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I Abstract

Many convex problems in machine learning and computer science share the same form:
mxin Z fl(Al(I} + bl),
7

where f; are convex functions on R™ with constant n;, A; € R**? b, € R™ and Yo =
n. This problem generalizes linear programming and includes many problems in empirical risk
minimization.

In this paper, we give an algorithm that runs in time

O*((nw +n2.5—a/2 +n2+1/6)10g(n/5))

where w is the exponent of matrix multiplication, « is the dual exponent of matrix multiplication,
and ¢ is the relative accuracy. Note that the runtime has only a log dependence on the condition
numbers or other data dependent parameters and these are captured in §. For the current bound
w ~ 2.38 [Vassilevska Williams’12, Le Gall’14] and o ~ 0.31 [Le Gall, Urrutia’18], our runtime
O*(n“log(n/6)) matches the current best for solving a dense least squares regression problem,
a special case of the problem we consider. Very recently, [Alman’18] proved that all the current
known techniques can not give a better w below 2.168 which is larger than our 2 + 1/6.

Our result generalizes the very recent result of solving linear programs in the current matrix
multiplication time [Cohen, Lee, Song’19] to a more broad class of problems. Our algorithm
proposes two concepts which are different from [Cohen, Lee, Song’19] :

e We give a robust deterministic central path method, whereas the previous one is a stochastic
central path which updates weights by a random sparse vector.

e We propose an efficient data-structure to maintain the central path of interior point methods even
when the weights update vector is dense.

1. Introduction

Empirical Risk Minimization (ERM) problem is a fundamental question in statistical machine learn-
ing. There are a huge number of papers that have considered this topic Nesterov (1983); Vapnik
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(1992); Polyak and Juditsky (1992); Nesterov (2004); Bartlett et al. (2005); Bottou and Bousquet
(2008); Nemirovski et al. (2009); Moulines and Bach (2011); Feldman et al. (2012); Le Roux et al.
(2012); Johnson and Zhang (2013); Vapnik (2013); Shalev-Shwartz and Zhang (2013); Défossez
and Bach (2014); Defazio et al. (2014); Frostig et al. (2015); Dieuleveut and Bach (2016); Shang
et al. (2017); Zhang et al. (2017); Zhang and Xiao (2017); Zheng et al. (2017); Gonen and Shalev-
Shwartz (2017); Murata and Suzuki (2017); Nesterov and Stich (2017); Agarwal et al. (2017); Csiba
(2018); Jin et al. (2018) as almost all convex optimization machine learning can be phrased in the
ERM framework Shalev-Shwartz and Ben-David (2014); Vapnik (1992). While the statistical con-
vergence properties and generalization bounds for ERM are well-understood, a general runtime
bound for general ERM is not known although fast runtime bounds do exist for specific instances
Adil et al. (2019).

Examples of applications of ERM include linear regression, LASSO Tibshirani (1996), elastic
net Zou and Hastie (2005), logistic regression Cox (1958); Hosmer Jr et al. (2013), support vector
machines Cortes and Vapnik (1995), ¢, regression Clarkson (2005); Dasgupta et al. (2009); Bubeck
et al. (2018); Adil et al. (2019), quantile regression Koenker (2000); Koenker and Hallock (2001);
Koenker (2005), AdaBoost Freund and Schapire (1997), kernel regression Nadaraya (1964); Watson
(1964), and mean-field variational inference Xing et al. (2002).

The classical Empirical Risk Minimization problem is defined as

mminz fi(a) = + b))
i=1

where f; : R — R is a convex function, a; € R? and b; € R, Vi € [m]. Note that this formulation
also captures most standard forms of regularization as well.

Letting y; = a;—x + b;, and z; = fi(aZT x + b;) allows us to rewrite the original problem in the
following sense,

. i |
min )2 ®
st. Av+b=y
(v, zi) € Ki = {(yi, 21) : fi(yi) < 2}, Vi € [m]

We can consider a more general version where dimension of K; can be arbitrary, e.g. n;. Therefore,
we come to study the general n-variable form

min ¢z

ze[ ™, K, Ax=b
where >, n; = n. We state our main result for solving the general model.

Theorem 1 (Main result, informal version of Theorem 38) Given a matrix A € R¥", two vec-
tors b € R, ¢ € R", and m compact convex sets K1, Ko, - - , K,,. Assume that there is no redun-
dant constraints and n; = O(1), Yi € [m]. There is an algorithm (procedure MAIN in Algorithm 6)
that solves

min clx

ze[]™, K, Ax=b
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up to 0 precision and runs in expected time
6 ((nw—f—o(l) + n2.5—a/2+o(1) + n2+1/6+o(1)) . log(ﬁ))
0

where w is the exponent of matrix multiplication, « is the dual exponent of matrix multiplication.
For the current value of w ~ 2.38 Williams (20]~2); Le Gall (2014) and o« ~ 0.31 Le Gall and
Urrutia (2018), the expected time is simply n‘”"’o(l)O(log(%)).

Remark 2 More precisely, when n; is super constant, our running time depends polynomially on
mMaX;e(y,) Ni (but not exponential dependence).

Also note that our runtime depends on diameter, but logarithmically to the diameter. So, it can
be applied to linear program by imposing an artificial bound on the solution.

1.1. Related Work

First-order algorithms for ERM are well-studied and a long series of accelerated stochastic gradient
descent algorithms have been developed and optimized Nesterov (1998); Johnson and Zhang (2013);
Xiao and Zhang (2014); Shalev-Shwartz and Zhang (2014); Frostig et al. (2015); Lin et al. (2015);
Ma et al. (2015); Allen-Zhu and Yuan (2016); Reddi et al. (2016); Shalev-Shwartz (2016); Allen-
Zhu and Hazan (2016); Schmidt et al. (2017); Murata and Suzuki (2017); Lin et al. (2017); Lei et al.
(2017); Allen-Zhu (2017a,b, 2018a,b). However, these rates depend polynomially on the Lipschitz
constant of V f; and in order to achieve a log(1/¢) dependence, the runtime will also have to depend
on the strong convexity of the ) . f;. In this paper, we want to focus on algorithms that depend
logarithmically on diameter/smoothness/strong convexity constants, as well as the error parameter
€. Note that gradient descent and a direct application of Newton’s method do not belong to these
class of algorithms, but for example, interior point method and ellipsoid method does.

Therefore, in order to achieve high-accuracy solutions for non-smooth and non strongly convex
case, most convex optimization problems will rely on second-order methods, often under the general
interior point method (IPM) or some sort of iterative refinement framework. So, we note that our
algorithm is thus optimal in this general setting since second-order methods require at least n“
runtime for general matrix inversion.

Our algorithm applies the interior point method framework to solve ERM. The most general
interior point methods require O(y/n)-iterations of linear system solves Nesterov (1998), requiring
a naive runtime bound of O(n“’“/ 2). Using the inverse maintenance technique Vaidya (1989);
Cohen et al. (2019), one can improve the running time for LP to O(n*). This essentially implies
that almost all convex optimization problems can be solved, up to subpolynomial factors, as fast as
linear regression or matrix inversion!

The specific case of /5 regression can be solved in O(n®) time since the solution is explicitly
given by solving a linear system. In the more general case of £}, regression, Bubeck et al. (2018)
proposed a 5p(n‘1/ 2-1/pl).jteration iterative solver with a naive O(n®) system solve at each step.
Recently, Adil et al. (2019) improved the runtime to 5p(nmax (@,7/3)), which is current matrix mul-
tiplication time as w > 7/3. However, both these results depend exponentially on p and fail to
be impressive for large p. Otherwise, we are unaware of other ERM formulations that have have
general runtime bounds for obtaining high-accuracy solutions.
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Recently several works Alman and Williams (2018a,b); Alman (2018) try to show the limitation
of current known techniques for improving matrix multiplication time. Alman and Vassilevska
Williams Alman and Williams (2018b) proved limitations of using the Galactic method applied
to many tensors of interest (including Coppersmith-Winograd tensors Coppersmith and Winograd
(1987)). More recently, Alman Alman (2018) proved that by applying the Universal method on

those tensors, we cannot hope to achieve any running time better than 72158 which is already above
2+1/6
our n .

2. Overview of Techniques

In this section, we discuss the key ideas in this paper. Generalizing the stochastic sparse update
approach of Cohen et al. (2019) to our setting is a natural first step to speeding up the matrix-vector
multiplication that is needed in each iteration of the interior point method. In linear programs,
maintaining approximate complementary slackness means that we maintain x, s to be close multi-
plicatively to the central path under some notion of distance. However, the generalized notion of
complementary slackness requires a barrier-dependent notion of distance. Specifically, if ¢(z) is a
barrier function, then our distance is now defined as our function gradient being small in a norm
depending on V2¢(x). One key fact of the stochastic sparse update is that the variance introduced
does not perturb the approximation too much, which requires understanding the second derivative
of the distance function. For our setting, this would require bounding the 4th derivative of ¢(z),
which may not exist for self-concordant functions. So, the stochastic approach may not work algo-
rithmically (not just in the analysis) if ¢(z) is assumed to be simply self-concordant. Even when
assumptions on the 4th derivative of ¢(z) are made, the analysis will become significantly more
complicated due to the 4th derivative terms. To avoid these problems, the main contributions of
this paper is to 1) introduce a robust version of the central path and 2) exploit the robustness via
sketching to apply the desired matrix-vector multiplication fast.

More generally, our main observation is that one can generally speed up an iterative method
using sketching if the method is robust in a certain sense. To speed up interior point methods, in
Section 4 and A, we give a robust version of the interior point method; and in Section B, we give
a data structure to maintain the sketch; and in Section C, we show how to combine them together.
We provide several basic notations and definitions for numerical linear algebra in Section 3. In Sec-
tion D, we provide some classical lemmas from the literature of interior point methods. In Section E,
we prove some basic properties of the sketching matrix. Now, we first begin with an overview of
our robust central path and then proceed with an overview of sketching iterative methods.

2.1. Central Path Method

We consider the following optimization problem
min el (2)
ze[[, K, Az=b
where Hznzl K; is the direct product of m low-dimensional convex sets K;. We let x; be the i-
th block of z corresponding to K;. Interior point methods consider the path of solutions to the

following optimization problem:

o(t) = arg min ¢'w + 1) ¢i(:) 3)
i=1
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where ¢; : K; — R are self-concordant barrier functions. This parameterized path is commonly
known as the central path. Many algorithms solve the original problem (2) by following the central
path as the path parameter is decreased ¢ — 0. The rate at which we decrease ¢ and subsequently the
runtimes of these path-following algorithms are usually governed by the self-concordance properties
of the barrier functions we use.

Definition 3 We call a function ¢ a v self-concordant barrier for K if dom¢ = K and for any
x € dom¢ and for any u € R"

|D*¢(@)[u, u,u]| < 20ull}? and |Vo(x)|l; < Vv
where [|v]| == [|v||v2g(z) and ||v]|} = [[v][w24(z)-1, for any vector v.
Remark 4 It is known that v > 1 for any self-concordant barrier function.

Nesterov and Nemirovsky showed that for any open convex set K C R", there is a O(n)
self-concordant barrier function Nesterov (1998). In this paper, the convex set K; we considered
has O(1) dimension. While Nesterov and Nemirovsky gave formulas for the universal barrier; in
practice, most ERM problems lend themselves to explicit O(1) self-concordant barriers for majority
of the convex functions people use. For example, for the set {z : ||z|| < 1}, we use — log(1— ||z||?);
for the set {x : > 0}, we use — log(x), and so on. That is the reason why we assume the gradient
and hessian can be computed in O(1) time. Therefore, in this paper, we assume a v; self-concordant
barrier ¢; is provided and that we can compute V¢; and V2¢; in O(1) time. The main result we
will use about self-concordance is that the norm || - || is stable when we change .

Theorem 5 (Theorem 4.1.6 in Nesterov (1998)) If ¢ is a self-concordant barrier and if ||y —
x||z < 1, then we have :

1
(1= lly — 2[l2)?

In general, we can simply think of ¢; as a function penalizing any point x; ¢ K;. It is known
how to transform the original problem (2) by adding O(n) many variables and constraints so that
e The minimizer z(t) at ¢ = 1 is explicitly given.
e One can obtain an approximate solution of the original problem using the minimizer at small
t in linear time.
For completeness, we show how to do it in Lemma 41. Therefore, it suffices to study how we can
move efficiently from z(1) to z(e) for some tiny € where () is again the minimizer of the problem

3.

(1= lly = z])* V() = VZ(y) = V2g(x).

2.2. Robust Central Path

In the standard interior point method, we use a tight £2-bound to control how far we can deviate
from z(t) during the entirety of the algorithm. Specifically, if we denote ~!(z;) as the appropriate
measure of error (this will be specified later and is often called the Newton Decrement) in each block
coordinate x; at path parameter ¢, then as we let ¢ — 0, the old invariant that we are maintaining is,

®ha(z) = Y (xi)* <O(1).
=1
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It can be shown that a Newton step in the standard direction will allow for us to maintain ‘I)gld to
be small even as we decrease ¢ by a multiplicative factor of O(mfl/ 2) in each iteration, thereby
giving a standard O(/m) iteration analysis. Therefore, the standard approach can be seen as trying
to remain within a small /5 neighborhood of the central path by centering with Newton steps after
making small decreases in the path parameter . Note however that if each +; can be perturbed by
an error that is Q(m~1/2), ®¢ (z) can easily become too large for the potential argument to work.

To make our analysis more robust, we introduce a robust version that maintains the soft-max
potential:

Phew(®) = Y exp(Mf (i) < O(m)
i=1

for some A\ = ©(logm). The robust central path is simply the region of all x that satisfies our
potential inequality. We will specify the right constants later but we always make A large enough to
ensure that v; < 1 for all x in the robust central path. Now note that a £, perturbation of -y translates
into a small multiplicative change in ®!, tolerating errors on each +; of up to O(1/poly log(n)).

However, maintaining ®!_, (z) < O(m) is not obvious because the robust central path is a
much wider region of z than the typical />-neighborhood around the central path. We will show
later how to modify the standard Newton direction to maintain ®!__(z) < O(m) as we decrease .
Specifically, we will show that a variant of gradient descent of ®¢__ in the Hessian norm suffices to

new
provide the correct guarantees.

2.3. Speeding up via Sketching

To motivate our sketching algorithm, we consider an imaginary iterative method
B 8 L PR )

where P is some dense matrix and F'(z) is some simple formula that can be computed efficiently
in linear time. Note that the cost per iteration is dominated by multiplying P with a vector, which
takes O(n?) time. To avoid the cost of multiplication, instead of storing the solution explicitly, we
store it implicitly by z*¥) = P . 4(¥). Now, the algorithm becomes

uwk ) B 4 PP u),

This algorithm is as expensive as the previous one except that we switch the location of P. However,
if we know the algorithm is robust under perturbation of the z(*) term in F(2(*)), we can instead do

u* D y®) 4 F(RTRP - u®)

for some random Gaussian matrix R : R?*"™. Note that the matrix RP is fixed throughout the whole
algorithm and can be precomputed. Therefore, the cost of per iteration decreases from O(n?) to
O(nb).

For our problem, we need to make two adjustments. First, we need to sketch the change of z,
that is F'(P - u(®), instead of 2(¥) directly because the change of z is smaller and this creates a
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smaller error. Second, we need to use a fresh random R every iteration to avoid the randomness
dependence issue in the proof. For the imaginary iterative process, it becomes

k) 20 4 ROTRE p. p(z®)y,
wk D)y F) 4 pzR),

After some iterations, Z(*) becomes too far from z(*) and hence we need to correct the error by
setting z(¥) = P - w(%), which zeros the error.

Note that the algorithm explicitly maintains the approximate vector zZ while implicitly maintain-
ing the exact vector z by Pu(*). This is different from the classical way to sketch Newton method
Pilanci and Wainwright (2016, 2017), which is to simply run 2+ « 2k) 4 RTRP . F(2() or
use another way to subsample and approximate P. Such a scheme relies on the iteration method
to fix the error accumulated in the sketch, while we are actively fixing the error by having both the
approximate explicit vector Z and the exact implicit vector z.

Without precomputation, the cost of computing R®) P is in fact higher than that of P - F' (z(k)).
The first one involves multiplying multiple vectors with P and the second one involves multiplying
1 vector with P. However, we can precompute [R(l)T; RAT. ... ;R(T)T]T - P by fast matrix
multiplication. This decreases the cost of multiplying 1 vector with P to n*~! per vector. This is
a huge saving from n2. In our algorithm, we end up using only 0] (n) random vectors in total and
hence the total cost is still roughly n®.

2.4. Maintaining the Sketch

The matrix P we use in interior point methods is of the form
P=VWAT(AWA) "L AVW

where W is some block diagonal matrix. Cohen et al. (2019) showed one can approximately main-
tain the matrix P with total cost 5(n”) across all iterations of interior point method. However,
the cost of applying the dense matrix P with a vector z is roughly O(n||z||o) which is O(n?) for
dense vectors. Since interior point methods takes at least /7 iterations in general, this gives a total
runtime of O(n%%). The key idea in Cohen et al. (2019) is that one can design a stochastic interior
point method such that each step only need to multiply P with a vector of density 5(\/5) This
bypasses the 72 bottleneck.

In this paper, we do not have this issue because we only need to compute R Pz which is much
cheaper than Pz. We summarize why it suffices to maintain RP throughout the algorithm. In
general, for interior point method, the vector z is roughly an unit vector and since P is an orthogonal
projection, we have || Pz|2 = O(1). One simple insight we have is that if we multiply a random

Vv/n x n matrix R with values j:ﬁ by Pz, we have |RPz|| = O(ﬁ) (Lemma 47). Since

there are O(y/n) iterations in interior point method, the total error is roughly O(1) in a correctly
reweighed /., norm. In Section A, we showed that this is exactly what interior point method needs
for convergence. Furthermore, we note that though each step needs to use a fresh random matrix R;
of size v/ x n, the random matrices [R] ; Rg ;--- ; R1|" we need can all fit into O(n) x n budget.
Therefore, throughout the algorithm, we simply need to maintain the matrix [RI; R;r; SRR R;]TP
which can be done with total cost 6(71“’) across all iterations using idea similar to Cohen et al.
(2019).
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The only reason the data structure looks complicated is that when the block matrix W changes in
different location in VW AT (AW AT)~! Av/W, we need to update the matrix [Ry; Ro;--- ; Ry]P
appropriately. This gives us few simple cases to handle in the algorithm and in the proof. For the
intuition on how to maintain P under W change, see (Cohen et al., 2019, Section 2.2 and 5.1).

2.5. Fast rectangular matrix multiplication

Given two size n x n matrices, the time of multiplying them is n>8! < n3 by applying Strassen’s
original algorithm Strassen (1969). The current best running time takes n“ time where w < 2.373
Williams (2012); Le Gall (2014). One natural extension of multiplying two square matrices is
multiplying two rectangular matrices. What is the running time of multiplying one n x n® matrix
with another n® x n matrix? Let o denote the largest upper bound of a such that multiplying two
rectangular matrices takes n2T°(!) time. The « is called the dual exponent of matrix multiplication,
and the state-of-the-art result is « = 0.31 Le Gall and Urrutia (2018). We use the similar idea as
Cohen et al. (2019) to delay the low-rank update when the rank is small.

3. Preliminaries

Given a vector x € R™ and m compact convex sets 1 C R™ Ky C R™?,... | K,, C R™ with
>, ni = n. We use z; to denote the i-th block of z, then = € [[\", K, if z; € K, Vi € [m)].
We say a block diagonal matrix A € @ ;R™>™ if A can be written as

Aq
Ay

Am

where 47 € R™M>™_ Ay € R™*™ and A,, € R"*"n_ For a matrix A, we use ||A|r to
denote its Frobenius norm and use || A|| to denote its operator norm. There are some trivial facts
|ABl2 < || Allz - | Bll2 and [ AB| 7 < |AllF - | Bll2

For notation convenience, we assume the number of variables n > 10 and there are no redundant
constraints. In particular, this implies that the constraint matrix A is full rank.

For a positive integer n, let [n] denote the set {1,2,--- ,n}.

For any function f, we define O(f) to be f - log® ") (f). In addition to O(-) notation, for two
functions f, g, we use the shorthand f < g (resp. 2) to indicate that f < Cg (resp. >) for some
absolute constant C'. For any function f, we use dom f to denote the domain of function f.

For a vector v, We denote ||v|| as the standard Euclidean norm of v and for a symmetric PSD
matrix A, we let ||v]|4 = (v Av)/2. For a convex function f(x) that is clear from context, we
denote [|v]la = [[v]lv2s() and [[0]l} = [[v]lv2 f(z)-1-

4. Robust Central Path

In this section we show how to move move efficiently from (1) to z(e) for some tiny € by stay-
ing on a robust version of the central path. Because we are maintaining values that are slightly
off-center, we show that our analysis still goes through despite /., perturbations on the order of

O(1/poly log(n)).



SOLVING EMPIRICAL RISK MINIMIZATION INTHE CURRENT MATRIX MULTIPLICATION TIME

4.1. Newton Step

To follow the path x(t), we consider the optimality condition of (3):

s/t+Vo(x) =0,
Az =,
Aly+s=c

where Vo(z) = (Vi1(z1), Voa(x2), -, Vém(2m)). To handle the error incurred in the progress,
we consider the perturbed central path

s/t+Vo(z) = p,
Ax = b,

Aly+s=c

where p represent the error between the original central path and our central path. Each iteration,
we decrease t by a certain factor. It may increase the error term p. Therefore, we need a step to
decrease the norm of ;. The Newton method to move pu to p + h is given by

1 . .
2 . 518dea1 + V2¢(QS‘) . 6;:deal = h,
A(Sizdeal — 07
ATézi/deal + 5;deal -0

where V2¢(x) is a block diagonal matrix with the i-th block is given by V2¢;(x;). Letting W =
(V2¢(x))~!, we can solve this:

—1

ideal __ T
pideal — _y. (AWA ) AWh,

) -1
gideal — ¢ AT (AWAT) AW,

. -1
gideal — g — wAT (AWAT) AWh.

We define projection matrix P € R™*™ as follows
-1
P=wY2AT (AWAT) AWL/2
and then we rewrite them

5;&dea1:W1/2(I—P)W1/2(5”, (4)
gideal — =12 pWi/3g,,. 5)

One standard way to analyze the central path is to measure the error by |[11/|v24(,)-1 and uses the
step induced by h = —p. One can easily prove that if ||p|lg2e)—1 < 1—10, one step of Newton
step decreases the norm by a constant factor. Therefore, one can alternatively decrease ¢ and do a
Newton step to follow the path.
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4.2. Robust Central Path Method

In this section, we develop a central path method that is robust under certain /., perturbations. Due
to the /, perturbation, we measure the error x4 by a soft max instead of the /5 type potential:

Definition 6 For each i € [m], let pl(x,s) € R™ and ~!(z, s) € R be defined as follows:

,uf(l', 8) = Si/t + v¢l(xl)v (6)
Vi (x,8) = 1i(, 8) 926, (20) -1 (7)

and we define potential function ® as follows:

D (a,s) = 3 expiyl (. 9))
=1

where A = O(log m).

The robust central path is the region (z, s) that satisfies ®!(z, s) < O(m). To run our convergence
argument, we will be setting A appropriately so that staying on the robust central path will guarantee
a £, bound on . Then, we will show how to maintain ®(x, s) to be small throughout the algorithm
while decreasing ¢, always staying on the robust central path. This is broken into a two step analysis:
the progress step (decreasing ¢) and the centering step (moving x, s to decrease ).

It is important to note that to follow the robust central path, we no longer pick the standard
Newton direction by setting h = —pu. To explain how we pick our centering step, suppose we can
move 41 —  + h arbitrarily with the only restriction on the distance ||h[|y24(z)-1 = . Then, the
natural step would be

h = arg min (Vf(p(z,s)), h)

HhHVQ(;)(I)*l:a
where f(u) = 31" exp(A|pllv2¢,(z,)-1)- Note that
V(' (2, 5)i = Xexp(Mj(x,5)) /7 (2, 5) - V2i(ai) " i, 5).
Therefore, the solution for the minimization problem is

h;deal = —@- Ct(l‘, s)idealuzit(x’ S) c ]Rm’

)

where pf(z, s) € R™ is defined as Eq. (6) and c!(z, s) € R is defined as

Ct(.l‘, S)ideal _ exp(/\*yf(x, 3))/7;(1.7 S)

i (T exp(2X0f(x, 5))1/2

Eq. (4) and Eq. (5) gives the corresponding ideal step on x and s.

Now, we discuss the perturbed version of this algorithm. Instead of using the exact x and s in
the formula of h, we use a = which is approximately close to x and a’s which is close to s. Precisely,
we have

hi = —a- ¢(T,5) (T, 5) (®)

10
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where

exp(Mf (2,8)) /~f (2,5) et
& ays) = | T on@Eayz (0 s) 2 96va ©)
0 otherwise

961/5 regardless of the value of 7/(x, s). This

Note that our definition of ¢! ensures that c!(x, s) <

makes sure we do not move too much in any coordinates and indeed when ~} is small, it is fine

to set c§ = 0. Furthermore, for the formula on 4, and J,, we use some matrix V' that is close to
(V2¢(x))~L. Precisely, we have

6, = VV2(I = P)V/?p, (10)
5, =1t-V12pVyi/2y, (11

where L B B
P=VY2AT(AVAT)"TAVY/2,

Here we give a quick summary of our algorithm. (The more detailed of our algorithm can be
found in Algorithm 5 and 6 in Section C.)
e ROBUSTIPM(A, b, ¢, ¢, 9)

- A=21og(m),a =2"20N\"2 k= 27100,

§ = min(%, 0).

V= Z;ll v; where v; are the self-concordant parameters of ¢;.

Modify the convex problem and obtain an initial  and s according to Lemma 41.
t=1.

While ¢ > &

* Find T and 3 such that ||Z; — z;[|z; < a and [[3; — s;[|7, < ta for all i.
+ Find V; such that (1 — a)(V2¢;(Z;)) L = Vi < (1 + ) (V2¢4(z;)) " for all i.

* Compute h = —a - ci(T, 5)ul(z,s) where

exp(Mf (T,3)) 7} (T3 Py
Az 3) = 4 T epEniEa 1 @F) 2 96Va
’ 0 otherwise

and 1} (7,5) = 5/t + V64(T:) and 717, 5) = | ul(7,5) |2, )1
Let P = V'/2AT(AVAT) 1AV1/2,
Compute 6, = VY/2(I — P)VY/2hand 6, = ¢- V2P V1/2h.
Move & < & + 0z, S < 5 + Js.
% thew — (1 _ %)t
— Return an approximation solution of the convex problem according to Lemma 41.

* X %X

Theorem 7 (Robust Interior Point Method) Consider a convex problem min g, —p ze[1™ | K, clz
where K; are compact convex sets. For each i € [m], we are given a v;-self concordant barrier
function ¢; for K;. Let v = ", v;. Also, we are given 20 = argming > .*; ¢;(x;). Assume
that

1. Diameter of the set: For any x € [["| K;, we have that ||z|]2 < R.

2. Lipschitz constant of the program: ||c||2 < L.

11
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Then, the algorithm ROBUSTIPM finds a vector x such that

e < min c'v+LR-6,
Abe,QZEI—I?;l K;

|Az —blly <35 | R |Aij| +lIblls | ,
i,J

U HKz
i=1
in O(y/v1og® mlog(%)) iterations.

Proof Lemma 41 shows that the initial = and s satisfies

Is + Vo(z)ll, <0 <

> =

where the last inequality is due to our step § «— min(3,d). This implies that 7} (z,s) = ||s; +

Véi(zi)||lz, < 3 and hence ®'(z,s) < e-m < 802 for the initial z and s. Apply Lemma 15
repetitively, we have that ®!(x, s) < 80+ during the whole algorithm. In particular, we have this at
the end of the algorithm. This implies that

- log(807%)

lsi + Vei()llz, < == <1

at the end. Therefore, we can apply Lemma 42 to show that
(c,2) < {c,x*) +4tv < (c,z*) + 62

where we used the stop condition for ¢ at the end. Note that this guarantee holds for the modified
convex program. Since the error is 62, Lemma 41 shows how to get an approximate solution for the
original convex program with error LR - 6.

The number of steps follows from the fact we decrease £ by 1 — factor every iteration.

1
VrlogZm
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