
Proceedings of Machine Learning Research vol 99:1–49, 2019 32nd Annual Conference on Learning Theory

Combinatorial Algorithms for Optimal Design

Vivek Madan VMADAN 7@GATECH.EDU

Mohit Singh MOHIT.SINGH@ISYE.GATECH.EDU

Uthaipon (Tao) Tantipongpipat TAO@GATECH.EDU

Georgia Institute of Technology

Weijun Xie WXIE@VT.EDU

Virginia Polytechnic Institute and State University

Editors: Alina Beygelzimer and Daniel Hsu

Abstract
In an optimal design problem, we are given a set of linear experimentsv1, . . . , vn ∈ Rd andk ≥ d,
and our goal is to select a set or a multisetS ⊆ [n] of sizek such thatΦ((

∑
i∈S viv

>
i)−1) is

minimized. WhenΦ(M) = Determinant(M)1/d, the problem is known as the D-optimal design
problem, and whenΦ(M) = Trace(M), it is known as the A-optimal design problem. One of
the most common heuristics used in practice to solve these problems is the local search heuristic,
also known as the Fedorov’s exchange method (Fedorov, 1972). This is due to its simplicity and
its empirical performance (Cook and Nachtrheim, 1980; Miller and Nguyen, 1994; Atkinson et al.,
2007). However, despite its wide usage no theoretical bound has been proven for this algorithm. In
this paper, we bridge this gap and prove approximation guarantees for the local search algorithms
for D-optimal design and A-optimal design problems. We show that the local search algorithms are
asymptotically optimal whenkd is large. In addition to this, we also prove similar approximation
guarantees for the greedy algorithms for D-optimal design and A-optimal design problems whenk

d
is large.
Keywords: Optimal Design, Experimental Design, D-optimal design, A-optimal design, Fedorov
Exchange, Local Search, Greedy Algorithm.

1. Introduction

Optimal experimental design (Pukelsheim, 2006) lies at the intersection of statistics and optimiza-
tion where the goal is to pick a subset of statistical trials to perform from a given set of available
trials. Linear models are one of the most widely used and well-studied models in the area (Federer
et al., 1955; Pukelsheim, 2006; Atkinson et al., 2007). The goal is to learn an unknown parameter
θ? ∈ Rd from a set of linear experiments{v1, . . . , vn} where eachvi ∈ Rd. If the ith experiment
is performed, we observeyi = 〈vi, θ

?〉 + ηi whereηi is a small error introduced in the experiment.
Given an integerk ≤ n, the optimization problem involves pickingk vectors out ofn to ensure the
unknown parameterθ∗ can be deduced as accurately as possible.

By assuming the error vectorηi is a gaussian noise, the maximum likelihood estimate forθ?, call
it θ̂, is obtained via minimizing the least square error over the setS of performed experiments, i.e.
θ̂ = argminθ∈Rd

∑
i∈S ‖v>i θ − yi‖2

2. The error in estimation̂θ − θ? is distributed as Gaussian with
mean zero. If the variance for eachηi is 1 (which can be assumed by normalization), then the covari-
ance matrix(

∑
i∈S viv

>
i)−1. Optimal design consists of minimizing a functionΦ

(
(
∑

i∈S viv
>
i)−1

)

whereΦ(M) = det(M)
1
d for D-optimal design andΦ(M) = tr(M) for A-optimal design.

c© 2019 V. Madan, M. Singh, U.(. Tantipongpipat & W. Xie.

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

D-DESIGN: Given a set of vectorsv1, . . . , vn ∈ Rd for somed ∈ N, and a parameterk ≥ d, our

goal is to find a set or a multisetS ⊆ [n] of sizek such thatdet
(∑

i∈S viv
>
i

)1/d
is maximized1.

Here,det(M) denote the determinant of the matrixM .

A-DESIGN: Given a set of vectorsv1, . . . , vn ∈ Rd for somed ∈ N, and a parameterk ≥ d, our

goal is to find a set or a multisetS ⊆ [n] of sizek such thattr
((∑

i∈S viv
>
i

)−1
)

is minimized.

Here,tr(M) denote the trace of the matrixM .
When selecting a multiset, we refer to the problem as optimal design with repetitions and when

selecting a set, we refer to the problem as optimal design without repetitions. Statistically,D-
DESIGN objective aims to minimize the volume of the confidence ellipsoid and theA-DESIGN ob-
jective aims to minimize the expected length square of the error vectorθ̂−θ∗. Several other objective
functions such asE-design,G-design, andI-design have also been studied in literature (Atkinson
et al., 2007).

One of the classical optimization methods that is used for optimal design problems is the local
search heuristic which is also called the Fedorov’s exchange method (Fedorov, 1972) (see also
Mitchell and Miller Jr (1970)). The method starts with any set ofk experiments from the given
set ofn experiments and aims to exchange one of the design vectors if it improves the objective.
The ease in implementing the method as well as its efficacy in practice makes the method widely
used (Nguyen and Miller, 1992) and implemented in statistics softwares such as SAS (seeAtkinson
et al.(2007), Chapter 13). Moreover, there has been considerable study on heuristically improving
the performance of the algorithm. Surprisingly, theoretical analysis of this classical algorithm has
not been performed despite its wide usage. In this paper, we bridge this gap and give theoretical
guarantees on the performance of local search heuristic forD andA-optimal design problems. In
addition to local search, we analyze the greedy heuristic for theD andA-optimal design problems.

1.1. Our Results and Contributions

Our main contribution is to prove worst case bounds on the performance of simple local search
algorithm (also known as Fedorov Exchange method) and greedy algorithms. Our results also give
worst case performance guarantee on the variants of local search algorithm.

Our first result is for theD-optimal design problem where we show the following guarantee.
We consider both settings when the design vectors are allowed to be repeated in the solution and
when they are not allowed to be repeated.

Theorem 1 For anyε > 0, the local search algorithm returns a(1 + ε)-approximate solution for
D-DESIGN with or without repetitions wheneverk ≥ d + d

ε .

Our analysis method crucially uses the convex relaxation for theD-DESIGN problem. In recent
works, the convex relaxation has been studied extensively and various rounding algorithms have
been designed (Wang et al.(2016); Allen-Zhu et al.(2017); Singh and Xie(2018); Nikolov et al.
(2019)). Solving the convex relaxation is usually the bottleneck in the running time of all these
algorithms. Our results differ from this literature in that we only use the convex relaxation for the
analysis of the local search heuristic. The algorithm does not need to solve the convex program
(or even formulate it). We use thedual-fitting approach to prove the guarantee. We also remark

1. Sincedet(M−1) = 1/ det(M), for notational convenience, we consider an equivalent formulation ofD-DESIGN

where instead of minimizingdet((
∑

i∈S viv
>
i)−1)1/d, we maximizedet(

∑
i∈S viv

>
i)1/d.

2

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

the above guarantee improves on the best previous bound which had an additional additive term of
1
ε2

log 1
ε in the requirement on the size ofk.

We also consider the natural greedy algorithm forD-DESIGN problem. Indeed this algorithm
has also been implemented and tested in empirical studies (see for exampleAtkinson et al.(2007),
Chapter 12) and is referred to as the forward procedure algorithm. The algorithm is initialized to
a small set of experiments and new experiments are added greedily. We show that the guarantee is
slightly specific to the initialized set. If the initialized set is a local optimum set of sized, we obtain
the following result. Again we employ the dual-fitting approach to prove the bounds.

Theorem 2 For anyε > 0, the greedy algorithm forD-DESIGN with repetitions returns a(1 + ε)-
approximate solution wheneverk ≥ Ω

(
d
ε

(
log 1

ε + log log d
))

.

A-DESIGN. While the simple combinatorial algorithms have tight asymptotic guarantee forD-
DESIGN, we show that a similar guaranteecannotbe proven forA-DESIGN. Indeed, there are
examples where local optimum can be arbitrarily bad as compared to the optimum solution as we
show in Section3.3. We note that the bad local optima arise due to presence of long vectors among
design vectors. In particular, we show that this is theonlybottleneck to obtain an asymptotic guaran-
tee on the performance of the local search algorithm. Moreover, we show a combinatorial iterative
procedure to truncate the length of all the vectors while ensuring that the value of the optimal solu-
tion does not change significantly. This allows us to obtain a modified local search procedure with
the following guarantee.

Theorem 3 The modified local search algorithm forA-DESIGN with repetitions returns a(1 + ε)-
approximate solution wheneverk = Ω

(
d
ε4

)
.

We note that the above asymptotic guarantee does not match the best approximation algo-
rithms (Nikolov et al., 2019) for A-DESIGN as was the case ofD-DESIGN. Nonetheless, it specifi-
cally points why local search algorithm performs well in practice as has been noted widely (Atkin-
son et al., 2007).

We also consider the natural greedy algorithm for theA-DESIGNproblem, which again requires
truncating the length of all vectors. As inD-DESIGN problem, the guarantee depends on the initial-
ized set. If the initialized set is a local optimum set of sizecd for an absolute constantc, we obtain
the following guarantee.

Theorem 4 The modified greedy algorithm forA-DESIGN with repetitions returns a(1 + ε)-
approximate solution wheneverk ≥ Ω

(
d
ε3

log2 1
ε

)
.

Approximate Local Search: Theorem1 and 3 show that the local search forD-DESIGN and
modified local search forA-DESIGN yield (1 + ε)-approximation algorithm. But, as are typical of
local search algorithms, they are usually not polynomial time algorithms. However, the standard
fix is to make local improvements only when the objectives improves by a factor of1 + δ. With
appropriately chosenδ, this implies a polynomial running time at the cost of a slight degradation in
the approximation guarantee. We show that under the same assumption on parameterk, approximate
local search forD-DESIGN and modified approximate local search forA-DESIGN yield (1 + 2ε)-
approximation whenδ is small enough and take polynomially many iterations.

Theorem 5 The(1+δ)-approximate local search algorithm forD-DESIGNwith repetitions returns
a (1 + 2ε)-approximate solution wheneverk ≥ d + d

ε and δ < εd
2k , and the algorithm runs in

polynomial time.

3

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Theorem 6 The modified(1 + δ)-approximate local search algorithm forA-DESIGN with repeti-
tions returns a(1 + 2ε)-approximate solution wheneverk = Ω

(
d
ε4

)
andδ < εd

2k , and the algorithm
runs in polynomial time.

We note that approximate local optimum sets are sufficient for initialization of greedy algo-
rithms, implying that greedy algorithms run in polynomial time.

1.2. Related Work

As we remarked earlier, experimental design is a classical problem and has attracted significant
attention throughout the years. We refer the reader toPukelsheim(2006) for a broad survey on the
experimental design. Here, we mention the results known for the problems discussed in this paper.

D-DESIGN: When experiments can be picked fractionally,D-DESIGNreduces to the natural con-
vex program which can be solved efficiently (Sagnol and Harman(2015)). In contrast, when ex-
periments need to be chosen integrally as in this paper,D-DESIGN is NP-hard (Welch (1982)).
Hence, there has been a series of approximation algorithms known for the problem.Bouhtou et al.
(2010) gave an

k -approximation algorithm based on rounding the solution of the natural convex pro-

gram. Wang et al.(2016) improved the approximation ratio to(1 + ε) whenk ≥ d2

ε . Allen-Zhu
et al.(2017) gave a(1 + ε)-approximation algorithm whenk = Ω

(
d
ε2

)
. Singh and Xie(2018) im-

proved this result and gave(1 + ε)-approximation algorithm when repetitions are not allowed and
k = Ω

(
d
ε + 1

ε2
log 1

ε

)
, and(1 + ε)-approximation when repetitions are allowed andk ≥ 2d

ε . Our
results improve on these bounds as they achieve(1 + ε)-approximation whenk ≥ d + d

ε .

A-DESIGN: As in case ofD-DESIGN, A-DESIGN reduces to solving the natural convex program
which can be done efficiently when experiments are picked fractionally. On the other hand, when ex-
periments are picked integrally as in this paper,A-DESIGN is NP-hard (Nikolov et al.(2019)). Sev-
eral of the results mentioned above forD-DESIGN work in more generality and in particular forA-
DESIGNas well. For instance, algorithm byAvron and Boutsidis(2013) givesn−d+1

k−d+1 -approximation
ratio for A-DESIGN as well. Algorithm byWang et al.(2016) gives (1 + ε)-approximation ra-
tio whenk ≥ d2

ε . Algorithm by Allen-Zhu et al.(2017) gives(1 + ε)-approximation ratio when
k = Ω

(
d
ε2

)
. Recently,Nikolov et al.(2019) showedd-approximation forA-DESIGN whenk = d,

(1 + ε)-approximation when repetitions are not allowed andk = Ω
(

d
ε + 1

ε2
log 1

ε

)
, and(1 + ε)-

approximation when repetitions are allowed andk ≥ (1+ε)(d−1)
ε . On the hardness side,Nikolov

et al.(2019) showed thatA-DESIGN is APX-hard fork = d; there is noc-approximation for some
constantc > 1.

Other variants of optimal design have been studied such asE-DESIGN problem where our goal
is to select setS ⊆ [n] of sizek such that the minimum eigenvalue of

∑
i∈S viv

>
i is maximized.

E-DESIGN is also known to be an NP-hard problem (Çivril and Magdon-Ismail(2009)). Algorithm
by Avron and Boutsidis(2013) givesd ∙ n−d+1

k−d+1 -approximation algorithm.Wang et al.(2016) gave

(1 + ε)-approximation algorithm whenk ≥ d2

ε . Allen-Zhu et al.(2017) improved this result and
gave(1 + ε)-approximation algorithm whenk = Ω

(
d
ε2

)
.

1.3. Organization

In Section2, we analyze the local search algorithm forD-DESIGN and prove Theorem1. In Sec-
tion 3, we analyze the modified local search algorithm forA-DESIGN and prove Theorem3. Sec-

4

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

tions A andB include details and proofs deferred from the main body of the paper. We present
approximate local search algorithms forD-DESIGN andA-DESIGN and their analysis in SectionsC
and D, respectively, proving Theorems5 and6. Greedy algorithms and their analysis forD-DESIGN

andA-DESIGN are presented in SectionsE andF, respectively, which prove Theorems2 and4.

2. Local Search forD-DESIGN

We first give the local search algorithm forD-DESIGN with repetitions.

2.1. Local Search Algorithm

Algorithm 1 Local search algorithm forD-DESIGN

Input: V = {v1, . . . , vn} wherevi ∈ Rd, d ≤ k ∈ N.
Let I be any (multi)-subset of[1, n] of sizek such thatX =

∑
i∈I viv

>
i is non-singular matrix.

while ∃i ∈ I, j ∈ [1, n] such thatdet
(
X − viv

>
i + vjv

>
j

)
> det(X) do

X = X − viv
>
i + vjv

>
j

I = I \ {i} ∪ {j}
end while
Return(I,X)

2.2. Relaxations

To prove the performance of local search algorithm, presented earlier as Theorem1, we use the
convex programming relaxation for theD-DESIGN problem. We first describe these relaxations in
Figure3 (see Chapter 7 ofBoyd and Vandenberghe(2004)). Let φD

f denote the be the common
optimum value of (D-REL) and its dual (D-REL-DUAL). Let I? denote the indices of the vector in

the optimal solution and letφD = det
(∑

i∈I? viv
>
i

) 1
d be its objective. Observe thatφD

f ≥ log φD.
Theorem1 now follows from the following result.

Theorem 7 LetX be the solution returned by Algorithm1. Then,

det(X) ≥

(
k − d + 1

k

)d

ed∙φD
f

and therefore,

det(X)
1
d ≥

k − d + 1
k

∙ φD.

Before we prove Theorem7, we begin with a few definitions. Let(I,X) be the returned solution
of the algorithm. LetVI be thed × |I| matrix whose columns arevi for eachi ∈ I. Observe that
X = VIV

>
I andX is invertible sincedet(X) > 0 at the beginning of the algorithm anddet(X)

only increases in later iterations. We letτi = v>i X−1vi for any1 ≤ i ≤ n. Observe that ifi ∈ I,
thenτi is the leverage score of rowvi with respect to the matrixV >

I . We also letτij = v>i X−1vj

for any1 ≤ i, j ≤ n.

5

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

max
x∈Rn

1
d

log det

(
n∑

i=1

xiviv
>
i

)

n∑

i=1

xi ≤ k

xi ≥ 0 i ∈ [1, n]

(a) Convex relaxation (D-REL) for D-DESIGN

min
μ∈R

Y ∈Rd×d

1
d

log det(Y) +
k

d
μ − 1

μ − v>i Y −1vi ≥ 0 i ∈ [1, n]

Y � 0

(b) Dual (D-REL-DUAL) of (D-REL)

Figure 3: Convex Relaxation and its Dual for theD-DESIGN problem

Notations: For convenience, we summarize the notations used in this section.

• φD
f is the common optimum value of (D-REL) and its dual (D-REL-DUAL).

• I? ⊆ [1, n] is the set of indices of the vectors in the optimal solution.

• φD = det
(∑

i∈I? viv
>
i

) 1
d , the integral optimum value ofD-DESIGN

• I ⊆ [1, n], X =
∑

i∈I viv
>
i is the solution returned by the algorithm.

• For1 ≤ i ≤ n, τi = v>i X−1vi.

• For1 ≤ i, j ≤ n, τij = v>i X−1vj .

The following lemma states standard properties about leverage scores of vectors with respect to
the PSD matrixX =

∑
i∈I viv

>
i (see for exampleDrineas et al.(2012)). These results hold even

whenX is not an output from a local search algorithm and the proof is included in the appendix.

Lemma 8 Letv1, . . . , vn ∈ Rd andI ⊆ [n]. For any matrixX =
∑

i∈I viv
>
i , we have:

1. For anyi ∈ I, we haveτi ≤ 1. Moreover, for anyi ∈ I, τi = 1 if and only ifX − viv
>
i is

singular.

2. We have
∑

i∈I τi = d.

3. For any1 ≤ j ≤ n, we have
∑

i∈I τijτji = τj .

4. For any1 ≤ i, j ≤ n, we haveτij = τji andτij ≤
√

τiτj .

We now prove an upper bound onτj for the local optimal solution. This lemma utilizes the local
optimality condition crucially.

Lemma 9 For anyj ∈ [1, n], τj ≤ d
k−d+1 .

6

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Before we prove the lemma, we complete the proof of Theorem7 using Lemma9.
Proof [Theorem7] We construct a feasible solution to the (D-REL-DUAL) of the objective value
at most1d log det(X) + log k

k−d+1 . This would imply that

φD
f ≤

1
d

log det(X) + log
k

k − d + 1

which proves the first part of the theorem. The second part follows sinceφD
f ≥ log φD.

Let Y = αX, μ = max1≤j≤n v>j Y −1vj = 1
α maxj∈[1,n] v

>
j X−1vj whereα > 0 will be fixed

later. Then,(Y, μ) is a feasible solution of (D-REL-DUAL). Hence,

φD
f ≤

1
d

log det(αX) +
k

d
∙

1
α

max
j∈[1,n]

v>j X−1vj − 1

≤ log α +
1
d

log det(X) +
k

dα
∙

d

k − d + 1
− 1 (Lemma9)

Settingα = k
k−d+1 , we get

φD
f ≤ log

k

k − d + 1
+

1
d

log det(X) + 1 − 1 = log
k

k − d + 1
+

1
d

log det(X)

asrequired.

We now prove Lemma9.
Proof [Lemma9] SinceX is a symmetric matrix,X−1 is also a symmetric matrix and therefore
τij = τji for eachi, j. We first show that the local optimality condition implies the following claim:

Claim 1 For anyi ∈ I and1 ≤ j ≤ n, we haveτj − τiτj + τijτji ≤ τi.

Proof Let i ∈ I, j ∈ [1, n]. By local optimality ofI,

det(X − viv
>
i + vjv

>
j) ≤ det(X).

Next we cite the following lemma for a determinant formula.

Lemma 10 (Matrix Determinant Lemma,Harville (1997)) For any invertible matrixA ∈ Rd×d

anda, b ∈ Rd,
det(A + ab>) = det(A)(1 + b>A−1a)

Applying the Lemma twice todet(X − viv
>
i + vjv

>
j), the local optimality condition implies that

det(X) ≥ det(X − viv
>
i + vjv

>
j) = det(X + vjv

>
j)(1 − v>i (X + vjv

>
j)−1vi)

= det(X)(1 + v>j X−1vj)(1 − v>i (X + vjv
>
j)−1vi)

Hence,(1 + v>j X−1vj)(1 − v>i (X + vjv
>
j)−1vi) ≤ 1. Applying Sherman-Morrison formula, we

get

(1 + v>j X−1vj)

(

1 − v>i

(

X−1 −
X−1vjv

>
j X−1

1 + v>j X−1vj

)

vi

)

≤ 1

(1 + τj)

(

1 − τi +
τijτji

1 + τj

)

≤ 1

(1 − τi)(1 + τj) + τijτji ≤ 1

τj − τiτj + τijτji ≤ τi.

7

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

This finishes the proof of Claim1.

Now summing the inequality in Claim1 over alli ∈ I, we get
∑

i∈I

(τj − τiτj + τijτji) ≤
∑

i∈I

τi.

Applying Lemma8, we obtain thatkτj − dτj + τj ≤ d. Rearranging, we obtain that

τj ≤
d

k − d + 1

asdesired.

2.3. D-DESIGN without Repetitions

Due to space constraints, we defer the proof of local search forD-DESIGN without repetitions to
the appendix.

3. Local Search forA-DESIGN

In this section, we prove the performance of modified local search, presented earlier as Theorem3.
As remarked earlier, we need to modify the instance to cap the length of the vectors before applying
the local search procedure. This is done in Section3.1. We show that the value of any feasible
solution only increases after capping. Moreover, the value of the natural convex programming
relaxation increases by at most a small factor. We then analyze that the local search algorithm
applied to vectors of short length returns a near optimal solution. Combining these facts give a
complete analysis of modified local search forA-DESIGN in Section3.2which implies Theorem3.

3.1. Capping Vectors

Algorithm 2 Capping vectors length forA-DESIGN

Input: V = {v1, . . . , vn} ⊆ Rd, parameterΔ.
while ∃i ∈ [1, n], ||vi||22 > Δ do

t = argmaxi∈[n] ||vi||2.

For j ∈ [1, n], vj =
(
Id − 1

2
vtv>

t

||vt||22

)
vj

end while
For j ∈ [1, n], uj = vj .
ReturnU = {u1, . . . , un} ⊆ Rd

The algorithm to cap the length of input vectors is given in Algorithm2. In each iteration, it
considers the longest vectorvt. If the length of this vector (and thus every vector) is at mostΔ, then
it returns the current updated vectors. Else, it scales down all the vectors along the direction of the
longest vector. Here,Id denotes thed-by-d identity matrix.

Before we give the guarantee about the algorithm, we introduce the convex program for the
A-DESIGN problem in Figure6 (see Chapter 7 ofBoyd and Vandenberghe(2004)). For any input

8

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

A-REL(V)

min
x∈Rn

tr





(
n∑

i=1

xiviv
>
i

)−1




n∑

i=1

xi ≤ k

xi ≥ 0 i ∈ [n]

(a) Convex relaxationA-REL(V) for A-DESIGN

A-REL -DUAL (V)

max
λ∈Rn

Y ∈Rd×d

2 tr
(
Y 1/2

)
− kλ

λ − v>i Y vi ≥ 0 i ∈ [n]

Y � 0

(b) DualA-REL-DUAL(V) of A-REL(V)

Figure 6: Convex Relaxation and its Dual for theA-DESIGN problem

vectorsV = {v1, . . . , vn}, the primal program isA-REL(V) and the dual program isA-REL-
DUAL(V). We index these convex programs by input vectorsV as we will analyze their objectives
when the input vectors change by the capping algorithm. We letφA

f (V) denote the (common)
optimal objective value of both convex programs with input vectorsV .

We prove the following guarantee about Algorithm2. The proof along with some intuition of
Algorithm 2 appears in the appendix.

Lemma 11 For any input vectorsV = {v1, . . . , vn} ⊆ Rd andk ≥ d, if k ≥ 15 then the capping
algorithm returns a set of vectorsU = {u1, . . . un} such that

1. ‖ui‖2
2 ≤ Δ for all i ∈ [n].

2. For any (multi-)setS ⊆ [n], tr
((∑

i∈S viv
>
i

)−1
)
≤ tr

((∑
i∈S uiu

>
i

)−1
)

.

3. φA
f (U) ≤

(
1 + 3000∙d

k

) (
φA

f (V) + 135∙d
Δ

)
.

Lemma11 states that if an algorithm returns a good solution from capped vectors, then the
objective remains small after we map the solution back to the original (uncapped) input vectors.
Moreover, by choosing a sufficiently large capping lengthΔ, we may bound the increase in optimal
value of the natural convex programming relaxation after capping by a small factor. Optimizing for
Δ is to be done later.

3.2. Local Search Algorithm

We now consider the local search algorithm with the capped vectors. The performance of the algo-
rithm is stated as follows.

Theorem 12 Let (I,X) be the solution returned by Algorithm3. If ||ui||22 ≤ Δ for all i ∈ [n],

tr(X−1) ≤ φA
f (U)




(

1 −
d − 2

k

)

−

√
ΔφA

f (U)

k





−1

.

9

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Algorithm 3 Local search algorithm forA-DESIGN with capped vectors

Input: U = {u1, . . . , un} ⊆ Rd, d ≤ k ∈ N.
Let I be any (multi)-subset of[1, n] of sizek such thatX =

∑
i∈I uiu

>
i is nonsingular.

while ∃i ∈ I, j ∈ [1, n] such thattr
(
(X − uiu

>
i + uju

>
j)−1

)
< tr(X−1) do

X = X − uiu
>
i + uju

>
j

I = I \ {i} ∪ {j}
end while
Return(I,X)

The proof of Theorem12 is deferred to the appendix. We now analyze the modified local search
algorithm presented as Algorithm4 with input vectorsV = {v1, . . . , vn} which may contain vectors
with long length using Theorem12. LetI? be the set of indices of the vectors in the optimal solution

of A-DESIGN with input vector setV and letφA(V) = tr
((∑

i∈I? viv
>
i

)−1
)

be its objective.

Observe thatφA
f (V) ≤ φA(V).

Algorithm 4 Modified local search algorithm forA-DESIGN

Input: V = {v1, . . . , vn}, d ≤ k ∈ N.
Let Δ = d

ε2φA(V)
.

Let U = {u1, . . . , un} be the output of Vector Capping Algorithm2 with input (V, Δ).
Let I ⊆ [1, n], X =

∑
i∈I uiu

>
i be the output of Local Search Algorithm3 with input (U, k).

ReturnI.

Theorem 13 For input vectorsV = {v1, . . . , vn} wherevi ∈ Rd and parameterk, let I be the
solution returned by Algorithm4. If k ≥ 2d

ε4
andε ≤ 0.001, then

tr





(
∑

i∈I

viv
>
i

)−1


 ≤ (1 + ε)φA(V).

The(1 + ε)-approximation of Algorithm4 is achieved by setting an appropriate capping lengthΔ
and combining the guarantees from Lemma11and Theorem12.
Proof By Theorem12,

tr





(
∑

i∈I

uiu
>
i

)−1


 ≤ φA
f (U)



1 −
d − 2

k
−

√
ΔφA

f (U)

k





−1

= φA
f (U)



1 −
ε4

2
+

ε4

d
− ε

√
φA

f (U)

2φA(V)





−1

The last inequality follows sincek ≥ 2d
ε4

andΔ = d
ε2φA(V)

. By Lemma11,

φA
f (U) ≤

(
1 + 1500ε4

) (
φA

f (V) + 135ε2φA
f (V)

)
.

10

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

SinceφA
f (V) ≤ φA(V), we getφA

f (U) ≤ (1 + 1500ε4)(1 + 135ε2)φA(V). Substituting in the
equation above, we get

tr





(
∑

i∈I

uiu
>
i

)−1


 ≤ φA(V)
(1 + 1500ε4)(1 + 135ε2)

1 − ε4

2 + ε4/d − ε
√

(1 + 1500ε4)(1 + 135ε2)/2

≤ (1 + ε)φA(V)

where the last inequality follows from the fact thatε < 0.001. By Lemma11, we also have that

tr
((∑

i∈I viv
>
i

)−1
)
≤ tr

((∑
i∈I uiu

>
i

)−1
)

. Hence,

tr





(
∑

i∈I

viv
>
i

)−1


 ≤ (1 + ε)φA(V).

This finishes the proof of Theorem13.

Algorithm 4 requires the knowledge of the optimum solution valueφA(V). We can guess this
value efficiently by performing a binary search. The details appear in the appendix.

3.3. Instances with Bad Local Optima

In this section, we show that preprocessing input vectors to theA-DESIGN problem is required for
the local search algorithm to have any approximation guarantee. This is because a locally optimal
solution can give an arbitrarily bad objective value compared to the optimum. Hence, this require-
ment applies regardless of implementations of the local search algorithm. We summarize the result
as follows.

Theorem 14 For anyk ≥ d ≥ 2, there exists an instance ofA-DESIGN, either with or without
repetitions, such that a locally optimal solution has an arbitrarily bad approximation ratio.

We note that any instance toA-DESIGN with repetitions can be used forA-DESIGN without
repetitions by makingk copies of each input vector. Therefore, it is enough to show example of
instances only inA-DESIGNwith repetitions. For eachi, letei be the unit vector in theith dimension.
In this section,N is a real number tending to infinity, and theA(N) ∼ B(N) notation indicates
that limN→∞

A(N)
B(N) = 1. All asymptotic notions such as big-Oh are with respect toN → ∞. We

first show the bad instance whenk ≥ d = 2. Thoughd = 2 seems a small case to consider, the
calculation presented is central to prove the main theorem later.

Lemma 15 There exists an instance ofA-DESIGN for k ≥ d = 2, with repetitions, such that a
locally optimal solution has an arbitrarily bad approximation ratio.

The construction in Lemma15 can be generalized tod > 2 dimensions by adding a vector with an
appropriate length to each additional dimension. The proof of Theorem14appears in the appendix.
We now prove the Lemma.
Proof Let v1 = [1; 1

N2], v2 = [1;− 1
N2], w1 = [N4; 1

N], w2 = [N4;− 1
N], and let the input of

A-DESIGN be these four vectors. We first make straightforward calculations, summarized as the
following claim.

11

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Claim 2 Letp, q be positive integers. Then,

tr

((
pv1v

>
1 + qv2v

>
2

)−1
)

=
p + q

4pq
N4 + O(1) (1)

tr

((
pv1v

>
1 + qv2v

>
2 + w1w

>
1

)−1
)

=
1

p + q
N4 + O(N) (2)

tr

((
pv1v

>
1 + qv2v

>
2 + w2w

>
2

)−1
)

=
1

p + q
N4 + O(N) (3)

tr

((
w1w

>
1 + w2w

>
2

)−1
)

=
N2

2
+ O(N−8) (4)

Proof We will repeatedly use the formulatr

([
a b
c d

]−1
)

= a+d
ad−bc . We have

tr

((
pv1v

>
1 + qv2v

>
2

)−1
)

= tr

([
p + q (p − q)N−2

(p − q)N−2 (p + q)N−4

]−1
)

=
p + q + (p + q)N−4

(p + q)2N−4 − (p − q)2N−4
=

p + q

4pq
N4 + O(1)

tr

((
pv1v

>
1 + qv2v

>
2 + w1w

>
1

)−1
)

= tr

([
N8 + p + q N3 + (p − q)N−2

N3 + (p − q)N−2 N−2 + (p + q)N−4

]−1
)

=
N8 + O(1)

(p + q)N4 + O(N)
=

1
p + q

N4 + O(N)

The calculation fortr
((

pv1v
>
1 + qv2v

>
2 + w2w

>
2

)−1
)

is symmetric. Finally, we have

tr
(
w1w

>
1 + w2w

>
2

)−1
= tr

([
2N8 0

0 2N−2

]−1
)

=
N2

2
+

1
2N8

finishing theproof.

We now continue the proof of Lemma15. Let p = bk
2c, q = dk

2e and consider the solution
S which hasp andq copies ofv1 andv2 respectively. By Claim2, the current objective ofS is

tr
((

pv1v
>
1 + qv2v

>
2

)−1
)
∼ k

4pqN4 and the objective ofS \ {vi} ∪ {wj} for any pairi, j ∈ {1, 2}

is 1
p+q−1N4 + O(N) ∼ 1

k−1N4. As k
4pqN4 ≥ k

k2−1
N4 > 1

k−1N4 for k ≥ 2, S is locally optimal.
However, consider another solutionS∗ which picks p and q copies ofw1 and w2. Since

tr
(
w1w

>
1 + w2w

>
2

)−1
= O(N2), by monotonicity oftr((∙)−1) under Loewner ordering, we must

have that the objective given byS∗ is also at mostO(N2), which is aΘ(N2)-factor smaller than
the objective value ofS. The result follows becauseN tends to infinity.

4. Acknowledgement

Vivek Madan, Mohit Singh, and Uthaipon (Tao) Tantipongpipat are supported by NSF grant 1717947.

12

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

References

Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. Near-optimal design of experiments
via regret minimization. In Doina Precup and Yee Whye Teh, editors,Proceedings of the 34th In-
ternational Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 ofProceedings of Machine Learning Research, pages 126–135. PMLR, 2017.

Anthony Atkinson, Alexander Donev, and Randall Tobias.Optimum experimental designs, with
SAS, volume 34. Oxford University Press, 2007.

Haim Avron and Christos Boutsidis. Faster subset selection for matrices and applications.SIAM
Journal on Matrix Analysis and Applications, 34(4):1464–1499, 2013.

Dennis S Bernstein.Matrix mathematics: Theory, facts, and formulas with application to linear
systems theory, volume 41. Princeton university press Princeton, 2005.

Mustapha Bouhtou, Stephane Gaubert, and Guillaume Sagnol. Submodularity and randomized
rounding techniques for optimal experimental design.Electronic Notes in Discrete Mathematics,
36:679–686, 2010.

Stephen Boyd and Lieven Vandenberghe.Convex optimization. Cambridge university press, 2004.

Ali Çivril and Malik Magdon-Ismail. On selecting a maximum volume sub-matrix of a matrix and
related problems.Theoretical Computer Science, 410(47-49):4801–4811, 2009.

R Dennis Cook and Christopher J Nachtrheim. A comparison of algorithms for constructing exact
D-optimal designs.Technometrics, 22(3):315–324, 1980.

Michał Derezínski and Manfred K Warmuth. Subsampling for ridge regression via regularized
volume sampling.arXiv preprint arXiv:1710.05110, 2017.

Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney, and David P Woodruff. Fast approx-
imation of matrix coherence and statistical leverage.Journal of Machine Learning Research, 13
(Dec):3475–3506, 2012.

Walter Theodore Federer et al.Experimental design.Macmillan Co., New York and London, 1955.

Valerii Vadimovich Fedorov.Theory of optimal experiments. Elsevier, 1972.

David A Harville. Matrix algebra from a statistician’s perspective, volume 1. Springer, 1997.

Carl D Meyer, Jr. Generalized inversion of modified matrices.SIAM Journal on Applied Mathe-
matics, 24(3):315–323, 1973.

Alan J Miller and Nam-Ky Nguyen. Algorithm as 295: A fedorov exchange algorithm for D-optimal
design.Journal of the royal statistical society. series c (applied statistics), 43(4):669–677, 1994.

Toby J Mitchell and FL Miller Jr. Use of design repair to construct designs for special linear models.
Math. Div. Ann. Progr. Rept.(ORNL-4661), 13, 1970.

Nam-Ky Nguyen and Alan J Miller. A review of some exchange algorithms for constructing discrete
D-optimal designs.Computational Statistics & Data Analysis, 14(4):489–498, 1992.

13

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Aleksandar Nikolov, Mohit Singh, and Uthaipon Tao Tantipongpipat. Proportional volume sampling
and approximation algorithms for A-optimal design. InProceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1369–1386. SIAM, 2019.

Friedrich Pukelsheim.Optimal design of experiments. SIAM, 2006.

Guillaume Sagnol and Radoslav Harman. Computing exactd-optimal designs by mixed integer
second-order cone programming.The Annals of Statistics, 43(5):2198–2224, 2015.

Alexander Schrijver.Theory of linear and integer programming. John Wiley & Sons, 1998.

Mohit Singh and Weijun Xie. Approximate positive correlated distributions and approximation
algorithms for D-optimal design.To appear in SODA, 2018.

Yining Wang, Adams Wei Yu, and Aarti Singh. On computationally tractable selection of experi-
ments in regression models.arXiv preprint arXiv:1601.02068, 2016.

William J Welch. Algorithmic complexity: three np-hard problems in computational statistics.
Journal of Statistical Computation and Simulation, 15(1):17–25, 1982.

Appendix A. Proofs from Section2

We use the notation〈A,B〉 for an inner product of two matricesA,B of the same size. We begin
by stating the Sherman-Morrison formula that is important in our calculations. We instantiate it for
symmetric matrices.

Theorem 16 LetL be and × d invertible matrix andv ∈ Rd. Then

(
L + vv>

)−1
= L−1 −

L−1vv>L−1

1 + v>L−1v

Lemma 17 (Matrix Determinant Lemma,Harville (1997)) For any invertible matrixL ∈ Rd×d and
v ∈ Rd,

det(L + vv>) = det(L)(1 + v>L−1v)

We now detail the missing proofs.
Proof [Lemma8] Let W = X−i = X − viv

>
i =

∑
j∈I\{i} vjv

>
j . To showτi ≤ 1, we make two

cases depending on whetherW is singular or not.

14

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Case 1: W is non-singular.

τi = v>i (W + viv
>
i)−1vi

= v>i

(

W−1 −
W−1viv

>
i W−1

1 + v>i W−1vi

)

vi

= v>i W−1vi −
v>i W−1viv

>
i W−1vi

1 + v>i W−1vi

=
v>i W−1vi + (v>i W−1vi)2 − (v>i W−1vi)2

1 + v>i W−1vi

=
v>i W−1vi

1 + v>i W−1vi

< 1.

Last inequality follows from the fact thatv>i W−1vi > 0 sinceW−1 is non-singular.

Case 2: W is singular. We have thatX is non-singular andW = X − viv
>
i is a singular matrix.

Let Y † denote the Moore-Penrose pseudo-inverse ofY for any matrixY . Observe thatX† = X−1.
From Theorem 1 (Meyer, 1973), we have that

X−1 = W † −
W †viv

>
i (I − WW †)>

‖(I − WW †)vi‖2
2

−
(I − W †W)>viv

>
i W †

‖(I − W †W)>vi‖2
2

+
(1 + v>i W †vi)(I − W †W)>viv

>
i (I − WW †)>

‖(I − W †W)>vi‖2
2‖(I − WW †)vi‖2

2

Now we use the fact that(I −WW †) and(I −W †W) are projection matrices. Sincev>Pv =
‖Pv‖2

2 for any projection matrixP and vectorv, we obtain that

v>i X−1vi = v>i W †vi −

(
v>i W †vi

) (
v>i (I − WW †)>vi

)

‖(I − WW †)vi‖2
2

−

(
v>i (I − W †W)>vi

)
v>i W †vi

‖(I − W †W)>vi‖2
2

+
(1 + v>i W †vi)v>i (I − W †W)>viv

>
i (I − WW †)>vi

‖(I − W †W)>vi‖2
2‖(I − WW †)vi‖2

2

= v>i W †vi − v>i W †vi − v>i W †vi + (1 + v>i W †vi)

= 1

as claimed.
We now show that

∑
i∈I τi = d. Indeed

∑

i∈I

τi =
∑

i∈I

v>i X−1vi =
∑

i∈I

〈X−1, viv
>
i 〉 = 〈X−1,

∑

i∈I

viv
>
i 〉 = 〈X−1, X〉 = d

Similarly, we have

15

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

max
1
d

log det

(
n∑

i=1

xiviv
>
i

)

n∑

i=1

xi ≤ k

1 ≥ xi ≥ 0 i ∈ [1, n]

(a) Convex relaxation (D-REL) for D-
DESIGN

min
1
d

log det(Y) +
k

d
μ +

1
d

n∑

i=1

ηi − 1

μ + ηi − v>i Y −1vi ≥ 0 i ∈ [1, n]

ηi ≥ 0 i ∈ [1, n]

Y � 0

(b) Dual (D-REL-DUAL) of (D-REL)

Figure 9: Convex Relaxation and its Dual for theD-DESIGN problem without repetitions

∑

i∈I

τijτji =
∑

i∈I

v>i X−1vjv
>
j X−1vi =

∑

i∈I

〈X−1vjv
>
j X−1, viv

>
i 〉 = 〈X−1vjv

>
j X−1,

∑

i∈I

viv
>
i 〉

= 〈X−1vjv
>
j X−1, X〉 = v>j X−1vj

For the last part, observe thatX−1 is symmetric and thusτij = τji. Moreover,

τij = v>i X−1vj = (X− 1
2 vi)

>(X− 1
2 vj) ≤ ‖X− 1

2 vi‖2‖X
− 1

2 vj‖ =
√

τiτj

where the inequality follows from Cauchy-Schwarz.

A.1. Local Search forD-DESIGN without Repetitions

In this section, we focus on the variant ofD-DESIGN where repetitions of vectors are not allowed,
and show the approximation guarantee of the local search in this setting. In comparison toD-
DESIGN with repetitions, the relaxation now has an upper bound onxi and extra nonnegative vari-
ablesηi on the dual.

The local search algorithm1 is modified by considering a swap where elements to be included
in the set must not be in the current set. We prove a similar approximation ratio of the local search
algorithm for the without repetition setting.

Theorem 18 LetX be the solution returned by the local search algorithm. Then for allk ≥ d+1,

det(X) ≥

(
k − d

k

)d

ed∙φD
f

and therefore,

det(X)
1
d ≥

k − d

k
∙ φD.

16

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

We note that in the casek = d, the design problem without repetition is identical to with repetition
since the optimal solution must be linearly independent, and thus the bound from with repetitions
of Theorem7 applies to obtaind-approximation.

The proof of Theorem18is similar toD design requires a different bound onτj from the setting
with repetitions to set a feasible dual solution, since the local search condition no longer applies to
all vectorsj ∈ [n] but only for those not in output setI. We first give a bound ofτj for j /∈ I.

Lemma 19 For anyj /∈ S and anyi ∈ S such thatτi < 1,

τj ≤
τi

1 − τi
.

Proof We claim that the local search condition implies that for anyi ∈ I andj /∈ I, we have

τj − τiτj + τijτji ≤ τi. (5)

The proof of the claim is identical to that of Claim1. Hence, we have

τi ≥ τj − τiτj + τ2
ij ≥ τj − τiτj (6)

which finishes the proof of theLemma.

We now prove the main Theorem.
Proof [Theorem18]

As in the proof of Theorem7, we construct a feasible solution to the (D-REL-DUAL) of the
objective value of at most1d log det(X) + log k

k−d which is sufficient as a proof of the theorem.
Denoteτmin = minj∈I v>j Y −1vj . Let

Y = αX, μ =
k

α(k − d)
τmin, ηj =

{
0, j /∈ I
τj−τmin

α j ∈ I

whereα > 0 will be fixed later. We first check the feasibility of the solution. It is clear by definition
thatμ, ηj ≥ 0. Forj /∈ I, by Lemma19, we have

v>j Y −1vj =
1
α
∙ τj ≤

1
α
∙

τmin

1 − τmin
≤

1
α
∙

k

k − d
τmin = μ + ηj

where the second inequality follows fromτmin ≤ 1
k

∑
i∈I τi = d

k . For i ∈ I, we have

μ + ηi ≥
1
α
∙ (τmin + τi − τmin) = v>i Y −1vi

Therefore, the solution is dual feasible. This solution obtains the objective of1
d log det(αX)− 1 +

k
dμ + 1

d

∑n
i=1 ηi which is equal to

=
1
d

log det(αX) − 1 +
k

d

k

α(k − d)
τmin +

1
αd

∑

i∈I

(τi − τmin)

=
1
d

log det(αX) − 1 +
k2

αd(k − d)
τmin +

1
αd

(d − kτmin)

=
1
d

log det X + log α − 1 +
1
α

(
k

k − d
τmin + 1

)

≤
1
d

log det X + log α − 1 +
k

α(k − d)

17

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

where the last inequality is byτmin ≤ d
k . Finally, we setα = k

k−d to obtain the objective value of
dual

1
d

log det(X) + log
k

k − d
− 1 + 1 =

1
d

log det(X) + log
k

k − d

asrequired.

Appendix B. Proofs from Section3

B.1. Proof of Performance of Modified Local Search Algorithm forA-DESIGN

B.1.1. PROOF OFTHEOREM 12

We first outline the proof of Theorem12. Let (I,X) be the returned solution of the Algorithm3.
Observe thatX is invertible sinceX is invertible at the beginning andtr(X−1) only decreases in
the later iterations. Letτij = u>

i X−1uj , hij = u>
i X−2uj , τi = τii, hi = hii, andβ = tr(X−1).

Since,X is a symmetric matrix,X−1 is also a symmetric matrix and thereforeτij = τji for each
i, j ∈ [n].

Notations For convenience, we restate the notations used in this section.

• V : Input to Modified Local Search Algorithm4.

• I?: indices of the vectors in the optimal solution ofA-DESIGN with input vector setV .

• φA(V) = tr
((∑

i∈I? viv
>
i

)−1
)

.

• U : Output of Vector Capping Algorithm2 and input to Local Search Algorithm with capped
vectors3.

• Δ : For everyi ∈ [1, n], ||ui||22 ≤ Δ.

• (I,X) : Output of Local Search Algorithm with capped vectors3 on input(U, k).

• φA
f (U), andφA

f (V) denote the (common) optimal value of objective values of the convex
program with input vectors fromV andU respectively.

• For i, j ∈ [1, n], τij = u>
i X−1uj , hij = u>

i X−2uj .

• For i ∈ [n], τi = τii, hi = hii.

Following lemma shows some standard connections betweenτij , τi, hij andhi’s. Proof of the
lemma is presented in SectionB.1.3.

Lemma 20 We have the following.

1. For anyi ∈ I, we haveτi ≤ 1. Moreover, for anyi ∈ I, τi = 1 if and only ifX − viv
>
i is

singular.

18

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

2. We have
∑

i∈I τi = d.

3. For anyi, j ∈ [n], hi(1 + τj) − 2τijhij ≥ 0.

4. For anyj ∈ [n], we have
∑

i∈I τ2
ij = hj .

5. We have
∑

i∈I hi = β.

6. For anyj ∈ [n], we have
∑

i∈I τijhij = hj .

7. For anyj ∈ [n], we haveτj ≤
√

hj ||uj ||2.

8. For anyi ∈ [n], let X−i = X − uiu
>
i . If X−i is invertible, then for anyj ∈ [n], we have

• u>
j X−1

−i uj =
τj+τ2

ij−τiτj

1−τi
, and

• u>
j X−2

−i uj = hj +
hiτ

2
ij

(1−τi)2
+ 2τijhij

1−τi
.

Next lemma shows a lower bound onhj in terms ofβ andφA
f (U) by constructing a dual feasible

solution.

Lemma 21 We havemaxj∈[n] hj ≥
β2

k∙φA
f (U)

.

Next lemma shows an upper bound onhj in terms ofβ andτj using the local optimality condi-
tion.

Lemma 22 For anyj ∈ [n], hj

1+τj
≤ β

k−d+2 .

Before we prove these lemmas, we complete the proof of Theorem12.
Proof [Theorem12] By Lemma 22, for any j ∈ [n], hj

1+τj
≤ β

k−d+2 . By Lemma20, τj ≤
√

hj ||uj ||2 ≤
√

hjΔ. Hence, for anyj ∈ [n],

hj

1 +
√

hjΔ
≤

β

k − d + 2
.

By Lemma21, there existsj ∈ [n] such thathj ≥
β2

k∙φA
f (U)

. Now we note the following claim.

Claim 3 f(x) = x
1+c

√
x

is a monotonically increasing function forx ≥ 0 if c ≥ 0.

Proof f ′(x) = 1
1+c

√
x

+ x ∙ −1
(1+c

√
x)2

∙ c
2
√

x
= 2+c

√
x

(1+c
√

x)2
which is always positive forx ≥ 0 if c ≥ 0.

19

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Hence, we have

β2

k∙φA
f (U)

1 +
√

β2

k∙φA
f (U)

Δ
≤

β

k − d + 2

k − d + 2
k

β

φA
f (U)

≤ 1 +

√
ΔφA

f (U)

k

β

φA
f (U)



1 −
d − 2

k
−

√
ΔφA

f (U)

k



 β

φA
f (U)

≤ 1

tr(X−1) = β ≤ φA
f (U)



1 −
d − 2

k
−

√
ΔφA

f (U)

k





−1

.

This finishes the proof of Theorem12.

Next, we prove Lemma21and Lemma22.
Proof [Lemma21] We prove the lemma by constructing a feasible solution toA-REL-DUAL(U).
Let

Y = γX−2, λ = max
j∈[n]

u>
j Y uj = γ max

j∈[n]
hj

whereγ > 0 will be fixed later. Then,(Y, λ) is a feasible solution toA-REL-DUAL(U). Hence,

φA
f (U) ≥ 2 tr

((
γX−2

)1/2
)
− kγ max

j∈[n]
hj = 2

√
γβ − kγ max

j∈[n]
hj .

Substitutingγ =
(

β
k maxj∈[n] hj

)2
, we getφA

f (U) ≥ β2

k maxj∈[n] hj
. This gives usmaxj∈[n] hj ≥

β2

kφA
f (U)

which is the desired inequality in Lemma21.

Proof [Lemma22] We start the proof by showing an inequality implied by the local optimality of
the solution.

Claim 4 For anyi ∈ I, j ∈ [n],

hi(1 + τj) − hj(1 − τi) − 2τijhij ≥ 0 (7)

Proof For i ∈ I, let X−i = X − uiu
>
i . First consider the case whenX−i is singular. From

Lemma20, τi = 1 andhi(1 + τj) − 2τijhij ≥ 0. Hence,

hi(1 + τj) − hj(1 − τi) − 2τijhij ≥ 0.

Now, consider the case whenX−i is non-singular. By local optimality condition, we have that
for anyi ∈ I, j ∈ [n],

β ≤ tr

((
X−i + uju

>
j

)−1
)

20

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

By Sherman-Morrison formula,

tr

((
X−i + uju

>
j

)−1
)

= tr(X−1
−i)−

u>
j X−2

−i uj

1 + u>
j X−iuj

= tr(X−1)+
u>

i X−2ui

1 − u>
i X−1ui

−
u>

j X−2
−i uj

1 + u>
j X−iuj

Hence, local optimality ofI implies that for anyi ∈ I, j ∈ [n],

β ≤ tr(X−1) +
u>

i X−2ui

1 − u>
i X−1ui

−
u>

j X−2
−i uj

1 + u>
j X−iuj

(8)

By Lemma20, we haveu>
j X−1

−i uj =
τj+τ2

ij−τiτj

1−τi
andu>

j X−2
−i uj = hj +

hiτ
2
ij

(1−τi)2
+ 2τijhij

1−τi
.

Substituting these andtr(X−1) = β, u>
j X−2uj = hj , andu>

j X−1uj = τj in equation (8), we get

β ≤ β +
hi

1 − τi
−

hj +
hiτ

2
ij

(1−τi)2
+ 2τijhij

1−τi

1 +
τj+τ2

ij−τiτj

1−τi

0 ≤
hi

1 − τi
−

hj(1 − τi)2 + hiτ
2
ij + 2(1 − τi)τijhij

(1 − τi)(1 − τi + τj + τ2
ij − τiτj)

0 ≤
hi

1 − τi
−

hiτ
2
ij

(1 − τi)(1 − τi + τj + τ2
ij − τiτj)

−
hj(1 − τi)2 + 2(1 − τi)τijhij

(1 − τi)(1 − τi + τj + τ2
ij − τiτj)

0 ≤
hi(1 − τi + τj + τ2

ij − τiτj − τ2
ij)

(1 − τi)(1 − τi + τj + τ2
ij − τiτj)

−
hj(1 − τi) + 2τijhij

1 − τi + τj + τ2
ij − τiτj

0 ≤
hi(1 + τj)

1 − τi + τj + τ2
ij − τiτj

−
hj(1 − τi) + 2τijhij

1 − τi + τj + τ2
ij − τiτj

0 ≤ hi(1 + τj) − hj(1 − τi) − 2τijhij

Last inequality follows from the fact that1− τi + τj − τiτj + τ2
ij = (1− τi)(1+ τj)+ τ2

ij > 0 which
follows from the fact thatτi < 1 (Lemma20 andX−i is invertible). This concludes the proof of
claim4.

Next, we sum up equation (7) from claim4 for all i ∈ Z and get

(1 + τj)
∑

i∈I

hi − hj(|I| −
∑

i∈I

τi) − 2
∑

i∈I

τijhij ≥ 0

By Lemma20,
∑

i∈I hi = β,
∑

i∈I τi = d, and
∑

i∈I τijhij = hj . We also know that|I| = k
throughout the algorithm. Substituting these in the equation above we get,(1 + τj)β −hj(k− d)−
2hj ≥ 0 or equivalently,

hj

1 + τj
≤

β

k − d + 2
.

This finishes the proof of Lemma22.

21

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

B.1.2. THE CAPPING ALGORITHM AND THE PROOF OFLEMMA 11

Some intuition of the capping algorithm. Section3.3 shows an example where local search
outputs a solution with very large cost, thus showing that local search does not provide any approx-
imation algorithm. The failure of local search algorithm is the presence of extremely long vectors
(||v||22 much larger than A-optimum) which leads to “skewed” eigenvectors and eigenvalues. More-
over, we were able to show that this is the only bottleneck. That is, if all vector norms are small
(compared to A-optimum), solution output by the local search algorithm has cost at most(1 + ε)
times the fractional optimum.

The capping algorithm should then satisfy the following(s): Given an instance with arbitrary
length vectors, output a new instance such that

1. All vectors in the new instance have small length

2. Fractional optimum of the new instance does not increase by more than1+ ε factor of the old
fractional optimum

3. Any integral solution in the new instance can be translated into an integral solution in the old
instance with the same or lower cost.

If we can get such a procedure, we run the local search on the new instance and get an integral
solution with cost at most(1 + ε) times the fractional optimum of the new solution. Combining
with the properties above, we can then get an integral solution in the old instance with cost at most
(1 + ε)2 of the old fractional optimum.

We note that a more natural capping algorithm where we pick the longest vector, scale this
vector down, and project all other vectors into the space orthogonal to the large vector satisfies
properties (1) and (2) but not (3). That is, given an integral solution in the new instance, we can not
always find an integral solution in the old instance with roughly the same cost.

We now proof of Lemma11, which says that our capping algorithm satisfies three properties we
want.
Proof [Lemma11] For ease of notation, we consider the equivalent algorithm of Algorithm2.

Algorithm 5 Capping vectors length forA-DESIGN

Input: V = {v1, . . . , vn} ⊆ Rd, parameterΔ.
For i ∈ [1, n], w0

i := vi, ` = 0.
while ∃i ∈ [1, n], ||wl

i||
2
2 > Δ do

t` = argmaxi∈[1,n] ||w
l
i||2.

% For all vectors, scale the component along withwt direction.

For j ∈ [1, n], w`+1
j =

(

Id − 1
2

w`
t`

(w`
t`

)>

||w`
t`
||22

)

w`
j

` = ` + 1.
end while
For j ∈ [1, n], uj = w`

j .
ReturnU = {u1, . . . , un} ⊆ Rd

First observe that the length of the largest vector reduces by a constant factor and length of any
vector does not increase. Thus the algorithm ends in a finite number of iterations. Observe that the

22

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

first property is trivially true when the algorithm returns a solution. For the second property, we
show that the objective value of any setS only increases over the iterations. In particular, we show
the following claim.

Claim 5 For any setS ⊂ [n] and anỳ ≥ 0,

tr





(
∑

i∈S

w`
i (w

`
i)

>

)−1


 ≤ tr





(
∑

i∈S

w`+1
i (w`+1

i)>
)−1





Proof Let Z =

(

Id×d − 1
2

w`
t`

(w`
t`

)>

||w`
t`
||22

)

tr





(
∑

i∈S

w`+1
i (w`+1

i)>
)−1



 = tr





(

Z
∑

i∈S

w`
i (w

`
i)

>Z>

)−1




= tr



Z−1

(
∑

i∈S

w`
i (w

`
i)

>

)−1

Z−1





=

〈

Z−2,

(
∑

i∈S

w`
i (w

`
i)

>

)−1〉

Observe thatZ has all eigenvalues1 except for one which is12 . ThusZ−1 andZ−2 have all
eigenvalues at least one and in particularZ−2 � I. Hence,

tr





(
∑

i∈S

w`+1
i (w`+1

i)>
)−1



 ≥ tr





(
∑

i∈S

w`
i (w

`
i)

>

)−1




asrequired.

To prove the last property, we aim to obtain a recursion on the objective value of the convex
program over the iterations. LetW ` = {w`

1, . . . , w
`
n} be the set of vectors at the end of`th iteration

and letα?
` = φA

f (W `) denote the objective value of the convex program with the vectors obtained

at the end of̀ th iteration. We divide the iterations in to epochs where in each epoch the length
of the maximum vector drops by a factor of2. For ease of notation, we letp = 0 be the last
epoch andp = 1 to be the second last epoch and so on. For any integerp ≥ 0, we let rp :=
argmiǹ maxi∈[n] ‖w

`
i‖

2
2 ≤ 2p ∙Δ be the last iteration ofpth epoch. Thus in thepth epoch the length

of the largest vector is in the interval[2p ∙Δ, 2p+1 ∙Δ). LetT denote the first epoch and thusrT = 0.
Next lemma bounds the increase in the relaxation value in each iteration. The bound depends on
which epoch does the iteration lies in.

Lemma 23 For every` ∈ [rp, rp−1), we have

α?
`+1 ≤

(

1 +
2−3p/4

k

)(

α?
l +

8
2p/4Δ

)

.

23

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Next lemma bounds the number of iterations in thepth epoch.

Lemma 24 For everyp ≥ 1, we haverp−1 − rp + 1 ≤ 8
3d.

We first see the proof of last claim of Lemma11using Lemma23and Lemma24and then prove
these lemmas.

Using Lemmas23and 24, we bound the increase in relaxation value in each epoch.

Claim 6 For everyp ≥ 1, we have

α?
rp−1

≤

(

1 +
2−3p/4

k

) 8
3
d(

α?
rp

+
64d

3 ∙ 2p/4Δ

)

.

Proof From Lemma23, we have

α?
rp−1

≤

(

1 +
2−3p/4

k

)rp−1−rp+1

α?
rp

+
8

2p/4Δ




rp−1−rp+1∑

i=1

(

1 +
2−3p/4

k

)i




≤

(

1 +
2−3p/4

k

)rp−1−rp+1(

α?
rp

+
8

2p/4Δ
(rp−1 − rp + 1)

)

≤

(

1 +
2−3p/4

k

)rp−1−rp+1(

α?
rp

+
8

2p/4Δ
(rp−1 − rp + 1)

)

≤

(

1 +
2−3p/4

k

) 8
3
d(

α?
rp

+
64d

3 ∙ 2p/4Δ

)

(Lemma24)

asrequired.

Solving the recurrence in Claim6, we get a bound on the total increase in the relaxation cost
throughout the algorithm.

α?
r0

≤



Π>
p=0

(

1 +
2−3p/4

k

) 8
3
d






α?
rT

+
T∑

p=0

64d

3 ∙ 2p/4Δ





≤

(

Π>
p=0

(

1 +
2−3p/4

k

)) 8
3
d(

α?
rT

+
21/4

21/4 − 1
64d

3Δ

)

≤

(

Π>
p=0

(

1 +
2−p/2

k

)) 8
3
d(

α?
rT

+
135d

Δ

)

(9)

Claim 7 For anyk ≥ 15,

Π∞
p=0

(

1 +
2−3p/4

k

)

≤ 1 +
3
k
.

24

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Proof

Π∞
p=0

(

1 +
2−3p/4

k

)

= 1 +
1
k

∞∑

p=0

2−3p/4 +
1
k2

∞∑

p1=0

∞∑

p2=0

2−3p1/42−3p2/4

+
1
k3

∞∑

p1=0

∞∑

p2=0

∞∑

p3=0

2−3p1/4−3p2/4−3p3/4 . . .

= 1 +

∑∞
p=0 2−3p/4

k
+

(∑∞
p=0 2−3p/4

k

)2

+

(∑∞
p=0 2−3p/4

k

)3

+ . . .

≤ 1 +
2.47
k

+

(
2.47
k

)2

+

(
2.47
k

)3

+ . . .

=
1

1 − 2.47/k

≤ 1 +
3
k

Last inequality follows sincek ≥ 15.

Substituting bound from claim7 in Equation (9), we get

α?
r0

≤

(

1 +
3
k

) 8
3
d(

α?
rT

+
135d

k

)

≤

(

1 + e8 d

k

)(

α?
rT

+
135d

k

)

Last inequality follows from the fact that(1 + a/x)y ≤ 1 + ea x
y if x > y > 0 anda ≥ 1.

By definition,rT = 0. Hence,α?
0 = α?

rT
= φA

f (V). Also, by definitionα?
r0

= φA
f (U). Hence,

φA
f (U) ≤

(

1 + e8 d

k

)(

φA
f (V) +

135d

Δ

)

≤

(

1 + 3000
d

k

)(

φA
f (V) + 135

d

Δ

)

.

This finishes the proof of Lemma11.

To complete the missing details in the proof of Lemma11, we now prove Lemmas23and24.
Proof [Lemma23] For simplicity of exposition, we make some simplifying assumptions. Without
loss of generality, we assume thatt` = 1, i.e., the longest vector is the first vector in this iteration.
Also, since trace is invariant under rotation of basis, we may assume thatw`

1 =
√

γe1 for some

non-negative numberγ wheree1 =
(
1 0 . . . 0

)>
is the first standard vector. Hence,

w`+1
j =

(

Id×d −
1
2
e1e

>
1

)

w`
j .

Since,w`
1 is the largest vector in this iteration and` ∈ [rp, rp−1), we have

2pΔ ≥ γ > 2p−1Δ. (10)

Let x be the optimal solution forA-REL(w`
1, . . . , w

`
n). We construct a feasible solutiony for

A-REL(w`+1
1 , . . . , w`+1

n) with objective at most as required in the lemma. Letδ ≥ 0 be a constant
that will be fixed later. Let

yi =

{
k

k+δ (δ + x1) i = 1
k

k+δxi i ∈ [2, n]

25

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Claim 8 y is a feasible solution toA-REL(w`+1
1 , . . . , w`+1

n).

Proof Since,x is a feasible solution ofA-REL(w`
1, . . . , w

`
n), we know that

∑n
i=1 xi ≤ k. Thus

n∑

i=1

yi =
k

k + δ
δ +

k

k + δ

n∑

i=1

xi ≤
k

k + δ
δ +

k

k + δ
k ≤ k.

Clearlyy ≥ 0 and thus it isfeasible.

Now we bound the objective value of the solutiony. Let

X =
n∑

i=1

xiw
`
i (w

`
i)

>, Y =
n∑

i=1

yiw
`+1
i (w`+1

i)>.

Claim 9 For anyδ > 0, tr(Y −1) ≤ k+δ
k

(
tr(X−1) + 4

δγ

)
.

Before we prove Claim9, we complete the proof of Lemma6.
From Equation (10), we haveγ ≥ 2p−1Δ and substitutingδ = 2−p/2 in Claim9 we get,

tr(Y −1) ≤

(

1 +
2−p/2

k

)(

tr(X−1) +
8

2p/2Δ

)

.

Since,x is an optimal solution toA-REL(w`
1, . . . , w

`
n), we haveα?

` = φA
f (w`

1, . . . , w
`
n) =

tr(X−1). Moreover, sincey is a feasible solution toA-REL(w`+1
1 , . . . , w`+1

n), we have

α?
`+1 = φA

f (w`+1
1 , . . . , w`+1

n) ≤ tr(Y −1) ≤

(

1 +
2−p/2

k

)(

α?
` +

8
2p/2Δ

)

.

Hence, it only remains to show the proof of Claim9.

Proof [Claim 9] Let X =
∑n

i=1 xiw
`
i (w

`
i)

> =

[
p q̄>

q̄ R

]

wherep ∈ R, q̄ ∈ Rd, R ∈ Rd−1×d−1.

Then

k + δ

k
Y = δw`+1

1 (w`+1
1)> +

n∑

i=1

xiw
`+1
i (w`+1

i)>

=

(

Id×d −
1
2
e1e

>
1

)(

δw`
1(w

`
1)

> +
n∑

i=1

w`
i (w

`
i)

>

)(

Id×d −
1
2
e1e

>
1

)>

=

[
1
2 0̄>

0̄ I(d−1)×(d−1)

] [
p + δγ q̄>

q̄ R

] [
1
2 0̄>

0̄ I(d−1)×(d−1)

]

=

[
1
4(p + δγ) 1

2 q̄>
1
2 q̄ R

]

SinceX is positive definite, we must havep > 0, R is also positive definite and more over
p − q̄>R−1q̄ > 0 (see Proposition 2.8.4Bernstein(2005)).

26

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Fact 1 (Block Inversion formula) ForA ∈ Ra×a, D ∈ Rd×d, B ∈ Ra×d, C ∈ Rd×a such that[
A B
C D

]

is invertible, we have

[
A B
C D

]−1

=

[
(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

Applying block inversion formula onX, we get

X−1 =




1

p−q̄>R−1q̄
. . .

. . .
(
R − 1

p q̄q̄>
)−1





Since,X is a positive semi-definite matrix,X−1 is also a positive semi-definite matrix. Hence,
principle submatrices are positive semidefinite. In particular,

p − q̄>R−1q̄ ≥ 0. (11)

and,

R −
1
p
q̄q̄> � 0(d−1)×(d−1) (12)

Next, let us computetr(X−1).

tr(X−1) =
1

p − q̄>R−1q̄
+ tr

((

R −
1
p
q̄q̄>

)−1
)

≥ tr

((

R −
1
p
q̄q̄>

)−1
)

. (13)

Applying block-inversion formula tok+δ
k Y , we get

(
k + δ

k
Y

)−1

=





(
1
4(p + δγ) − 1

4 q̄>R−1q̄
)−1

. . .

. . .
(
R − 1

(p+δγ)/4
1
4 q̄q̄>

)−1





Hence,
k

k + δ
tr
(
Y −1

)
=

4
δγ + p − q̄>R−1q̄

+ tr

((

R −
1

p + δγ
q̄q̄>

)−1
)

Claim 10
4

δγ + p − q̄>R−1q̄
≤

4
δγ

Proof By Equation (11), p − q̄>R−1q̄ ≥ 0. Hence, the inequality trivially follows.

Claim 11

tr

((

R −
1

p + δγ
q̄q̄>

)−1
)

≤ tr

((

R −
1
p
q̄q̄>

)−1
)

27

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Proof Since,δ, α ≥ 0, 1
p+δγ ≤ 1

p . Hence,

1
p + δγ

q̄q̄> �
1
p
q̄q̄>

−
1

p + δγ
q̄q̄> � −

1
p
q̄q̄>

R −
1

p + δγ
q̄q̄> � R −

1
p
q̄q̄>

(

R −
1

p + δγ
q̄q̄>

)−1

�

(

R −
1
p
q̄q̄>

)−1

tr

((

R −
1

p + δγ
q̄q̄>

)−1
)

≤ tr

((

R −
1
p
q̄q̄>

)−1
)

Applying the above two claims, we get

k

k + δ
tr
(
Y −1

)
≤

104

δγ
+ tr

((

R −
1
p
q̄q̄>

)−1
)

k

k + δ
tr
(
Y −1

)
≤

104

δγ
+ tr(X−1) (eq (13))

tr(Y −1) ≤
k + δ

k

(

tr(X−1) +
104

δγ

)

.

This finishes the proof of Claim9.

Proof of Claim9 also finishes the proof of Lemma23.

Proof (Lemma24) By definition ofrp andrp−1, we know that for anỳ ∈ [rp, rp−1),

2p−1Δ ≤ max
i∈[n]

||w`
i ||

2
2 ≤ 2pΔ

Let Mrp = Id×d, Rrp = Id×d and for` ∈ [rp, rp−1), let

M`+1 =

(

Id×d −
1
2

w`
t`
(w`

t`
)>

||w`
t`
||22

)

M`, R`+1 = MT
`+1M`+1.

For ` ∈ [rp, rp−1), consider the potential functiontr(R`). We show the following properties about
this potential function:

Claim 12 Let M`, R` be as defined above for` ∈ [rp, rp−1). Then,tr(Rrp) = d and for ` ∈
[rp, rp−1),

• tr(R`) ≥ 0, and

28

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

• tr(R`+1) ≤ tr(R`) − 3
8 .

Using Claim12, it is easy to see thatrp−1 − rp + 1 ≤ 8
3d. Hence, to prove Lemma24, it is enough

to prove Claim12.
Proof (Claim 12) Since,Rrp = Id×d, tr(Rrp) = d is trivially true. Also, for anỳ ∈ [rp, rp−1),
R` = M>

` M` which is positive semidefinite. Hence,tr(R`) ≥ 0 for any ` ∈ [rp, rp−1). For
` ∈ [rp, rp−1),

R`+1 = M>
`+1M`+1 = M>

`

(

Id×d −
1
2

w`
t`
(w`

t`
)>

||w`
t`
||22

)>(

Id×d −
1
2

w`
t`
(w`

t`
)>

||w`
t`
||22

)

M`

Matrix

(

Id×d − 1
2

w`
t`

(w`
t`

)>

||w`
t`
||22

)

is symmetric. Hence,

R`+1 = M>
`

(

Id×d −
w`

t`
(w`

t`
)>

||w`
t`
||22

+
1
4

w`
t`
(w`

t`
)>

||w`
t`
||22

w`
t`
(w`

t`
)>

||w`
t`
||22

)

M`

= M>
`

(

Id×d −
w`

t`
(w`

t`
)>

||w`
t`
||22

+
1
4

w`
t`
(w`

t`
)>

||w`
t`
||22

)

M`

= M>
` M` −

3
4

(M>
` w`

t`
)(w`

t`
)>M`

||w`
t`
||22

= R` −
3
4

(M>
` w`

t`
)(M>

` w`
t`
)>

||w`
t`
||22

By definitionw`
t`

= M`w
rp

t`
. Hence,

R`+1 = R` −
3
4

(M>
` M`w

rp

t`
)(M>

` M`w
rp

t`
)>

||w`
t`
||22

= R` −
3
4

(R`w
rp

t`
)(R`w

rp

t`
)>

||w`
t`
||22

And the trace is

tr(R`+1) = tr

(

R` −
3
4

(R`w
rp

t`
)(R`w

rp

t`
)>

||w`
t`
||22

)

= tr(R`) −
3
4

||R`w
rp

t`
||22

||w`
t`
||22

By Cauchy-Shwarz inequality,||u||22 ≥ (vT u)2/||v||22. Substitutingu = R`w
rp

t`
andv = w

rp

t`
, we

get

tr(R`+1) ≤ tr(R`) −
3
4

(
(wrp

t`
)>R`w

rp

t`

)2

||wrp

t`
||22 ∙ ||w

`
t`
||22

= tr(R`) −
3
4

(
(wrp

t`
)>M>

` M`w
rp

t`

)2

||wrp

t`
||22 ∙ ||w

`
t`
||22

= tr(R`) −
3
4

||M`w
rp

t`
||42

||wrp

t`
||22||w

`
t`
||22

= tr(R`) −
3
4

||w`
t`
||42

||wrp

t`
||22||w

`
t`
||22

= tr(R`) −
3
4

||w`
t`
||22

||wrp

t`
||22

Since,̀ ∈ [rp, rp−1), ||w`
t`
||22 = maxi∈[n] ||w

`
i ||

2
2 ≥ 2p−1Δ. Also, by definition ofrp, ||wrp

t`
||22 ≤

maxi∈[n] ||w
rp

i ||22 ≤ 2pΔ. Hence,

tr(R`+1) ≤ tr(R`) −
3
4

2p−1Δ
2pΔ

= tr(R`) −
3
8
.

29

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

asdesired.

Hence, the proof of Lemma24 is completed.

B.1.3. PROOF OFLEMMA 20

Proof [Lemma20] Proof of first and second statement is same as that in Lemma8. So, we start by
proving thathi(1 + τj) − 2τijhij ≥ 0.

Claim 13 For anyj ∈ [n], X−1/2uju
>
j X−1/2 � τjId.

Proof Since,X is a symmetric matrix,X−1 andX−1/2 are also symmetric matrices. Hence, if
q = X−1/2uj , thenX−1/2uju

>
j X−1/2 = qq>. Such a matrix has one non-zero eigenvalue equal to

||q||22 = u>
j X−1uj = τj . Hence,X−1/2uju

>
j X−1/2 � τjId.

Next, we use this to derive further inequalities.

X−1/2uju
>
j X−1/2 � τjId

2X−1/2uju
>
j X−1/2 � 2τjId

2X−1/2uju
>
j X−1/2 � (1 + τj)Id (τj ≤ 1, j ∈ [n])

X−1/2X−1/2uju
>
j X−1/2X−3/2 � X−1/2(1 + τj)X

−3/2 (X−1/2, X−3/2 are PSD)

2X−1uju
>
j X−2 � (1 + τj)X

−2

If A � B, thenv>Av ≤ v>Bv for all v. Hence,u>
i (2X−1uju

>
j X−2 ≤ (1 + τj)X−2)ui ≤ 0. Or

in other words,hi(1 + τi) − 2τijhij ≥ 0.
Next, we show that

∑
i∈I τ2

ij = hj .

∑

i∈I

τ2
ij =

∑

i∈I

u>
i X−1uju

>
i X−1uj =

∑

i∈I

u>
i X−1uju

>
j X−1ui

=
∑

i∈u

〈X−1uju
>
j X−1, uiu

>
i 〉

= 〈X−1uju
>
j X−1,

∑

i∈Z

uiu
>
i 〉

= 〈X−1uju
>
j X−1, X〉

= 〈u>
j X−1, XX−1u>

j 〉

= 〈u>
j X−1, u>

j 〉 = u>
j X−1uj = hj

30

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Next, we show that
∑

i∈I hi = β.
∑

i∈I

hi =
∑

i∈Z

u>
i X−2ui

=
∑

i∈I

〈X−2, uiu
>
i 〉

= 〈X−2,
∑

i∈I

uiu
>
i 〉 = 〈X−2, X〉

= 〈X−1, X−1X〉

= 〈X−1, Id〉 = tr(X−1)

Next, we show that
∑

i∈I τijhij = hj .
∑

i∈I

τijhij =
∑

i∈I

u>
i X−1uju

>
i X−2uj =

∑

i∈I

u>
i X−1uju

>
j X−2ui

=
∑

i∈I

〈X−1uju
>
j X−2, uiu

>
i 〉

= 〈X−1uju
>
j X−2,

∑

i∈Z

uiu
>
i 〉 = 〈X−1uju

>
j X−2, X〉

= 〈u>
j X−2, u>

j X−1X〉

= 〈u>
j X−2, uj〉 = hj

Next, we show thatτj ≤
√

hj ||uj ||2.

√
hj ||uj ||2 =

√
u>

j X−2uj ||uj ||2

=
√

||X−1uj ||22||uj ||2 = ||X−1uj ||2||uj ||2

≥ u>
j X−1uj = τj .

Here, the last inequality follows from Cauchy-Schwarz inequality: for anyu, v ∈ Rd, u>v ≤
||u||2||v||2.

Next, we show the last two equalities. Fori ∈ [n], X−i = X − uiu
>
i . Let j ∈ [n]. By

Sherman-Morrison formula,

X−1
−i = X−1 +

X−1uiu
>
i X−1

1 − u>
i X−1ui

= X−1 +
X−1uiu

>
i X−1

1 − τi
(14)

Hence,

u>
j X−1

−i uj = u>
j X−1uj +

u>
j X−1uiu

>
i X−1uj

1 − τi

= τj +
u>

j X−1uiu
>
i X−1uj

1 − τi

= τj +
τij ∙ τij

1 − τi
=

τj + τ2
ij − τiτj

1 − τi

31

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Squaring the terms in equation (14), we get

X−2
−i = X−2 +

X−1uiu
>
i X−2uiu

>
i X−1

(1 − τi)2
+

X−1uiu
>
i X−2

1 − τi
+

X−2uiu
>
i X−1

1 − τi

= X−2 + hi
X−1uiu

>
i X−1

(1 − τi)2
+

X−1uiu
>
i X−2

1 − τi
+

X−2uiu
>
i X−1

1 − τi

Hence,

u>
j X−2

−i uj = u>
j X−2uj + hi

u>
j X−1uiu

>
i X−1uj

(1 − τi)2
+

u>
j X−1uiu

>
i X−2uj

1 − τi
+

u>
j X−2uiu

>
i X−1uj

1 − τi

= hj + hi
τij ∙ τij

(1 − τi)2
+

τijhij

1 − τi
+

hijτij

1 − τi

= hj +
hiτ

2
ij

(1 − τi)2
+

2τijhij

1 − τi

B.2. Guessing A-Optimum ValueφA(V)

We remarked earlier that Algorithm4 requires the knowledge of the optimum solution valueφA(V).
We can guess this value efficiently by performing a binary search. We explain the details and the
proof of the polynomial runtime of the search in this section.

Let α = tr
((∑n

i=1 viv
T
i

)−1
)

. Since we may pick at mostk copies of each vector, we have that

φA(V) ≥ tr
((

k
∑n

i=1 viv
T
i

)−1
)

= 1
kα. The fractional solutionxi = k

n is feasible forA-REL(V).

Hence,φA
f (V) ≤ tr

((
k
n

∑n
i=1 viv

T
i

)−1
)

= n
k α. Using the result inAllen-Zhu et al.(2017), we get

thatφA(V) ≤ (1 + ε)φA
f (V). Hence,φA(V) ∈

[
1
kα, n(1+ε)

k α)
]
. Hence, given an instance, we first

computeα and then perform a binary search forφA(V) in the interval[1kα, n(1+ε)
k α].

Suppose the current range of the optimum is[`, u]. We guess OPT to be`+u
2 (use this as A-

optimumφA(V)) and run the modified local search algorithm. We claim that if it outputs a solution
with cost at most(1+ε) `+u

2 thenφA(V) lies in the range[`, (1+ε) `+u
2]. If it outputs a solution with

cost more than(1+ε) `+u
2 , thenφA(V) lies in the range[`+u

2 , u]. The first statement is trivially true.
The second statement is equivalent to the following: IfφA(V) is less than`+u

2 , then the algorithm
outputs a solution of cost at most(1 + ε) `+u

2 . Proof of this fact follows exactly the same way as
the proof of Theorem 13 by substitutingφA(V) with `+u

2 everywhere. The proof still follows, since
the only place we use the meaning of theφA(V) value is in claiming that there exists a fractional
solution with valueφA(V). BecauseφA(V) is less than`+u

2 , this statement is true withφA(V)
replaced by`+u

2 .

We can guess the value ofφA(V) upto a factor of1 + ε in log1+ε(n(1 + ε)) ≤ log(n(1+ε))
ε

iterations. This introduces an additional multiplicative factor of1+ ε in the approximation factor in
Theorem13. Hence, we get an approximation factor of(1 + ε)(1 + ε) ≤ (1 + 3ε) and polynomial
number of iterations.

32

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

B.3. Example of Instances toA-DESIGN

In this section, we give more details deferred from Section3.3, starting with the proof of Theorem
14.
Proof [Theorem14] The cased = 2 is proven in Lemma15, so letd ≥ 3. Let

v1 = [1;
1

N2
; 0; . . . ; 0], v2 = [1;−

1
N2

; 0; . . . ; 0], w1 = [N4; N ; 0; . . . ; 0],

w2 = [N4;−N ; 0; . . . ; 0], U =

{

ui :=
1

N3
ei : i = 3 . . . , d

}

,

and let{v1, v2, w1, w2} ∪ U be the input vectors toA-DESIGN. Let p = bk−d+2
2 c, q = dk−d+2

2 e.
Consider a solutionS which picksp andq copies ofv1 andv2, and one copy ofui for eachi =
3, . . . , d. We claim thatS is locally optimal.

Consider a swap of elementsS′ = S \ {s}∪ {s′} wheres′ 6= s. If s ∈ U , thenS′ does not span
full dimension. Hence,s ∈ {v1, v2}. If s′ = ei ∈ U for somei, then the increase of eigenvalue
of S′ in the ith axis reduces the objective byΘ(N3). However, by Claim2, removing a vectors
will increase the objective byΩ(N4) . Finally, if s′ /∈ U , then the swap appears within the first
two dimension, so the calculation that a swap increases the objective is identical to the cased = 2,
proven in Lemma15. Therefore,S is locally optimal.

We now observe that the objective given byS is Θ(N4), dominated by eigenvalues of eigenvec-
tors spanning the first two dimension. However, consider a solutionS∗ which picksp andq copies
of w1 andw2, and one copy ofui for eachi = 3, . . . , d. The objective ofS∗ contributed by eigen-
values of eigenvectors lying in the first two dimension isO(N2) (Claim2), so the total objective of
S∗ is Θ(N3), which is arbitrarily smaller thanΘ(N4), the objective ofS.

We also remark that the exmple of input vectors toA-DESIGN given in this section also shows

that A-DESIGN objectiveS → tr
((∑

i∈S viv
>
i

)−1
)

is not supermodular, making the analysis

of algorithms in submodular optimization unapplicable. A set functiong : 2U → R is called
submodular ifg(S ∪ {u}) − g(S) ≥ g(S′ ∪ {u}) − g(S′) for all S ⊆ S′ ⊆ U andu ∈ U , andg
is supermodular if−g is submodular. In other words,g is supermodular if the marginal loss ofg by
addingu is decreasing as the setS is increasing by a partial ordering “⊆”. As a set increases, the
marginal loss of theA-DESIGNobjective not only potentially increase, but also has no upper bound.

Remark 25 For anyd ≥ 2, T > 0, there exist sets of vectorsS (S′ in Rd and a vectorw ∈ Rd

such that
tr
((∑

i∈S′ vv>
)−1
)
− tr

((∑
i∈S′ vv> + ww>

)−1
)

tr
((∑

i∈S vv>
)−1
)
− tr

((∑
i∈S vv> + ww>

)−1
) > T

Proof We first assumed = 2. Use the same definitions of vectors from Lemma15 and setS =
{v1, v2} , S′ = {v1, v2, w1} andw = w2. By Claim2,

tr





(
∑

i∈S

vv>

)−1


− tr





(
∑

i∈S

vv> + ww>

)−1


 = O(N)

33

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

and

tr





(
∑

i∈S′

vv>

)−1


− tr





(
∑

i∈S′

vv> + ww>

)−1


 ≥ tr





(
∑

i∈S′

vv>

)−1




− tr

((
w1w

>
1 + w2w

>
2

)−1
)

= Θ(N4),

so the proof is done becauseN tends to infinity. For the cased ≥ 3, we may pad zeroes to all
vectors in the above example and add a unit vector toS, S′ to each of otherd − 2 dimensions.

Appendix C. Approximate Local Search for D-DESIGN

While Theorem7 proves a guarantee for every local optimum, it is not clear at all whether the local
optimum solution can be obtained efficiently. Here we give a approximate local search algorithm
that only makes improvements when they result in substantial reduction in the objective. We show
that this algorithm is polynomial time as well results in essentially the same guarantee as Theorem7.

Algorithm 6 Approximate Local search algorithm forD-DESIGN

Input: V = v1, . . . , vn ∈ Rd, d ≤ k ∈ n, parameterδ > 0.
Let I be any (multi)-subset of[1, n] of sizek such thatX =

∑
i∈I viv

>
i is non-singular matrix.

while ∃i ∈ I, j ∈ [1, n] such thatdet
(
X − viv

>
i + vjv

>
j

)
> (1 + δ) ∙ det(X) do

X = X − viv
>
i + vjv

>
j

I = I \ {i} ∪ {j}
end while
Return(I,X)

Recall thatφD
f denote the be the common optimum value of (D-REL) and its dual (D-REL-

DUAL). I? denote the indices of the vector in the optimal solution andφD = det
(∑

i∈I? viv
>
i

) 1
d

be its objective. We haveφD
f ≥ log φD. We have the following result about Algorithm6.

Theorem 26 LetX be the solution returned by Algorithm6. Then,

det(X) ≥ e−kδ

(
k − d + 1

k

)d

ed∙φD
f

and therefore,

det(X)
1
d ≥ e−

kδ
d

k − d + 1
k

∙ φD.

Moreover, the running time of the algorithm is polynomial inn, d, k, 1
δ and the size of the input.

34

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Proof of the theorem is analogous to the proof of Theorem7. Let (I,X) be the returned solution
of the algorithm. We also letVI denote thed × |I| matrix whose columns arevi for eachi ∈ I.
Observe thatX = VIV

>
I andX is invertible sincedet(X) > 0 at the beginning of the iteration and

it only increases in later iterations. We letτi = v>i X−1vi for any1 ≤ i ≤ n. Observe that ifi ∈ I,
thenτi is the leverage score of rowvi with respect to the matrixV >

I . We alsoτij = v>i X−1vj for
any1 ≤ i, j ≤ n. As in Theorem7, we have some properties regardingτi andhi.

Lemma 27 We have the following.

1. For anyi ∈ I, we haveτi ≤ 1. Moreover, for anyi ∈ I, τi = 1 if and only ifX − viv
>
i is

singular.

2. We have
∑

i∈I τi = d.

3. For any1 ≤ j ≤ n, we have
∑

i∈I τijτji = τj .

4. For any1 ≤ i, j ≤ n, we haveτij = τji andτij ≤
√

τiτj .

Proof of the lemma is identical to that of Lemma8. Next, we show an upper bound onτj for the
approximate local optimal solution.

Lemma 28 For anyj ∈ [1, n],

τj ≤
d + δk

k − d + 1
.

Before we prove the lemma, we complete the proof of Theorem26.
Proof [Theorem26] We construct a feasible solution to the (D-REL-DUAL) of the objective value
of at most1d log det(X) + log k

k−d+1 + kδ
d . This would imply that

O?
f ≤

1
d

log det(X) + log
k

k − d + 1
+

kδ

d

which proves the first part of the theorem. The second part follows sinceφD
f ≥ log φD.

Let

Y = αX, μ = max
1≤j≤n

v>j Y −1vj =
1
α

max
j∈[1,n]

v>j X−1vj

whereα > 0 will be fixed later. Then,(Y, μ) is a feasible solution of (D-REL-DUAL). Hence,

φD
f ≤

1
d

log det(αX) +
k

d
∙

1
α

max
j∈[1,n]

v>j X−1vj − 1

≤ log α +
1
d

log det(X) +
k

dα
∙

d + kδ

k − d + 1
− 1 (Lemma28)

Settingα = k
k−d+1 , we get

φD
f ≤ log

k

k − d + 1
+

1
d

log det(X) + 1 +
kδ

d
− 1 = log

k

k − d + 1
+

1
d

log det(X) +
kδ

d

asrequired.

Proof [Lemma28] SinceX is a symmetric matrix,X−1 is also a symmetric matrix and therefore
τij = τji for eachi, j. We first show that the approximate local optimality condition implies the
following claim:

35

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Claim 14 For anyi ∈ I andj ∈ [n], we have

τj − τiτj + τijτji ≤ δ + τi. (15)

Proof Let i ∈ I, j ∈ [n] andX−i = X − viv
>
i . First, consider the case whenX−i is singular. From

Lemma8, we have thatτi = 1, τij = τji ≤
√

τiτj ≤ 1. Hence,

τj − τiτj + τijτji ≤ τj − τj + 1 = τi ≤ δ + τi

Now consider the case whenX−i is non-singular. By local optimality ofI, we get that

det
(
X−i + vjv

>
j

)
≤ (1 + δ) det

(
X−i + viv

>
i

)
(16)

Claim 15 For any invertible matrixA ∈ Rd×d andv ∈ Rd,

det(A + vv>) = det(A)(1 + v>A−1v)

Hence, local optimality ofI implies that for anyi ∈ I, j ∈ [n],

det(X−i)(1 + v>j X−1
−i vj) ≤ (1 + δ) det(X−i)(1 + v>i X−1

−i vi)

Dividing both sides bydet (X−i) , we get for eachi ∈ I andj ∈ [n], we have1 + v>j X−1
−i vj ≤

(1 + δ)(1 + v>i X−1
−i vi) or equivalently,

v>j X−1
−i vj ≤ δ + (1 + δ)v>i X−1

−i vi.

From the Sherman-Morrison Formula we obtain that for anyi ∈ I andj ∈ [n], we have

v>j

(

X−1 +
X−1viv

>
i X−1

1 − v>i X−1vi

)

vj ≤ δ + (1 + δ)v>i

(

X−1 +
X−1viv

>
i X−1

1 − v>i X−1vi

)

vi.

Now using the definition ofτi, τj andτij , we obtain that for anyi ∈ I and1 ≤ j ≤ n, we have

τj +
τjiτij

1 − τi
≤ δ + (1 + δ)

(

τi +
τ2
i

1 − τi

)

.

Multiplying by 1 − τi, which is positive from Lemma8, on both sides we obtain that for anyi ∈ I
and1 ≤ j ≤ n,

τj − τiτj + τijτji ≤ δ(1 − τi) + (1 + δ)τi = δ + τi

thus finishing the proof of theclaim.

Now summing over the inequality in Claim14 for all i ∈ I, we get
∑

i∈I

(τj − τiτj + τijτji) ≤
∑

i∈I

δ +
∑

i∈I

τi.

Applying Lemma8, we obtain that

kτj − dτj + τj ≤ δk + d.

Rearranging, we obtain that

τj ≤
d + δk

k − d + 1

36

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Runtime Analysis. One may obtain the worst-case runtime for local search for D-design as fol-
lows. LetL be the maximum number of the length of binary string that encodes the number in each
component across all input vectorsvi. Suppose we start with any solutionS with nonzero deter-
minantdet(VSV T

S) =
∑

R⊆S,|R|=d det(VRV T
R) (Cauchy-Binet), which can be done in polynomial

time by finding a set of linearly independent vectors. SinceVSV >
S is PSD,det(VSV T

S) is non-
negative and hence must be strictly positive, and therefore at least one termdet(VRV T

R) is strictly
positive. We now use the fact that for a square matrixA, the binary encoding length ofdet(A) is
at most twice of the encoding length of matrixA (the exact definition of encoding length and the
proof are in Theorem 3.2 ofSchrijver(1998)). Since the length ofd × d matrix VRV T

R is at most
d2 + Ld2 ≤ 2Ld2, the length ofdet(VRV T

R) is at most4Ld2. Hence, the value of the determinant
is at least2−4Ld2

.
The optimum solutionS∗ of D-DESIGN attains objective

∑
R⊂S∗,|R|=d det(VRV T

R) (Cauchy-

Binet). Each termdet(VRV T
R) again has length at most4Ld2, and so is at most24Ld2

. Therefore,
the optimum is at most

(
k
d

)
∙ 24Ld2

≤ kd24Ld2
. Hence, any solutionS with nonzero determinant

is akd28Ld2
-approximation. Each swap increases the objective by a multiplicative factor1 + δ, so

the algorithm takes at mostlog1+δ(k
d28Ld2

) ≤ 2
δ d log k ∙ (8Ld2) = O(Ld3 log k

δ) swapping steps
for δ < 1/2. We may use matrix determinant lemma (for rank-one update) to compute the new
determinant objective rather than recomputing it in the next iteration. The matrix determinant lemma
computation takesO(d2) times, so one swapping steps takesO(knd2) time by computing allkn

potential pairs of swaps. Therefore, the local search in total takesO(Ld3 log k
δ knd2) = O(Lknd5 log k

δ)
arithmetic operations.

Appendix D. Approximate Local Search forA-DESIGN

Algorithm 7 Approximate Local search algorithm forA-DESIGN

Input: U = {u1, . . . , un} ⊆ Rd, d ≤ k ∈ N.
Let I be any (multi)-subset of[1, n] of sizek such thatX =

∑
i∈I viv

>
i is non-singular.

while ∃i ∈ I, j ∈ [1, n] such thattr
(
(X − uiu

>
i + uju

>
j)−1

)
< (1 − δ) tr(X−1) do

X = X − uiu
>
i + uju

>
j

I = I \ {i} ∪ {j}
end while
Return(I,X)

Recall that for any input vectorsV = {v1, . . . , vn}, the primal program isA-REL(V) and the
dual program isA-REL-DUAL(V). We index these convex program by input vectors as we aim
to analyze their objectives when the input changes by the capping algorithm.φA

f (V) denote the
(common) optimal value of objective values of the convex program with input vectors fromV . I?

denote the indices of the vectors in the optimal solution ofA-DESIGN with input vector setV and

let φA(V) = tr
((∑

i∈I? viv
>
i

)−1
)

be its objective. Recall thatφA
f (V) ≤ φA(V).

Similar to the local search result forA-DESIGN of Theorem12, we can prove the following
theorem:

37

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Theorem 29 LetX be the matrix returned by Algorithm7. If ||ui||22 ≤ Δ for all i ∈ [n],

tr(X−1) ≤ φA
f (U)




(

1 −
d − 2

k

)
1

1 + (k − d)δ
−

√
ΔφA

f (U)

k





−1

.

To prove Theorem29, we can prove the following lemma instead of Lemma22.

Lemma 30 For anyj ∈ [n],
hj

1 + τj
≤

β(1 + (k − d)δ)
k − d + 2

Instead of Theorem13, Theorem29now leads to the following theorem:

Theorem 31 For input vectorsV = {v1, . . . , vn} and parameterk, let U = {u1, . . . , un} be the
set of vectors returned by the Capping Algorithm2 with vector setV andΔ = d

ε2φA(V)
. Let (I,X)

be the solution returned by Algorithm3 with vector setU and parameterk. If k ≥ 2d
ε4

, δ ≤ εd
2k ,

andε ≤ 0.001 then,

tr





(
∑

i∈I

viv
>
i

)−1


 ≤ (1 + 2ε)φA(V).

Proof of the theorems and lemmas are identical to the corresponding theorems and lemmas
proved in Section3. Hence, we avoid the tedious calculations in reproving these theorems.

Runtime Analysis We claim that the running times of both capping and approximate local search
for A-DESIGNare polynomial inn, d, k, 1

δ and the size of the input. The runtime analysis of approx-
imate local search algorithm forA-DESIGN is identical to the one forD-DESIGN (with a change of
objective, but the objective can still be computed ion polynomial time).

The significant change is the use of capping algorithm, which needs to be shown to ternimate
in polynomial time. LetL be the maximum number of the length of binary string that encodes the
number in each component across all input vectorsvi. Then||vi||2 ≤

√
d ∙ 22L for all i’s. In each

iteration, the capping algorithm reduces the length of at least one vector by at least half, and hence
by n log 22L

Δ = O(nL log 1
Δ) iteration of capping, all vectors have length at mostΔ. As in the

analysis of approximate local search forD-DESIGN, the encoding length ofφA(V) is polynomial
in n, d, k, L, and so islog 1

Δ (asΔ = d
ε2φA(V)

). Hence, the capping algorithm takes polynomial (in

n, d, k, L) number of steps.

Appendix E. Greedy Algorithm for D-DESIGN

To prove Theorem2, we again use the convex programming relaxation for theD-DESIGNprob-
lem. Recall the relaxation (D-REL) and its dual (D-REL-DUAL) shown in figure2b. φD

f denote
the be the common optimum value of (D-REL) and its dual (D-REL-DUAL). I? denote the indices

of the vector in the optimal solution and letφD = det
(∑

i∈I? viv
>
i

) 1
d be its objective. Observe that

φD
f ≥ log φD. Now, Theorem2 follows from the following theorem with an appropriate initializa-

tion of firstd vectors which will be specified later.

38

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Algorithm 8 Greedy algorithm forD-DESIGN

Input: V = v1, . . . , vn ∈ Rd, d ≤ k ∈ N, S0 ⊂ [n].
X0 =

∑
j∈S0

vjv
>
j .

for i = 1 to k − |S0| do
ji = argmaxj∈[n] det(X + vjv

>
j)

Si = Si−1 ∪ {ji}, Xi = Xi−1 + vjiv
>
ji

end for
I = Sk−|S0|, X = Xk−|S0|

Return(I,X).

Theorem 32 For any set of vectorsv1, . . . , vn ∈ Rd, supposeS0 ⊂ [1, n] is a set of sized such

thatdet
(∑

i∈S0
viv

>
i

) 1
d > d

kκ ∙ φD for some1
e ≥ κ > 0 andk ≥ d

ε

(
log 1

ε + log log 1
κ

)
. Let(I,X)

be the solution returned by Algorithm8. Then,

det(X) ≥ (1 − 5ε)φD

Before we prove Theorem32, we state and prove the following theorem, which better conveys main
ideas of the proof.

Theorem 33 For any set of vectorsv1, . . . , vn ∈ Rd andk ≥
d log 1

ε
ε , supposeS0 ⊂ [1, n] is a set

of sized such thatdet
(∑

i∈S0
viv

>
i

) 1
d > d

kκ ∙φD for some1 > κ > 0. Lets = max{d log log 1
κ , 0}

and(I,X) be the solution returned by pickingk − d + s vectors greedily. Then,

det(X) ≥ (1 − 4ε)φD

Theorem33 gives a bi-criteria approximation where we pick small numbers of extra vectors than
the budgetk while obtaining near-optimal solution. Theses vectors are required to improve the
initial approximationd

kκ to a ratiod
k independent ofn or κ.

Proof [Theorem33] To prove this theorem, we show the following two lemmas. First lemma shows
the increase in the solution value in each greedy step.

Lemma 34 For t ∈ [0, k − |S0| − 1], det(Xt+1) ≥ det(Xt)

(

1 + d
k

eφD
f

(det(Xt))1/d

)

Next lemma shows that this recursion leads to the desired bound in the theorem.

Lemma 35 Let` ≥ 0. Letz0, . . . , zk−` be such that fort ∈ [0, k− `−1], zt+1 ≥ zt

(
1 + d

kzt

)1/d
.

Then,

1. If z0 < d
k , then for anys ≥ d log log dz0

k , we have

zs ≥
d

ek

2. If z0 ≥ d
ek , then we have

zk−` ≥
k − d − `

k
−

2d

k
log

k

d

39

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Proof of Theorem33 follows from these two lemmas by definingzt = eφD
f

(det(Xt))1/d in the bound

in Lemma34. Lemma35 implies that for any initialκ approximation withd initial vectors to the
D design problem ofk vectors,s = d log log 1

κ vectors is enough to guaranteedek -approximation.
Then, the second bound of Lemma35 applies for the rest of the greedy algorithm. We now prove
these two lemmas.
Proof [Lemma34] By definition,det(Xt+1) = maxj∈[n] det(Xt+vjv

>
j). By Lemma17, det(Xt+

vjv
>
j) = det(Xt)(1 + v>j X−1

t vj). Hence,

det(Xt+1) = det(Xt)

(

1 + max
j∈[n]

v>j X−1
t vj

)

(17)

Next, we lower boundmaxj∈[n] v
>
j X−1

t vj by constructing a feasible solution to the (D-REL-
DUAL). Let

Y = αXt, μ = max
j∈[n]

v>j Y −1vj =
1
α

max
j∈[n]

v>j X−1
t vj

whereα will be fixed later. Then,(Y, μ) is a feasible solution of (D-REL-DUAL). Hence,

φD
f ≤

1
d

log det(αXt) +
k

d
∙

1
α

max
j∈[n]

v>j X−1
t vj − 1

which implies
dα

k

(

φD
f + 1 − log α −

1
d

log det(Xt)

)

≤ max
j∈[n]

v>j X−1
t vj

Setting,α = eφD
f

det(Xt)1/d , we get

max
j∈[n]

v>j X−1
t vj ≥

d

k

eφD
f

det(Xt)1/d

(

φD
f + 1 − log

eφD
f

det(Xt)1/d
−

1
d

log det(Xt)

)

=
d

k

eφD
f

det(Xt)1/d

Substituting the bounds in equation (17), we get

det(Xt+1) ≥ det(Xt)

(

1 +
d

k

eφD
f

(det(Xt))1/d

)

.

This finishes the proof of Lemma34.

Proof [Lemma35] We first prove the first bound. The recursion implies thatzt+1

zt
≥
(

d
kzt

) 1
d
, which

is equivalent to

log zt+1 ≥
1
d

log
d

k
+

d − 1
d

log zt (18)

Defineat := log d
k − log zt. If au ≤ 0 for anyu ≤ s, then we are done becausezs ≥ zu ≥ d

k . Else,
we can rearrange terms to obtain

at+1 ≤

(

1 −
1
d

)

at (19)

40

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Hence, we have

as ≤

(

1 −
1
d

)s

a0

≤ e−
s
d a0 ≤ e−

s
d log

dz0

k
≤ 1

where the last inequality follows froms ≥ log log dz0
k . Therefore,log d

k − log zs = as ≤ 1, giving
the desired bound.

To prove the second bound, the recursion is equivalent to

log
zt+1

zt
≥

1
d

log

(

1 +
d

kzt

)

(20)

It is clear thatzt is an increasing sequence int, hence d
kzt

≤ d
kz0

= e. We uselog(1 + x) ≥ x
e

for 0 ≤ x ≤ e (by concavity oflog x) to lower bound the right-hand-side of (20) above inequality
to obtain

log
zt+1

zt
≥

1
d
∙

d

ekzt
=

1
ekzt

Thus, by usingex ≥ 1 + x, we havezt+1

zt
≥ e

1
ekzt ≥ 1 + 1

ekzt
, which implies

zt+1 ≥ zt +
1
ek

Therefore, we obtainzt ≥ t
ek for all t ≥ 0.

Next, we apply the boundlog(1+x) ≥ x− x2

2 = x
(
1 − x

2

)
whenever0 ≤ x on the right-hand-

side of (20) to obtain

log
zt+1

zt
≥

1
d

d

kzt

(

1 −
d

2kzt

)

≥
1

kzt
∙

(

1 −
2d

t

)

where the last inequality comes fromzt ≥ t
ek . Thus, applyingex ≥ 1 + x, we havezt+1

zt
≥

1 + 1
kzt

∙
(
1 − 2d

t

)
, which implies

zt+1 ≥ zt +
1
k
−

2d

tk
(21)

Summing (21) from t = d to t = k − ` − 1 gives

zk−` ≥ zd +
k − d − ` − 1

k
−

2d

k

(
1
d

+
1

d + 1
+ . . . +

1
k − ` − 1

)

≥
k − d − `

k
−

2d

k
log

k

d

asdesired.

41

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Now we prove Theorem33. We first picks vectors greedily to guarantee thatzs ≥ d
ek . (If

z0 > d
ek , thens = 0.) Substituting̀ = d andk ≥

d log 1
ε

ε in Lemma35gives

zk−` ≥ 1 −
d

k

(

2 + 2 log
k

d

)

≥ 1 −
2ε

log 1
ε

(

1 + log
1
ε

+ log log
1
ε

)

≥ 1 − 4ε

where the second inequality follows from1x (1 + log x) being decreasing function onx ≥ 1, and
the last inequality is by1 + x ≤ ex with x = log 1

ε .

We are now ready to prove the main theorem.
Proof [Theorem32] The proof is identical to the proof of Theorem33 except that, after using
s = log log 1

κ vectors to obtaind
ek -approximation, we only takek − d − s greedy steps instead of

k − d greedy steps. Hence, we set` = d + s to the second bound of Lemma35 to obtain

zk−` ≥
k − 2d − s

k
−

2d

k
log

k

d
= 1 −

d

k

(

2 + 2 log
k

d

)

−
s

k

We have1− d
k

(
2 + 2 log k

d

)
≥ 1−4ε identical to the proof of Theorem33. By k ≥ d

ε log log 1
κ = s

ε ,
we haves

k ≤ ε, completing theproof.

We finally note on combinatorial algorithms for setting initial solution of sized. One may
use volume sampling algorithms to achieven

k -approximation to optimal objective in for pickingd
vectors (Avron and Boutsidis, 2013). Alternatively, we can perform local search on initiald vectors
to obtaind(1 + δ)-approximation in time polynomial in1δ , as shown in SectionC. Since we know
that the relaxation gaps ofA- andD- optimal design are at most k

k−d+1 , we can bound the optimum
values of design problems between pickingd andk vectors to be at mostk multiplicative factor apart
(Avron and Boutsidis, 2013; Nikolov et al., 2019). The approximation ratios of two algorithms are
hencen anddk(1+ δ), respectively. We formalize this argument and the result with locally optimal
initial set as the following statement, which proves Theorem2.

Corollary 36 Greedy algorithm initialized by a local optimal set of sized returns a(1 + 5ε)-
approximation wheneverk ≥ d

ε (log 1
ε + log log d + 1).

We first argue the ratio of optimumD-DESIGN values when the size of the set isd andk. Denote

φD(d), φD(k) = φD the optimumD-DESIGN objectivedet
(∑

i∈S viv
>
i

) 1
d on sized, k, respec-

tively. DenoteφD
f (d), φD

f (k) = φD
f the common optimum value of (D-REL) and its dual (D-REL-

DUAL) for size constraints ofd, k respectively.

Claim 16 We have
φD(k) ≤ kφD(d)

Proof Because (D-REL) is a relaxation ofD-DESIGN (up tolog scale), we have

exp φD
f (k) ≥ φD(k), exp φD

f (d) ≥ φD(d)

42

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

We may scale any optimal solution of (D-REL) with size k to sized by applyingxi := d
kxi

coordinate-wise. Therefore, we have

φD
f (d) ≥ φD

f (k) + log
d

k

Finally, we know that the integrality gap of (D-REL) is k
k−d+1 . This follows from the approximation

result of local search algorithm which compares the objective value of returned set to the objective to
the convex relaxation. (This exact bound of the gap also follows from previous work on proportional
volume sampling (Nikolov et al., 2019).) We apply this gap for size budgetd to obtain

exp φD
f (d) ≤ dφD(d)

Therefore, we have

φD(k) ≤ exp φD
f (k) ≤

k

d
exp φD

f (d) ≤ kφD(d) (22)

asdesired.

Proof [Corollary36] Theorem1 implies that a local search solution satisfiesd-approximation when
budget size isd. Hence, by Claim16, a local solution isdk-approximation compared toD-DESIGN

with a size budget ofk.
We now apply Theorem32: it is sufficient to show that

k ≥
d

ε

(

log
1
ε

+ log log
1
κ

)

(23)

for κ = 1
d2 , so the result follows.

Appendix F. Greedy Algorithm for A-DESIGN

In this section, we prove Theorem4. As remarked in the case of local search algorithm, we need
to modify the instance to cap the length of the vectors in the case of greedy algorithm as well. This
is done by Algorithm2. As shown in Lemma11, the value of any feasible solution only increases
after capping and the value of the convex programming relaxation increases by a small factor ifk is
large.

We now show that the greedy algorithm run on these vectors returns a near optimal solution.
For any input vectorsV = {v1, . . . , vn}, the primal program isA-REL(V) and the dual program is
A-REL-DUAL(V). φA

f (V) denotes the (common) optimal value of objective values of the convex
program with input vectors fromV . I? denotes the indices of the vectors in the optimal solution of

A-DESIGN with input vector setV andφA(V) = tr
((∑

i∈I? viv
>
i

)−1
)

be its objective. We show

the following theorem about Algorithm9 in terms of capping lengthΔ.

Theorem 37 Let ||ui||22 ≤ Δ, S0 ⊆ [n] of sizer ≥ d such thattr
((∑

i∈S0
uiu

>
i

)−1
)
≤ κ ∙φA(U)

for someκ ≥ 1, andΛ =
√

ΔφA
f (U)

k . Let (I,X) be the solution returned by Algorithm9. Then we
have

tr(X−1) ≤

(

1 −
d + r

k
− 2Λ log

k max{Λκ, 1}
d

)−1

φA(U)

43

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Algorithm 9 Greedy algorithm forA-DESIGN

Input: U = u1, . . . , un ∈ Rd, d ≤ k ∈ N, S0 ⊂ [n].
X0 =

∑
j∈S0

uju
>
j .

for i = 1 to k − |S0| do

ji = argminj∈[n] tr

((
X + uju

>
j

)−1
)

Si = Si−1 ∪ {ji}, Xi = Xi−1 + ujiu
>
ji

end for
I = Sk−|S0|, X = Xk−|S0|.
Return(I,X).

Similar to the analysis of local search forA-DESIGN, capping vector length is necessary to obtain
theoretical guarantee. We will optimize over the lengthΔ later in Theorem40.
Proof [Theorem37] To prove the theorem, we show the following two lemmas:

Lemma 38 For anyt ∈ [0, k− |S0|], let zt = tr(X−1
t)/φA

f (U). Then, for anyt ∈ [0, k− |S0| − 1],

zt+1 ≤ zt





1 −

zt

k

(

1 + zt

√
ΔφA

f (U)

k

)







Lemma 39 LetΛ ≥ 0 and` ≥ 0. Supposezt+1 ≤ zt

(
1 − zt

k(1+ztΛ)

)
for all t ≥ 0, then

1. If z0 > 1
Λ , then for anys ≥ 2Λk log(Λz0), we have

zs ≤
1
Λ

2. If z0 ≤ 1
Λ , we have

zk−` ≤

(

1 −
d + `

k
− 2Λ log

k

d

)−1

Proof [Lemma38] By definition,

tr(X−1
t+1) = min

j∈[n]
tr

((
Xt + uju

>
j

)−1
)

.

By Sherman-Morrison formula,

tr(X−1
t+1) = tr(X−1

t) − max
j∈[n]

u>
j X−2

t uj

1 + u>
j X−1

t uj

44

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Note thatu>
j X−1

t uj = 〈uj , X
−1
t uj〉. By Cauchy-Schwarz inequality,u>

j X−1
t uj is at most

||uj ||2||X
−1
t uj ||2 = ||uj ||2

√
u>

j X−2
t uj . Since,||uj ||22 ≤ Δ, we getu>

j X−1
t uj ≤

√
Δ ∙ u>

j X−2
t uj .

Hence,

tr(X−1
t+1) ≤ tr(X−1

t) − max
j∈[n]

u>
j X−2

t uj

1 +
√

Δ ∙ u>
j X−2

t uj

(24)

Next, we lower boundmaxj∈[n] u
>
j X−2

t uj by finding a feasible solution toA-REL-DUAL . Let,

Y = γX−2
t , λ = max

j∈[n]
u>

j Y uj = γ max
j∈[n]

u>
j X−2

t uj

whereγ > 0 will be fixed later. Then,(Y, λ) is a feasible solution toA-REL-DUAL(U). Hence,

φA
f (U) ≥ 2 tr

((
γX−2

t

)1/2
)
− kγ max

j∈[n]
u>

j X−2
t uj

max
j∈[n]

u>
j X−2

t uj ≥
1
kγ

(
2
√

γ tr(X−1
t) − φA

f (U)
)

Substitutingγ =

(
φA

f (U)

tr(X−1
t)

)2

, we get

max
j∈[n]

u>
j X−2

t uj ≥
tr(X−1

t)2

kφA
f (U)

.

As proved in Claim3, x
1+c

√
x

is a monotonically increasing function forx ≥ 0 if c ≥ 0. Hence,

max
j∈[n]

u>
j X−2

t uj

1 +
√

Δ ∙ u>
j X−2

t uj

≥

tr(X−1
t)2

kφA
f (U)

1 +

√

Δ tr(X−1
t)2

kφA
f (U)

Substitutingzt = tr(X−1
t)

φA
f (U)

, we get

max
j∈[n]

u>
j X−2

t uj

1 +
√

Δ ∙ u>
j X−2

t uj

≥
tr(X−1

t)
k

zt

1 + zt

√
ΔφA

f (U)

k

.

Substituting this inequality in Equation (24), we get

tr(X−1
t+1) ≤ tr(X−1

t)





1 −

zt

k

(

1 + zt

√
ΔφA

f (U)

k

)





 .

Substitutingzt = tr(X−1
t)/φA

f (U) andzt+1 = tr(X−1
t+1)/φA

f (U), we get

zt+1 ≤ zt





1 −

zt

k

(

1 + zt

√
ΔφA

f (U)

k

)





 .

45

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

This finishes the proof of Lemma38.

Proof [Lemma39] We first prove the first bound. Ifzt ≤ 1
Λ for any t < s, then we are done, so

assumeztΛ ≥ 1. The recursion then implies

zt+1 ≤ zt

(

1 −
zt

k(2ztΛ)

)

= zt

(

1 −
1

2kΛ

)

Therefore,

zs ≤ z0

(

1 −
1

2kΛ

)s

≤ z0e
− 1

2Λ
s ≤ z0e

− log Λz0 =
1
Λ

as desired.
We now prove the second bound. Letat = 1

zt
. Then the recursionzt+1 ≤ zt

(
1 − zt

k(1+ztΛ)

)

can be rewritten as
at+1

at
≥

(

1 −
1

k (Λ + at)

)−1

(25)

Applying
(
1 − 1

k(Λ+at)

)−1
≥ 1 + 1

k(Λ+at)
and rearranging terms, we obtain

at+1 ≥ at +
at

k(Λ + at)
= at +

1
k
−

Λ
k(Λ + at)

(26)

It is obvious from (25) thatat is an increasing sequence, and henceat ≥ a0 ≥ Λ for all t ≥ 0. So
(26) implies

at+1 ≥ at +
1
k
−

Λ
k(2Λ)

= at +
1
2k

(27)

Therefore, we haveat ≥ t
2k for all t ≥ 0.

Using this boundat ≥ t
2k , the recursion (26) also implies

at+1 ≥ at +
1
k
−

Λ

k(t
2k)

= at +
1
k
−

2Λ
t

(28)

Summing28 from t = d to t = k − ` − 1 gives

ak−` ≥ ad +
k − d − `

k
− 2Λ

k−`−1∑

t=d

1
t

=
k − d − `

k
− 2Λ log

k

d

proving the desiredbound.

We now prove Theorem37. The first bound of Lemma39shows that with initial approximation
κ, we requires = max{0, 2Λk log(Λκ)} steps to ensure1Λ approximation ratio. After that, we can

46

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

pick k − r − s vectors. Hence, we apply the second bound of Lemma39 with ` = r + s to get the
approximation ratio ofX as

zk−` ≤

(

1 −
d + r + s

k
− 2Λ log

k

d

)−1

=

(

1 −
d + r

k
− 2Λ

(

log
k

d
+ max {log Λκ, 0}

))−1

=

(

1 −
d + r

k
− 2Λ log

k max{Λκ, 1}
d

)−1

proving the desiredbound.

Next, we tuneΔ in Theorem37 and use Lemma11 to obtain the final bound, from which
Theorem4 will follow.

Theorem 40 For input vectorsV = {v1, . . . , vn} and parameterk ∈ N, let U = {u1, . . . , un} be
the set of vectors returned by the Capping Algorithm2 with input vector setV andΔ = d

εφA(V)
.

Let S0 ⊆ [n] be an initial set of sizer ≥ d wheretr
((∑

i∈S0
uiu

>
i

)−1
)
≤ κ ∙ φA(U) for some

κ ≥ 1. Let (I,X) be the solution returned by Algorithm9 with vector setU and parameterk. If

k ≥ r
ε +

d(log2 κ+log2 1
ε)

ε3
andε ≤ 0.0001, then

tr





(
∑

i∈I

viv
>
i

)−1


 ≤ (1 + 6000ε)φA(V)

Proof By Lemma11, substitutingΔ, we have

φA
f (U) ≤

(

1 +
5000d

k

)
(
φA

f (V) + 150εφA(V)
)

≤ (1 + 5500ε)φA(V) (29)

where the last inequality follows fromφA(V) ≥ φA
f (V), k ≥ d

ε . andε ≤ 0.0001. Thus, we have

Λ =

√
ΔφA

f (U)

k
=

√
dφA

f (U)

εkφA(V)
≤

√
d(1 + 5500ε)

εk
≤ 2

√
d

εk

Next, Theorem37 implies that

tr(X−1) ≤

(

1 −
d + r

k
− 2Λ log

k max{Λκ, 1}
d

)−1

φA(U) (30)

Note that

2Λ log
k max{Λκ, 1}

d
≤ 2Λ log

kκ

d

≤ 4

√
d

εk
log

k

d
+ 4

√
d

εk
log κ

47

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

Since 1√
x

log x is a decreasing function onx ≥ 8, applyingk ≥
d log2 1

ε
ε3

, we have

√
d

εk
log

k

d
≤

ε

log 1
ε

(

3 log
1
ε

+ log log
1
ε

+ log 2

)

≤ 4ε

where the last inequality follows fromε ≤ 0.0001. Also, applyingk ≥
d log2 1

κ
ε3

, k ≥
d log2 1

ε
ε3

≥ d
ε ,

andk ≥ r
ε , we have

√
d

εk
log κ ≤ ε,

d

k
≤ ε,

r

k
≤ ε

Hence, (30) implies that

tr(X−1) ≤ (1 − 22ε)−1 φA(U) (31)

Combining (31) with Lemma11and (29) gives

tr





(
∑

i∈I

viv
>
i

)−1


 ≤ tr(X−1) ≤ (1 − 22ε)−1 (1 + 5500ε)φA(V)

≤ (1 + 6000ε)φA(V)

where the last inequality follows fromε ≤ 0.0001.

We note an efficient combinatorial algorithm of volume sampling (Avron and Boutsidis, 2013;
Derezínski and Warmuth, 2017) that givesn

k -approximation to theA-DESIGN problem of selecting
d vectors (note that these randomized algorithms can be derandomized, e.g. by rejection sampling).
Alternatively, from our result on approximate local search algorithm forA-DESIGN in SectionD,
we can also initialize withc ∙d vectors for an absolute constantc and perform local search algorithm
to obtain1 + 0.0001 + δ approximation in time polynomial in1δ for some smallδ. Similar to
Claim 16, we can relate the optimum ofA-DESIGN of size budgetd ≤ r ≤ k andk to be at most
factor k

r−d+1 apart (Avron and Boutsidis, 2013; Nikolov et al., 2019). Hence, the volume sampling
on initial set of sized and local search on initial set of sizecd give approximation ratio ofn and

k
cd−d+1(1 + 0.0001 + δ) ≤ k

d , respectively; that is,κ can be set ton or k
d in Theorem40 and we

adjustr accordingly. Using the local search on initialcd vectors to set the value ofκ andr, we
prove Theorem4.
Proof [Theorem4] Supposek ≥ C ∙ d

ε3
log2 1

ε for some absolute constantC > 0 to be specified

later andε ≤ 0.0001. By Theorem40, it is sufficient to havek ≥ r
ε +

d(log2 κ+log2 1
ε)

ε3
, where

κ = k
d andr = cd by initializing the greedy algorithm with an output from an approximate local

search algorithm of sizecd for an absolute constantc. By checking the derivative off(k) :=

k − cd
ε −

d(log2 k
d
+log2 1

ε)
ε3

, f(k) is increasing when2d log k
d ≤ kε3, which is true for a large enough

C. Hence, we only need to showf(k) ≥ 0 for k = C ∙ d
ε3

log2 1
ε . The conditionf(k) ≥ 0 is

equivalent to

C log2 1
ε
≥ log2 C log2 1

ε

ε3
+ log2 1

ε
+ cε2 (32)

48

COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

It is clear thatlog2 1
ε + cε2 ≤ C

2 log2 1
ε for C ≥ 3 + c. We also have

log2 C log2 1
ε

ε3
=

(

log C + 3 log
1
ε

+ 2 log log
1
ε

)2

≤

(

log C + 5 log
1
ε

)2

≤

(√
C

2
− 5 + 5 log

1
ε

)2

≤

(√
C

2
log

1
ε

)2

where we usex ≤ ex for x = log 1
ε , log C ≤

√
C − 5 for a sufficiently largeC, andlog 1

ε ≥ 1 for
the three inequalities above, respectively. Hence, we finished the proof of (32).

49

	Introduction
	Our Results and Contributions
	Related Work
	Organization

	Local Search for
	Local Search Algorithm
	Relaxations
	 without Repetitions

	Local Search for
	Capping Vectors
	Local Search Algorithm
	Instances with Bad Local Optima

	Acknowledgement
	Proofs from Section 2
	Local Search for without Repetitions

	Proofs from Section 3
	Proof of Performance of Modified Local Search Algorithm for A-design
	Proof of Theorem 12
	The Capping Algorithm and the Proof of Lemma 11
	Proof of Lemma 20

	Guessing A-Optimum Value A(V)
	Example of Instances to

	Approximate Local Search for
	Approximate Local Search for
	Greedy Algorithm for
	Greedy Algorithm for

