
Proceedings of Machine Learning Research vol 99:1–3, 2019 32nd Annual Conference on Learning Theory

Contextual bandits with continuous actions:
Smoothing, zooming, and adapting

Akshay Krishnamurthy AKSHAY@CS.UMASS.EDU

John Langford JCL@MICROSOFT.COM

Aleksandrs Slivkins SLIVKINS@MICROSOFT.COM

Chicheng Zhang CHICHZHAN@MICROSOFT.COM

Microsoft Research, New York City

Editors: Alina Beygelzimer and Daniel Hsu

Abstract
We study contextual bandit learning for any competitor policy class and continuous action space. We
obtain two qualitatively different regret bounds: one competes with a smoothed version of the policy
class under no continuity assumptions, while the other requires standard Lipschitz assumptions. Both
bounds exhibit data-dependent “zooming" behavior and, with no tuning, yield improved guarantees
for benign problems. We also study adapting to unknown smoothness parameters, establishing a
price-of-adaptivity and deriving optimal adaptive algorithms that require no additional information.
Keywords: Contextual bandits, Lipschitz bandits, Nonparametric learning

We consider contextual bandits, a setting in which a learner repeatedly makes an action on the
basis of contextual information and observes a loss for the action, with the goal of minimizing
cumulative loss over a series of rounds. Contextual bandit learning has received much attention,
and has seen substantial success in practice (e.g., Auer et al., 2002; Langford and Zhang, 2007;
Agarwal et al., 2014, 2017). This line of work mostly considers small, finite action sets, yet in many
real-world problems actions are chosen from an interval, so the set is continuous and infinite.

How can we learn to make actions from continuous spaces based on loss-only feedback?

We could assume that nearby actions have similar losses, for example that the losses are Lipschitz
continuous as a function of the action (following Agrawal, 1995, and a long line of subsequent work).
Then we could discretize the action set and apply generic contextual bandit techniques (Kleinberg,
2004) or more refined “zooming" approaches (Kleinberg et al., 2019; Bubeck et al., 2011; Slivkins,
2014) that are specialized to the Lipschitz structure.

However, this approach has several drawbacks. A global Lipschitz assumption is crude and
limiting; actual problems exhibit more complex loss structures where smoothness varies with location,
often with discontinuities. Second, prior works incorporating context — including the zooming
approaches — employ a nonparametric benchmark set of policies, which yields a poor dependence
on the context dimension and prevents application beyond low-dimensional context spaces. Finally,
existing algorithms require knowledge of the Lipschitz constant, which is typically unknown.

Here we show that it is possible to avoid all of these drawbacks with a conceptually new approach,
resulting in a more robust solution for managing continuous action sets. The key idea is to smooth
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Type Setting Params Regret Bound Status

Smooth Worst-case h ∈ (0, 1] Θ
(√

T/h
)

New

Smooth Data-dependent h ∈ (0, 1] O ( minε Tε+ θh(ε) ) New

Smooth Adaptive h ∈ (0, 1] None Θ
(√

T/h
)

New

Lipschitz Worst-case L ≥ 1 Θ
(
T 2/3L1/3

)
Generalized

Lipschitz Data-dependent L ≥ 1 O ( minε TLε+ ψL(ε)/L ) Generalized
Lipschitz Adaptive L ≥ 1 None Θ(T 2/3

√
L) New

Table 1: A summary of results for contextual bandits on the interval [0, 1] action space. T is the
number of rounds, h is the smoothing bandwidth, θh(ε) ≤ 1/(hε) is the smoothing coefficient, L is
the Lipschitz constant, and ψL(ε) ≤ 1/ε2 is the policy zooming coefficient. All algorithms take T
and Π as additional inputs. Logarithmic dependence on |Π| and T is suppressed in all upper bounds.

the actions: each action a is mapped to a well-behaved distribution over actions, denoted Smooth(a),
such as a uniform distribution over a small interval around a (when the action set is the interval
[0, 1]). This approach leads to provable guarantees with no assumptions on the loss function, since
the loss for a smoothed action is always well behaved. Essentially, we may focus on estimation
considerations while ignoring approximation issues. We recover prior results that assume a small
Lipschitz constant, but the guarantees are meaningful in much broader scenarios.

Our algorithms work with any competitor policy set Π of mappings from context to actions,
which we smooth as above. We measure performance by comparing the learner’s loss to the loss
of the best smoothed policy, and our guarantees scale with log |Π|, regardless of the dimensionality
of the context space. This recovers results for nonparametric policy sets, but more importantly
accommodates parametric policies that scale to high-dimensional context spaces. Further, in some
cases we are able to exploit benign structure in the policy set and the instance to obtain faster rates.

We design algorithms that require no knowledge of problem parameters and are optimally
adaptive, matching lower bounds that we prove here. For the class of problems we consider, we
show how this can be done with a unified algorithmic approach.

Our contributions, specialized to the interval [0, 1] action set for clarity, are:
1. We define a new notion of smoothed regret where policies map contexts to distributions over

actions. These distributions are parametrized by a bandwidth h governing the spread. We show
that the optimal worst-case regret bound with bandwidth h is Θ(

√
T/h log |Π|), which requires

no smoothness assumptions on the losses (first row of Table 1).
2. We obtain data-dependent guarantees in terms of a smoothing coefficient, which can yield much

faster rates in favorable instances (second row of Table 1).
3. We obtain an adaptive algorithm with

√
T/h regret bound for all bandwidths, simultaneously.

Further we show this to be optimal, demonstrating a price of adaptivity (third row of Table 1).
4. We obtain analogous results when the losses are L-Lipschitz (rows 3-6 of Table 1). Notably, our

data-dependent result here is in terms of a policy zooming coefficient, generalizing and improving
zooming results from prior work. We also demonstrate a price of adaptivity in the Lipschitz case.

Our results hold in much more general settings, and also apply to the non-contextual case, where we
obtain several new guarantees.
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