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Abstract
In an optimal design problem, we are given a set of linear experiments. , v,, € R? andk > d,
and our goal is to select a set or a multis$etC [n] of size k such that®((>,.qvivy )7h) is
minimized. When® (M) = Determinant(M)'/¢, the problem is known as the D-optimal design
problem, and whe® (M) = Trace(M), it is known as the A-optimal design problem. One of
the most common heuristics used in practice to solve these problems is the local search heuristic,
also known as the Fedorov’s exchange methbddproy 1972. This is due to its simplicity and
its empirical performancedook and Nachtrheinl98Q Miller and Nguyen 1994 Atkinson et al,
2007. However, despite its wide usage no theoretical bound has been proven for this algorithm. In
this paper, we bridge this gap and prove approximation guarantees for the local search algorithms
for D-optimal design and A-optimal design problems. We show that the local search algorithms are
asymptotically optimal Wher§ is large. In addition to this, we also prove similar approximation
guarantees for the greedy algorithms for D-optimal design and A-optimal design problem%when
is large.
Keywords: Optimal Design, Experimental Design, D-optimal design, A-optimal design, Fedorov
Exchange, Local Search, Greedy Algorithm.

1. Introduction

Optimal experimental desigiP(kelsheim2006 lies at the intersection of statistics and optimiza-
tion where the goal is to pick a subset of statistical trials to perform from a given set of available
trials. Linear models are one of the most widely used and well-studied models in théadeadr
et al, 1955 Pukelsheim200§ Atkinson et al, 2007). The goal is to learn an unknown parameter
0* € R? from a set of linear experiment{sy, ..., v, } where each; € R%. If the " experiment
is performed, we obserwg = (v;, 6*) + n; wheren; is a small error introduced in the experiment.
Given an integek < n, the optimization problem involves pickirigvectors out of: to ensure the
unknown parametet* can be deduced as accurately as possible.

By assuming the error vectgr is a gaussian noise, the maximum likelihood estimatéfopcall
it 4, is obtained via minimizing the least square error over th&'sgtperformed experiments, i.e.
= argminycpe > _es [[v) 0 — ysl|3. The errorin estimatiofl — 0* is distributed as Gaussian with
mean zero. If the variance for eaghis 1 (which can be assumed by normalization), then the covari-
ance matrix}_, . g viv ) 1. Optimal design consists of minimizing a functién( (3", s viv, )™!)

where® (M) = det(M) a for D-optimal design an@ (M) = tr(M) for A-optimal design.

© 2019 V. Madan, M. Singh, U.(. Tantipongpipat & W. Xie.



COMBINATORIAL ALGORITHMS FOROPTIMAL DESIGN

D-DESIGN: Given a set of vectorsy,...,v, € R for somed € N, and a parameter > d, our

goal is to find a set or a multisét C [n] of sizek such thatdet (3", ¢ viviT)l/d is maximized.
Here,det(M) denote the determinant of the matfX.

A-DESIGN: Given a set of vectorsy,...,v, € R for somed € N, and a parameter > d, our
goal is to find a set or a multisét C [n] of sizek such thattr ((Zies viv;)_l) is minimized.

Here,tr(M) denote the trace of the matrix.

When selecting a multiset, we refer to the problem as optimal design with repetitions and when
selecting a set, we refer to the problem as optimal design without repetitions. Statistigally,
DESIGN objective aims to minimize the volume of the confidence ellipsoid anditimESIGN ob-
jective aims to minimize the expected length square of the error véett. Several other objective
functions such a#-design,G-design, and-design have also been studied in literatukékinson
et al, 20079).

One of the classical optimization methods that is used for optimal design problems is the local
search heuristic which is also called the Fedorov's exchange meHuamtbioy 1972 (see also
Mitchell and Miller Jr(1970). The method starts with any set bfexperiments from the given
set ofn experiments and aims to exchange one of the design vectors if it improves the objective.
The ease in implementing the method as well as its efficacy in practice makes the method widely
used Nguyen and Miller1992 and implemented in statistics softwares such as SASAskiason
et al.(2007), Chapter 13). Moreover, there has been considerable study on heuristically improving
the performance of the algorithm. Surprisingly, theoretical analysis of this classical algorithm has
not been performed despite its wide usage. In this paper, we bridge this gap and give theoretical
guarantees on the performance of local search heuristib fand A-optimal design problems. In
addition to local search, we analyze the greedy heuristic foDxlaad A-optimal design problems.

1.1. Our Results and Contributions

Our main contribution is to prove worst case bounds on the performance of simple local search
algorithm (also known as Fedorov Exchange method) and greedy algorithms. Our results also give
worst case performance guarantee on the variants of local search algorithm.

Our first result is for theD-optimal design problem where we show the following guarantee.
We consider both settings when the design vectors are allowed to be repeated in the solution and
when they are not allowed to be repeated.

Theorem 1 For anye > 0, the local search algorithm returns@ + ¢)-approximate solution for
D-DESIGNwith or without repetitions whenevér> d + g.

Our analysis method crucially uses the convex relaxation forRhRBESIGN problem. In recent
works, the convex relaxation has been studied extensively and various rounding algorithms have
been designedNang et al.(2016; Allen-Zhu et al.(2017); Singh and Xig(2018; Nikolov et al.
(2019). Solving the convex relaxation is usually the bottleneck in the running time of all these
algorithms. Our results differ from this literature in that we only use the convex relaxation for the
analysis of the local search heuristic. The algorithm does not need to solve the convex program
(or even formulate it). We use thaual-fitting approach to prove the guarantee. We also remark

1. Sincedet(M 1) = 1/ det(M), for notational convenience, we consider an equivalent formulatiaR-0ESIGN
where instead of minimizindet((3", . viv; ) ™")"/?, we maximizedet (3", g viv, )*/“.
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the above guarantee improves on the best previous bound which had an additional additive term of
%log 1 in the requirement on the size bf
We also consider the natural greedy algorithm IDESIGN problem. Indeed this algorithm
has also been implemented and tested in empirical studies (see for exstiipkon et al.(2007),
Chapter 12) and is referred to as the forward procedure algorithm. The algorithm is initialized to
a small set of experiments and new experiments are added greedily. We show that the guarantee is
slightly specific to the initialized set. If the initialized set is a local optimum set of&iznee obtain
the following result. Again we employ the dual-fitting approach to prove the bounds.

Theorem 2 For anye > 0, the greedy algorithm foD-DESIGN with repetitions returns &1 + ¢)-
approximate solution whenever> Q (¢ (log 1 + loglog d)).

A-DESIGN. While the simple combinatorial algorithms have tight asymptotic guarante® for
DESIGN, we show that a similar guaranteannotbe proven forA-DESIGN. Indeed, there are
examples where local optimum can be arbitrarily bad as compared to the optimum solution as we
show in Sectior8.3. We note that the bad local optima arise due to presence of long vectors among
design vectors. In particular, we show that this isahty bottleneck to obtain an asymptotic guaran-

tee on the performance of the local search algorithm. Moreover, we show a combinatorial iterative
procedure to truncate the length of all the vectors while ensuring that the value of the optimal solu-
tion does not change significantly. This allows us to obtain a modified local search procedure with
the following guarantee.

Theorem 3 The modified local search algorithm fer-DESIGN with repetitions returns &1 + ¢)-
approximate solution whenevir= Q (4).

We note that the above asymptotic guarantee does not match the best approximation algo-
rithms (Nikolov et al, 2019 for A-DESIGN as was the case @)-DESIGN. Nonetheless, it specifi-
cally points why local search algorithm performs well in practice as has been noted widely- (
son et al.2007).

We also consider the natural greedy algorithm for#heesiIGN problem, which again requires
truncating the length of all vectors. As In-DESIGN problem, the guarantee depends on the initial-
ized set. If the initialized set is a local optimum set of siddor an absolute constant we obtain
the following guarantee.

Theorem 4 The modified greedy algorithm fof-DESIGN with repetitions returns &1 + ¢)-
approximate solution whenevir> Q (4 log® 1).

Approximate Local Search: Theoreml and 3 show that the local search fdp-DESIGN and
modified local search foA-DESIGNyield (1 + ¢)-approximation algorithm. But, as are typical of
local search algorithms, they are usually not polynomial time algorithms. However, the standard
fix is to make local improvements only when the objectives improves by a factorof. With
appropriately chose#f, this implies a polynomial running time at the cost of a slight degradation in
the approximation guarantee. We show that under the same assumption on pakaapgiesximate

local search forD-DESIGN and modified approximate local search #DESIGN yield (1 + 2¢)-

approximation whem is small enough and take polynomially many iterations.
Theorem 5 The(1-+46)-approximate local search algorithm fdp-DESIGNwith repetitions returns
a (1 + 2¢)-approximate solution whenevér > d + g andé < %, and the algorithm runs in

polynomial time.
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Theorem 6 The modified1 + ¢)-approximate local search algorithm fot-DESIGN with repeti-
tions returns &1 + 2¢)-approximate solution whenever= 2 (6%) andJ < %, and the algorithm
runs in polynomial time.

We note that approximate local optimum sets are sufficient for initialization of greedy algo-
rithms, implying that greedy algorithms run in polynomial time.

1.2. Related Work

As we remarked earlier, experimental design is a classical problem and has attracted significant
attention throughout the years. We refer the read&uielshein(2006 for a broad survey on the
experimental design. Here, we mention the results known for the problems discussed in this paper.

D-DESIGN:  When experiments can be picked fractionalltDESIGN reduces to the natural con-
vex program which can be solved efficientyggnol and Harma(20159). In contrast, when ex-
periments need to be chosen integrally as in this paPepesiGN is NP-hard YWelch (1982).
Hence, there has been a series of approximation algorithms known for the pr@seitou et al.
(2010 gave az:-approximation algorithm based on rounding the solution of the natural convex pro-
gram. Wang et al(2016 improved the approximation ratio {d + ¢) whenk > d—:. Allen-Zhu
etal.(2017 gave a(1 + ¢)-approximation algorithm wheh = Q (%). Singh and Xig(2018 im-
proved this result and gav@ + ¢)-approximation algorithm when repetitions are not allowed and
k=Q (% + 6% log %) and(1 + €)-approximation when repetitions are allowed &nd- Q?d. Our

results improve on these bounds as they achjgéve e)-approximation wheri > d + %l.

A-DESIGN: As in case ofD-DESIGN, A-DESIGN reduces to solving the natural convex program
which can be done efficiently when experiments are picked fractionally. On the other hand, when ex-
periments are picked integrally as in this papemesIGNis NP-hard Nikolov et al.(2019). Sev-

eral of the results mentioned above forDESIGNwork in more generality and in particular far-
DESIGNas well. For instance, algorithm Byron and Boutsidi$2013 givestgﬂ -approximation

ratio for A-DESIGN as well. Algorithm byWang et al.(2016 gives (1 + ¢)-approximation ra-

tio whenk > %. Algorithm by Allen-Zhu et al.(2017) gives(1 + ¢)-approximation ratio when
kE=Q (6%) RecentlyNikolov et al. (2019 showedd-approximation forA-DESIGNwhenk = d,

(1 + €)-approximation when repetitions are not allowed @net Q (¢ + 5 log1), and(1 + €)-

approximation when repetitions are allowed ang> %. On the hardness sidblikolov
et al.(2019 showed thatd-DESIGN is APX-hard fork = d; there is nac-approximation for some
constant > 1.

Other variants of optimal design have been studied sudi+a&sIGN problem where our goal
is to select sef C [n] of sizek such that the minimum eigenvalue »F, ¢ v;v;” is maximized.
E-DESIGNIs also known to be an NP-hard proble@ivril and Magdon-Ismai(2009). Algorithm
by Avron and Boutsidig2013 givesd - Z:gﬂ -approximation algorithmWang et al(2016 gave

(1 + e)-approximation algorithm wheh > %. Allen-Zhu et al.(2017) improved this result and
gave(1 + e)-approximation algorithm wheh = Q ().

1.3. Organization

In Section2, we analyze the local search algorithm f0rDESIGN and prove Theorerf.. In Sec-
tion 3, we analyze the modified local search algorithm foDESIGN and prove Theorer. Sec-
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tions A andB include details and proofs deferred from the main body of the paper. We present
approximate local search algorithms forDESIGNand A-DESIGN and their analysis in Sectio

and D, respectively, proving Theorerbsand6. Greedy algorithms and their analysis f0¢rDESIGN

and A-DESIGN are presented in SectioBsandF, respectively, which prove Theorer@sand4.

2. Local Search for D-DESIGN

We first give the local search algorithm fB-DESIGN with repetitions.

2.1. Local Search Algorithm

Algorithm 1 Local search algorithm foD-DESIGN
Input: V= {v1,...,v,} wherev; € R? d < k € N,
Let I be any (multi)-subset dfl, n] of sizek such thatX =} ., v;v; is non-singular matrix.
while Ji € I, € [1,n] such thatlet (X — vl + vju}) > det(X) do
X=X- UiU;r —I—Ujva

I'=T\{i} U{j}
end while
Return(Z, X)

2.2. Relaxations

To prove the performance of local search algorithm, presented earlier as Th&ovemuse the
convex programming relaxation for tHe-DESIGN problem. We first describe these relaxations in
Figure 3 (see Chapter 7 dBoyd and Vandenbergh@004). Let qﬁ? denote the be the common
optimum value of PD-REL) and its dual D-ReL-DUAL). Let I* denote the indices of the vector in
the optimal solution and let® = det (3", ;. Uw;r)i be its objective. Observe thaf > log ¢°.
Theoreml now follows from the following result.

Theorem 7 Let X be the solution returned by Algorithin Then,

k—d+1\¢
det(X) > (TJ“) 47
and therefore,
k—d+1
det(X)4 > T+ P,

Before we prove Theoreify we begin with a few definitions. Léf, X') be the returned solution
of the algorithm. Lef/’; be thed x |I| matrix whose columns arg for eachi € I. Observe that
X = V;V," and X is invertible sincedet(X) > 0 at the beginning of the algorithm anlgt(X)
only increases in later iterations. We tet= viTX*LuZ- foranyl < i < n. Observe that if € I,
thenT; is the leverage score of row with respect to the matri¥,". We also letr;; = v, X ~1v;
foranyl <i,j <n.
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max log det ( Ti0;0; >
xeR’lz
i ! log det(Y') b 1
zxz <k mip g logdet(Y) + Gu
Y eRdxd
T >0 i€[l,n] p—v Yty >0 i€ [l,n]
Y =0
(a) Convex relaxationD-REL) for D-DESIGN (b) Dual (D-REL-DUAL) of (D-REL)

Figure 3: Convex Relaxation and its Dual for theDESIGN problem

Notations: For convenience, we summarize the notations used in this section.
° qﬁ? is the common optimum value of\-REL) and its dual D-REL-DUAL).

e [* C [1,n]is the set of indices of the vectors in the optimal solution.

#P = det (E ie1* Vil; )d the integral optimum value dD-DESIGN

e I C[l,n],X =3, v, isthe solution returned by the algorithm.
e Forl Sign,n:v;—X_l

o Forl <i,j <n,7; = U;I—X_l

The following lemma states standard properties about leverage scores of vectors with respect to
the PSD matrixX = >, ; viv;r (see for exampl®rineas et al(2012). These results hold even
when X is not an output from a local search algorithm and the proof is included in the appendix.

Lemma8 Letuvy,...,v, € R{andI C [n]. For any matrixX = Y, ; v;v, , we have:

1. For anyi € I, we haver; < 1. Moreover, for anyi € I, 7, = 1ifand only if X — W}ZT is
singular.

2. Wehave ., 7, =d.

el
3. Foranyl < j <n,we haveZieI TijTji = Tj-
4. Foranyl <i,j <n,we haverz‘j = Tj; andn-j < /TiTj

We now prove an upper bound epfor the local optimal solution. This lemma utilizes the local
optimality condition crucially.

Lemma9 Foranyj € [1,n], 7; < kffﬂ-
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Before we prove the lemma, we complete the proof of Theofersing LemmeD.
Proof [Theorem7] We construct a feasible solution to th®{ReL-DUAL) of the objective value
at most}; log det(X) + log z—~—. This would imply that

k
1 log ———
¢? < = logdet(X) + S

which proves the first part of the theorem. The second part follows gifice log ¢°.
LetY = oX, = maxi<j<n vaY’IUj = émaxje[lm} vaX’lvj wherea > 0 will be fixed
later. Then(Y, 1) is a feasible solution of/p-REL-DUAL). Hence,

qZ) Clilogdet(aX)—i—g éjréa[?);}v X to; -1
<loga+ 1 log det(X) + ko4 1 (Lemma9)
- d da k—d+1
Settinga = =7 dH,weget
gf)D<logL+llogdet(X)+1—l:logL+llogdet(X)
F="Ck—d+1 d k—d+1 d
asrequired. |

We now prove Lemma.
Proof [Lemma9] Since X is a symmetric matrix,X ~! is also a symmetric matrix and therefore
7;; = Tj; for eachi, j. We first show that the local optimality condition implies the following claim:

Claim1 Foranyi € I andl < j < n, we haver; — 7;7; + 7375 < 7.
Proof Leti € I, € [1,n]. By local optimality ofI,

det(X — vv] + V;V; 1) < det(X).
Next we cite the following lemma for a determinant formula.

Lemma 10 (Matrix Determinant Lemmalarville (1997) For any invertible matrixd € R4*¢
anda,b € RY,
det(A + abT) =det(A)(1+b"A7a)

Applying the Lemma twice tdet(X — Uzv + vjv; T, the local optimality condition implies that
det(X) > det(X — viv; + vjv j 1) = det(X +vjv ; DA - (X +ojv j D))
= det(X)(1+ v, X vj)(1 — v (X +vjv] ) y)
Hence,(1 + vaX— v;)(1 — v (X + V;V; 1)~tw;) < 1. Applying Sherman-Morrison formula, we

get
X_lijTX_l

A+ X o) (1-0] [ X - —=L— |u | <1
1+ o] X~1u;

o
(1+7) (“”*ﬁ) <1
(1 =7) (1 +75) + 735750 < 1

Tj — TiTj +7—ij7'ji S Ti-
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This finishes the proof of Clairh. |

Now summing the inequality in Clairhover alli € I, we get
Z (Tj —TiTj + TijTji) < ZTi.
icl iel
Applying Lemma8, we obtain thakr; — dr; + 7; < d. Rearranging, we obtain that

=R Cd+1
asdesired. ]

2.3. D-DESIGN without Repetitions

Due to space constraints, we defer the proof of local searcWfoESIGN without repetitions to
the appendix.

3. Local Search for A-DESIGN

In this section, we prove the performance of modified local search, presented earlier as Theorem
As remarked earlier, we need to modify the instance to cap the length of the vectors before applying
the local search procedure. This is done in Secl8dn We show that the value of any feasible
solution only increases after capping. Moreover, the value of the natural convex programming
relaxation increases by at most a small factor. We then analyze that the local search algorithm
applied to vectors of short length returns a near optimal solution. Combining these facts give a
complete analysis of modified local search fsDESIGNiIn Section3.2which implies Theoren3.

3.1. Capping Vectors

Algorithm 2 Capping vectors length fod-DESIGN

Input: V = {v1,...,v,} C RY, paramete\.
while 3i € [1,n], ||v||3 > A do
t = argmax;c, [|vil|2- .
FOI‘j S [1,n],vj = <Id — %%) Uj
end while
Forj € [1,n],u; = vj.
ReturnU = {uy,...,u,} C RY

The algorithm to cap the length of input vectors is given in Algoritimn each iteration, it
considers the longest vectay. If the length of this vector (and thus every vector) is at mbsthen
it returns the current updated vectors. Else, it scales down all the vectors along the direction of the
longest vector. Herd; denotes the-by-d identity matrix.

Before we give the guarantee about the algorithm, we introduce the convex program for the
A-DESIGN problem in Figures (see Chapter 7 oBoyd and Vandenbergh@004). For any input
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A-REL(V)
n -1
min  tr (Z xww?) A-REL-DUAL (V)
zeR? —
= max  2tr (Y1/2> — kA
n )\GR’H/
Z T S k‘ Y cRrdxd
i=1 )\—U;FY’UZ‘ ZO ZE[n]
T >0 i € [n] Y =0

(a) Convex relaxatiol-ReL(V') for A-DESIGN  (b) Dual A-REL-DUAL (V') of A-REL(V)

Figure 6: Convex Relaxation and its Dual for tAeDESIGN problem

vectorsV = {vi,...,v,}, the primal program isA-ReEL(V') and the dual program id-REL-
DuAL (V). We index these convex programs by input vecidras we will analyze their objectives
when the input vectors change by the capping algorithm. Weﬁ?‘eéi/’) denote the (common)
optimal objective value of both convex programs with input vectors

We prove the following guarantee about AlgorittinThe proof along with some intuition of
Algorithm 2 appears in the appendix.

Lemma 11 For any input vectord” = {vy,...,v,} C R? andk > d, if k > 15 then the capping
algorithm returns a set of vectof$ = {u, ... u,} such that

1. |lugl|3 < Aforalli € [n].
2. For any (multi-)sefS C [n], tr ((Zies viv;)_l) < tr ((Zies uiu;r)_l) :
3. 04(U) < (1+ 2920) (0 (v) + %),

Lemmall states that if an algorithm returns a good solution from capped vectors, then the
objective remains small after we map the solution back to the original (uncapped) input vectors.
Moreover, by choosing a sufficiently large capping lenfytrwe may bound the increase in optimal
value of the natural convex programming relaxation after capping by a small factor. Optimizing for
A is to be done later.

3.2. Local Search Algorithm

We now consider the local search algorithm with the capped vectors. The performance of the algo-
rithm is stated as follows.

Theorem 12 Let (I, X) be the solution returned by Algorith& If ||u;||2 < A for all i € [n],

_ A¢h
wx <o [ (1-42) - 24

-1
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Algorithm 3 Local search algorithm foA-DESIGN with capped vectors
Input: U = {uy,...,u,} TR d<kecN.
Let I be any (multi)-subset dfl, n] of sizek such thatX =}, _; w;u; is nonsingular.
while 3¢ € I, j € [1,n] such thatr ((X —wiuy + uju;—)_l) <tr(X~1)do
X=X-—- uzuz—r +uju-T

I=T\{i}U{j}
end while
Return(Z, X)

The proof of Theoreni2 is deferred to the appendix. We now analyze the modified local search
algorithm presented as Algorithénwith input vectors/” = {vy, ..., v, } which may contain vectors
with long length using Theored?. Let I* be the set of indices of the vectors in the optimal solution

of A-DESIGN with input vector set’ and let¢” (V) = tr ((Ziep viviT)_1> be its objective.
Observe thap/ (V) < ¢*(V).

Algorithm 4 Modified local search algorithm fot-DESIGN
Input: V= {wvy,...,v,},d <k eN.
LetA = W"(‘/).
LetU = {uy,...,u,} be the output of Vector Capping Algorith&with input (V, A).
LetI C [1,n], X =Y., wu, be the output of Local Search Algorith&with input (U, k).
Returnl.

Theorem 13 For input vectorsV = {vy,...,v,} wherev; € R? and parametetk, let I be the
solution returned by Algorithm. If & > i—gl ande < 0.001, then

-1
tr ((Z} WJ) ) < (1+ €)™ (V).

The (1 + €)-approximation of Algorithm4 is achieved by setting an appropriate capping leyth
and combining the guarantees from Lemiizand Theoreni2.
Proof By Theoreml2,

- _ N AN
tr((ZjumI) )<¢?(U) (1dk2 %};( ))

-1
et €l ¢?(U)
=9} (U) (1 D 2¢A(v))

The last inequality follows since > 24 andA = %. By Lemmall,
¢F(U) < (14 1500€*) (¢4 (V) + 1352053 (V) .

10
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Sinceg; (V) < ¢*(V), we getéh (U) < (1 + 1500¢*)(1 + 135¢*)¢* (V). Substituting in the
equation above, we get

tr Zuzu: < A(V) ; (14 1500€*)(1 + 135¢€?)
il 1-S+€et/d— ey/(1 + 1500e%) (1 + 135¢%) /2

< (L+€)e™(V)

where the last inequality follows from the fact thak 0.001. By Lemmall, we also have that

tr ((Ziel viv;)fl) < tr ((Zie[ uzu:)fl) Hence,

-1
tr (Z vw?) < (1+ €)™ (V).

icl
This finishes the proof of Theorefr8. |

Algorithm 4 requires the knowledge of the optimum solution vaifgV'). We can guess this
value efficiently by performing a binary search. The details appear in the appendix.

3.3. Instances with Bad Local Optima

In this section, we show that preprocessing input vectors toitiiESIGN problem is required for

the local search algorithm to have any approximation guarantee. This is because a locally optimal
solution can give an arbitrarily bad objective value compared to the optimum. Hence, this require-
ment applies regardless of implementations of the local search algorithm. We summarize the result
as follows.

Theorem 14 For anyk > d > 2, there exists an instance of-DESIGN, either with or without
repetitions, such that a locally optimal solution has an arbitrarily bad approximation ratio.

We note that any instance té-DESIGN with repetitions can be used fot-DESIGN without
repetitions by making: copies of each input vector. Therefore, it is enough to show example of
instances only inl-DESIGNWith repetitions. For each lete; be the unit vector in thé" dimension.

In this section,V is a real number tending to infinity, and thig N') ~ B(N) notation indicates
thatlimpy_. o % = 1. All asymptotic notions such as big-Oh are with respechte~ oco. We
first show the bad instance whén> d = 2. Thoughd = 2 seems a small case to consider, the

calculation presented is central to prove the main theorem later.

Lemma 15 There exists an instance of-DESIGN for k > d = 2, with repetitions, such that a
locally optimal solution has an arbitrarily bad approximation ratio.

The construction in Lemma5 can be generalized > 2 dimensions by adding a vector with an
appropriate length to each additional dimension. The proof of The@resppears in the appendix.

We now prove the Lemma.

Proof Let vy = [1; 5z],v2 = [Li—xz), w1 = [N% &, w2 = [N*;—4], and let the input of
A-DESIGN be these four vectors. We first make straightforward calculations, summarized as the
following claim.

11
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Claim 2 Letp, q be positive integers. Then,

—1 +

tr ((pvlvlT + qvgv;) ) = %N‘l +O(1) (1)
t ( T T )1 4

r{ (pvivy +quavy +wiwy = p+qN +O(N) 2)
tr < T T N1 4 3
pu1vy + qUavy + wawy = p+qN +O(N) (3)

-1 N2
tr <<w1w1 + wgw;) ) = 7 + O(N_S) (4)

-1
Proof We will repeatedly use the formuta ([CCL b] ) = a‘;jc. We have

d
_ — -277!
(et emt) )= P58 G2 )
p+a+@+gN* PN o)

 (p+q?Nt—(p—qPN—*  dpg

-1 NS £ptgq N34+ (p—q)N-2]"
tr (UUT—F va+wa> )—tr [ _ _ _
(pll qu2vz T N3+ (p—q)N2 N 24 (p+qN~*

~ N*40(1) 1
- (p+gN*+OWN)  ptg

N*+ O(N)

The calculation fotr ((pvl’ulT + quavy + wa)*l) is symmetric. Finally, we have

-1 oN8 0 17"} N?T 1
tr(“’lwlTjLwa;) :tr<[o 2N—2} >:7+W

finishing theproof. |

We now continue the proof of Lemnib. Letp = L%J,q = [%1 and consider the solution
S which hasp andq copies ofv; andwvs respectively. By Clain®, the current objective of is

tr ((pvlvlT - qvgv;)_l> ~ ﬁ]\f4 and the objective of \ {v;} U {w;} for any pairi,j € {1,2}

is =i NV + O(N) ~ gy N As g N > 5 N > pLo N for k > 2, S is locally optimal.
However, consider another solutig#t which picksp and ¢ copies ofw; andw,. Since

tr (wiw] + waQT)_l = O(N?), by monotonicity oftr((-)~!) under Loewner ordering, we must

have that the objective given I is also at mosO(N?), which is a©(N?)-factor smaller than

the objective value of. The result follows becaus¥ tends to infinity |
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Appendix A. Proofs from Section2

We use the notatiofA, B) for an inner product of two matriced, B of the same size. We begin
by stating the Sherman-Morrison formula that is important in our calculations. We instantiate it for
symmetric matrices.

Theorem 16 Let L be and x d invertible matrix andv € R?. Then

-1 LT
L T) e e e
< o 1+o 1o

Lemma 17 (Matrix Determinant Lemmaiarville (1997) For any invertible matrix, € R%*? and
v eRY,
det(L+vv') =det(L)(1+v' L™ 10)

We now detail the missing proofs.

Proof [Lemmasg] Let W = X_; = X — vv] = 3, p 5y 050 - To showr; < 1, we make two
cases depending on whetHéris singular or not.

14
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Case 1. W is non-singular.

7 =v] (W +o] )
= (W_l - —W_IU;U;WA) v;
14 v, Wy
v;rW_lvwiTW_lvi
1+ UZTW_LUz'
o] Wlv + (0] Wlu)? — (v W te;)?
1+of Wy,
o] Wy,
1+ vZ-TW—lvi
<1

Toy—1
=v; Wy —

Last inequality follows from the fact thazﬂW—lvi > 0 sincel ! is non-singular.

Case 2: W is singular. We have thaX is non-singular andlV = X — viv; is a singular matrix.
Let YT denote the Moore-Penrose pseudo-inversg &@r any matrixY". Observe thak’ = X 1.
From Theorem 1Nleyer, 1973, we have that

Whol (I —=WWHT (I = WIW) T Wi
1T =WWhuls (= WIW)Toi|3
(1 + o] W) (I = WIW) T (I — WWwT)T
I = WIW) T 311 (1 = WIW T3

X t=wl-

Now we use the fact thdf — W) and(I — WTIW) are projection matrices. Sine€ Pv =
|| Pv||3 for any projection matrix” and vectow, we obtain that

Txly = oTypty W) (o 0 - W Te) (o (7 - W) To) o W,
o 17— W3 G
(1 + o Wiov! (I - WIW) Toi] (1 - WWT) T,
(I = WHW) Ty Z[(1T — WW )2
= o] Wl — o] Who; — o] Wl + (1 4+ 0] W)
=1

as claimed.
We now show thap _,_; 7; = d. Indeed

Yom=d 0 X =) (X o) =(XTLY ) = (XL X) =d

el el i€l el

Similarly, we have

15
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1 n
max p log det <Z xiuinT>
<

1 T
min Elogdet(Y)—f—a,U"FE;m—l

in k Ty —1 .
i=1 p+n—v, Y vy >0 i€[l,n]
1>z >0 i€[1,n] 7 >0 i€l,n]
Y =0
(a) Convex relaxation D-REL) for D- (b) Dual (D-REL-DUAL) of (D-REL)
DESIGN

Figure 9: Convex Relaxation and its Dual for theDESIGN problem without repetitions

Tv—1 Tv—1 -1 Tv—1 T —1 Tv—1 T
ZTZ‘]'TJ‘Z' = Zvi X V;V; X v = Z(X V;V; X o ) =(X VU, X ,Zvivi )
i€l i€l el i€l
_ -1, . Ty—1 _ T y—1, ..
= (XTvju; X1 X) =0; X,

For the last part, observe that ! is symmetric and thus;; = 7;;. Moreover,

_ _1 _1 _1 _1
i = v X oy = (X7 2) (X7 20)) < || X 2u5]|2)| X 205 = /775

where the inequality follows from Cauchy-Schrz. |

A.l. Local Search for D-DESIGN without Repetitions

In this section, we focus on the variant BFDESIGN where repetitions of vectors are not allowed,
and show the approximation guarantee of the local search in this setting. In compariBen to
DESIGN with repetitions, the relaxation now has an upper bound cend extra honnegative vari-
ablesn; on the dual.

The local search algorithrhis modified by considering a swap where elements to be included

in the set must not be in the current set. We prove a similar approximation ratio of the local search
algorithm for the without repetition setting.

Theorem 18 Let X be the solution returned by the local search algorithm. Then fokal d + 1,

d
det(X) > (de) o195

and therefore,
det(X)d > % - P,
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We note that in the case= d, the design problem without repetition is identical to with repetition
since the optimal solution must be linearly independent, and thus the bound from with repetitions
of Theorem?7 applies to obtairl-approximation.

The proof of Theorem8is similar toD design requires a different bound enfrom the setting
with repetitions to set a feasible dual solution, since the local search condition no longer applies to
all vectors; € [n] but only for those not in output sét We first give a bound of; for j ¢ 1.

Lemma 19 Foranyj ¢ S and anyi € S such thatr; < 1,
Ti

T < .
]_1—7'1'

Proof We claim that the local search condition implies that for amyl andj ¢ I, we have
Tj — TiTj + TijTji <. (5)

The proof of the claim is identical to that of Claitn Hence, we have

2
TiZTj—TiTj—FTijZTj—TiTj (6)

which finishes the proof of theemma. |

We now prove the main Theorem.
Proof [Theorem1§]

As in the proof of Theoren7, we construct a feasible solution to thB{REL-DUAL) of the
objective value of at mosg log det(X) + log ﬁ which is sufficient as a proof of the theorem.

Denotery,i, = minjey vaYflvj. Let
k 0,  j¢r
Y =aX =" . =
aX, % Oé(]{ _d)Tmma nj {Tj—;'min jel

wherea > 0 will be fixed later. We first check the feasibility of the solution. It is clear by definition
thaty,n; > 0. Forj ¢ I, by Lemmal9, we have

oy

1 1 Trmi 1
«Q a 1—7pm o k—d

Tmin = 1+ N
where the second inequality follows from, < %Ziel T = %. Fori € I, we have
1
B+ > a : (Tmin + 71— 7-min) = Ugyilvi

Therefore, the solution is dual feasible. This solution obtains the objecti{éogfdet(a.X) — 1 +
Ep+ L3577 | m; which is equal to

1 k k 1
= —logdet(aX) —1 S 7 'min — 1 — Tmin
- log et(aX) +doz(k:—d)T Jrad;(T Timin)
—11 det(aX) — 1+ i -+1(d K Timin)
~d ogdet(x Oéd(k’—d)Tmm od Tmin

1 1 k
zc—llogdethLloga—l—l—a<m7min+1>
<11 det X +1 1+ i
=3 og de og alh—d)
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where the last inequality is by, < ¢. Finally, we setv = £ to obtain the objective value of
dual

1
— 14+ 1= -logdet(X) + log

1
—logdet(X)—i-logk_d g

d

k—d

asrequired.

Appendix B. Proofs from Section3
B.1. Proof of Performance of Modified Local Search Algorithm for A-DESIGN
B.1.1. RROOF OFTHEOREM 12

We first outline the proof of Theored?. Let (I, X') be the returned solution of the Algorith&
Observe thafX is invertible sinceX is invertible at the beginning ana(X —!) only decreases in
the later iterations. Let;; = u] X Yuj, hij = u] X 2u;, 7 = 74, hi = hy, andg = tr(X 1),
Since, X is a symmetric matrixX ~! is also a symmetric matrix and therefarg = 7;; for each
i,j € [n].

Notations For convenience, we restate the notations used in this section.

e V :Input to Modified Local Search Algorithrh

e [*: indices of the vectors in the optimal solution 4fDESIGN with input vector se¥/.
AWV) =tr (Sier ved) )

U : Output of Vector Capping Algorithr2d and input to Local Search Algorithm with capped
vectors3.

e A :Foreveryi € [1,n],|lu]|}3 <A.

(I, X)) : Output of Local Search Algorithm with capped vect8rsn input(U, k).

d)?(U), and qb?(V) denote the (common) optimal value of objective values of the convex
program with input vectors froy” andU respectively.

Fore,j € [l,n],nj = UZTX_luj‘,hij = UZTX_Q’LL]'.
e Foric [TL],Ti = Ty, hy = hy;.

Following lemma shows some standard connections betwgen, h;; andh;’s. Proof of the
lemma is presented in Secti@énl.3

Lemma 20 We have the following.

1. For anyi € I, we haver; < 1. Moreover, for anyi € I, 7, = 1ifand only if X — vz-viT is
singular.

18
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2. We have_,_; 7; = d.

3. Foranyi,j € [n], hi(1 + 7;) — 275k > 0.

4. For anyj € [n], we have), ;772 5= hj.

5. Wehave_,_; h; = 0.

6. Foranyj € [n], we have), ; 7i;hij = hy.

7. Foranyj € [n], we haver; < \/h;l|u;]|2.

8. Foranyi € [n],let X_; = X —w;u, . If X_; is invertible, then for any € [n], we have
o ul X ju; = —Tﬁ?j:ﬂj, and
° u;rX:,?uj = hj + ( )2 + 27” 1”

Next lemma shows a lower bound fnin terms of3 andgb?(U) by constructing a dual feasible
solution.

Lemma 21 We havenax;c, h; > lmﬁ‘(U)

Next lemma shows an upper bound/enin terms of3 and; using the local optimality condi-
tion.

h;

Lemma 22 Forany; € [n], 11 < ¢ .

Before we prove these lemmas, we complete the proof of Theb&m
Proof [Theorem12] By Lemma 22, for anyj € [n]

Vhjllujll2 < \/h;A. Hence, for any € [n],

ﬁ < kjﬁ. By LemmaZ20, 7; <

hy B
1+ VA~ k—d+2

By Lemma21, there existg € [n] such thath; >

T (ﬁ( 0y Now we note the following claim.

Clam3 f(z) = T f is a monotonically increasing function fer> 0 if ¢ > 0.

Proof f'(z) = {0z + 2 (H;\l/a?)Q 3= (12:6‘%2 which is always positive fox > 0 if ¢ > 0.
|
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Hence, we have

62
k-6 (U) B
2 —k—-d+2
1+ k.;f\(U)A
k—d+2 f - AgR(U) 3
k HU) ko o (U)
d—2 [ASRU)) B
(1 o\ Tk )¢/}(U)<1

This finishes the proof of Theorefr?. |

Next, we prove Lemmaland Lemma&2.
Proof [Lemma21] We prove the lemma by constructing a feasible solutiodt®EL-DUAL (U).
Let

Y =~4X72, A = maxu] Yu; = ymaxh,
! jem 0 T

wherey > 0 will be fixed later. Then(Y’, \) is a feasible solution tel-ReEL-DUAL (U). Hence,

(;SJAQ(U) > 2tr (('yX_2)1/2) — kymax h; = 2,/78 — kymaxh;.
j€(n] Jj€(n]

[n

2
ituti — B A B is i A
Sut:stltutlng'y = <W> , we get¢>f (U) > W This gives Uanane[n} h] >
kff— which is the desired inequality in Lemn24. |
A0)

Proof [Lemma22] We start the proof by showing an inequality implied by the local optimality of
the solution.

Claim4 Foranyi e I,j € [n],
hi(1+Tj)—hj(1—Ti) —QTZ'jhij >0 (7)

Proof Fori ¢ I,let X_;, = X — uzuj First consider the case wheX_; is singular. From
Lemma20, 7; = 1 andh;(1 + 7;) — 27;;h;; > 0. Hence,

hz‘(l + Tj) — hj(l — Ti) — 2Tijhi]‘ Z 0.

Now, consider the case whexi_; is non-singular. By local optimality condition, we have that
foranyi e I,j € [n],
-1
8<tr ((X_i + uju;r) )
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By Sherman-Morrison formula,

Ty—2 — T yv—2
—1 w; X _Fu; T X2, w; X Fu;
tr (X_z—FU]UT) —tl“(X,,-l) ]T—_Z] :tr(X_l)_|_ u, = Uy . J — 7
/ 14 u) X u; 1—u! X~luy 14w X juy

Hence, local optimality of implies that for any € I, € [n],

_ Ty—2
U;I—X Qui B ’LLj X—i Uj (8)
11—/ Xty 14 ujTX_iuj

g<tr(XY)+

) 2 _
7—J+Tij TiTj 27—7,] iJ

By Lemma20, we haveu] X ~u; = “—2—~ andu] X Ju; = h; + (1 ”)2 + TLE
Substituting these and(X ') = 3,u; X ~%u; = hj, andu]TX u; = 7; in equation 8), we get

27'” ij
1—7;

hi h + (1 ”)2 +

1_Ti +T —TiTj
1+ 1—7;

0 < h; B hj(l — Ti) + hiTij + 2(1 — Ti)Tijhij

—1-7 (1—Ti)(1—Ti—|—Tj+TZ»2j—T7;Tj)
0< h; B hiTin B hj(l — Ti)2 + 2(1 — Ti)Tijhl'j
—1-7 (1—Ti)(1—Ti+Tj—|—7'i2j—TiTj) (1—7’1)(1—7’2‘4—7']'4—7'%—737']')
0< hi(l —Ti+ 7+ Tin — TiTj — TZ%‘) B hj(l — Ti) + 2Tijhij

- (1—T¢)(1—TZ~+Tj+TZ-2j—TiTj) 1—7'Z'+Tj—|-7'i2j—7'i7'j

hi(l—&—Tj) _ hj(l—Ti)—i-QTijhij

I—Ti-f—Tj-i-TZ-zj—Tz‘Tj l—Ti+Tj+Ti2j—TiTj

0 § hi(l + Tj) — h]‘(l — Ti) — 2Tijhij

B< B+

0<

Last inequality follows from the fact that—7; +7; — 7i7; + 75 = (1 —7)(147;) + 77 > 0 which
follows from the fact that; < 1 (Lemma20 and X _; is invertible). This concludes the proof of
claim4. |

Next, we sum up equatiof) from claim4 for all i € Z and get

1+T] Zh ’I| ZTi)_QZTi]’hijZO
icl iel icl
By Lemma20, > ., hi = B,> ;c; 7 = d, and)_,; 7i;hij = h;. We also know that/| = k
throughout the algorlthm. Substituting these in the equation above welgety;)5 — hj(k—d) —
2h; > 0 or equivalently,
hy B

1+7 = k—d+2

This finishes the proof of Lemmi22. |
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B.1.2. THE CAPPING ALGORITHM AND THE PROOF OFLEMMA 11

Some intuition of the capping algorithm. Section3.3 shows an example where local search
outputs a solution with very large cost, thus showing that local search does not provide any approx-
imation algorithm. The failure of local search algorithm is the presence of extremely long vectors
(||v||3 much larger than A-optimum) which leads to “skewed” eigenvectors and eigenvalues. More-
over, we were able to show that this is the only bottleneck. That is, if all vector norms are small
(compared to A-optimum), solution output by the local search algorithm has cost at mest)
times the fractional optimum.

The capping algorithm should then satisfy the following(s): Given an instance with arbitrary
length vectors, output a new instance such that

1. All vectors in the new instance have small length

2. Fractional optimum of the new instance does not increase by moré thafactor of the old
fractional optimum

3. Any integral solution in the new instance can be translated into an integral solution in the old
instance with the same or lower cost.

If we can get such a procedure, we run the local search on the new instance and get an integral
solution with cost at mostl + ¢) times the fractional optimum of the new solution. Combining
with the properties above, we can then get an integral solution in the old instance with cost at most
(1 + ¢€)? of the old fractional optimum.

We note that a more natural capping algorithm where we pick the longest vector, scale this
vector down, and project all other vectors into the space orthogonal to the large vector satisfies
properties (1) and (2) but not (3). That is, given an integral solution in the new instance, we can not
always find an integral solution in the old instance with roughly the same cost.

We now proof of Lemmd.1, which says that our capping algorithm satisfies three properties we
want.

Proof [Lemmal1] For ease of notation, we consider the equivalent algorithm of Algor2hm

Algorithm 5 Capping vectors length fod-DESIGN

Input: V = {v1,...,v,} C RY, paramete\.
Fori € [1,n],w) := v;, £ = 0.
while 3i € [1,n], [[wl]|2 > A do
te = argmax;c(y ) |[wj|2.
% For all vectors, scale the component along withdirection.

¢ (wf T
Forj e [1,n],w4+1 = <Id RSCAGH) ) W'

j 2 Twf, 1 ) "
=10+ 1.
end while
Forj € [1,n],u; = wf.
ReturnU = {uy,...,u,} C RY

First observe that the length of the largest vector reduces by a constant factor and length of any
vector does not increase. Thus the algorithm ends in a finite number of iterations. Observe that the
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first property is trivially true when the algorithm returns a solution. For the second property, we
show that the objective value of any sebnly increases over the iterations. In particular, we show
the following claim.

Claim5 For any setS C [n] and any/ > 0,

tr <wa(wf)T>l <tr <wa+1(wf+1)T>l

€S €S
¢

w w[ T
Proof Let Z = (Idxd - lM)

27 lwf, 13

tr (Z wf+1(wf+1)T> h =tr (Z Z wf(wf)TZT> h

€S 1€S

=tr|z7! (Z wﬁ@%)"’) B z!

€S

(2 () )
€S

Observe thatZ has all eigenvalues except for one which i%. ThusZ~! and Z—2 have all
eigenvalues at least one and in particlar’ = I. Hence,

tr <wa+1(wf+1)T>l > tr (wa(wf)T>l

€S 1€S
asrequired. |

To prove the last property, we aim to obtain a recursion on the objective value of the convex
program over the iterations. L& = {wf{, ..., w’} be the set of vectors at the end@¥iteration
and leta; = gb?(Wz) denote the objective value of the convex program with the vectors obtained
at the end off'" iteration. We divide the iterations in to epochs where in each epoch the length
of the maximum vector drops by a factor ®f For ease of notation, we let = 0 be the last
epoch andgp = 1 to be the second last epoch and so on. For any integer0, we letr, :=
argmiry max;e(y, |wf||2 < 2P - A be the last iteration gi" epoch. Thus in thet" epoch the length
of the largest vector is in the intervi@P - A, 2PT1. A). Let T denote the first epoch and thus = 0.
Next lemma bounds the increase in the relaxation value in each iteration. The bound depends on
which epoch does the iteration lies in.

Lemma 23 For everyl € [y, 7p—1), We have

04£+1§ 1+ A <C¥l+m>.
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Next lemma bounds the number of iterations in gHeepoch.
Lemma 24 For everyp > 1, we have,_; —r, +1 < %d.

We first see the proof of last claim of Lemrbh&ausing Lemma&3and Lemma&4 and then prove
these lemmas.
Using Lemmag3 and 24, we bound the increase in relaxation value in each epoch.

Claim 6 For everyp > 1, we have

. 9—3p/4
o, < |1+ ’

Proof From Lemma23, we have

—1—71pt+1 rp—1—Tp+1 i
2—3p/4 Tp=17Tp 8 p—17Tp 2—3p/4
* *
%H<@+k) o tuan | 2 |1t

i=1

8
§d

. 6dd
Yo T 3To/AA )

2731)/4 Tp—1—Tp+1

8
<0é:p + opan (-1~ T 1))

< )
2—3p/4 Tp—1—Tp+1 8
S (T — (047*»,, + o 1 Tt 1)>

64d
<a;fp + m) (Lemma24)

asrequired. |

Solving the recurrence in Clai®, we get a bound on the total increase in the relaxation cost
throughout the algorithm.

T 64d
]
@ < | Mo | 147 Ot 2 5 ia
p=0

84
2-3p/4\ \ 3 21/4 64d
T *
= (Hp:0 <1 TR )) (arT T T13A

(%+%§ ©

Claim7 Foranyk > 15,
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Proof

9—3p/4 1. 1] &>
o |1+ — | =1+ > oy 3 $OY oty
p=0

p1=0p2=0

33 S
k p1=0p2=0p3=0

<1+2'47+ 2.47 2+ 2.47 3+
= k k k

1
1—247/k
3
<1+ -
<l+ A
Last inequality follows sincé > 15. |

Substituting bound from clairv in Equation 9), we get

. 3\3%/ . 135d Gd\ [, 135d
Oérog 1+E aTT+T S 1+6E aTT+T

Last inequality follows from the fact thél + a/z)¥ < 1+ etTif 2>y >0anda > 1.
By definition,rr = 0. Henceaj = a7, = ¢} (V). Also, by definitiona;;, = ¢/ (U). Hence,

d 135d d d
A < sa A 22908 a@ A 2
97 (U) < <1+e k) <¢f(V)+ A > < <1+3000k> <¢f(V)+135A>
This finishes the proof of LemmhL |

To complete the missing details in the proof of Lemiiawe now prove Lemmaa3 and24.
Proof [LemmaZ23] For simplicity of exposition, we make some simplifying assumptions. Without
loss of generality, we assume that= 1, i.e., the longest vector is the first vector in this iteration.
Also, since trace is invariant under rotation of basis, we may assumeufhai V/e1 for some

non-negative numbey wheree; = (1 0 ... 0)T is the first standard vector. Hence,
ern_ (o oL T e
’LUJ — dxd 26161 wj

Since,w{ is the largest vector in this iteration ahd: [r,, 7,—1), we have

PA >y > 2P7LA, (10)
Let x be the optimal solution forl-REL(w¥, ..., w’). We construct a feasible solutignfor
A-REL(wa, ...,wt 1) with objective at most as required in the lemma. &et 0 be a constant

that will be fixed later. Let
kiﬂ;(é + ZE1) 1=1

2_{]{%5:@ i€ [2,n]
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Claim 8 y s a feasible solution tm-REL(wf“, o whh).
Proof Since x is a feasible solution afi-REL(w!, . .., w?), we know thad> " | z; < k. Thus
E o« k k
= —0 + —— i< ——0+—k <k
Zy k+5 oF k+5;x T A
Clearlyy > 0 and thus it ieasible. |

Now we bound the objective value of the solutir_et
X — le Ty— Zy wz+1 z+1>r
i=1

Claim9 Foranys > 0, tr(Y 1) < &2 (tr(X,1> + %) ,

Before we prove Clain®, we complete the proof of Lemnta
From Equation10), we havey > 2°~' A and substituting = 2-7/2 in Claim 9 we get,

—p/2
tr(Y 1) < (1 42 ? ) (tr(Xl) - ﬁ) .

Since, x is an optimal solution tod-ReL(wf, ..., w},), we havea; = ¢} (wf,...,wy,) =
tr(X~1). Moreover, since is a feasible solution tal-ReL (w™!, ..., wit!), we have

x wit! 041 ~1 277/2 N 8

Hence, it only remains to show the proof of Clagém

~T
Proof [Claim 9] Let X = 7 | mwi(wf)" = [ g qR } wherep € R, € R?, R ¢ Ré—1xd—1,
Then

k+0
Y = Sw (-{—1( £+1)T+Zx. E—H( K—H)T

: >
(Idxd‘_'_61€1 (
[0 nn H””H
:[ (p+57 Qq}
2q R

= Ol
Ol
Pl
D
2 o
X —
PAS
Q.
—
=
—_

Since X is positive definite, we must haye > 0, R is also positive definite and more over
p—q' R~'q > 0 (see Proposition 2.8 Bernstein(2005).
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Fact 1 (Block Inversion formula) ForA € R**¢, D € R4 B ¢ R*? C e R such that

A B |. . .

[ c D } is invertible, we have
A B (A— BD1C)"! —(A—BD1C)"1BD"!
C D T | —-(b-cA'B)tcA! (D—-CA 'B)~!

Applying block inversion formula ok, we get

1
p—q"'R™1q

X1 = -1

G

Since, X is a positive semi-definite matrix —! is also a positive semi-definite matrix. Hence,
principle submatrices are positive semidefinite. In particular,

p—q R'g>0. (11)
and, .
R — ]—jﬂﬁf = O(@—1)x(d—1) (12)

Next, let us computer(X —1).

tr(X 1) = 1 i <R — 1T> - > tr (R - 1T) B (13)
pP—q'R'q " - P |

Applying block-inversion formula té°Y, we get

_ _1—1
<k+6 )‘1 (1(p+07) — 17" R7'q)

kto,, _ B
1 1T
b (R~ griad”)
Hence,
k 4 1 !
——tr (V7)) = | (R- 75"
T R T ar (( proy > )
Claim 10
4 < 4
oy+p—q'R1q ~ oy
Proof By Equation (1), p — ¢' R~'g > 0. Hence, the inequality trivially folls. |
Claim 11
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H 1 1
Proof Since,d, o > 0, P < > Hence,

|
Applying the above two claims, we get
k ., 10t 1\
< N
e LA G, Hr((R pqq)
——tr (Y1) < 1—04 +tr(X 1) (eq (13))
k+46 — Oy
k46 104
H< (X H+—).
tr(Y ) < Z (r( )+57
This finishes the proof of Clairf. [ |
Proof of Claim9 also finishes the proof of Lemn8.
|

Proof (Lemmaz24) By definition ofr, andr,_;, we know that for any € [r,,7,-1),

2P IA < max ||wf||3 < 2PA
i€[n]

Let M,, = Iixa, Ry, = Igxq and forl € [r,,rp_1), let

1wl (wl)T
My = <[dxd - ——te( L)

M, Repr = MJ (M.
PRATE ) ’

For/ € [rp,7,—1), consider the potential functiam(R,). We show the following properties about
this potential function:

Claim 12 Let M, R, be as defined above fdrc [r,,r,_1). Then,tr(R,,) = d and for/ ¢

[ps Tp—1),

e tr(Ry) >0, and
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o tr(Rpy1) < tr(Ry) — 2.

Using Claim12, itis easy to see thaf,_; — 7, +1 < gd. Hence, to prove Lemmd, it is enough
to prove Claiml2.

Proof (Claim 12) Since,R,, = Iixa, tr(R,,) = d is trivially true. Also, for any/ € [r,,r,_1),
R, = M, M, which is positive semidefinite. Hencey(R,) > 0 for any? € [r,,7,—1). For
C € [rp,mp-1),

.
1w, (wp,)" 1wl ()T

Ry = M{ Mpyy = My ( Lixa — 5= t5— Iixa — = ——"5— | My
AL 2 3

lwf (wf )T
2l |13

Matrix <Idxd - > is symmetric. Hence,

0 (0 ONT 0 ONT o0 ONT
wy, (wy,) 1wy, (wy,) ' wy, (wy,)
Reyy = M, (Idxd - T Lt [

lwi I3 4 [lwgll [lwf,l3
— T I _ wfl (wfl)—r + lwfg (wfg)—r M
= e | fdxd I|[w? |12 1 ([l |2 ¢
”wu’ 2 ‘wtg‘ 2
= / — - — - —
4 w13 4 [Jwi, |13

By definitionw;, = Mgw:f. Hence,

B 3 (M, Mwg? )(M, Mywy?)T
Ryy1 = Ry — 1 [l |2 =
toll2

(Rewy))(Rew]) "

IAl

3
‘T3

And the trace is

3 (Row) ) (Rewy) T\ 3 || Rew;? |[3
= t(Be) = g
4 ||wtl”2

By Cauchy-Shwarz inequalityju||3 > (v"u)?/||v]|3. Substitutingu = Ryw,;” andv = w,”, we
get

roNT rp\2 TO\NT ag T p)2
tr(Rg_H) < tr(Rg) . § ((wtf) szt;) o tr(Rg) . § ((wt;) Me Mzwtj)
— T - T
4 [Jwy |13 - 1wy, |13 4 lwgf |13 - w113
gy B MU s e
4wy 113w, |13 4wy 1131wy, |13
3 ||wi, I3
)
¢

Since ! € [rp,rp—1), ||[wf,|[3 = max;ey |[wf][3 > 2P~1A. Also, by definition ofr,,, [|w;?||3 <
max;e(y] |w;”||3 < 2PA. Hence,
32071A

tr(Rg_H) < tI‘(Rg) — Z WA

= tr(Ry) —

ool w
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asdesired. m

Hence, the proof of Lemm24 is completed. |

B.1.3. RROOF OFLEMMA 20

Proof [LemmaZ20] Proof of first and second statement is same as that in LeBrSa, we start by
proving thath;(1 + 7;) — 27;;hi; > 0.

Claim 13 For anyj € [n], X—1/2ujuij—1/2 < 714,

Proof Since, X is a symmetric matrix,X ! and X ~'/2 are also symmetric matrices. Hence, if
q = X2y, thenX ~1/2uju] X ~1/2 = ¢¢7. Such a matrix has one non-zero eigenvalue equal to
llq||3 = u;—X_luj =T;. HenceX‘l/QujujTX—l/Q = 7l |

Next, we use this to derive further inequalities.

X_l/zuju;l—X_l/2 =1l
2X_1/2uju;rX_1/2 =271y
2X M upu] X7V < (14 7)1y (r; < 1,5 € [n])
XXy ] XX < X2 (14 ) XY (X2, X782 are PSD
2X tuju] X2 =2 (1+7)X 2
If A< B, thenv" Av < ' Bu forall v. Henceu, (2X ~'uju] X2 < (1+75)X *)u; < 0. Or

in other wordsh;(1 + 7;) — 275hi; > 0.
Next, we show tha} ", 7% = h;.

2 Ty-1, ,Ty—1 Ty-1, ,Ty—1
g Tijzg u; X uju; X uj:E u; X ujqu Us;
el el el
-1 Ty—1 T
= E (X wju X7 uu, )
€U
-1 Ty—1 T
= (X" uju; X7, E uu; )
€2
_/x—1,  Ty-1
= (X" uju; X7, X)
= (u; X" XX "))

Ty—1_,T\ _ , Ty—-1 _
= (u; X7 uj) =uj X uj = hy
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Next, we show tha} ,_; h; = (3.
Soh= Y X
i€l i€Z
= Z(X_Qv ulu;r>
iel
= (X2 ) = (X% X)
icl
= (X1 x1x)
= (X1 1) =tr(X7)
Next, we show tha‘EiE[ Tijhij = hj.
ZTijhij = ZquﬁlujuiTXﬁuj = Zu;XfluJ’ujTXdui
i€l i€l i€l
= Z(X_luju;—X_2,uiu;r>
el
= (X_luju;—X_z,ZuiuiT) = (X_lujujTX_Q,X)
1€
= (u; X%, u] X'X)

= <ujTX72,u]~> = hj

Next, we show that; < +/h;||u;||2.

VIlluglle = yJu) X=2u]ug]|2

= V11X Yo B2 = [1X ™ g o s |2
Ty —1
Zqu Uj = Tj.

Here, the last inequality follows from Cauchy-Schwarz inequality: for any € R%, u'v <

[ull2]|v]]2.
Next, we show the last two equalities. Forc [n], X_; = X — wu. Letj € [n]. By
Sherman-Morrison formula,

—1,, . Ty-1 —1,, . Ty-1
X uuy X0 X uuy X

—_— = 14
1—U;-|—X71ul' 1—7’1‘ ( )

X=X+

Hence,

Ty-1, . Ty-1
u; X ujuy Xty
u;X:l.luj = u;-rX_luj + !

1—7
ujTXfluiuiTXfluj
1—7
. 2
Tij - Tij  Tj T Tij = TiTj
1 — T3 1 — T3
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Squaring the terms in equatiob4), we get

X2 x4 X tuu X 2uu X1 N X tuu! X2 n X 2uu X1
- (1—m)2 -7 -7
X_luiu;-rX_l X_luiu;-rX_2 X_Quiu;-rX_l

=X 24 h
+ ! (1—Ti)2 + 1—TZ' + 1—TZ'
Hence,
Ty-1,, . Tyv-1 Tyv—1, . Tyv—2 Ty—2,,.Ty-1
w, X tuzu, X tus o w; Xugu, X% wy X fuuw X
Tyv—2 Tyv—2 J vt J J v J J v J
"X 2 =ul X 4 h
Uy =it = uj i (1—m)2 * 1-7 * 1—-m
Tij " Tij . Tighig o P
=h; +h +

1l-7)? 1-7 1-m7
hiTEj QTZ'th'j
(1 - Ti)2 1-— T3

= hj +

B.2. Guessing A-Optimum Valueg” (V)

We remarked earlier that Algorithtrequires the knowledge of the optimum solution vaidg1).
We can guess this value efficiently by performing a binary search. We explain the details and the
proof of the polynomial runtime of the search in this section.

Leta = tr ((Z?Zl v,-v;f)*l) . Since we may pick at mogtcopies of each vector, we have that
PA(V) > tr ((k: > uiviT)*l) = +a. The fractional solution; = £ is feasible for4-ReL(V/).
Hence,qb?(V) <tr ((% Sy W}T)*l) = 7a. Using the result illlen-Zhu et al.(2017), we get

that™ (V) < (14 €)¢} (V). Hence ™ (V) e Ha, ﬂlkLﬁ)a)}. Hence, given an instance, we first

computex and then perform a binary search fgt (1) in the interval[; o, ﬂlkLe)oz].

Suppose the current range of the optimuni¢is|. We guess OPT to bég—“ (use this as A-
optimum¢” (V7)) and run the modified local search algorithm. We claim that if it outputs a solution
with cost at most1 +¢) 5% theng” (V) lies in the rangé, (1+¢)“5%]. If it outputs a solution with
cost more tharil +e)£+7“, theng” (V) lies in the rang¢€+7“, u]. The first statement is trivially true.
The second statement is equivalent to the followingt1f V) is less than“T“, then the algorithm
outputs a solution of cost at mo&t + e)”T“. Proof of this fact follows exactly the same way as
the proof of Theorem 13 by substitutigg (V) with ”T“ everywhere. The proof still follows, since
the only place we use the meaning of th&(1") value is in claiming that there exists a fractional
solution with valueg” (V). Becauses” (V) is less thansY, this statement is true with” (V')
replaced by,

We can guess the value ¢f*(V) upto a factor ofl + € in log;, (n(1 + ¢€)) < w
iterations. This introduces an additional multiplicative factot ef e in the approximation factor in
Theoreml3. Hence, we get an approximation factor(df+ €)(1 + ¢) < (1 + 3¢) and polynomial
number of iterations.
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B.3. Example of Instances taA-DESIGN

In this section, we give more details deferred from Sec8d@h starting with the proof of Theorem
14.
Proof [Theorem14] The casel = 2 is proven in Lemmd.5, so letd > 3. Let

1 1
m:[l;m;o;---;()],vzz[1;—m;0;---;0],w1:[N4;N;0;---;0L
4 1 .
wy = [N% —=N;0;...;0,,U = ui::mei:z:iﬁ...,d )

and let{v, v, w1, w2} U U be the input vectors tal-DESIGN. Letp = [E=E2| ¢ = [E=d+2]
Consider a solutiory’ which picksp andg copies ofv; andwvs, and one copy ofi; for eachi =
3,...,d. We claim thatS is locally optimal.

Consider a swap of elemeni§ = S\ {s} U{s'} wheres’ # s. If s € U, thenS’ does not span
full dimension. Hences € {v1,v2}. If s’ = ¢; € U for somei, then the increase of eigenvalue
of S’ in theith axis reduces the objective Iy N3). However, by Clain®, removing a vectos
will increase the objective b@2(N*) . Finally, if s ¢ U, then the swap appears within the first
two dimension, so the calculation that a swap increases the objective is identical to tdec&se
proven in Lemmal5. Therefore,S is locally optimal.

We now observe that the objective given$ys ©(N*), dominated by eigenvalues of eigenvec-
tors spanning the first two dimension. However, consider a solitifonhich picksp andg copies
of wy andws, and one copy ofi; for eachi = 3, ..., d. The objective ofS* contributed by eigen-
values of eigenvectors lying in the first two dimensio®igV?) (Claim 2), so the total objective of
S* is ©(N?), which is arbitrarily smaller tha®(N*), the objective ofS. |

We also remark that the exmple of input vectorsAt@ESIGN given in this section also shows
that A-DESIGN objective S — tr ((Zies vw:)_l) is not supermodular, making the analysis

of algorithms in submodular optimization unapplicable. A set funcgon 2V — R is called
submodular ifg(S U {u}) — g(S) > g(S" U {u}) — g(5’) forall S C S’ C U andu € U, andg

is supermodular if-g is submodular. In other words,is supermodular if the marginal loss @by
addingu is decreasing as the sgtis increasing by a partial orderingc". As a set increases, the
marginal loss of thel-DESIGN objective not only potentially increase, but also has no upper bound.

Remark 25 For anyd > 2, T > 0, there exist sets of vectofsC S’ in R? and a vectorw € R¢

such that
tr ((Zies/ UUT)il) — <(ZiES’ w! + wa)il)
tr ((Zz’es UUT)_1> - <(Zies w! + wa)_1>

Proof We first assume = 2. Use the same definitions of vectors from Lemiriaand setS =
{v1,v2},8" = {v1,v2, w1} andw = wy. By Claim2,

-1 -1
tr (Z U’UT> —tr (Z w4 wa> = O(N)

1€S €S

>T
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and
1 -1 -1
tr (Z va> —tr <Z vo! + wa> > tr <Z ’UUT>
€S’ €S’ €S’
-1
—tr <<w1w1T + w2w2T> >
= O(NY),

so the proof is done becaugé tends to infinity. For the casé > 3, we may pad zeroes to all
vectors in the above example and add a unit vectdt, 1/ to each of othed — 2 dimensions. W

Appendix C. Approximate Local Search for D-DESIGN

While Theoren proves a guarantee for every local optimum, it is not clear at all whether the local
optimum solution can be obtained efficiently. Here we give a approximate local search algorithm
that only makes improvements when they result in substantial reduction in the objective. We show
that this algorithm is polynomial time as well results in essentially the same guarantee as Theorem

Algorithm 6 Approximate Local search algorithm f@»-DESIGN

Input: V= v1,...,v, € R% d < k € n, parameted > 0.
Let I be any (multi)-subset dfl, n] of sizek such thatX = Y., v, is non-singular matrix.
while 3i € 1,5 € [1,n] such thatet (X — v, + vjva) > (14 6) - det(X) do

X=X-— UiUzT —|—Uj’UJT

I'=1T\{i}U{j}
end while
Return(Z, X)

Recall thatgb? denote the be the common optimum value BFREL) and its dual D-REL-

1
DUAL). I* denote the indices of the vector in the optimal solution @Rd= det (3, ;. viv;' ) ¢
be its objective. We havg? > log ¢°. We have the following result about Algorithén

Theorem 26 Let X be the solution returned by Algorith Then,

_ 1\ ¢
det(X) > e <%> b7

and therefore,

k—d+1
det(X)é > e_%T—i_ - P,

Moreover, the running time of the algorithm is polynomiakind, &, % and the size of the input.
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Proof of the theorem is analogous to the proof of Theoverhet (7, X') be the returned solution
of the algorithm. We also let’; denote thel x |I| matrix whose columns are for eachi € I.
Observe thall = V;V," andX is invertible sincelet(X) > 0 at the beginning of the iteration and
it only increases in later iterations. We let= vZTX_lvi foranyl < i < n. Observe thatif € I,
thenr; is the leverage score of row with respect to the matri¥;". We alsor;; = v, X ~1v; for
anyl <1i,j5 < n. As in Theoren, we have some properties regardip@ndh;.

Lemma 27 We have the following.
1. For anyi € I, we haver; < 1. Moreover, foranyi € I, 7; = 1 ifand only if X — Uiv;r is
singular.
2. We have ;7 = d.
3. Foranyl < j < n,wehave), ; 7i;7j = Tj.
4. Foranyl <i,j < n, we haver;; = 7;; andr;; < /775

Proof of the lemma is identical to that of LemrBa Next, we show an upper bound enfor the
approximate local optimal solution.
Lemma 28 Foranyj € [1,n],
o< d+ ok
T k—d+ 1

Before we prove the lemma, we complete the proof of Thed2ém
Proof [Theorem26] We construct a feasible solution to thB{ReL-DUAL) of the objective value
of at most} log det(X) + log 7—%— + %2. This would imply that
+lo Kk + ko

Sk—d+1 d
which proves the first part of the theorem. The second part follows 31?\0@ log ¢P.

Let

O3 < (11 log det(X)

_ 1 _
Y 1fuj — = max v, X 1’Uj

Y =aX, [ = max v j

1<j<n 7 o jelln]

wherea > 0 will be fixed later. Then(Y, p) is a feasible solution offp-REL-DUAL). Hence,

o0 < L

k1
7 < Elogdet(aX) + =~ max v] X lv; — 1

d «jefin]
k d+ ko

1
<1 2 X) 4. 2T
< oga+d og det( )+da T

1 (Lemma28)

Settinga = =5, we get

k 1 ko k 1 ko
¢f_logk_d+1+dlogdet(X)+ + logk_d+1+dogdet(X)+ 7
asrequired. |

Proof [Lemma2§] Since X is a symmetric matrix,X ~! is also a symmetric matrix and therefore
1i; = 74 for eachi, j. We first show that the approximate local optimality condition implies the
following claim:
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Claim 14 Foranyi € I andj € [n], we have
Tj—TiTj+TijTji§(5+Ti. (15)

ProofLeti € I,j € [n]andX_; = X — viv;r. First, consider the case wheéh ; is singular. From
Lemmas, we have that; = 1,7;; = 7;; < ,/7;7; < 1. Hence,

T =TT+ TiTji < T7j—Tj+1=7, <0+ 7
Now consider the case whefi_; is non-singular. By local optimality of, we get that
det (X,Z- + vjv;r> < (1+9)det (X,Z- + viv;r) (16)
Claim 15 For any invertible matrixd € R%*? andv € R?,
det(A+wvv") =det(A)(1+v' A" 1w)
Hence, local optimality of implies that for any € I, j € [n],
det(X_i)(1 +v] X71v;) < (1 +6) det(X_;) (1 + v XZ}vy)
Dividing both sides bylet (X_;) , we get for eachi € I andj € [n], we havel + vainlvj <
(14 6)(1 4+ v X~ !v;) or equivalently,
v XTlvy <0+ (14 6)v] Xl
From the Sherman-Morrison Formula we obtain that foraayl and;j € [n], we have
v] (X —1y —f_jﬁ’?ii) v; <6+ (14 8) <X 1y —)1(_1;}“;{0» v;.

Now using the definition of;, 7; and;;, we obtain that for any € I and1 < j < n, we have

Tj"‘—;ﬂﬂj <d+(149) <Ti—f—17-l )

—Ti —Ti

Multiplying by 1 — 7;, which is positive from Lemma&, on both sides we obtain that for anyg 7
andl < j <n,

T =TT+ 7T SOl —T)+(1+)Ti=0+7
thus finishing the proof of thelaim. |

Now summing over the inequality in Claif¥ for all i € I, we get
Z (Tj — TiTj + TijTji) < Z(S + ZTZ'.
el el i€l

Applying Lemma8, we obtain that

k‘Tj *de+Tj < ok +d.
Rearranging, we obtain that

d+ ok
<
=% —d+1
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Runtime Analysis. One may obtain the worst-case runtime for local search for D-design as fol-
lows. LetL be the maximum number of the length of binary string that encodes the number in each
component across all input vectars Suppose we start with any solutichwith nonzero deter-
minantdet(VsVy') = > pcs ri—q det(VaVy ) (Cauchy-Binet), which can be done in polynomial
time by finding a set of linearly independent vectors. Sil?(@(i}’sT is PSD,det(VsVJ) is non-
negative and hence must be strictly positive, and therefore at least onddgiviz V) is strictly
positive. We now use the fact that for a square mattjxhe binary encoding length afet(A) is
at most twice of the encoding length of matriix(the exact definition of encoding length and the
proof are in Theorem 3.2 @&chrijver(1998). Since the length off x d matrix VRVRT is at most
d? + Ld* < 2Ld?, the length ofdet(VzV}) is at mostLd?. Hence, the value of the determinant
is at leasp—4L4”,

The optimum solutior5™ of D-DESIGN attains objective) ;. | z—g det(VrV;) (Cauchy-
Binet). Each termlet(V;V}) again has length at most.d?, and so is at most*~®*. Therefore,
the optimum is at mos@) . 94Ld* < Edodld® Hence, any solutio with nonzero determinant
is ak?28L* _approximation. Each swap increases the objective by a multiplicative fastaf, so
the algorithm takes at mogig, , 5(k923%") < 2dlogk - (8Ld?) = O(M) swapping steps
for § < 1/2. We may use matrix determinant lemma (for rank-one update) to compute the new
determinant objective rather than recomputing it in the next iteration. The matrix determinantlemma
computation take®)(d?) times, so one swapping steps takegnd?) time by computing alkn
potential pairs of swaps. Therefore, the local search in total AKE& 25k knd?) = O (Lknd Lok
arithmetic operations.

Appendix D. Approximate Local Search for A-DESIGN

Algorithm 7 Approximate Local search algorithm fef-DESIGN
Input: U = {uy,...,u,} CR%d<kecN.
Let I be any (multi)-subset dfl, n] of sizek such thatX = }._, v;v;” is non-singular.
while Ji € 1,5 € [1,n] such thatr ((X — wu, + ujujT)”) <(1-68)tr(X~1)do
X=X- ulu;r —i—ujujT

I=T\{i}U{j}
end while
Return(7, X)

Recall that for any input vectos = {vy,...,v,}, the primal program isi-ReL(V) and the
dual program isA-ReL-DUAL (V). We index these convex program by input vectors as we aim
to analyze their objectives when the input changes by the capping algor@zt;’)l(lV) denote the
(common) optimal value of objective values of the convex program with input vectorsWroi
denote the indices of the vectors in the optimal solutiodl@beSIGN with input vector set” and

let oA (V) = tr ((Zie]* vz-viT)_1> be its objective. Recall that} (V) < " (V).
Similar to the local search result fot-DESIGN of Theorem12, we can prove the following
theorem:
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Theorem 29 Let X be the matrix returned by Algorithn If ||u;]|3 < A forall i € [n],

-1

d—2 1 AR (U)
ok >1+(kd)6_ k

To prove Theoren29, we can prove the following lemma instead of Lem&ga

Lemma 30 Foranyj € [n],
h B0t (k=)o)
1+7 — k—d+2

Instead of Theorer3, Theoren29 now leads to the following theorem:

Theorem 31 For input vectorsV = {vy,...,v,} and parametek, letU = {uy,...,u,} be the
set of vectors returned by the Capping AlgoritBrwith vector sel’ and A = Wd(v)' Let(Z,X)
be the solution returned by AlgorithBwith vector set/ and parametek. If & > i—f, 0 < %,
and < 0.001 then,

tr (Z vw?) _ < (14 26)™ (V).

el

Proof of the theorems and lemmas are identical to the corresponding theorems and lemmas
proved in Sectior8. Hence, we avoid the tedious calculations in reproving these theorems.

Runtime Analysis We claim that the running times of both capping and approximate local search
for A-DESIGNare polynomial im, d, k, % and the size of the input. The runtime analysis of approx-
imate local search algorithm fot-DESIGN s identical to the one foD-DESIGN (with a change of
objective, but the objective can still be computed ion polynomial time).

The significant change is the use of capping algorithm, which needs to be shown to ternimate
in polynomial time. LetZ be the maximum number of the length of binary string that encodes the
number in each component across all input vecterdhen||v;||? < v/d - 22F for all i's. In each
iteration, the capping algorithm reduces the length of at least one vector by at least half, and hence
by nlog% = O(nLlog %) iteration of capping, all vectors have length at mast As in the
analysis of approximate local search frDESIGN, the encoding length af” (V') is polynomial
inn,d, k, L, and so idog % (asA = —ZL_.). Hence, the capping algorithm takes polynomial (in

oA (V)
n,d, k, L) number of steps.

Appendix E. Greedy Algorithm for D-DESIGN

To prove Theoren2, we again use the convex programming relaxation fof?hBESIGN prob-
lem. Recall the relaxation[{-ReL) and its dual D-ReEL-DuUAL) shown in figure2b. (;5? denote
the be the common optimum value d?{REL) and its dual O-REL-DUAL). I* denote the indices

1
of the vector in the optimal solution and I? = det (3", ;. viv, ) ¢ be its objective. Observe that
gb]'? > log ¢P. Now, Theoren® follows from the following theorem with an appropriate initializa-
tion of firstd vectors which will be specified later.
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Algorithm 8 Greedy algorithm folD-DESIGN
Input: V- =v1,...,v, €RY d < k€N, S, C [n].
Xo=>jes, vjv;r.
fori=1tok — |Sy| do

Ji = argmax;¢p, det(X + vjva)

S, =8;,_1U {jl},X, =X,_1+ Ujiv;;
end for
I'= S|y X = Xk—|50]
Return(7, X).

Theorem 32 For any set of vectorsy, ..., v, € R%, supposeSy C [1,n] is a set of sizel such
1
thatdet (Zieso viv;r)a > %/@ - P for some% >k >0andk > ‘El (log% + log log %) Let(7, X)
be the solution returned by Algorithé Then,
det(X) > (1 — 5€)¢P

Before we prove Theore®R, we state and prove the following theorem, which better conveys main
ideas of the proof.

1
Theorem 33 For any set of vectors, ..., v, € R* andk > dlo%, supposes, C [1,n] is a set

1
of sized such thatlet (3", viv )* > $r-¢P for somel > k> 0. Lets = max{dloglog 1,0}
and (I, X) be the solution returned by pickirig— d + s vectors greedily. Then,

det(X) > (1 — 4€)¢P

Theorem33 gives a bi-criteria approximation where we pick small numbef extra vectors than
the budgett while obtaining near-optimal solution. Thesevectors are required to improve the
initial approximation¢  to a ratio¢ independent o, or «.

Proof [Theorem33] To prove this theorem, we show the following two lemmas. First lemma shows
the increase in the solution value in each greedy step.

7
Lemma 34 Fort < [0,k — |So| — 1], det(Xyy1) > det(Xy) (1 + gm)
Next lemma shows that this recursion leads to the desired bound in the theorem.

1/d
Lemma 35 Let?¢ > 0. Letz,...,zx_¢ be suchthatfot € [0,k — ¢ —1], 241 > 2 (1 + k%) .
Then,

1. If z < ¢, then for anys > dloglog %2, we have

2. If 20 > 4, then we have
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Proof of TheorenB3 follows from these two lemmas by defining = (det(e;w in the bound

in Lemma34. Lemma35 implies that for any initiak approximation withd initial vectors to the

D design problem ok vectors,s = dlog log% vectors is enough to guarantgpapproximation.
Then, the second bound of LemrB& applies for the rest of the greedy algorithm. We now prove
these two lemmas.

Proof [Lemma34] By definition,det(X;+1) = max;ep, det(X;+v;v; ). By Lemmal7, det(X;+

vjv]) = det(X;)(1+v] X; 'v;). Hence,

det(Xt+1) = det(Xt) ( + maxa, Xt U]) (17)

J€[n]

Next, we lower boundnax;c vaXt‘lvj by constructing a feasible solution to th®{REL-
DuAL). Let

1
Y = aXy, maxv; Y v, = — maxov] X; v,
PRI T T adem Y

wherea will be fixed later. Then(Y, u) is a feasible solution of[p-REL-DUAL). Hence,

1 k1
gb? Elogdet(aXt) 7 E%%{UJX Ty —1

which implies
da 1
qbf +1—loga — p logdet(Xy) | < gré?;]w] Tx1 vj

R
Torc A We get

Setting,a = )

D D
d e’f s

¢ 1 d
Tx;ly,>% 7 1 —log— " “logdet(X,) | =41
AU A2 e (X1 <¢f 1 -log gy g legdet t>> k det(X,)1/4

Substituting the bounds in equatiaky, we get

d 7
det(Xt+1> Z det(Xt) (1 + EW) .

This finishes the proof of Lemmnz4. |

=

Proof [Lemma35] We first prove the first bound. The recursion impliestﬁzajé > (k%) , which

is equivalent to

d d-—1
1 1 18
dogk+ P 0g 2t (18)

Definea; := log & — log . If a, < 0 for anyu < s, then we are done because> z, > <. Else,
we can rearrange terms to obtain

log 2141 >

1
a1 < (1 - c_i) ay (19)
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Hence, we have

where the last inequality follows from > log log dA,jl. Thereforelog% —log zs = as < 1, giving
the desired bound.
To prove the second bound, the recursion is equivalent to

1 d
log 2L > Zog (1 4+ -2 (20)
Zt d k’Zt
It is clear thatz; is an increasing sequencetl,rhence— < k =e. We usdog(l+x) > £

for 0 < z < e (by concavity oflog z) to lower bound the rlght hand-side ¢f@) above mequallty

to obtain J .
log Zt4+1 _

1
2 d ekz  ekz

1
Thus, by using:” > 1 + z, we have™t > e+ > 1+ L, which implies

Zt41 = 2+ —
ek

Therefore, we obtain; > for allt > 0.
Next, we apply the bounkrbg(l +x)> 17— % = z (1 — %) wheneve < z on the right-hand-

side of @0) to obtain
zt41 . 1 d d 1 2d
log—/— >-—(1—-—)>— - (1—-—
8 Zt - dk:zt < 2k2t> - k‘Zt t

where the last inequality comes frog > ik Thus, applyinge® > 1 + z, we havezfz—j1 >
1+ 7= - (1 — 22), which implies

1 2d
Zt+122’t+E—E (21)

Summing 1) fromt =dtot =k — ¢ — 1 gives

N +I<:—d—€—1 2d 1+ 1 n n 1

hot = K k\d Tdr1 T E—i—1

>k—d—£_2_d k

=k k%
asdesired. m
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Now we prove Theoren33. We first pick s vectors greedily to guarantee that > %. (If

1
zo > 4, thens = 0.) Substituting/ = d andk > dk’% in Lemma35 gives

d k
> 1—=(24+2log—
Zh—p = k<+ ogd>

S 1 2€

- 1
€

1 1
(1+log—+loglog—> >1—4e
og € €

where the second inequality follows froén(l + log x) being decreasing function an> 1, and
the last inequality is by + = < e® with 2 = log 1. [ |

We are now ready to prove the main theorem.
Proof [Theorem32] The proof is identical to the proof of TheoreB88 except that, after using
s = log log% vectors to obtain;ik—approximation, we only také — d — s greedy steps instead of
k — d greedy steps. Hence, we get d + s to the second bound of Lemn3& to obtain

2kt 2>

P AR

k—2d—s 2d k d
d

k
2+210g—> —%

We havel — 4 (2 + 2log &) > 1—4eidentical to the proof of TheoreB8. By k > 4 loglog L =
we have; < ¢, completing theproof.

alw

We finally note on combinatorial algorithms for setting initial solution of sizeOne may
use volume sampling algorithms to achiéy@approximation to optimal objective in for picking
vectors Avron and Boutsidis2013. Alternatively, we can perform local search on initiavectors
to obtaind(1 + ¢)-approximation in time polynomial i%, as shown in Sectio@. Since we know
that the relaxation gaps &f- and D- optimal design are at mog&_’flﬁ, we can bound the optimum
values of design problems between pickihgndk vectors to be at mogtmultiplicative factor apart
(Avron and Boutsidis2013 Nikolov et al, 2019. The approximation ratios of two algorithms are
hencen anddk (1 + 0), respectively. We formalize this argument and the result with locally optimal
initial set as the following statement, which proves Theofem

Corollary 36 Greedy algorithm initialized by a local optimal set of sizeeturns a(1 + 5¢)-
approximation whenever > 2(log L +loglog d + 1).

We first argue the ratio of optimu®-DESIGN values when the size of the setdandk. Denote

1
¢P(d),¢P (k) = ¢P the optimumD-DESIGN objectivedet (3, ¢ v;iv; )¢ on sized, k, respec-
tively. Denotep? (d), 67 (k) = ¢} the common optimum value of{-REeL) and its dual D-REL-
DuAL) for size constraints aof, k respectively.

Claim 16 We have
¢° (k) < koP (d)

Proof Because D-REL) is a relaxation ofD-DESIGN (up tolog scale), we have

exp P (k) > ¢P(k),  exp¢?(d) > ¢°(d)
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We may scale any optimal solution oD¢REL) with size k to sized by applyingz; := %xi
coordinate-wise. Therefore, we have

d
#P(d) = P (k) +log

Finally, we know that the integrality gap of-REL) is k+-l+1' This follows from the approximation
result of local search algorithm which compares the objective value of returned set to the objective to
the convex relaxation. (This exact bound of the gap also follows from previous work on proportional
volume samplinglikolov et al, 2019.) We apply this gap for size budgéto obtain

exp ¢7 (d) < d¢P(d)
Therefore, we have "
0P (k) < exp 67 (k) < — exp ¢7(d) < ko (d) (22)

asdesired. ]

Proof [Corollary 36] Theoreml implies that a local search solution satisfieapproximation when
budget size ig. Hence, by Claini6, a local solution isik-approximation compared tO-DESIGN
with a size budget of.

We now apply Theorer2: it is sufficient to show that

d 1 1
k>— (log — + loglog ;) (23)
€

€

1

for k = ~7, SO the result follars. [ |

Appendix F. Greedy Algorithm for A-DESIGN

In this section, we prove Theore#n As remarked in the case of local search algorithm, we need
to modify the instance to cap the length of the vectors in the case of greedy algorithm as well. This
is done by Algorithn2. As shown in Lemmd.l, the value of any feasible solution only increases
after capping and the value of the convex programming relaxation increases by a small factor if
large.

We now show that the greedy algorithm run on these vectors returns a near optimal solution.
For any input vector¥” = {vy,...,v,}, the primal program isl-ReL(V") and the dual program is
A-REL-DuAL (V). ¢J/§(V) denotes the (common) optimal value of objective values of the convex
program with input vectors frofly. I* denotes the indices of the vectors in the optimal solution of

A-DESIGN with input vector se¥” and¢” (V) = tr <(Ziep viv?)_l) be its objective. We show
the following theorem about Algorith@in terms of capping lengti.

Theorem 37 Let||u;||3 < A, Sy C [n] of sizer > d such thatr ((ZZESO uiu;r)_l) < k- ¢ (U)

A
for somex > 1, andA = MJ,;(U). Let (7, X) be the solution returned by Algorithén Then we

have

-1
tr(X ') < (1 - dzr — 2Alog —kmaxfiA&’ 1}> A (U)
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Algorithm 9 Greedy algorithm ford-DESIGN
Input: U = uq,...,u, € R, d <k €N, Sy C [n].
Xo=2>jes, u]u;r
fori =1tok — |Sy| do

Ji = argmingp, tr ((X + ujujT)_l

Si =8 Ui}, Xi = Xi + u]Lu;E
end for
I'= Spyss X = Xi s
Return(7, X).

Similar to the analysis of local search fdrDESIGN, capping vector length is necessary to obtain
theoretical guarantee. We will optimize over the lengttater in TheorenO.
Proof [Theorem37] To prove the theorem, we show the following two lemmas:

Lemma 38 For anyt € [0,k — |Syl], letz, = tr(Xt_l)/dfje‘(U). Then, forany € [0, k — |So| — 1],

Zt
A
& <1 L A¢2(U)>

2ie1 <zt | 1=

Lemma 39 LetA > 0and/ > 0. Suppose;+1 < z (1 W

ﬁ) forall ¢ > 0, then

1. If 20 > %, then for anys > 2Aklog(Az), we have

zs <

==

2. If zp < §, we have

d+¢ g\ 1
o< (1= _9Alog =
Zke_( k Ogd)

Proof [Lemma38] By definition,

1 . T -1
tr(X, ) = jngﬁ tr (Xt + uju; ) )

By Sherman-Morrison formula,

T y—2

w; X, “u;
tr(X) = tr(X; 1) — max — =~ —
r(Xpq) = tr(X; ) ?é?i}(uu}x;luj
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Note thatu X; 'u; = (uj, X; 'u;). By Cauchy-Schwarz inequality,] X; 'u; is at most

g2l X7 g2 = [Jugll2q/u) X; 2u;. 5 <A wegetu] X, luy < (/A ul X P

Hence,
1 u;—X[2uj
tr (Xt+1) < tr(X, ') — max (24)

JEl 1 /A u;rthzuj

Next, we lower bounahnax e, uTXt‘Quj by finding a feasible solution td-REL-DUAL. Let,

Y = 7X15_2, A = maxu; Yuj Wmaxu]TXt_2uj
Jj€n] j€n]

wherey > 0 will be fixed later. Then(Y, \) is a feasible solution tel-ReL-DUAL (U). Hence,

¢?(U) > 2tr ((7X{2)1/2) - k"yg}g&{m}i:u X, 2,

1
Eréa[m}cujTXt uj > = 2y te(X) = ¢f ()

A 2
Substitutingy = (%) , we get
Ay

tr(X;1)?
kA (U)

is a monotonically increasing function for> 0 if ¢ > 0. Hence,

max u;rXt u; >
J€n]

As proved in Clains, 1+f\/5

T tr(x; )2
X u; k¢A(U)
max

36”]1+,/A uTX u] 1+ /At;c¢A(U

Substitutingz; = %, we get
-2 _
.- uf X; %y tr(X; 1) 2t

> .

Substituting this inequality in Equatio24), we get

Zt

Al (U
k (1 + 2 —#)

Substitutingz; = tr(X, ') /¢4 (U) andz1 = tr(X,}}) /97 (U), we get

2
2ie1 <z | 1= L )

AR (U
k(l—i—zt —#
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This finishes the proof of Lemm28. |

Proof [Lemma39] We first prove the first bound. If; < % for anyt < s, then we are done, so
assume; A > 1. The recursion then implies

e (1o N, (1L
L= A k(2zA) )~ 2kA

Therefore,
< 1— L\
s =20 2%kA
< Zoeiﬁs < ZoeflogAzo — l
- - A
as desired.
We now prove the second bound. Legt= Z—lt Then the recursion; 1 < z (1 — m)
can be rewritten as )
at+1 1 a
/> (1-— 25
Q¢ - ( k‘ (A + at)> ( )
-1
Applying (1 — m> > 1+ m and rearranging terms, we obtain
at 1 A
> el - - = 26
U Ot ) T R T kAt ay) (26)

It is obvious from @5) thata, is an increasing sequence, and hemce ay > A forall¢ > 0. So
(26) implies
1 A 1

> - = — 27
Gt 2t T ren C M o @7)
Therefore, we have; > ﬁ forall ¢ > 0.
Using this boundy; > Q—tk the recursionZ6) also implies
A 1 2A
> Sl - = 28
at+1_at+k k(Qt_k) at+k r (28)
Summing28fromt = dtot = k — ¢ — 1 gives
k—0—1
—d— 1
ak_gZad—l-W—QA n
t=d
= k_Z_E —2Alog —
proving the desiretbound. |

We now prove Theorer@7. The first bound of Lemma9 shows that with initial approximation
K, We requires = max{0, 2Ak log(Ax)} steps to ensuré approximation ratio. After that, we can
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pick k — r — s vectors. Hence, we apply the second bound of LerBfwaith £ = r + s to get the
approximation ratio ofX as

-1
2kt < (1 _dards 2Alog S)

k
d k !
= (1 — Z Y <log 3 + max {log Ak, 0}>>
d+r kmax{Ar, 1}
frd Og _—_—
k d
proving the desiretbound. |

Next, we tuneA in Theorem37 and use Lemmd1 to obtain the final bound, from which
Theoremd will follow.

Theorem 40 For input vectorsV = {vy,...,v,} and parametek € N, letU = {uq, .. un} be
the set of vectors returned by the Capping Algorithmwith input vector seV and A = ¢A Gk
Let Sy C [n] be an initial set of size > d wheretr ((Zieso uiu; )_1> < k- ¢A(U) for some
k > 1. Let(I, X) be the solution returned by Algorithenwith vector set/ and parametei. If

k> £+wande<00001 then

-1
tr ((z; vw?) ) < (1 + 6000€)¢™ (V)

Proof By Lemmall, substitutingA, we have

5000d

¢F(U) < <1+—>( (V) +150e¢” (V)
< (1 + 5500€)¢™ (V) (29)
where the last inequality follows from* (V) > ¢ (V'), k > 4. ande < 0.0001. Thus, we have

/MA e} (U [d(1 + 5500¢) 55ooe /
ekéA
Next, Theoren87 implies that

—1
tr(X 1) < (1 - dzr — 2Alog w) A (U) (30)

d
Note that

2A log < 2Alog

<4U log —1—4\/ log/{
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Since—L log z is a decreasing function an> 8, applyingk > 4— , we have

[ d k: 1 1
log — < 310g +loglog +log2 ) < 4e
ek d 1
dlog?

21
where the last inequality follows from< 0.0001. Also, applyingk > dlog s k> 5 > d
andk > g, we have

7

\/il < d < <
ekog/f_e, k_E, k_ﬁ
Hence, 80) implies that
(X7 < (122671 A (U) (31)

Combining @1) with Lemmalland @9) gives

-1
<Z WJ) <tr(X1) < (1 —22¢)71 (1 + 5500€) ™ (V)

iel
< (14 6000€)¢™ (V)

where the last inequality follows from< 0.0001. |

We note an efficient combinatorial algorithm of volume samplidagr¢én and Boutsidis2013
Derezihski and Warmuth2017) that gives;:-approximation to thed-DESIGN problem of selecting
d vectors (note that these randomized algorithms can be derandomized, e.g. by rejection sampling).
Alternatively, from our result on approximate local search algorithm&emeSIGN in SectionD,
we can also initialize witla - d vectors for an absolute constardand perform local search algorithm
to obtain1 + 0.0001 + § approximation in time polynomial ir% for some smalb. Similar to
Claim 16 we can relate the optimum of-DESIGN of size budgetl < r < k andk to be at most
factor . —7— d 7 apart @vron and Boutsidis2013 Nikolov et al, 2019. Hence, the volume sampling
on |n|t|al set of sizal and local search on initial set of sizé give approximation ratio ofi and
cd——kd—f—l(l +0.0001 + 6) < £ respectively; that iss can be set ta or & in Theorem40 and we
adjustr accordingly. Using the local search on initial vectors to set the value of andr, we
prove Theorend.
Proof [Theorem4] Supposek > C - 4 log® L for some absolute constat > 0 to be specified
later ande < 0.0001. By Theoremd4gQ, it is sufficient to have: > § + w, where

Kk = § andr = cd by initializing the greedy algorithm with an output from an approximate local
search algorithm of sized for an absolute constamt By checking the derivative of (k) :=

2k 21 3 L.
k- w, f(k) is increasing whefid log & < ke?, which is true for a large enough

C. Hence, we only need to shof(k) > 0 fork = C - 4 log2 1. The conditionf(k) > 0is
equivalent to

1 Clog*1 1
C'log® = > log? # + log? = + c€? (32)
€ € €
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Itis clear thatlog? 2 + ce? < §log? L for C' > 3 + c. We also have

Clog? L 1 1\?
2% = <10gC’+3logz+210glogg>

log

1\2
< <10gC’—|—510g E)

2
§<\/€—5+5logl>
2 €
2
< \/glo1
- 2 ge

where we use: < e” for x = log % log C' < +/C — 5 for a sufficiently large’, andlog% > 1 for
the three inequalities above, respectively. Hence, we finished the praf)of ( |
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