and is unique by strong convexity.

B.2. Localization properties for tλ

The aim of this section is to localize the optima θ?λ and θ̂?λ using the re-normalized gradient. This
type of result is inspired by Proposition 2 of (Bach, 2010) or Proposition 3.5 of (Ostrovskii and
Bach, 2018). However, their proof is based on a slightly different result, namely Eq. (28), and its
formulation is slightly different. Indeed, while the two propositions mentioned above concentrate
on performing a quadratic approximation directly, we bound the term that could have been too large
in that quadratic approximation.

Proposition 16 (localisation) Let θ ∈ H, then the following holds

‖∇Lλ(θ)‖H−1
λ (θ) ≤

rλ(θ)

2
=⇒ t(θ − θ?λ) = tλ ≤ log 2, (32)

‖∇L̂λ(θ)‖Hλ
−1(θ) ‖Ĥ

−1/2
λ (θ)Hλ

1/2(θ)‖2 ≤ rλ(θ)

2
=⇒ t(θ − θ̂?λ) ≤ log 2. (33)

Proof To prove Eq. (32), we first write

t(θ − θ?λ) = sup
z∈supp(ρ)

sup
g∈ϕ(z)

|(θ − θ?λ) · g| ≤ ‖θ − θ?λ‖Hλ(θ) sup
z∈supp(ρ)

sup
g∈ϕ(z)

‖g‖H−1
λ (θ).

Now we use Eq. (14) to bound ‖θ − θ?λ‖Hλ(θ), and putting things together, we get

t(θ − θ?λ)φ (t(θ − θ?λ)) ≤
‖∇Lλ(θ)‖H−1

λ (θ)

rλ(θ)
.

Using the fact that tφ(t) = 1 − e−t is an increasing function, we see that if tφ(t) ≤ 1/2, then
t ≤ log 2 hence the result.

To prove Eq. (33), we use the same reasoning. First, we bound

t(θ−θ̂?λ) = sup
z∈supp(ρ)

sup
g∈ϕ(z)

∣∣∣(θ − θ̂?λ) · g
∣∣∣ ≤ ‖θ−θ̂?λ‖Ĥλ(θ)

‖Ĥ−1/2
λ (θ)Hλ

1/2(θ)‖ sup
z∈supp(ρ)

sup
g∈ϕ(z)

‖g‖H−1
λ (θ).

Now using Eq. (14) to the function L̂λ, we get

t(θ − θ̂?λ)φ
(
tρ̂(θ − θ̂?λ)

)
≤ ‖∇L̂λ(θ)‖

Ĥ−1
λ (θ)

‖Ĥ−1/2
λ (θ)Hλ

1/2(θ)‖ 1

rλ(θ)
.
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Now using the fact that tρ̂(θ − θ̂?λ) ≤ t(θ − θ̂?λ) and that φ is a decreasing function, and that

‖∇L̂λ(θ)‖
Ĥ−1
λ (θ)

≤ ‖Ĥ−1/2
λ (θ)Hλ

1/2(θ)‖ ‖∇L̂λ(θ)‖Hλ
−1(θ), this yields

t(θ − θ̂?λ)φ
(
t(θ − θ̂?λ)

)
≤ ‖∇L̂λ(θ)‖Hλ

−1(θ) ‖Ĥ
−1/2
λ (θ)Hλ

1/2(θ)‖2 1

rλ(θ)
.

We conclude using the same argument as before.

Appendix C. Main result, simplified

In this section, we perform a simplified analysis in the case where we assume nothing on Biasλ
more than just the fact that θ? exists. In this section we assume that `z and ρ satisfy Assumptions 3
to 5 and 8.

Definition 17 (Definition of B1, B2 and dfλ) Under assumptions Assumptions 3 to 5 and 8, the
following quantities are well-defined and real-valued.

B1 = sup
‖θ‖≤‖θ?‖

B1(θ) B2 = sup
‖θ‖≤‖θ?‖

B2(θ), dfλ = E
[
‖∇`z(θ?λ)‖2

Hλ
−1(θ?λ)

]
.

Proposition 18 The quantities in Definition 17 are finite and moreover

dfλ ≤
B

2
1

λ
.

Proof These are well defined thanks to Lemmas 41 and 42.

Definition 19 (Constants) In this section, we will use the following constants.

Kvar =
1 + ψ(log 2)

φ(log 2)2
≤ 4, 4 = 2

√
2

(
1 +

1

2
√

3

)
≤ 4,

Cbias = 1 +
Kvar

8
≤ 2, Cvar = 2Kvar42 ≤ 84.

C.1. Analytic results

Theorem 20 (Analytic decomposition) For any λ > 0 and n ∈ N, if R√
λ
V̂arλ ≤ 1

2 ,

L(θ̂?λ)− L(θ?) ≤ Kvar V̂ar
2

λ + λ‖θ?‖2, (34)

where Kvar is defined in Definition 19.
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Proof
First decompose the excess risk of θ̂?λ in the following way:

L(θ̂?λ)− L(θ?) = Lλ(θ̂?λ)− Lλ(θ?λ)︸ ︷︷ ︸
variance

+L(θ?λ)− L(θ?)︸ ︷︷ ︸
bias

+
λ

2

(
‖θ?λ‖2 − ‖θ̂?λ‖2

)
︸ ︷︷ ︸

mixed

.

1) Variance term: For the variance term, use Eq. (13)

Lλ(θ̂?λ)− Lλ(θ?λ) ≤ ψ
(
t(θ?λ − θ̂?λ)

)
‖θ̂?λ − θ?λ‖2Hλ(θ?λ).

2) Bias term: For the bias term, note that since ‖θ?λ‖ ≤ ‖θ?‖,

L(θ?λ)− L(θ?) = Lλ(θ?λ)− Lλ(θ?) +
λ

2
‖θ?‖2 − λ

2
‖θ?λ‖2 ≤

λ

2
‖θ?‖2.

3) Mixed term: For the mixed term, since ‖θ?λ‖Hλ(θ?λ)−1 ≤ ‖Hλ(θ?λ)−1/2‖‖θ?λ‖ ≤ λ−1/2‖θ?λ‖ ≤
λ−1/2‖θ?‖, we have

λ

2

(
‖θ?λ‖2 − ‖θ̂?λ‖2

)
=
λ

2

(
θ?λ − θ̂?λ

)
·
(
θ?λ + θ̂?λ

)
≤ λ

2
‖θ?λ − θ̂?λ‖Hλ(θ?λ)

(
‖θ̂?λ − θ?λ‖Hλ(θ?λ)−1 + 2‖θ?λ‖Hλ(θ?λ)−1

)
≤ 1

2
‖θ?λ − θ̂?λ‖2Hλ(θ?λ) +

√
λ‖θ?‖ ‖θ?λ − θ̂?λ‖Hλ(θ?λ)

≤ ‖θ?λ − θ̂?λ‖2Hλ(θ?λ) +
λ

2
‖θ?‖2.

where we get the last inequality by using ab ≤ a2

2 + b2

2 .
4) Putting things together

L(θ̂?λ)− L(θ?) ≤
(

1 + ψ
(
t(θ?λ − θ̂?λ)

))
‖θ?λ − θ̂?λ‖2Hλ(θ?λ) + λ‖θ?‖2.

By using Eq. (14) we have

‖θ?λ − θ̂?λ‖Hλ(θ?λ) ≤ ‖Hλ
1/2(θ?λ)Ĥ

−1/2
λ (θ?λ)‖ ‖θ?λ − θ̂?λ‖Ĥλ(θ?λ)

≤ 1

φ
(
tρ̂(θ?λ − θ̂?λ)

) ‖Hλ
1/2(θ?λ)Ĥ

−1/2
λ (θ?λ)‖ ‖∇L̂λ(θ?λ)‖

Ĥ−1
λ (θ?λ)

.

Note that by multiplying and dividing for Hλ
1/2(θ?λ),

‖∇L̂λ(θ?λ)‖
Ĥ−1
λ (θ?λ)

= ‖Ĥ−1/2
λ (θ?λ)∇L̂λ(θ?λ)‖ = ‖Ĥ−1/2

λ (θ?λ)Hλ
−1/2(θ?λ)Hλ

1/2(θ?λ)∇L̂λ(θ?λ)‖

≤ ‖Ĥ−1/2
λ (θ?λ)Hλ

−1/2(θ?λ)‖‖Hλ
1/2(θ?λ)∇L̂λ(θ?λ)‖

= ‖Ĥ−1/2
λ (θ?λ)Hλ

−1/2(θ?λ)‖‖∇L̂λ(θ?λ)‖Hλ
−1(θ?λ).
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Then,

‖θ?λ − θ̂?λ‖Hλ(θ?λ) ≤
1

φ
(
t(θ?λ − θ̂?λ)

) ‖Hλ
1/2(θ?λ)Ĥ

−1/2
λ (θ?λ)‖2 ‖∇L̂λ(θ?λ)‖Hλ

−1(θ?λ)

=
1

φ
(
t(θ?λ − θ̂?λ)

) V̂arλ.

Now we know that using Eq. (33), if V̂arλ ≤
rλ(θ?λ)

2 , then t(θ?λ − θ̂?λ) ≤ log 2, which yields the
following bound:

L(θ̂?λ)− L(θ?) ≤ (1 + ψ (log 2))

φ(log 2)2
V̂arλ + λ‖θ?‖2.

Finally, we can bound 1
rλ(θ?λ) ≤

R
λ1/2

to have the final form of the proposition.

C.2. Probabilistic results

Lemma 21 (bounding ‖∇L̂λ(θ?λ)‖Hλ(θ?λ)) Let n ∈ N, λ > 0 and δ ∈ (0, 1]. For k ≥ 1, if

n ≥ 24
B2

λ
log

2

δ
, n ≥ k22 log

2

δ
,

then with probability at least 1− δ,

‖Hλ(θ?λ)−1/2∇L̂λ(θ?λ)‖ ≤ 4/2

√
dfλ ∨ (B

2
1/B2) log 2

δ

n
+

2

k

√
λ‖θ?‖

where4 is defined in Definition 19.

Proof 1) First use Bernstein inequality for random vectors (e.g. Thm. 3.3.4 of Yurinsky, 1995): for
any n ∈ N and δ ∈ (0, 1], with probability at least 1− δ, we have

‖Hλ(θ?λ)−1/2∇L̂λ(θ?λ)‖ ≤
2M log 2

δ

n
+ σ

√
2 log 2

δ

n
,

where M = supz∈supp(ρ) ‖∇`λz (θ?λ)‖Hλ
−1(θ?λ) and σ = E

[
‖∇`λz (θ?λ)‖2

Hλ
−1(θ?λ)

]1/2
.

2) Using the fact that∇`λz (θ?λ) = ∇`z(θ?λ) + λθ?λ, we bound M as follows:

M = sup
z∈supp(ρ)

‖∇`λz (θ?λ)‖Hλ(θ?λ) ≤ sup
z∈supp(ρ)

‖∇`z(θ?λ)‖Hλ(θ?λ)+λ‖θ?λ‖Hλ
−1(θ?λ) ≤

B1√
λ

+
√
λ‖θ?‖,

where in the last inequality, we use the fact that ‖θ?λ‖Hλ
−1(θ?λ) ≤ 1√

λ
‖θ?λ‖ ≤

1√
λ
‖θ?‖. Similarly, we

bound σ

σ ≤ E
[
‖∇`z(θ?λ)‖2

Hλ
−1(θ?λ)

]1/2
+ λ‖θ?λ‖Hλ

−1(θ?λ) ≤ df
1/2
λ +

√
λ‖θ?‖.
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3) Injecting these bounds in the concentration inequality,

‖Hλ(θ?λ)−1/2∇L̂λ(θ?λ)‖ ≤

√
2B2 log 2

δ

λn

√
2(B

2
1/B2) log 2

δ

n
+

√
2dfλ log 2

δ

n

+
√
λ‖θ?‖

2 log 2
δ

n
+

√
2 log 2

δ

n

 ,

where we have decomposed 2B
2
1 log 2

δ√
λn

=

√
2B2 log 2

δ
λn

√
2(B

2
1/B2) log 2

δ
n for the first term. Reordering

the terms, this yields

‖Hλ(θ?λ)−1/2∇L̂λ(θ?λ)‖ ≤

1 +

√
2B2 log 2

δ

λn


√√√√2dfλ ∨

(
B

2
1/B2

)
log 2

δ

n

+
√
λ‖θ?‖

2 log 2
δ

n
+

√
2 log 2

δ

n

 .

4) Now assuming that

n ≥ 24
B2

λ
log

2

δ
, n ≥ k22 log

2

δ
,

this yields

‖Hλ(θ?λ)−1/2∇L̂λ(θ?λ)‖ ≤
(

1 +
1

2
√

3

)√
2dfλ ∨ (B

2
1/B2) log 2

δ

n
+

2

k

√
λ‖θ?‖.

Combining the two previous lemmas, we get:

Lemma 22 (Bounding V̂arλ) Let n ∈ N and 0 < λ ≤ B2. Let δ ∈ (0, 1]. If for k ≥ 1

n ≥ 24
B2

λ
log

8B2

λδ
, n ≥ 2k2 log

2

δ
,

then with probability at least 1− 2δ,

V̂arλ ≤ 4

√
dfλ ∨ (B

2
1/B2) log 2

δ

n
+

4

k

√
λ‖θ?‖,

where4 is a constant defined in Definition 19.

Proof Recall that V̂arλ = ‖Hλ
1/2(θ?λ)Ĥ

−1/2
λ (θ?λ)‖2 ‖∇L̂λ(θ?λ)‖

Ĥ−1
λ (θ?λ)

. Using Lemma 30, under

the conditions of this lemma, we have ‖Hλ
1/2(θ?λ)Ĥ

−1/2
λ (θ?λ)‖2 ≤ 2. Combining this with the

bound for ‖∇L̂λ(θ?λ)‖
Ĥ−1
λ (θ?λ)

obtained in Lemma 21, we get the result (the probability 1 − 2δ

comes from the fact that we perform a union bound).
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C.3. Final result

Theorem 23 (General bound, simplified setting) Let n ∈ N and 0 < λ ≤ B2. Let δ ∈ (0, 1]. If

n ≥ 512
(
‖θ?‖2R2 ∨ 1

)
log

2

δ
, n ≥ 24

B2

λ
log

8B2

λδ
, n ≥ 1642R2 dfλ ∨ (B

2
1/B2)

λ
log

2

δ
,

then with probability at least 1− 2δ,

L(θ̂?λ)− L(θ?) ≤ Cvar
dfλ ∨ (B

2
1/B2)

n
log

2

δ
+ Cbiasλ‖θ?‖2,

where4,Cbias,Cvar are defined in Definition 19.

Proof 1) Recall the analytical decomposition in Thm. 20. For any λ > 0 and n ∈ N, if R√
λ
V̂arλ ≤ 1

2 ,

L(θ̂?λ)− L(θ?) ≤ Kvar V̂ar
2

λ + λ‖θ?‖2,

where Kvar is defined in Definition 19.
2) Now apply Lemma 22 for a given k ≥ 1. If

n ≥ 24
B2

λ
log

8B2

λδ
, n ≥ 2k2 log

2

δ
,

then with probability at least 1− 2δ,

V̂arλ ≤ 4

√
dfλ ∨ (B

2
1/B2) log 2

δ

n
+

4

k

√
λ‖θ?‖,

where4 is a constant defined in Definition 19.
In order to satisfy the condition to have the analytical decomposition, namely R√

λ
V̂arλ ≤ 1

2 , it
is therefore sufficient to have

4 R

√
dfλ ∨ (B

2
1/B2) log 2

δ

λn
≤ 1

4
,

4

k
R‖θ?‖ ≤ 1

4
.

3) Thus, if we choose k = 16(R‖θ?‖ ∨ 1), we have both k ≥ 1 and the second condition in the
previous equation. Moreover, the condition n ≥ 2k2 log 2

δ becomes n ≥ 512(R2‖θ?‖2 ∨ 1) log 2
δ .

Hence, under the conditions of this theorem, we can apply the analytical decomposition :

L(θ̂?λ)− L(θ?) ≤ Kvar V̂ar
2

λ + λ‖θ?‖2 ≤ 2Kvar42 dfλ ∨ (B
2
1/B2) log 2

δ

n
+

(
1 +Kvar

32

k2

)
λ‖θ?‖2.

In the last inequality, we have used (a+ b)2 ≤ 2a2 + 2b2 to separate the terms coming from V̂ar
2

λ.
Finally, using the fact that k ≥ 16 and hence that 32

k2
≤ 1

8 , we get the constants in the theorem.

Proof of Thm. 3 Since ∀λ > 0, dfλ ≤ B
2
1
λ , and since λ ≤ B2, dfλ ∨ B

2
1/B2 ≤ B

2
1
λ . From

Definition 19, we get that4 ≤ 4, Cbias ≤ 2, Cvar ≤ 84. Thus, we can use these bounds in Thm. 23
to obtain the result.
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Appendix D. Main result, refined analysis

In subsection Appendix D.1 we split the excess risk in terms of bias and variance, that will be
controlled in Appendix D.3, the final result is Thm. 8 in Appendix D.4, while in Appendix F a
version with explicit dependence in λ, n is reported.

Constants First, we introduce three constants that will be crucial for the final bound.

Definition 24
B?1 = B1(θ?), B?2 = B2(θ?), Q∗ = B?1/

√
B?2.

In the following sections, we also will use the following functions of tλ and t̃λ which we will
treat as constants (see Proposition 27).

Definition 25

Kbias(tλ) = 2
ψ(tλ + log 2)

φ(tλ)2
≤ 2e3tλ , Kvar(tλ) = 2

ψ(tλ + log 2)etλ

φ(log 2)2
≤ 8e2tλ ,

�1(tλ) = etλ/2, �2(tλ) = etλ/2
(
1 + etλ

)
≤ 2e3tλ/2

Cbias = ψ(tλ + log 2)

(
2

φ(tλ)
+

etλ

φ(log 2)2

)
≤ 6e2tλ , Cvar =

64ψ(tλ + log 2)e2tλ

φ(log 2)2
≤ 256e3tλ

41 = 576�2
1�

2
2(1/2 ∨ t̃λ)2 ≤ 2304e4tλ (̃tλ ∨ 1/2)2, 42 = 256�4

1 ≤ 256e2tλ .

Note that theses functions are all increasing in tλ and t̃λ, and are lower bounded by strictly
positive constants.

For the second bounds, we use the fact that ψ(t) ≤ et

2 and 1/φ(t) ≤ et to bound all the quanti-
ties using only exponentials of tλ.

A priori, these constants will depend on λ. However, we can always bound tλ and t̃λ in the
following way.

Lemma 26 Recall the definitions of tλ := t(θ?λ − θ?) and t̃λ := Biasλ
rλ(θ?) . We have the following

cases.

• If t̃λ ≤ 1
2 , then tλ ≤ log 2,

• else, t̃λ ≤ R‖θ?‖ and tλ ≤ 2R‖θ?‖.

Proof The first point is a direct application of Eq. (32). One can obtain the second by noting that
t(θ?λ− θ?) ≤ R‖θ?λ− θ?‖. Since ‖θ?λ‖ ≤ ‖θ?‖, we have the bound on tλ. For the bound on t̃λ, since
Biasλ ≤

√
λ‖θ?‖ and 1

rλ(θ?) ≤
R√
λ

, we have the wanted bound.

Hence, we can always bound the constants in Definition 25 by constants independant of λ.

Proposition 27 If t̃λ ≤ 1/2, then tλ ≤ log 2 and

Kbias(tλ) ≤ 4, Kvar(tλ) ≤ 7, �1(tλ) ≤ 2, �2(tλ) ≤ 5

41(tλ, t̃λ) ≤ 5184, 42(tλ) ≤ 1024, Cbias ≤ 6, Cvar ≤ 414.
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Else,

Kbias(tλ) ≤ 2e6R‖θ?‖, Kvar(tλ) ≤ 8e4R‖θ?‖, �1(tλ) ≤ eR‖θ?‖,
�2(tλ) ≤ 2e3R‖θ?‖, 41(tλ, t̃λ) ≤ 2304(R‖θ?‖)2e8R‖θ?‖, 42(tλ) ≤ 256e4R‖θ?‖,

Cbias ≤ 6e4R‖θ?‖, Cvar ≤ 256e6R‖θ?‖.

Proof For the first bound, we use the fact that tλ ≤ log 2 and plug that in the expressions above as
these functions are increasing in tλ. We compute them numerically from the definition.

For the second set of bounds, we simply inject the bounds for tλ and t̃λ in the second bounds of
Definition 25.

D.1. Analytic decomposition of the risk

In this section, we make use of self-concordance to control certain quantities required to control the
variance, with respect to our main quantities Biasλ, rλ and dfλ. The excess risk has been already
decomposed in Sec. 6.

Theorem 28 (Analytic decomposition) Let λ > 0 and Kbias and Kvar be the increasing functions
of tλ described in Eq. (37). When V̂arλ ≤ rλ(θ?λ)/2, then

L(θ̂?λ)− L(θ?) ≤ Kbias(tλ) Bias2λ + Kvar(tλ) V̂ar
2

λ. (35)

Moreover Kbias(tλ),Kvar(tλ) ≤ 7 if Biasλ ≤ 1
2 rλ(θ?), otherwise Kbias(tλ),Kvar(tλ) ≤ 8e6‖θ?‖ R

(see Proposition 27 in Appendix D for more precise bounds).

Proof Since θ? exists by Assumption 5, using Eq. (13), applied with µ = ρ and λ = 0, we have
L(θ)− L(θ?) ≤ ψ(t(θ − θ?))‖θ − θ?‖2H(θ?), for any θ ∈ H. By setting θ = θ̂?λ, we obtain

L(θ̂?λ)− L(θ?) ≤ ψ(t(θ̂?λ − θ?))‖θ̂?λ − θ?‖2H(θ?).

Using the fact that H(θ?) � H(θ?) + λI =: Hλ(θ?), by adding and subtracting θ?λ, we have

‖θ?λ − θ?‖H(θ?) ≤ ‖θ?λ − θ?‖Hλ(θ?) ≤ ‖θ?λ − θ?‖Hλ(θ?) + ‖θ̂?λ − θ?λ‖Hλ(θ?),

and analogously since t(·) is a (semi)norm, t(θ̂?λ − θ?) ≤ tλ + t(θ̂?λ − θ?), so

L(θ̂?λ)− L(θ?) ≤ ψ(tλ + t(θ̂?λ − θ?λ)) (‖θ?λ − θ?‖Hλ(θ?) + ‖θ̂?λ − θ?λ‖Hλ(θ?))
2.

By applying Eq. (12) with µ = ρ and θ = θ?, we have Hλ(θ?) � etλHλ(θ?λ) and so

L(θ̂?λ)− L(θ?) ≤ ψ(tλ + t(θ̂?λ − θ?λ)) (‖θ?λ − θ?‖Hλ(θ?) + etλ/2‖θ̂?λ − θ?λ‖Hλ(θ?λ))
2. (36)

The terms tλ and ‖θ?λ − θ?‖Hλ(θ?) are related to the bias terms, while the terms t(θ̂?λ − θ?λ) and
‖θ̂?λ − θ?λ‖Hλ(θ?λ) are related to the variance term.

28



FAST RATES FOR REGULARIZED EMPIRICAL RISK MINIMIZATION THROUGH SELF-CONCORDANCE

Bounding the bias terms. Recall the definition of the bias Biasλ = ‖∇Lλ(θ?)‖H−1
λ (θ?). We

bound tλ = t(θ?λ− θ?), by Lemma 6 and the term ‖θ?− θ?λ‖Hλ(θ?) by applying Eq. (14) with µ = ρ
and θ = θ?

‖θ? − θ?λ‖Hλ(θ?) ≤ 1/φ(tλ) ‖∇Lλ(θ?)‖H−1
λ (θ?) = 1/φ(tλ) Biasλ.

Bounding the variance terms. First we bound the term ‖θ̂?λ − θ?λ‖Hλ(θ?λ) := ‖Hλ(θ?λ)1/2(θ̂?λ −
θ?λ)‖, by multiplying and dividing for Ĥλ(θ?λ)−1/2, we have

‖θ̂?λ − θ?λ‖Hλ(θ?λ) = ‖Hλ(θ?λ)1/2Ĥλ(θ?λ)−1/2Ĥλ(θ?λ)1/2(θ̂?λ − θ?λ)‖

≤ ‖Hλ(θ?λ)1/2Ĥλ(θ?λ)−1/2‖‖θ̂?λ − θ?λ‖Ĥλ(θ?λ)
.

Applying Eq. (14) with µ = 1
n

∑n
i=1 δzi and θ = θ̂?λ, since Lµ,λ = L̂λ for the given choice of µ, we

have
‖θ?λ − θ̂?λ‖Ĥλ(θ?λ)

≤ ‖∇L̂λ(θ?λ)‖
Ĥ−1
λ (θ?λ)

/ φ(t(θ?λ − θ̂?λ))

and since ‖∇L̂λ(θ?λ)‖
Ĥ−1
λ (θ?λ)

:= ‖Ĥ−1/2
λ (θ?λ)∇L̂λ(θ?λ)‖, by multiplying and dividing by Hλ(θ?λ),

we have:

‖Ĥ−1/2
λ (θ?λ)∇L̂λ(θ?λ)‖ = ‖Ĥ−1/2

λ (θ?λ)Hλ(θ?λ)1/2Hλ(θ?λ)−1/2∇L̂λ(θ?λ)‖

≤ ‖Ĥ−1/2
λ (θ?λ)Hλ(θ?λ)1/2‖‖∇L̂λ(θ?λ)‖Hλ

−1(θ?λ).

Then

‖θ?λ − θ̂?λ‖Hλ(θ?λ) ≤
1

φ(t(θ?λ − θ̂?λ))
‖H1/2

λ (θ?λ)Hλ
−1/2(θ?λ)‖2 ‖∇L̂λ(θ?λ)‖

Ĥ−1
λ (θ?λ)

=
V̂arλ

φ(t(θ?λ − θ̂?λ))
.

To conclude this part of the proof we need to bound t(θ̂?λ−θ?λ). Since we require V̂arλ/rλ(θ?λ) ≤ 1/2,
by Proposition 16 we have t(θ̂?λ − θ?λ) ≤ log 2.

Gathering the terms. By gathering the results of the previous paragraphs

L(θ̂?λ)− L(θ?) ≤ ψ(tλ + log 2) ( 1/φ(tλ) Biasλ + etλ/2/φ(log 2) V̂arλ )2

Using the fact that (a+ b)2 ≤ 2a2 + 2b2, we have the desired result, with

Kbias(tλ) = 2ψ(tλ + log 2)/φ(tλ)2, Kvar(tλ) = 2ψ(tλ + log 2)etλ/φ(log 2)2. (37)

which are bounded in Definition 25 and Proposition 27 of Appendix D.

D.2. Analytic bounds for terms related to the variance

In this lemma, we aim to control the essential supremum and the variance of the random vector
Hλ
−1/2(θ?λ)∇`λz (θ?λ) relating it to quantities at θ?. The results will be used to control the variance

via Bernstein concentration inequalities, so we are going to control its essential supremum and its
variance.
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Lemma 29 (Control of Hλ(θ?λ)−1/2∇`λz (θ?λ)) For any 0 < λ ≤ B?2, we have

1. A bound on the essential supremum:

sup
z∈supp(ρ)

‖∇`z(θ?λ)‖Hλ
−1(θ?λ) ≤ �1

B?1√
λ

+ 2�2
B?2
λ
Biasλ.

2. A bound on the variance

E
[
‖∇`λz (θ?λ)‖2

Hλ
−1(θ?λ)

]1/2
≤ �1

√
dfλ +

√
2�2

√
B?2
λ
Biasλ,

where �1,�2 are increasing functions of tλ : �1(tλ) = etλ/2 �2(tλ) = etλ/2 (1 + etλ).

Proof Start by noting that if λ ≤ B?2, then supz∈supp(ρ) ‖Hλ
−1/2(θ?)∇2`λz (θ?)1/2‖2 ≤ 1 +

B?2
λ ≤

2
B?2
λ . Moreover, note that for any vector h ∈ H, multiplying and dividing by∇2`z(θ

?)1/2,

‖h‖Hλ
−1(θ?) := ‖Hλ

−1/2(θ?) h‖ = ‖Hλ
−1/2(θ?) ∇2`z(θ

?)1/2 ∇2`z(θ
?)−1/2 h‖

≤ ‖Hλ
−1/2(θ?) ∇2`z(θ

?)1/2‖ ‖∇2`z(θ
?)−1/2 h‖

≤
√

2B?2
λ
‖∇2`z(θ

?)−1/2 h‖

=

√
2B?2
λ
‖h‖∇2`z(θ?)−1 ,

where the last bound is mentioned at the beginning of the proof. Similarly, we can show

‖h‖∇2`z(θ?) ≤
√

2B?2
λ
‖h‖Hλ(θ?), ‖h‖Hλ

−1(θ?) ≤
√

2B?2
λ
‖h‖∇2`z(θ?)−1 . (38)

Essential supremum. Let z ∈ supp(ρ). First note that using Eq. (27), we have

‖∇`λz (θ?λ)‖Hλ
−1(θ?λ) ≤ e

tλ/2‖∇`λz (θ?λ)‖Hλ
−1(θ?).

Now bound

‖∇`λz (θ?λ)‖Hλ
−1(θ?) ≤ ‖∇`

λ
z (θ?λ)−∇`λz (θ?)‖Hλ

−1(θ?) + ‖∇`λz (θ?)‖Hλ
−1(θ?).

Since∇`λz (θ?) = ∇`z(θ?) + λθ?, the last term is bounded by

Biasλ + sup
z∈supp(ρ)

‖∇`z(θ?)‖Hλ
−1(θ?) ≤ Biasλ +

B?1√
λ
.

For the first term, start by using Eq. (38).

‖∇`λz (θ?λ)−∇`λz (θ?)‖Hλ
−1(θ?) ≤

√
2B?2
λ
‖∇`λz (θ?λ)−∇`λz (θ?)‖∇2`λz (θ?)−1 .

30



FAST RATES FOR REGULARIZED EMPIRICAL RISK MINIMIZATION THROUGH SELF-CONCORDANCE

Using Eq. (29) on `λz , we find

‖∇`λz (θ?λ)−∇`λz (θ?)‖∇2`λz (θ?)−1 ≤ φ(tλ) ‖θ?λ − θ?‖∇2`λz (θ?).

Applying once again Eq. (38), we bound

‖θ?λ − θ?‖∇2`λz (θ?) ≤
√

2B?2
λ
‖θ?λ − θ?‖Hλ(θ?).

Finally, using Eq. (28) on Lλ, we get

‖θ?λ − θ?‖Hλ(θ?) ≤
1

φ(tλ)
Biasλ.

Hence, putting things together, we get

‖∇`λz (θ?λ)−∇`λz (θ?)‖Hλ
−1(θ?) ≤

2B?2
λ

φ(tλ)

φ(tλ)
Biasλ =

2B?2
λ
etλBiasλ.

We the combine all our different computation to get the bound.
Variance. We start by using Eq. (27) to show that

E
[
‖∇`λz (θ?λ)‖2

Hλ
−1(θ?λ)

]1/2
≤ etλ/2E

[
‖∇`λz (θ?λ)‖2

Hλ
−1(θ?)

]1/2
.

Then we use the triangle inequality

E
[
‖∇`λz (θ?λ)‖2

Hλ
−1(θ?)

]1/2
≤ E

[
‖∇`λz (θ?λ)−∇`λz (θ?)‖2

Hλ
−1(θ?)

]1/2
+E

[
‖∇`λz (θ?)‖2

Hλ
−1(θ?)

]1/2
.

We can easily bound the last term on the right hand side by Biasλ + dfλ. For the first term, we
proceed as in the previous case to obtain

∀z ∈ supp(ρ), ‖∇`λz (θ?λ)−∇`λz (θ?)‖Hλ
−1(θ?) ≤

√
2B?2
λ
φ(tλ)‖θ?λ − θ?‖∇2`λz (θ?).

Now taking the expectancy of this inequality squared,

E
[
‖∇`λz (θ?λ)−∇`λz (θ?)‖2

Hλ
−1(θ?)

]1/2
≤
√

2B?2
λ
φ(tλ)E

[
‖θ?λ − θ?‖2∇2`λz (θ?)

]1/2

=

√
2B?2
λ
φ(tλ)‖θ?λ − θ?‖Hλ(θ?),

where the last equality comes from E
[
∇2`λZ(θ?)

]
= Hλ(θ?). Now applying Eq. (28) to Lλ, we

obtain
‖θ?λ − θ?‖Hλ(θ?) ≤

1

φ(tλ)
Biasλ.

Regrouping all these bounds, we obtain

E
[
‖∇`λz (θ?λ)−∇`λz (θ?)‖2

Hλ
−1(θ?)

]1/2
≤ etλ

√
2B?2
λ

Biasλ.

Hence the final bound is proved, regrouping all our computations.
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D.3. Concentration lemmas

Here we concentrate in high probability the quantities obtained in the analytical decomposition.
Details on the proof technique are given in Sec. 6 of the paper.

Lemma 30 (Equivalence of empirical and expected Hessian) Let θ ∈ H and n ∈ N. For any
δ ∈ (0, 1], λ > 0, if

n ≥ 24
B2(θ)

λ
log

8B2(θ)

λδ
, (39)

then with probability at least 1− δ: Hλ(θ) � 2Ĥλ(θ), or equivalently

‖Hλ
1/2(θ)Ĥ

−1/2
λ (θ)‖2 ≤ 2.

Proof By Remark 48 and the definition of B2(θ), the condition we require on n is sufficient to apply
Proposition 47, in particular Eq. (51), to Hλ(θ), Ĥλ(θ), for t = 1/2, which provides the desired
result.

Lemma 31 (Concentration of the empirical gradient) Let n ∈ N, δ ∈ (0, 1], 0 < λ ≤ B?2. For
any k ≥ 4, if n ≥ k2�2

2
B?2
λ log 2

δ , then with probability at least 1− δ, we have

‖∇L̂λ(θ?λ)‖Hλ
−1(θ?λ) ≤

2
√

3

k
Biasλ + 2�1

√
dfλ ∨ (Q?)2 log 2

δ

n
. (40)

Here, �1,�2 are defined in Lemma 29 in Appendix D and (Q?)2 = (B?1)2/B?2.

Proof 1) First let us concentrate Hλ(θ?λ)−1/2∇L̂λ(θ?λ) using a Bernstein-type inequality.

We can see Hλ(θ?λ)−1/2∇L̂λ(θ?λ) as the mean of n i.i.d. random variables distributed from the
law of the vector Hλ(θ?λ)−1/2∇`z(θ?λ).

As we have shown in Lemma 29, the essential supremum and variance of this vector is bounded,
then we can use Bernstein inequality for random vectors (e.g. Thm. 3.3.4 of Yurinsky, 1995): for
any λ > 0, any n ∈ N and δ ∈ (0, 1], with probability at least 1− δ, we have

‖Hλ(θ?λ)−1/2∇L̂λ(θ?λ)‖ ≤
2M log 2

δ

n
+ σ

√
2 log 2

δ

n
,

where M = supz∈supp(ρ) ‖∇`z(θ?λ)‖Hλ
−1(θ?λ) and σ = E

[
‖∇`z(θ?λ)‖2

Hλ
−1(θ?λ)

]1/2
.

2) Using the bounds obtained in Lemma 29,

M ≤ �1
B?1√
λ

+ 2�2
B?2
λ
Biasλ, σ ≤ �1

√
dfλ +

√
2�2

√
B?2√
λ

Biasλ.

3) Injecting these in the Bernstein inequality,
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‖Hλ(θ?λ)−1/2∇L̂λ(θ?λ)‖ ≤
2
(
�1 B?1/

√
λ+ 2�2 (B?2/λ)Biasλ

)
log 2

δ

n

+

(
�1 df

1/2
λ +

√
2�2

√
B?2/λBiasλ

)√
2 log 2

δ

n

=

4�2 B?2 log 2
δ

λn
+

√
4�2

2 B?2 log 2
δ

λn

Biasλ

+

√
2�2

1 dfλ log 2
δ

n
+

√
2 B?2 log 2

δ

λn

√
2�2

1 (B?1)2/B?2 log 2
δ

n
.

In the last inequality, we have regrouped the terms with a factor Biasλ and we have separated the
first term of the decomposition in the following way :

2�1B
?
1 log 2

δ√
λn

=

√
2 B?2 log 2

δ

λn

√
2�2

1 (Q?)2 log 2
δ

n
.

Hence, we can bound the second line of the last inequality:√
2�2

1dfλ log 2
δ

n
+

√
2B?2 log 2

δ

λn

√
2�2

1(Q?)2 log 2
δ

n
≤

1 +

√
2B?2 log 2

δ

λn

√2�2
1dfλ ∨ (Q?)2 log 2

δ

n
.

Thus, if we assume that n ≥ k2�2
2
B?2
λ log 2

δ ,

‖Hλ(θ?λ)−1/2∇L̂λ(θ?λ)‖ ≤
(

4

k2
+

2

k

)
Biasλ +

(
1 +

√
2

k

)√
2�2

1 dfλ ∨ (B?1)2/B?2 log 2
δ

n
.

In particular, for k ≥ 4,

‖Hλ(θ?λ)−1/2∇L̂λ(θ?λ)‖ ≤ 3

k
Biasλ + 2�1

√
dfλ ∨ (Q?)2 log 2

δ

n
.

Lemma 32 (control of V̂arλ) Let n ∈ N, δ ∈ (0, 1] and 0 < λ ≤ B?2. Assume that for a certain
k ≥ 5,

n ≥ k2�2
2

B?2
λ

log
8�2

1B
?
2

λδ
.

Then with probability at least 1− 2δ, we have

V̂arλ ≤
6

k
Biasλ + 4�1

√
dfλ ∨ (Q?)2 log 2

δ

n
.

Here, �1,�2 are defined in Lemma 29
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Proof

• First we apply Lemma 30 to θ = θ?λ. Since B2(θ?λ) ≤ etλ B?2 = �2
1 B?2, we see that the

condition

n ≥ 24
B2(θ?λ)

λ
log

8B2(θ?λ)

λδ

is satisfied if

n ≥ 24�2
1

B?2
λ

log
8�2

1B
?
2

λδ
.

Because k ≥ 5 and �2 ≥ �1, and we see that the assumption of this lemma imply the condi-
tions above and hence Lemma 30 is satisfied. In particular, ‖Hλ(θ?λ)1/2Ĥλ(θ?λ)−1/2‖2 ≤ 2.

• Note that the condition of this proposition also imply the conditions of Lemma 31, because
λ ≤ B?2 and �1 ≥ 1 imply �

2
1B

?
2

λδ ≥
1
δ .

D.4. Final results

First, we find conditions on n such that the hypothesis V̂arλ ≤
rλ(θ?λ)

2 is satisfied.

Lemma 33 Let n ∈ N, δ ∈ (0, 1], 0 < λ ≤ B?2 and

n ≥ 41
B?2
λ

log
8�2

1B
?
2

λδ
, n ≥ 42

dfλ ∨ (Q?)2

rλ(θ?)2
log

2

δ
,

then with probability at least 1− 2δ

V̂arλ
rλ(θ?λ)

≤ �1
V̂arλ
rλ(θ?)

≤ 1

2
,

where �1,41,42 are constants defined in Definition 25.

Proof Recall that t̃λ = Biasλ
rλ(θ?) .

Using Lemma 32, we see that under the conditions of this lemma, we have

�1
V̂arλ
rλ(θ?)

≤ 6�1 Biasλ
k rλ(θ?)

+ 4�2
1

√
dfλ ∨ (Q?)2 log 2

δ

n rλ(θ?)2
.

Thus, taking k = 24�1(1/2∨ t̃λ) and n ≥ 256�4
1
dfλ∨Q?
rλ(θ?)2

log 2
δ , both terms in the sum are bounded

by 1/4 hence the result.

Note that here, we have defined

41 = 576�2
1�

2
2(1/2 ∨ t̃λ)2, 42 = 256�4

1,

hence the constants in the definition above.
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Proof of Thm. 8 First we recall that 41, 42, �1, Cbias and Cvar are defined in Definition 25, and
bounded in Proposition 27.

First note that, given the requirements on n, by Lemma 33, we have V̂arλ ≤
rλ(θ?λ)

2 with proba-
bility at least 1− 2δ. Thus, we are in a position to apply Thm. 28 :

L(θ̂?λ)− L(θ?) ≤ Kbias Bias
2
λ +Kvar V̂ar

2

λ,

with Kbias,Kvar defined in the proof of the theorem. Note that in the proof of Lemma 33, we have
taken k = 24�1(1/2 ∨ t̃λ) ≥ 12. Hence, using Lemma 32, we find

V̂arλ ≤
1

2
Biasλ + 4�1

√
dfλ ∨ (Q?)2 log 2

δ

n
.

Hence,

V̂ar
2

λ ≤
1

2
Bias2λ + 32�2

1

dfλ ∨ (Q?)2 log 2
δ

n
,

which yields the wanted result with Cbias = Kbias + 1
2Kvar and Cvar = 32�2

1Kvar.

Proof of Thm. 5
We get this theorem as a corollary of Thm. 8. Indeed, ∀λ ≤ B?2, dfλ ∨ (Q?)∗ ≤ (B?1)2

λ , hence
the result.

Appendix E. Explicit bounds for the simplified case

In this section, assume that Assumptions 1, 3 to 5 and 8 hold.
Define the following constant N :

N = 36A2 log2

(
6A2 1

δ

)
∨ 256

1

A2
log

2

δ
∨ 512

(
‖θ?‖2R2 ∨ 1

)
log

2

δ
, (41)

where A = B2

B1
.

We have the following slow rates theorem.

Theorem 34 (Quantitative slow rates result) Let n ∈ N. Let δ ∈ (0, 1]. Setting

λ = 16((R ∨ 1)B1)
1√
n

log1/2 2

δ
,

if n ≥ N , with probability at least 1− 2δ,

L(θ̂?λ)− L(θ?) ≤ 48 max(R, 1) max(‖θ?‖2, 1)B1
1√
n

log1/2 2

δ
, (42)

and N = O
(
poly(B1,B2, R‖θ?‖)

)
is given explicitly in Eq. (41). Here, poly denotes a certain

rational function of the inputs.
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Proof Note that dfλ ≤ B
2
1
λ . Hence, if λ ≤ B2, then dfλ ∨ (B

2
1/B2) ≤ B

2
1
λ .

1) Let us reformulate Thm. 23. Let n ∈ N and 0 < λ ≤ B2. Let δ ∈ (0, 1]. If

n ≥ 512
(
‖θ?‖2R2 ∨ 1

)
log

2

δ
, n ≥ 24

B2

λ
log

8B2

λδ
, n ≥ 1642 R

2B
2
1

λ2
log

2

δ
,

then with probability at least 1− 2δ,

L(θ̂?λ)− L(θ?) ≤ Cvar
B

2
1

λn
log

2

δ
+ Cbiasλ‖θ?‖2,

where4,Cbias,Cvar are defined in Definition 19.
2) Now setting λ = 16RB1 log1/2 2

δ
1

n1/2 , we see that the inequality

n ≥ 1642 R
2B

2
1

λ2
log

2

δ

is automatically satisfied since4 ≤ 4. Hence, if

n ≥ 512
(
‖θ?‖2R2 ∨ 1

)
log

2

δ
, n ≥ 24

B2

λ
log

8B2

λδ
, 0 < λ ≤ B2,

then

L(θ̂?λ)− L(θ?) ≤ Cvar

256

1

R2
λ+ Cbiasλ‖θ?‖2 ≤

(
Cvar

256
+ Cbias

)
max(

1

R2
, ‖θ?‖2)λ.

Since by Definition 19, Cvar ≤ 84 and Cbias ≤ 2, we get

L(θ̂?λ)− L(θ?) ≤ 3 max(
1

R2
, ‖θ?‖2)λ.

3) Having our fixed λ = 16
B1R log1/2 2

δ

n1/2 , let us look for conditions for which

n ≥ 512
(
‖θ?‖2R2 ∨ 1

)
log

2

δ
, n ≥ 24

B2

λ
log

8B2

λδ
, 0 < λ ≤ B2,

are satisfied.
To deal with n ≥ 24B2

λ log 8B2
λδ , bound

B2

λ
≤ 1

16

B2

RB1 log1/2 2
δ

n1/2 ≤ 1

8

B2

RB1

n1/2,

where we have used the fact that log1/2 2
δ ≥

1
2 . apply Lemma 49 with a1 = 3, a2 = 1, A = B2

RB1
to

get the following condition:

n ≥ 4a2
1A

2 log2

(
2a1a2A

2

δ

)
,

which we express as

n ≥ 36A2 log2

(
6A2 1

δ

)
.
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To deal with the bound λ < B2, we need only apply the definition to obtain

n ≥ 256
R2B

2
1

B
2
2

log
2

δ
.

Thus, we can concentrate all these bounds as n ≥ N where

N = 36A2 log2

(
6A2 1

δ

)
∨ 256

1

A2
log

2

δ
∨ 512

(
‖θ?‖2R2 ∨ 1

)
log

2

δ
,

where A = B2

RB1
.

4) Since R is only an upper bound, we can replace R by R ∨ 1. In this case, we see that A ≤ B2

B1

and max( 1
R∨1 , (R ∨ 1)‖θ?‖2) ≤ (R ∨ 1)(‖θ?‖ ∨ 1)2 hence the final bounds.

Appendix F. Explicit bounds for the refined case

In this part, we continue to assume Assumptions 1, 3 to 5 and 8. We present a classification of
distributions ρ and show that we can achieve better rates than the classical slow rates.

Definition 35 (class of distributions) Let α ∈ [1,+∞] and r ∈ [0, 1/2].
We denote with Pα,r the set of probability distributions ρ such that there exists L,Q ≥ 0,

• Biasλ ≤ L λ
1+2r

2

• dfλ ≤ Q2 λ−1/α,

where this holds for any 0 < λ ≤ 1. For simplicity, if α = +∞, we assume that Q ≥ Q?.

Note that given our assumptions, we always have

ρ ∈ P1,0, L = ‖θ?‖, Q = B?1. (43)

We also define

λ1 =

(
Q

Q?

)2α

∧ 1, (44)

such that

∀λ ≤ λ1, dfλ ∨ (Q?)2 ≤ Q2

λ1/α
.
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Interpretation of the classes

• The bias term Biasλ characterizes the regularity of the objective θ?. In a sense, if r is big, then
this means θ? is very regular and will be easier to estimate. The following results reformulates
this intuition.

Remark 36 (source condition) Assume there exists 0 ≤ r ≤ 1/2 and v ∈ H such that

PH(θ?)θ
? = H(θ?)rv.

Then we have
∀λ > 0, Biasλ ≤ L λ

1+2r
2 , L = ‖H(θ?)−rθ?‖.

• The effective dimension dfλ characterizes the size of the spaceH with respect to the problem.
The higher α, the smaller the space. IfH is finite dimensional for instance, α = +∞.

We will give explicit bounds for the performance of θ̂?λ depending on which class ρ belongs to,
i.e., as a function of α, r.

Well -behaved problems rλ(θ?) has a limiting role. However, as soon as we have some sort of
regularity, this role is no longer limiting, i.e. this quantity does not appear in the final rates and the
constants in these rates have no dependence on the problem. This motivates the following definition.

We say that a problem is well behaved if the following equation holds.

∀δ ∈ (0,
1

2
], ∃λ0(δ) ∈ (0, 1], ∀0 < λ ≤ λ0(δ),

Lλ1/2+r

rλ(θ?)
log

2

δ
≤ 1

2
. (45)

Remark 37 (well-behaved problems) Note that Eq. (45) is satisfied if one of the following holds.

• If R = 0, then the condition holds for λ0 = 1.

• If r > 0, then the condition holds for λ0 = (2LR log 2
δ )−1/r ∧ 1.

• If there exists µ ∈ [0, 1) and F ≥ 0 such that rλ(θ?) ≥ 1
Fλ

µ/2, then this holds for λ0 =

(2RF log 2
δ )−2/(1−µ+2r) ∧ 1.

Moreover, if Eq. (45) is satisfied, than for any λ ≤ λ0, tλ ≤ log 2.

Note that the first possible condition corresponds to the case where the loss functions are
quadratic in θ (if the loss is the square loss for instance). The second condition corresponds to
having a strict source condition, i.e. something strictly better than just θ? ∈ H. Finally, the third
condition corresponds to the fact that the radius rλ decreases slower than the original bound of
rλ ≥ λ1/2

R , and hence it is not limiting.
Note that a priori, using only the assumptions, our problems do not satisfy Eq. (45) (see Eq. (43),

and the fact that rλ ≥
√
λ
R ).
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F.1. Quantitative bounds

In this section, for any given pair (α, r) characterizing the regularity and size of the problem, we
associate

β =
1

1 + 2r + 1/α
, γ =

α(1 + 2r)

α(1 + 2r) + 1
.

In what follows, we define

N =
256Q2

L2
(B?2 ∧ λ0 ∧ λ1)−1/β ∨

(
1296

1

1− β
A log

(
5184

1

1− β
A2 1

δ

))1/(1−β)

, (46)

where A =
B?2L

2β

Q2β , λ0 is given by Eq. (45) and λ1 is given by Eq. (44) : λ1 = Q2α

(Q?)2α
.

Theorem 38 (Quantitative results when Eq. (45) is satisfied and α <∞ or r > 0) Let ρ ∈ Pα,r
and that we have either α <∞ or r > 0. Let δ ∈ (0, 1

2 ].
If Eq. (45) is satisfied, and

n ≥ N, λ =

(
256

(
Q

L

)2 1

n

)β
,

then with probability at least 1− 2δ,

L(θ̂?λ)− L(θ?) ≤ 8 (256)γ
(
Qγ L1−γ)2 1

nγ
log

2

δ
,

where N is defined in Eq. (46).

Proof
Using the definition of λ1, as soon as λ ≤ λ1 we have dfλ ∨ (Q?)2 ≤ Q2λ−1/α.

Let us formulate Thm. 8 using the fact that ρ ∈ Pα,r.

Let δ ∈ (0, 1], 0 < λ ≤ B?2 ∧ λ1 and n ∈ N such that

n ≥ 41
B?2
λ

log
8�2

1B
?
2

λδ
, n ≥ 42

Q2

λ1/αrλ(θ?)2
log

2

δ
,

then with probability at least 1− 2δ

L(θ̂?λ)− L(θ?) ≤ Cbias L
2λ1+2r + Cvar

Q2

λ1/αn
log

2

δ
,

where Cbias,Cvar are defined in Definition 25. Now let us distinguish the two cases of our
theorem.
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Assume that ρ satisfies Eq. (45) . In this case the proof proceeds as follows. Note that as soon as
λ ≤ λ0, we have Biasλ

rλ(θ?) ≤
1
2 and hence the bounds in Proposition 27 apply.

1) First, we find a simple condition to guarantee

rλ(θ?)2λ1/α ≥ 42 Q2 1

n
log

2

δ
.

Using the fact that Eq. (45) is satisfied, we see that if λ ≤ λ0, then rλ ≥ 2Lλ1/2+r log 2
δ . Hence,

this condition is satisfied if

λ ≤ λ0, 4L2λ1+2r+1/α ≥ 42 Q2 1

n
.

2) Now fix Cλ = 256 ≥ 42/4 (see Proposition 27) and fix

λ1+2r+1/α = Cλ
Q2

L2

1

n
⇐⇒ λ =

(
Cλ

Q2

L2

1

n

)β
.

where β = 1/(1 + 2r + 1/λ) ∈ [1/2, 1).
Using our restatement of Thm. 8, we have that with probability at least 1− 2δ,

L(θ̂?λ)− L(θ?) ≤
(
Cbias +

1

Cλ
Cvar log

2

δ

)
L2λ1+2r ≤ K log

2

δ
L2λ1+2r,

where we have set K =
(
Cbias + 1

256Cvar
)
≤ 8 (see Proposition 27).

This result holds provided

0 < λ ≤ B?2 ∧ λ0 ∧ λ1, n ≥ 41
B?2
λ

log
8�2

1B
?
2

λδ
. (47)

Indeed, we have shown in the previous point that since Cλ ≥ 42

4 , rλ(θ?)2λ1/α ≥ 42 Q2 1
n log 2

δ .
3) Let us now work to guarantee the conditions in Eq. (47).
First, to guarantee n ≥ 41

B?2
λ log

8�2
1B

?
2

λδ , bound

B?2
λ

=
B?2L

2βnβ

CβλQ
2β logβ 2

δ

≤ 2

Cβλ

B?2L
2β

Q2β
nβ.

Then apply Lemma 50 with a1 = 241

Cβλ
, a2 =

16�2
1

Cβλ
, A =

B?2L
2β

Q2β . Since β ≥ 1/2, using the

bounds in Proposition 27, we find a1 ≤ 648 and a2 ≤ 4, hence the following sufficient condition:

n ≥
(

1296
1

1− β
A log

(
5184

1

1− β
A2 1

δ

))1/(1−β)

.

Then, to guarantee the condition

λ ≤ B?2 ∧ λ0 ∧ λ1,

we simply need

n ≥ 256Q2

L2
(B?2 ∧ λ0 ∧ λ1)−1/β .

40



FAST RATES FOR REGULARIZED EMPIRICAL RISK MINIMIZATION THROUGH SELF-CONCORDANCE

Hence, defining

N =
256Q2

L2
(B?2 ∧ λ0 ∧ λ1)−1/β ∨

(
1296

1

1− β
A log

(
5184

1

1− β
A2 1

δ

))1/(1−β)

,

where A =
B?2L

2β

Q2β , we see that as soon as n ≥ N , Eq. (47) holds.

We now state the following corollary, for r > 0. We define N in the following way:

N =
256Q2

L2
(B?2 ∧ λ0 ∧ λ1)−1/β ∨

(
1296

1

1− β
A log

(
5184

1

1− β
A2 1

δ

))1/(1−β)

(48)

where A =
B?2L

2β

Q2β , λ0 = (2LR log 2
δ )−1/r ∧ 1 and λ1 = Q2α

(Q?)2α
.

Corollary 39 Assume ρ ∈ Pα,r with r > 0. Let δ ∈ (0, 0.5] and n ≥ N , where N is defined in
Eq. (48). For

λ =

(
256

(
Q

L

)2 1

n

)β
,

with probability at least 1− 2δ,

L(θ̂?λ)− L(θ?) ≤ 8 (256)γ
(
Qγ L1−γ)2 1

nγ
log

2

δ
,

Moreover, N = O
(
poly

(
B?1,B

?
2, L,Q, R, log 1

δ

))
, which means that N is bounded by a rational

function of the arguments of poly.

Proof of Cor. 7 We simply apply Cor. 39 for α = 1 and Q = B?1.

Appendix G. Additional lemmas

G.1. Self-concordance, sufficient conditions to define L and related quantities

In this section, we will consider an arbitrary probability measure µ onZ . We assume that `z satisfies
Assumption 8 with a certain given function ϕ. Recall that Rµ = supz∈supp(µ) supg∈ϕ(z) ‖g‖. In
this section, we will also assume that Rµ <∞.

Lemma 40 (Gronwall lemma) Let ϕ : R→ R be a differentiable function such that

∀t ∈ R, ϕ′(t) ≤ Cϕ(t).

Then
∀(t0, t1) ∈ R2, ϕ(t1) ≤ eC|t1−t0|ϕ(t0).

Lemma 41 Assume that there exists θ0 such that supz∈supp(µ) Tr
(
∇2`z(θ0)

)
<∞

• supz∈supp(µ) Tr
(
∇2`z(θ)

)
<∞ for any θ ∈ H;
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• For any given radius T > 0, and any ‖θ0‖ ≤ T , we have

∀‖θ‖ ≤ T, ∀z ∈ Z, Tr
(
∇2`z(θ)

)
≤ exp (2RµT ) Tr

(
∇2`z(θ0)

)
<∞.

Proof
Let z ∈ supp(µ) be fixed. Using the same reasoning as in the proof of Eq. (27), we can show

∀θ0, θ1 ∈ H, ∇2`z(θ1) � exp

(
sup
g∈ϕ(z)

|g · (θ1 − θ0)|

)
∇2`z(θ0) � exp (Rµ‖θ1 − θ0‖)∇2`z(θ0)

Where we have used the fact that Rµ = supz∈supp(µ) supg∈ϕ(z) ‖g‖ <∞ Thus, in particular

∀z ∈ supp(µ), ∀θ0, θ1 ∈ H, Tr
(
∇2`z(θ1)

)
≤ exp (Rµ‖θ1 − θ0‖) Tr

(
∇2`z(θ0)

)
,

which leads to the desired bounds.

Lemma 42 Assume that there exists θ0 such that

sup
z∈supp(µ)

Tr
(
∇2`z(θ0)

)
<∞, sup

z∈supp(µ)
‖∇`z(θ0)‖ <∞.

Then

• supz∈supp(µ) ‖∇`z(θ)‖ <∞ for any θ ∈ H

• For any T > 0 and any ‖θ0‖, ‖θ‖ ≤ T, z ∈ supp(µ),

‖∇`z(θ)‖ ≤ ‖∇`z(θ0)‖+ 2T Tr
(
∇2`z(θ0)

)
+ 4Rµ ψ(2RµT ) Tr

(
∇2`z(θ0)

)
R2.

Proof
Fix z ∈ Z , θ0, θ1 ∈ H and h ∈ H. Let us look at the function

f : t ∈ [0, 1] 7→
(
∇`z(θt)−∇`z(θ0)− t∇2`z(θ0)(θ1 − θ0)

)
· h.

We have f ′′(t) = ∇3`z(θt)[θ1 − θ0, θ1 − θ0, h]. By the self-concordant assumption, we have∣∣f ′′(t)∣∣ ≤ sup
g∈ϕ(z)

|g · h|∇2`z(θt)[θ1 − θ0, θ1 − θ0]

≤ sup
g∈ϕ(z)

|g · h| exp(t sup
g∈ϕ(z)

|g · θ1 − θ0|)‖θ1 − θ0‖2∇2`z(θ0).

Integrating this knowing f ′(0) = f(0) = 0 yields

|f(1)| ≤ sup
g∈ϕ(z)

|g · h| ψ( sup
g∈ϕ(z)

|g · (θ1 − θ0)|)‖θ1 − θ0‖2∇2`z(θ0).
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Hence :

‖∇`z(θ1)−∇`z(θ0)‖ ≤ ‖∇2`z(θ0)‖ ‖θ1−θ0‖+‖ϕ(z)‖ψ( sup
g∈ϕ(z)

|g·(θ1−θ0)|) ‖∇2`z(θ0)‖ ‖θ1−θ0‖2

where ψ(t) = (et − t − 1)/t2. Then, noting that ‖∇2`z(θ)‖ ≤ Tr(∇2`z(θ)), we have proved our
lemma.

Lemma 43 Assume that there exists θ0 such that

sup
z∈supp(µ)

Tr
(
∇2`z(θ0)

)
<∞, sup

z∈supp(µ)
‖∇`z(θ0)‖ <∞, sup

z∈supp(µ)
|`z(θ0)| <∞.

Then

• For any θ ∈ H, supz∈supp(µ) |`z(θ)| <∞

• For any θ0 ∈ H, T ≥ ‖θ0‖, ‖θ‖ ≤ T, z ∈ supp(µ), we have:

|`z(θ)| ≤ |`z(θ0)|+ 2‖∇`z(θ0)‖T + ψ(2Rµ T ) Tr(∇2`z(θ0)) T 2.

Proof Proceeding as in the proof of Eq. (30), we get

∀z ∈ Z, ∀θ0, θ1 ∈ H, 0 ≤ `z(θ1)−`z(θ0)−∇`z(θ0)(θ1−θ0) ≤ ψ( sup
g∈ϕ(z)

|g·(θ1−θ0)|)‖θ1−θ0‖2∇2`z(θ0)

where ψ(t) = (et − t− 1)/t2.

To conclude, we give the following result.

Proposition 44 Let λ ≥ 0. If a probability measure µ and ` satisfy Assumptions 3, 4 and 8, the
function Lµ,λ(θ) := Eµ [`z(θ)] + λ‖θ‖2 and∇Lµ,λ(θ),∇2Lµ,θ(θ) are well-defined for any θ ∈ H,
and we can differentiate under the expectation. Moreover,

∀θ ∈ H, sup
z∈supp(ρ)

|`z(θ)|, sup
z∈supp(ρ)

‖∇`z(θ)‖, sup
z∈supp(ρ)

Tr
(
∇2`z(θ)

)
<∞.

Proof We combine the results given in Lemmas 41 to 43.

G.2. Bernstein inequalities for operators

We start by proposing a slight modification of Proposition 6 in (Rudi and Rosasco, 2017). First we
need to introduce the following quantitity and some notation for Hermitian operators. We denote
by � is the partial order between positive semidefinite Hermitian operators. Let A,B be bounded
Hermitian operators onH,

A � B ⇐⇒ v · (Av) ≤ v · (Bv), ∀v ∈ H ⇐⇒ B −A is positive semidefinite.

Let q be a random positive semi-definite operator and let Q := E [q], denote by F(λ) the
function of λ defined as

F(λ) := ess sup Tr
(
Q
−1/2
λ qQ

−1/2
λ

)
,

where ess sup is the essential support of q.
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Remark 45 Note that if Tr(q) ≤ c0, for a c0 > 0 almost surely, then F(λ) ≤ c0/λ. Vice versa,
if F(λ0) < ∞ for a given λ0 > 0, then Tr(q) ≤ (‖Q‖ + λ0)F(λ0) almost surely, moreover
F(λ) < ‖Q‖+λ0

‖Q‖+λ F(λ0) for any λ > 0.

Proposition 46 (Prop. 6 of (Rudi and Rosasco, 2017)) Let q1, ..., qn be identically distributed ran-
dom positive semi-definite operators on a separable Hilbert spaceH such that the q are trace class
and Q = E [q]. Let Qn = 1

n

∑n
i=1 qi and take 0 < λ ≤ ‖Q‖ and assume F(λ) < ∞. For any

δ > 0, the following holds with probability at least 1− δ:

‖Q−1/2
λ (Q−Qn)Q

−1/2
λ ‖ ≤ 2β(1 + F∞(λ))

3n
+

√
2βF∞(λ)

n
, β = log

8F∞(λ)

δ

Proof Use Proposition 3 of (Rudi and Rosasco, 2017) and proceed as in the proof of Proposition
6 of (Rudi and Rosasco, 2017) except that we bound Tr(Q−1

λ Q) ≤ F∞(λ) instead of bounding
Tr(Q−1

λ Q) ≤ Tr(Q)
λ , we find this result.

Here we slightly extend the results of Prop. 8 and Prop. 6 of (Rudi and Rosasco, 2017), to extend
the range of λ for which the result on the partial order between operators holds, from 0 < λ < ‖Q‖
to λ > 0.

Proposition 47 (Prop. 8 together with Prop. 6 of (Rudi and Rosasco, 2017)) Let q1, ..., qn be iden-
tically distributed random positive semi-definite operators on a separable Hilbert spaceH such that
the q are trace class and Q = E [q]. Let Qn = 1

n

∑n
i=1 qi. Let any δ ∈ (0, 1], t > 0, 0 < λ ≤ ‖Q‖

and assume F(λ) <∞, when

n ≥ 8F∞(λ) log
8F∞(λ)

δ

(
1

4t2
+

1

t

)
(49)

then the following holds with probability at least 1− δ:

‖Q−1/2
λ (Q−Qn)Q

−1/2
λ ‖ ≤ t. (50)

Moreover let λ > 0, δ ∈ (0, 1] and Eq. (49) is satisfied for t ≤ 1/2, then the following holds
with probability at least 1− δ,

Qλ � 2Qn,λ, ⇐⇒ ‖Q−1/2
n,λ Q

1/2
λ ‖

2 ≤ 2. (51)

Finally, let λ > 0, δ ∈ (0, 1], Eq. (49) is satisfied for t ≤ 1/2 and

n ≥ 16
c2

0

‖Q‖2
log

2

δ
,

with c0 = ess sup Tr(q), then the following holds with probability at least 1− δ,

Qn,λ �
3

2
Qλ, ⇐⇒ ‖Q1/2

n,λQ
−1/2
λ ‖2 ≤ 3/2. (52)
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Proof
Point 1) Let δ ∈ (0, 1] and 0 < λ ≤ Q. Using Proposition 46, we have that with probability at least
1− δ,

‖Q−1/2
λ (Q−Qn)Q

−1/2
λ ‖ ≤ 2β(1 + F∞(λ))

3n
+

√
2βF∞(λ)

n
, β = log

8F∞(λ)

δ
.

Now note that if λ ≤ ‖Q‖, we have

1

2
≤ ‖Q‖
‖Q‖+ λ

= ‖Q−1
λ Q‖ ≤ Tr

(
Q−1
λ Q

)
≤ F∞(λ).

Thus we can bound 1 + F∞(λ) ≤ 3F∞(λ), and we rewrite the previous bound

‖Q−1/2
λ (Q−Qn)Q

−1/2
λ ‖ ≤ 2βF∞(λ)

n
+

√
2βF∞(λ)

n
, β = log

8F∞(λ)

δ
.

Point 2) Now let t > 0, δ ∈ (0, 1] and 0 < λ ≤ ‖Q‖. If

n ≥ 8F∞(λ)β

(
1

4t2
+

1

t

)
,

then
‖Q−1/2

λ (Q−Qn)Q
−1/2
λ ‖ ≤ t.

Indeed, assume we want to find n0 > 0 for which for all n ≥ n0,
A
n +

√
B
n ≤

1
2 where A,B ≥ 0.

setting x =
√
n, this is equivalent to finding x0 such that ∀x ≥ x0,

x2

2 −
√
Bx−A ≥ 0. A sufficient

condition for this is that x ≥
√
B+
√
B + 2A. Thus, sinceA,B ≥ 0, the condition x ≥ 2

√
B + 2A

is sufficient, hence the condition n ≥ 4(B + 2A). Then we apply this to the following A and B to
obtain the condition.

A =
βF∞(λ)

t
, B =

βF∞(λ)

2t2
.

Point 3) When λ > ‖Q‖, the result is obtained noting that

‖Q1/2
λ Q

−1/2
n,λ ‖

2 ≤ ‖Q‖+ λ

λ
= 1 +

‖Q‖
λ
≤ 2.

When, on the other hand 0 < λ ≤ ‖Q‖, the final result is obtained by applying Prop. 6 and
Prop. 8 of (Rudi and Rosasco, 2017), or equivalently applying Eq. (50), with t = 1/2, for which the
following holds with probability 1− δ: ‖Q−1/2

λ (Q−Qn)Q
−1/2
λ ‖ ≤ t and noting that,

‖Q1/2
λ Q

−1/2
n,λ ‖

2 ≤ 1

1− ‖Q−1/2
λ (Q−Qn)Q

−1/2
λ ‖

≤ 2.

To conclude this point, we recall that, given two Hermitian operators A,B and t > 0, the inequality
A � tB is equivalent to B−1/2AB−1/2 � tI , when B is invertible. Since B−1/2AB−1/2 and tI
are commutative, then B−1/2AB−1/2 � tI is equivalent to v · (B−1/2AB−1/2v) ≤ t‖v‖2 for any
v ∈ H, which in turn is equivalent to ‖B−1/2AB−1/2‖ ≤ t. So

‖A1/2B−1/2‖2 ≤ t ⇐⇒ A � tB.
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Point 4) First note that

‖Q−1/2
λ Q

1/2
n,λ‖

2 ≤ 1 + ‖Q−1/2
λ (Q−Qn)Q

−1/2
λ ‖. (53)

When 0 < λ ≤ ‖Q‖, by applying Eq. (50) with t = 1/2, we have with probability 1 − δ:
‖Q−1/2

λ (Q−Qn)Q
−1/2
λ ‖ ≤ t, moreover by Eq. (53) we have

‖Q−1/2
λ Q

1/2
n,λ‖

2 ≤ 1 + t ≤ 3/2.

When instead λ > ‖Q‖, we consider the following decomposition

‖Q−1/2
λ (Q−Qn)Q

−1/2
λ ‖ ≤ 1

λ
‖Q−Qn‖ ≤

1

λ
‖Q−Qn‖HS ,

where we denote by ‖ ·‖HS , the Hilbert-Schmidt norm (i.e. ‖A‖2HS = Tr(A∗A)) and ‖Q−Qn‖HS
is well defined since both Q,Qn are trace class. Now since the space of Hilbert-Schmidt operators
on a separable Hilbert space is itself a separable Hilbert space and q are bounded almost surely by
c0 := ess sup Tr(q), we can concentrate ‖Q−Qn‖HS via Bernstein inequality for random vectors
(e.g. Thm. 3.3.4 of Yurinsky, 1995), obtaining with probability at least 1− δ

‖Q−Qn‖HS ≤
2c0 log 2

δ

n
+

√
2c2

0 log 2
δ

n
≤ ‖Q‖/2,

where the last step is due to the fact that we require n ≥ 16c2
0(log 2

δ )/‖Q‖2, and the fact that by
construction ‖Q‖ ≤ B. Then,

‖Q−1/2
λ Q

1/2
n,λ‖

2 ≤ 1 +
‖Q‖
2λ
≤ 3/2.

The final result on � is obtained as for Point 5.

Remark 48 Let Tr(q) ≤ c0 almost surely, for a c0 > 0. Then F(λ) ≤ c0/λ. So Eq. (49) is
satisfied when

n ≥ 8c0

λ
log

8c0

λ δ

(
1

4t2
+

1

t

)
,

since F(λ) ≤ c0/λ as observed in Remark 45. In particular, when t = 1/2, Eq. (49) is satisfied
when

n ≥ 24c0

λ
log

8c0

λ δ
.

G.3. Sufficient conditions to bound n in order to guarantee n ≥ C1n
p log C2np

δ

Lemma 49 Let a1, a2, A ≥ 0 and δ > 0. If

n ≥ 4a2
1A

2 log2

(
2a1a2A

2

δ

)
,

then n ≥ a1An
1/2 log a2An1/2

δ .
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Proof Indeed, note that

n ≥ a1An
1/2 log

a2An
1/2

δ
⇐⇒ a1A

n1/2
log

a2An
1/2

δ
≤ 1.

Now use the fact that for A,B ≥ 0, k ≥ 2A log(2AB) implies A
k log(Bk) ≤ 1. Indeed, log(Bk) =

log(2AB) + log Bk
2AB = log(2AB) + log k

2A ≤ log(2AB) + k
2A . Hence, multiplying by A

k , we get
the result.

We apply this to A = a1A,B = a2A
δ and k = n1/2 to get the bound.

Lemma 50 Let a1, a2, A ≥ 0 and δ > 0. Let p ∈ [1
2 , 1). If

n1−p ≥ 2
1

1− p
a1A log

(
2a1(a2 ∨ 1)

1

1− p
A2 1

δ

)
,

then
n ≥ a1An

p log
a2An

p

δ
.

Proof 1) Let C1, C2 ≥ 0, and p ∈ [0, 1). Then

n ≥ C1n
p log(C2n

p)⇐⇒
C1

p
1−p

n1−p log
(
C

(1−p)/p
2 n1−p

)
≤ 1.

Now use the fact that for A,B ≥ 0, k ≥ 2A log(2AB) implies A
k log(Bk) ≤ 1 (see proof of

Lemma 49).
Thus, n1−p ≥ 2C1

p
1−p log

(
2C1

p
1−pC

(1−p)/p
2

)
is a sufficient condition.

2) Now taking C1 = a1A and C2 = a2A
δ , we find that

n1−p ≥ 2
p

1− p
a1A log

(
2a1a

(1−p)/p
2

p

1− p
A1/p(

1

δ
)(1−p)/p

)
.

Since 0.5 ≤ p ≤ 1, we see that 1−p
p ≤ 1 and 1

p ≤ 2 and thus we get our final sufficient condition.

n1−p ≥ 2
1

1− p
a1A log

(
2a1(a2 ∨ 1)

1

1− p
A2 1

δ

)
.
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