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Abstract
We consider a partial-feedback variant of the well-studied online PCA problem where a learner
attempts to predict a sequence of d-dimensional vectors in terms of a quadratic loss, while only
having limited feedback about the environment’s choices. We focus on a natural notion of bandit
feedback where the learner only observes the loss associated with its own prediction. Based on
the classical observation that this decision-making problem can be lifted to the space of density
matrices, we propose an algorithm that is shown to achieve a regret of Õ(d3/2

√
T ) after T rounds

in the worst case. We also prove data-dependent bounds that improve on the basic result when the
loss matrices of the environment have bounded rank or the loss of the best action is bounded. One
version of our algorithm runs inO(d) time per trial which massively improves over every previously
known online PCA method. We complement these results by a lower bound of Ω(d

√
T ).

Keywords: online PCA, bandit PCA, online linear optimization, phase retrieval

1. Introduction

Consider the problem of phase retrieval where one is interested in reconstructing a unit-norm vector
x ∈ Rd up to a sign based on a number of noisy measurements of the form |wT

tx|2. Such problems
arise abundantly in numerous areas of science and engineering such as in X-ray cristallography,
astronomy, and diffractive imaging (Millane, 1990). In the classical setting of phase retrieval, the
measurement vectors wt are typically drawn i.i.d. from a distribution chosen before any measure-
ments are taken (Fienup, 1982; Candès et al., 2013; Shechtman et al., 2015). In the present paper,
we study a sequential decision-making framework generalizing this classical problem to situations
where the measurements can be chosen adaptively and the sequence of hidden vectors can be chosen
by an adversary.

Our formulation can be most accurately described as a partial-information variant of the well-
studied problem of online principal component analysis (online PCA) (Warmuth and Kuzmin, 2006,
2008; Nie et al., 2016). In the basic version of the online PCA problem, the learner receives a
sequence of input vectors x1,x2, . . . ,xT , and is tasked with projecting these vectors one by one to
a sequence of one-dimensional hyperplanes represented by the rank-one projection matrices P t =
wtw

T
t (with ‖wt‖ = 1), in order to maximize the total squared norm of the projected inputs,∑

t ‖P txt‖2. Crucially, the learner selects each projection before observing the input vector, but
nevertheless the input vector is fully revealed to the learner at the end of each round. In our problem
setup, we remove this last assumption and assume that the learner only observes the projection
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BANDIT PCA

“gain” ‖P txt‖2, but not the input vector xt. By analogy to the multi-armed bandit problem, we
will refer to this setting as bandit PCA.

As already noted by Warmuth and Kuzmin (2006), the seemingly quadratic objective is in fact
a linear function of the projection, ‖P txt‖2 = tr(P txtx

T
t ). Therefore, the bandit PCA problem

can be reduced to a linear bandit problem, in which the learner plays with a rank-one projection
matrix P t, the environment chooses a symmetric loss matrix Lt = −xtxT

t , and the learner suffers
and observes loss tr(P tLt). Using a generic algorithm for linear bandits, the continuous version
of the Exponential Weights algorithm (Dani et al., 2008; Bubeck and Eldan, 2015; van der Hoeven
et al., 2018), one can achieve a regret bound of order O(p

√
T lnT ), where p is the dimension of

the action and loss spaces. Unfortunately, the algorithm is computationally inefficient as it needs to
maintain and update a distribution over the continuous set of rank-one projection matrix. Further-
more, observe that p = O(d2) in our setup, so the regret bound is in fact quadratic in the dimension
of the problem.

In this paper, we address both of the above shortcomings and propose an efficient algorithm for
a generalization of the bandit PCA problem in which the adversary is allowed to play symmetric
loss matrices of arbitrary rank. Our algorithm achieves a regret bound of O(d

√
rT lnT ), where

r is the average squared Frobenious norm of the loss matrices played by the environment (which
is upper bounded by their maximal rank of these matrices). Our regret bound improves the one
mentioned above by at least a factor of

√
d, and can achieve a factor of d improvement when the

Frobenius norm of the losses is bounded by a constant (e.g., in the original PCA case when all Lt
have rank one). We complement our results with a lower bound of Ω(d

√
T ), leaving a factor of√

d gap between the two bounds in general. An interesting consequence of our lower bound is that
it formally confirms the intuition that the bandit PCA problem is strictly harder than the d-armed
bandit problem where the minimax regret is of order Θ(

√
dT ) (Auer et al., 2002; Audibert and

Bubeck, 2010). These results are to be contrasted with the fact that the full-information online PCA
problem is exactly as hard as the problem of prediction with expert advice, the minimax regret being
of Θ(

√
T log d) in both cases (Nie et al., 2016).

On the front of computational complexity, one version of our algorithm achieves a surpris-
ingly massive improvement over every previously known online PCA algorithm. Specifically, our
algorithm only requires Õ(d) computation per iteration, amounting to sublinear runtime in the di-
mension of the action space p = O(d2). This striking runtime complexity should be contrasted
with the full-information setup, in which the regret-optimal algorithms can only guarantee O(dω)1

per-round complexity for full-rank loss matrices (Warmuth and Kuzmin, 2008; Allen-Zhu and Li,
2017). In fact, full information algorithms all face the computational bottleneck of having to read
out the entries of Lt, which already takes O(d2) time (unless Lt is a low-rank matrix). In contrast,
our partial-information setup stipulates that nature computes and communicates the realized loss
for the learner at no computational cost. We note that our algorithms can be readily adjusted to
cope with noisy observations, which enables the use of fast randomized linear algebra methods for
computing the losses.

Our algorithm is based on the generic algorithmic template of online mirror descent (OMD)
(Nemirovski and Yudin, 1983; Beck and Teboulle, 2003; Hazan, 2015; Joulani et al., 2017). Sim-
ilarly to the methods for the full-information variant of online PCA (Nie et al., 2016), the algo-
rithm maintains in each trial t = 1, . . . , T a density matrix W t as a parameter, which is a positive

1. Time needed for matrix multiplication, which is also the complexity of eigendecomposition with distinct eigenvalues
(Allen-Zhu and Li, 2017).
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definite matrix with unit trace, and represents a mixture over rank-one projections. In each trial
t, a projection wtw

T
t is sampled in such a way that its expectation matches the density matrix,

E [wtw
T
t ] = W t. Based on the observed loss, the algorithm constructs an unbiased estimate L̃t of

the unknown loss matrix Lt, which is then used to update the density matrix toW t+1.
The recipe described above is standard in the bandit literature, with a few degrees of freedom in

choosing the regularization function for OMD, the scheme for samplingwt, and the structure of the
loss estimator L̂t. While it may appear tempting to draw inspiration from existing full-information
online PCA algorithms to make these design choices, it turns out that none of the previously used
techniques are applicable in our setting. In particular, the previously employed methods of sampling
from a density matrix (Warmuth and Kuzmin, 2006, 2008) by selecting eigendirections with prob-
abilities equal to the eigenvalues turns out to be insufficient, as it is only able to sense the diagonal
elements of the loss matrix (when expressed in the eigensystem of the learner’s density matrix),
making it impossible to construct an unbiased loss estimator. Therefore, our first key algorithmic
tool is designing a more sophisticated sampling scheme for wt and a corresponding loss estimator.
Furthermore, we observe that the standard choice of the quantum negative entropy as the OMD reg-
ularizer (Tsuda et al., 2005) fails to provide the desired regret bound, no matter what unbiased loss
estimator is used. Instead, our algorithm is crucially based on using the negative log-determinant
− log det(W ) as the regularization function.

1.1. Related work

Our work is a direct extension of the line of research on online PCA initiated by Warmuth and
Kuzmin (2006) and further studied by Warmuth and Kuzmin (2008); Nie et al. (2016). Online PCA
is an instance of the more general class of online matrix prediction problems, where the goal of the
learner is to minimize its regret against the best matrix prediction chosen in hindsight (Tsuda et al.,
2005; Garber et al., 2015; Allen-Zhu and Li, 2017). Boutsidis et al. (2015) studied another flavor of
the online PCA problem where the goal of the learner is to encode a sequence of high-dimensional
input vectors in a smaller representation.

Besides the above-mentioned works on online matrix prediction with full information, there is
little existing work on the problem under partial information. One notable exception is the work of
Gonen et al. (2016) that considers a problem of reconstructing the top principal components of a
sequence of vectors xt while observing r ≥ 2 arbitrarily chosen entries of the d-dimensional inputs.
Gonen et al. propose an algorithm based on the Matrix Exponentiated Gradient method and analyze
its sample complexity through regret analysis and an online-to-batch conversion. Their analysis is
greatly facilitated by the observation model that effectively allows a decoupling of exploration and
exploitation, since the loss of the algorithm is only very loosely related to the chosen observations.
In contrast, our setting presents the learner with a much more challenging dilemma since the ob-
servations are strictly tied to the incurred losses, and our feedback only consists of a single real
number instead of r ≥ 2. This latter difference, while seemingly minor, can often result in a large
gap between the attainable regret guarantees (Agarwal et al., 2010; Hu et al., 2016).

Another closely related problem setting dubbed “rank-1 bandits” was considered by Katariya
et al. (2017), Kveton et al. (2017), and Jun et al. (2019). In these problems, the learner is tasked
with choosing two d-dimensional decision vectors xt and yt, and obtains a reward that is a bilinear
function of the chosen vectors: xT

tRtyt for some matrix Rt. The setup most closely related to
ours is the one considered by Jun et al. (2019), who assume arbitrary action sets for the learner and
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prove regret bounds of order d3/2
√
rT , where r is the rank of the reward matrix. Notably, these

results assume that Rt is generated i.i.d. from some unknown distribution. These results are to be
contrasted with our bounds of order d

√
rT that are proven for adversarially chosen loss matrices.

Note however that the two results are not directly comparable due to the mismatch between the
considered decision sets: our decision set is in some sense smaller but more complex due to the
semidefinite constraint, whereas theirs is larger but has simpler constraints.

Our analysis heavily draws on the literature on non-stochastic multi-armed bandits Auer et al.
(2002); Audibert and Bubeck (2010); Bubeck and Cesa-Bianchi (2012), and makes particular use
of the regularization function commonly known as the log-barrier (or the Burg entropy) that has
been recently applied with great success to solve a number of challenging bandit problems (Foster
et al., 2016; Agarwal et al., 2017; Bubeck et al., 2018; Wei and Luo, 2018; Luo et al., 2018). Indeed,
our log-determinant regularizer is a direct generalization of the log-barrier function to the case of
matrix-valued predictions, where the induced Bregman divergence is often called Stein’s loss. This
loss function is commonly used in covariance matrix estimation in statistics (James and Stein, 1961),
and has been applied in a range of machine-learning problems such as online metric learning (Davis
et al., 2007; Jain et al., 2009; Kulis and Bartlett, 2010) and online local learning (Christiano, 2014;
Awasthi et al., 2015).

Finally, let us comment on the close relationship between our setting and that of phase retrieval,
already alluded to at the very beginning of this paper. Indeed, the connection is readily apparent
by noticing that the quadratic gain |wT

tx|2 is equivalent to the projection gain ‖P T
tx‖

2, amounting
to a bandit PCA problem instance with loss matrix −xxT + ξtI , where the last term serves to
model observation noise. A typical goal of a phase retrieval algorithm is to output a vector x̂
that minimizes the distance δ(x̂,x) = min ‖x± x̂‖ to the hidden signal x. It is easy to show
that our regret bounds of minimax order

√
T translate to upper bounds on δ(x̂,x) of order T−1/4

through a simple online-to-batch conversion, matching early results on phase retrieval by Eldar
and Mendelson (2014). However, more recent results show that the true minimax rates for phase
retrieval are actually of Θ

(
T−1/2

)
(Lecué and Mendelson, 2015; Cai et al., 2016). This highlights

that in some sense the online version of this problem is much harder in that minimax rates for the
regret do not seem to directly translate to minimax rates on the excess risk under i.i.d. assumptions.

Notation. S is the set of d × d symmetric positive semidefinite (SPSD) matrices andW ⊂ S is
the set of density matricesW satisfying tr(W ) = 1. We will use the notation 〈A,B〉 = tr (ATB)
for any two d × d matrices A and B, and define the Frobenius norm of any matrix A as ‖A‖F =√
〈A,A〉. We will consider randomized iterative algorithms that interact with a possibly random

environment, giving rise to a filtration (Ft)t≥1. We will often use the shorthand Et [·] = E [ ·| Ft] to
denote expectations conditional on the interaction history.

2. Preliminaries

We consider a sequential decision-making problem where a learner interacts with its environment
by repeating the following steps in a sequence of rounds t = 1, 2, . . . , T :

1. learner picks a vector wt ∈ Rd with unit norm, possibly in a randomized way,

2. environment picks a loss matrix Lt with spectral norm bounded by 1,

3. learner incurs and observes loss 〈wtw
T
t ,Lt〉 = tr (wtw

T
tLt).
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Note that the crucial difference from the traditional setup of online PCA is that the learner does
not get to observe the full loss matrix Lt. We will make the most minimal assumptions about the
environment: the loss Lt in round t is allowed to depend on the entire interaction history except
the last decision wt of the learner. In other words, we will consider algorithms that work against
non-oblivious or adaptive adversaries.

The performance of the learner is measured in terms of the total expected regret (or, simply,
the regret), which is the difference between the cumulative loss of the algorithm and that of a fixed
action optimal in expectation:

regretT = max
u:‖u‖=1

T∑
t=1

E [〈wtw
T
t − uuT,Lt〉] ,

where the expectation is with respect to the internal randomization of the learner2.

3. Algorithms and main results

This section presents our general algorithmic template, based on the generic algorithmic framework
of online mirror descent (Nemirovski and Yudin, 1983; Beck and Teboulle, 2003; Hazan, 2015;
Joulani et al., 2017). Such algorithms are crucially based on a choice of a differentiable convex
regularization function R : S → R and the associated Bregman divergence DR : S × S → R+

induced by R:

D(W ‖W ′) = R(W )−R(W ′)−
〈
∇R(W ′), (W −W ′)

〉
.

Our version of online mirror descent proceeds by choosing the initial density matrix asW 1 = 1
dI ∈

W , and then iteratively computing the sequence of density matrices

W t+1 = argmin
W∈W

{
η
〈
W , L̃t

〉
+DR(W ‖W t)

}
.

Here, L̃t ∈ S is an estimate of the loss matrix Lt chosen by the environment in round t. Having
computed W t, the algorithm randomly draws the unit-norm vector wt satisfying Et [wtwt] =
(1− γ)W t+

γ
dI , where the latter term is added to prevent the eigenvalues of the covariance matrix

from approaching 0. This effect is modulated by the parameter γ ∈ [0, 1] that we will call the
exploration rate. The main challenges posed by our particular setting are:

• finding a way to sample a unit-length vector wt satisfying Et [wtw
T
t ] = (1− γ)W t + γ

dI ,

• constructing a suitable (hopefully unbiased) loss estimator L̃t based on the observed loss
`t = 〈wtw

T
t ,Lt〉 and the vector wt,

• finding a regularization function R that is well-adapted to the previous design choices.

It turns out that addressing each of these challenges will require some unusual techniques. The
most crucial element is the choice of regularization function that we choose as the negative log-
determinant R(W ) = − log det(W ), with its derivative given as −W−1 and the associated Breg-
man divergence being

DR(W ‖U) = tr(U−1W )− log det(U−1W )− d,

2. This definition of regret is sometimes called pseudo-regret (Bubeck and Cesa-Bianchi, 2012).
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which is sometimes called Stein’s loss in the literature, and coincides with the relative entropy
between the distributions N (0,W ) and N (0,U). In contrast to the multi-armed bandit setting,
here the choice of the right regularizer turns out to be much more subtle, as the standard choices of
the quantum negative entropy (Tsuda et al., 2005) or matrix Tsallis entropy (Allen-Zhu et al., 2015)
fail to provide the desired regret bound (a discussion on these issues is included in Appendix C).

For sampling the vector wt, a peculiar challenge in our problem is having to design a process
that will allow constructing an unbiased estimator of the loss matrixLt. To this end, we propose two
different sampling strategies along with their corresponding loss-estimation schemes based on the
eigendecomposition of the density matrices. The two strategies will be later shown to achieve two
distinct flavors of data-dependent regret bounds. We present the details of these sampling schemes
below in a simplified notation: given the eigenvalue decomposition W =

∑
i λiuiu

T
i of density

matrix W , the procedures sample w such that E [wwT] = W , and construct the loss estimate L̃
for which E[L̃] = L. Recall that we useW = (1− γ)W t + γ

dI in the algorithm.

Algorithm 1: Online Mirror Descent for Bandit PCA
Parameters : learning rate η > 0, exploration rate γ ∈ [0, 1]
Initialization:W 1 ← I

d
for t = 1, . . . , T do

eigendecomposeW t =
∑d

i=1 µiuiu
T
i

λ← (1− γ)µ+ γ
(

1
d , . . . ,

1
d

)
L̃t ← sample

(
λ, {ui}di=1

)
W t+1 ←

(
W−1

t + ηL̃t + βI
)−1 with β such that tr(W t+1) = 1

Algorithm 2: Dense sampling

def sample
(
λ, {ui}di=1

)
:

B ∼ Bernoulli
(

1
2

)
if B = 1 then

draw I ∼ λ and set wt ← uI
else

draw s ∈ {−1,+1}d i.i.d. uniformly
wt ←

∑
i si
√
λiui

play wt and observe `t = 〈wtw
T
t ,Lt〉

if B = 1 then
L̃t ← 2`tW

−1/2
t wtw

T
tW

−1/2
t

else
L̃t ← `t

(
W−1

t wtw
T
tW

−1
t −W

−1
t

)
return L̃t

Algorithm 3: Sparse sampling

def sample
(
λ, {ui}di=1

)
:

draw I, J ∼ λ
if I = J then
wt ← uI

else
draw s ∈ {−1, 1} uniformly
wt ← 1√

2
(uI + suJ)

play wt and observe `t = 〈wtw
T
t ,Lt〉

if I = J then
L̃t ←

(
`t/λ

2
I

)
uIu

T
I

else
L̃t ← s`/ (2λIλJ) (uIu

T
J + uJu

T
I)

return L̃t

3.1. Dense sampling

Our first sampling scheme is composed of two separate sampling procedures, designed to sense and
estimate the on- and off-diagonal entries of the loss matrix L (when expressed in the eigensystem
of W ), respectively. Precisely, the procedure will first draw a Bernoulli random variable B with
P (B = 1) = 1

2 , and sample w depending on the outcome as follows:
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• If B = 1, samplew as one of the eigenvectors uI such that P [I = i] = λi. This clearly gives
E [wwT] =

∑d
i=1 λiuiu

T
i = W .

• If B = 0, draw i.i.d. uniform random signs s = (s1, . . . , sd) ∈ {−1,+1}d and sample w as

w =
d∑
i=1

si
√
λiui.

Note that ‖w‖ = 1 and we have

E [wwT] = Es
[∑

ij

sisj
√
λiλjuiu

T
j

]
=
∑
ij

Es [sisj ]︸ ︷︷ ︸
δij

√
λiλjuiu

T
j =

∑
i

λiuiu
T
i = W .

The first method is the standard sampling procedure in the full-information version of online PCA.
In the bandit case, this method turns out to be insufficient, as it only let us observe 〈uiuT

i ,L〉 =
uT
iLui, that is, the on-diagonal elements of the loss matrix L expressed in the eigensystem of W .

On the other hand, the second method does sense the off-diagonal elements uT
iLuj , but misses the

on-diagonal ones. Thus, a combination of the two methods is sufficient for recovering the entire
matrix. We will refer to this sampling method as dense since it observes a dense linear combination
of the off-diagonal elements of the matrix L. Having observed ` = 〈wwT,L〉, we construct our
estimates in the two cases corresponding to the outcome of the random coin flip B as follows:

L̃ =

{
2`W−1/2wwTW−1/2 if B = 1,

`
(
W−1wwTW−1 −W−1

)
if B = 0.

The following lemma (proved in Appendix A.1) shows that the above-defined estimate is unbiased.

Lemma 1 The estimate L̃t defined through the dense sampling method satisfies EtL̃t = Lt.

3.2. Sparse sampling

Our second method is based on sampling two eigenvectors ofW with indices I and J independently
from the same distribution satisfying P [J = i] = P [I = i] = λi. Then, when I = J , it selects
w = uI , whereas for I 6= J , it draws a uniform random sign s ∈ {−1, 1} and sets w = 1√

2
(uI +

suJ). We refer to this procedure as sparse since the observed loss is a sparse linear combination of
diagonal and off-diagonal elements. We first verify that this method indeed satisfies E [wwT] = W :

E [wwT] =
∑
i

λ2
iuiu

T
i︸ ︷︷ ︸

when I=J

+
∑
i 6=j

λiλj
1

2
Es [(ui + suj)(ui + suj)

T]︸ ︷︷ ︸
when I 6=J

=
∑
i

λ2
iuiu

T
i +

1

2

∑
i 6=j

λiλj

(
uiu

T
i + uju

T
j

)
=
∑
ij

λiλjuiu
T
i =

∑
i

λiuiu
T
i = W ,

where in the second equality we used the fact that s2 = 1 and Es [s] = 0. The loss estimate is
constructed as follows:

L̃ =

{
`
λ2I
uIu

T
I when I = J,

s`
2λIλJ

(uIu
T
J + uJu

T
I) when I 6= J.

As the following lemma shows, this estimate is also unbiased. The proof is found in Appendix A.2.
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Lemma 2 The estimate L̃t defined through the sparse sampling method satisfies EtL̃t = Lt.

3.3. Upper bounds on the regret

We can now state our main results regarding the performance of our algorithm with the two sampling
schemes. Our first result is a data-dependent regret bound for the dense sampling method.

Theorem 3 Let η ≤ 1
2d and γ = 0. The regret of Algorithm 1 with dense sampling satisfies

regretT ≤
d log T

η
+ η(d2 + 1)

T∑
t=1

E
[
`2t
]

+ 2.

We can immediately derive the following worst-case guarantee from the above result:

Corollary 4 Let η = min

{√
log T
dT , 1

2d

}
and γ = 0. Then, the regret of Algorithm 1 with dense

sampling satisfies
regretT = O

(
d3/2

√
T log T

)
Proof The claim is trivial when

√
(log T ) / (dT ) ≥ 1/2d. Otherwise we use Theorem 3 together

with `2t ≤ 1 and plug in the choice of η.

It turns out that the above bound can be significantly improved if we make some assumptions about
the losses. Specifically, when the losses are assumed to be non-negative and there is a known upper
bound on the cumulative loss of the best action: L∗T ≥ minu:‖u‖=1

∑
t tr(uuTLt), a properly tuned

variant of our algorithm satisfies the following first-order regret bound (proof in Appendix A.6):

Corollary 5 Assume that Lt is positive semidefinite for all t and L∗T is defined as above. Then for
η = min

{√
log T

dL
∗
T

, 1
4d2

}
, the regret of Algorithm 1 with dense sampling satisfies

regretT = O
(
d3/2

√
L
∗
T log T + d3 log T

)
Let us now turn to the version of our algorithm that uses the sparse sampling scheme.

Theorem 6 Let η ≤ 1
2d and γ = ηd. The regret of Algorithm 1 with sparse sampling satisfies

regretT ≤
d log T

η
+ 2ηd+ 2 + 8ηd

T∑
t=1

E
[
‖Lt‖2F

]
Corollary 7 Let r ≥ 1

T

∑T
t=1 E

[
‖Lt‖2F

]
be known to the algorithm. Then, for η = min

{√
log T
rT , 1

2d

}
and γ = dη, the regret of the algorithm with sparse sampling satisfies

regretT = O
(
d
√
rT log T

)
Proof The claim is trivial when

√
(log T ) / (rT ) ≥ 1/2d. Otherwise we use Theorem (6) and plug

in the choice of η.

Note that since the spectral norm of the losses is bounded by 1, we have ‖Lt‖2F ≤ rank(Lt). Thus,
for the classical online PCA problem in which Lt = −xtxT

t , the bound becomes O(d
√
T log T ).
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3.4. Lower bound on the regret

We also prove the following lower bound on the regret of any algorithm:

Theorem 8 There exists a sequence of full-rank loss matrices such that the regret of any algorithm
is lower bounded as

regretT ≥
1

16
d
√
T/ log T .

The proof can be found in Appendix A.7. Note that, since the lower bound involves full-rank losses,
there is gap of order

√
d between the lower bound and the upper bounds achieved by our algorithms.

4. Analysis

This section presents the proofs of our main results. We decompose the proofs into two main parts:
one considering the regret of online mirror descent with general loss estimators, and another part
that is specific to the loss estimators we propose. Due to space limitations, the most technical parts
of the proofs are delegated to Appendix A.

For the general mirror descent analysis, it will be useful to rewrite the update in the following
form:

(update step) W̃ t+1 = argmin
W

{
DR(W ‖W t) + η tr(WL̃t)

}
,

(projection step) W t+1 = argmin
W∈W

DR(W ‖W̃ t+1),
(1)

whereW is the set of density matrices. The unprojected solution W̃ t+1 can be shown to satisfy the
equality∇R(W̃ t+1) = ∇R(W t)− ηL̃t, which gives3

W̃ t+1 =
(
W−1

t + ηL̃t

)−1
= W

1/2
t

(
I + ηW

1/2
t L̃tW

1/2
t

)−1
W

1/2
t . (2)

Our analysis will rely on the result below that follows from a direct application of well-known regret
bound of online mirror descent, and a standard trick to relate the regret on the true and estimated
losses, originally due to Auer et al. (2002).

Lemma 9 For any η > 0 and γ ∈ [0, 1], the regret of Algorithm 1 satisfies

regretT ≤
d log T

η
+ 2γT + 2 + (1− γ)

T∑
t=1

E
[〈
W t − W̃ t+1, L̃t

〉]
.

The proof is rather standard and is included in Appendix A.3. The main challenge is bounding the
last term in the above equation. To ease further calculations, we rewrite this term with the help of
the matrixBt = W

1/2
t L̃tW

1/2
t . From the definition of W̃ t+1, we have

W̃ t+1 = W
1/2
t (I + ηBt)

−1W
1/2
t = W t − ηW 1/2

t Bt(I + ηBt)
−1W

1/2
t ,

3. While we do not show it explicitly here, it will be apparent from the proof of Lemma 10 that this update is well-
defined since W−1

t + ηL̃t is invertible under our choice of parameters.

9
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where the second equality uses the easily-checked identity (I+A)−1 = I−A(I+A)−1. Therefore,
the term in question can be written as〈

W t − W̃ t+1, L̃t

〉
= η tr

(
W

1/2
t Bt(I + ηBt)

−1W
1/2
t L̃t

)
= η tr

(
Bt(I + ηBt)

−1Bt

)
=

d∑
i=1

η
b2t,i

1 + ηbt,i
, (3)

where {bt,i}di=1 are the eigenvalues of Bt. It remains to bound the term on the right-hand side for
the dense and the sparse sampling method.

We first state a bound for the dense sampling method:

Lemma 10 Suppose that η ≤ 1
2d and γ = 0. Then, the dense sampling method guarantees

〈
W t − W̃ t+1, L̃t

〉
≤

{
8
3η`

2
t if B = 1,

2ηd2`2t if B = 0.

In particular, the expectation is bounded as

Et
[〈
W t − W̃ t+1, L̃t

〉]
≤ η

(
d2 + 1

)
`2t .

The proof can be found in Appendix A.4. Combining this result with Lemma 9 concludes the proof
of Theorem 3. Regarding the sparse sampling method, our key result is the following bound:

Lemma 11 Suppose that η ≤ 1
2d and γ = ηd. Then, the sparse sampling method guarantees

Et
[〈
W t − W̃ t+1, L̃t

〉]
≤ 8ηd ‖Lt‖2F

For a proof, see Appendix A.5. The statement of Theorem 6 immediately follows from combining
the above result with Lemma 9.

4.1. Computational cost

The total computational cost of the algorithm equipped with dense sampling is dominated by a rank
one update of the eigendecomposition of the parameter matrix W t in each trial, which can take
O(d3) time in the worst case. Surprisingly, the computational cost of the sparse sampling version
of the algorithm is only Õ(d). This is because in each trial t, the loss estimate L̃t is constructed
from up to two eigenvectors ofW t and thus only the corresponding part of the eigendecomposition
needs to updated. Furthermore, the projection operation only affects the eigenvalues and can be
accomplished by solving a simple line search problem. The details of the efficient implementation
are given in Appendix B. The claimed Õ(d) per-iteration cost of the algorithm is without taking
into account the time needed to compute the value of the observed loss (as otherwise reading out
the entries of Lt would already take O(d2) time). In other words, we assume that the algorithm
plays with wt and the nature computes and communicates the realized loss `t = tr(wtw

T
tLt) for

the learner at no computational cost. This assumption can actually be verified for several problems
of practical interest (such as the classical applications of phase retrieval), and helps to separate
computational issues related to learning and loss computation in other cases.

10
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5. Discussion

We conclude by discussing some aspects of our results and possible directions for future work.

Possible extensions. While we work with real and symmetric matrices throughout the paper, it is
relatively straightforward to extend our techniques to work with more general losses. One important
extension is considering complex vector spaces, which naturally arise in applications like phase re-
trieval or quantum information. Fortunately, our algorithms easily generalize to complex Hermitian
matrices, essentially by replacing every transposition with a Hermitian conjugate, noting that the
eigenvalues of Hermitian matrices remain real. The analysis can be carried out with obvious mod-
ifications (Kale, 2007; Aaronson et al., 2018), giving the same guarantees on the regret. Another
possible extension is to consider the k-PCA problem, in which the learner chooses a rank-k projec-
tion matrix in each trial. It would also be interesting to extend our algorithms and their analysis the
case of asymmetric loss matrices Lt ∈ Rm×n, where the learner chooses two vectors xt ∈ Rn and
yt ∈ Rm, and observes loss tr(Ltxty

T
t ), corresponding to the setup studied by Jun et al. (2019).

We note here that extending the basic full-information online PCA formalism is possible through a
clever embedding of such m× n matrices into symmetric (m + n)× (m + n) matrices, as shown
by (Warmuth, 2007; Hazan et al., 2017). We leave it to future research to verify whether such a
reduction would also work in the partial-feedback case.

Comparison with continuous exponential weights. As mentioned in the introduction, the bandit
PCA problem can be directly formalized as an instance of bandit linear optimization, and one can
prove regret bounds of Õ(d2

√
T ) by an application of the generic continuous Exponential Weights

analysis (Dani et al., 2008; Bubeck and Eldan, 2015; van der Hoeven et al., 2018). However, there
are two major computational challenges that one needs to face when running this algorithm: sam-
pling the density matricesW t and the decision vectorswt, and constructing unbiased estimates for
the losses. Very recently, it has been shown by Pacchiano et al. (2019) that one can sample and
update the exponential-weights distribution in O(d4) time for the decision set we consider in this
paper, leaving us with the second problem. While in principle it is possible to use the generic loss
estimator used in the above works (and originally proposed by McMahan and Blum, 2004; Awer-
buch and Kleinberg, 2004), it is unclear if this estimator can actually be computed in polynomial
time since it involves inverting a linear operator over density matrices. Indeed, it is not clear if the
linear operator itself can be computed in polynomial time, let alone its inverse. In contrast, our al-
gorithms achieve regret bounds of Õ(d3/2

√
T ) in the worst case, and run in Õ(d) time when using

sparse sampling for loss estimation.

The gap between the upper and lower bounds. One unsatisfying aspect of our results is the gap
of order

√
d between the upper and lower bounds. Indeed, while Algorithm 1 with sparse sampling

guarantees a regret bound of order d
√
T on rank-1 losses, seemingly matching the lower bounds for

this case, this upper bound is in fact not comparable to the lower bound since the latter is proved
for full-rank loss matrices. It is yet unclear which one of the bounds is tight, and we pose it as an
exciting open problem to determine the minimax regret in this setup. We believe, however, that the
upper bounds for our algorithms cannot be improved, and achieving minimax regret would require
a radically different approach if it is our lower bound that captures the correct scaling with d.

High-probability bounds. All our regret bounds proved in the paper hold on expectation. It is
natural to ask if it is possible to adjust our techniques to yield bounds that hold with high probability.

11
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Unfortunately, our attempts to prove such bounds were unsuccessful due to a limitation common
to all known techniques for proving high-probability bounds. Briefly put, all known approaches
(Auer et al., 2002; Bartlett et al., 2008; Audibert and Bubeck, 2010; Beygelzimer et al., 2011;
Neu, 2015) are based on adjusting the unbiased loss estimates so that the loss of every action v is
slightly underestimated by a margin of βEt

[〈
vvT, L̃

2

t

〉]
for some small β of order T−1/2 (see, e.g.,

Abernethy and Rakhlin, 2009 for a general discussion). While it is straightforward to bias our own
estimates in the same way, this eventually leads to extra terms of order βEt

[〈
W t, L̃

2

t

〉]
in the bound,

which are impossible to control by a small enough upper bound, as shown in Appendix C. Thus,
proving high-probability bounds in our setting seems to require a fundamentally new approach, and
we pose solving this challenge as another interesting problem for future research.

Data-dependent bounds. Besides a worst-case bound of order d3/2
√
T on the regret, we also

provide further guarantees that improve over the above when the loss matrices satisfy certain con-
ditions. This raises the question if it is possible to achieve further improvements under other as-
sumptions on the environment. A particularly interesting question is whether or not it is possible
to improve our bounds for i.i.d. loss matrices generated by a spiked covariance model (Johnstone,
2001), corresponding to the most commonly studied setting in our primary motivating example of
phase retrieval (Candès et al., 2013; Lecué and Mendelson, 2015). Obtaining faster rates for this
setup would account for the discrepancy between the minimax bounds for phase retrieval and those
obtained by an online-to-batch conversion from our newly proved bounds. We hope that the re-
sults provided in the present paper will initiate a new line of research on online phase retrieval that
will eventually yield algorithms that take full advantage of adaptively chosen measurements and
outperform traditional approaches for phase retrieval.
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Sébastien Bubeck, Michael Cohen, and Yuanzhi Li. Sparsity, variance and curvature in multi-armed
bandits. In Proceedings of the 29th International Conference on Algorithmic Learning Theory
(ALT), pages 111–127, 2018.

T. Tony Cai, Xiaodong Li, and Zongming Ma. Optimal rates of convergence for noisy sparse phase
retrieval via thresholded wirtinger flow. The Annals of Statistics, 44(5):2221–2251, 2016.

Emmanuel J. Candès, Thomas Strohmer, and Vladislav Voroninski. Phaselift: Exact and stable
signal recovery from magnitude measurements via convex programming. Communications on
Pure and Applied Mathematics, 66(8):1241–1274, 2013.
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Appendix A. Ommitted proofs

A.1. The proof of Lemma 1

For the proof, let us define Lij = uT
iLuj and note thatL =

∑
i,j Lijuiu

T
j . In the case whenB = 1,

we have

E [`wwT|B = 1] = E [ tr(wwTL)wwT|B = 1] =
d∑
i=1

λi tr(uiu
T
iL)uiu

T
i =

d∑
i=1

λiLiiuiu
T
i ,

and thus

E
[
L̃
∣∣∣B = 1

]
= 2W−1/2

(
d∑
i=1

λiLiiuiu
T
i

)
W−1/2 = 2

d∑
i=1

Liiuiu
T
i ,

where we used the fact that ui is the eigenvector ofW , soW−1/2ui = λ
−1/2
i ui.

When B = 0, we have:

E [ tr(wwTL)wwT|B = 0] = Es

tr

∑
ij

sisj
√
λiλjuiu

T
jL

∑
km

sksm
√
λkλmuku

T
m


= Es

∑
ij

sisj
√
λiλjLij

(∑
km

sksm
√
λkλmuku

T
m

)
=
∑
ijkm

Es [sisjsksm]
√
λiλjλkλmLijuku

T
m.

Now, Es [sisjsksm] is zero if one of the indices is a non-duplicate, such as the case i /∈ {j, k,m}.
The four cases where Es [sisjsksm] = 1 are the following: (I) i = j = k = m, (II) i = j,
k = m 6= i, (III) i = k, j = m 6= i, (IV) i = m, k = j 6= i. Considering these cases separately, we
get

E [ tr(wwTL)wwT|B = 0] =
∑
ij

λiλjLiiuju
T
j︸ ︷︷ ︸

(I) + (II)

+
∑
i 6=j

λiλjLijuiu
T
j︸ ︷︷ ︸

(III)

+
∑
i 6=j

λiλjLijuju
T
i︸ ︷︷ ︸

(IV)

= W
∑
i

λiLii + 2
∑
ij

λiλjLijuiu
T
j − 2

∑
i

λ2
iLiiuiu

T
i .

Multiplying the above withW−1 from both sides gives

W−1E [ tr(wwTL)wwT|B = 0]W−1 = W−1
∑
i

λiLii︸ ︷︷ ︸
tr(WL)

+2
∑
ij

Lijuiu
T
j︸ ︷︷ ︸

=L

−2
∑
i

Liiuiu
T
i .

Furthermore, we clearly have E [`|B = 0] = tr(E [wwT|B = 0]L) = tr(WL). Therefore using
the definition of L̃, we get

E
[
L̃
∣∣∣B = 0

]
= W−1 tr(WL) + 2L− 2

∑
i

Liiuiu
T
i −W−1E [`|B = 0]

= 2

(
L−

∑
i

Liiuiu
T
i

)
.
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Putting the two cases concludes the proof as

E
[
L̃
]

=
1

2
E
[
L̃
∣∣∣B = 1

]
+

1

2
E
[
L̃
∣∣∣B = 0

]
=

d∑
i=1

Liiuiu
T
i +

(
L−

∑
i

Liiuiu
T
i

)
= L.

A.2. The proof of Lemma 2

We remind that the loss estimate is constructed as:

L̃ =

{
`
λ2I
uIu

T
I when I = J,

`s
2λIλJ

(uIu
T
J + uJu

T
I) when I 6= J.

We check that the estimate of the loss is unbiased. Let Lij = uT
iLuj . We have:

E
[
L̃
]

=
∑
i

λ2
i tr(uiu

T
iL)

1

λ2
i

uiu
T
i︸ ︷︷ ︸

when I=J

+
∑
i 6=j

λiλjEs
[
tr

(
1

2
(ui + suj)(ui + suj)

TL

)
s

2λiλj
(uiu

T
j + uju

T
i )

]
︸ ︷︷ ︸

when I 6=J

=
∑
i

Liiuiu
T
i +

1

4

∑
i 6=j

(Lii + Ljj)Es [s]︸ ︷︷ ︸
=0

(uiu
T
j + uju

T
i ) +

1

2

∑
i 6=j

Lij(uiu
T
j + uju

T
i )

=
∑
ij

Lijuiu
T
j = L,

where in the second inequality we used the fact that s2 = 1.

A.3. The proof of Lemma 9

We start with the well-known result regarding the regret of mirror descent (see, e.g., Rakhlin, 2008).
We include the simple proof in for completeness.

Lemma 12 For any U ∈ S, the following inequality holds:

T∑
t=1

〈
W t −U , L̃t

〉
≤ DR(U‖W 1)

η
+

T∑
t=1

〈
W t − W̃ t+1, L̃t

〉
.

Proof We start from the following well-known identity4 that holds for for any three SPSD matrices
U ,V ,W :

DR(U‖V ) +DR(V ‖W ) = DR(U‖W ) + 〈U − V ,∇R(W )−∇R(V )〉 .

4. This easily proven result is sometimes called the “three-points identity”.
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TakingW = W t and V = W̃ t+1 and using that DR(V ‖W ) ≥ 0 gives

DR(U‖W̃ t+1) ≤ DR(U‖W t) + η
〈
U − W̃ t+1, L̃t

〉
.

Since D(U‖W̃ t+1) ≥ D(U‖W t+1) by the Generalized Pythagorean Inequality, we get

η
〈
W̃ t+1 −U , L̃t

〉
≤ DR(U‖W t)−DR(U‖W t+1).

Reordering and adding
〈
W t, L̃t

〉
to both sides gives〈

W t −U , L̃t
〉
≤
〈
W t − W̃ t+1, L̃t

〉
+

1

η
DR(U‖W t)−

1

η
DR(U‖W t+1).

Summing up for all t and noticing that DR(U‖W T+1) ≥ 0 concludes the proof.

Proof (of Lemma 9). We start with relating the quantity on the left-hand side of statement in Lemma
12 to the regret of the algorithm. To this end, observe that the unbiasedness of L̃t and the conditional
independence of L̃t onW t ensures that

(1− γ)Et
[〈
W t, L̃t

〉]
=
〈
(1− γ)W t,Lt

〉
= Et

[〈
wtwt,Lt

〉]
− γ

d
〈I,Lt〉 ,

where we also used the fact that wt is sampled so that Et [wtwt] = (1 − γ)W t + γ
dI is satisfied.

Similarly, for any fixed U it holds Et
[〈
U , L̃t

〉]
=
〈
U ,Lt

〉
. Using these relation results in

Et
[〈
wtwt −U ,Lt

〉]
= (1− γ)Et

[〈
W t −U , L̃t

〉]
+ γ

〈
I

d
−U ,Lt

〉
. (4)

Since Lt has spectral norm bounded by 1, the last term on the right-hand side can be bounded by:〈
I

d
−U ,Lt

〉
≤
∥∥∥∥Id −U

∥∥∥∥
1

‖Lt‖∞ ≤ tr

(
I

d

)
+ tr(U) = 2

Using the above bound in (4), summing over trials and taking marginal expectation on both sides
gives:

T∑
t=1

E
[〈
wtwt −U ,Lt

〉]
≤ (1− γ)

T∑
t=1

E
[〈
W t −U , L̃t

〉]
+ 2γT

≤ (1− γ)
DR(U‖W 1)

η
+ (1− γ)

T∑
t=1

E
[〈
W t − W̃ t+1, L̃t

〉]
+ 2γT,

(5)

where the second inequality is from Lemma 12. One minor challenge is that the first term on the
right-hand side of (5) is infinite for a “pure” comparator uuT. To deal with this issues, for any U
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define the smoothed comparator Ũ = (1 − θ)U + θ
dI for some θ ∈ [0, 1]. Using W 1 = 1

dI , we
have:

DR(Ũ‖W 1) = log det

(
I

d

)
− log det

(
(1− θ)U +

θ

d
I

)
+ d tr(Ũ)− d

≤ log det

(
I

d

)
− log det

(
θ

d
I

)
= d log(1/θ).

Using (5) with the smoothed comparator Ũ gives:

T∑
t=1

E
[〈
wtwt − Ũ ,Lt

〉]
≤ (1− γ)

d log(1/θ)

η
+ (1− γ)

T∑
t=1

E
[〈
W t − W̃ t+1, L̃t

〉]
+ 2γT.

Now, since:

〈
wtwt − Ũ ,Lt

〉
=
〈
wtwt −U ,Lt

〉
+ θ

〈
I

d
−U ,Lt

〉
≥
〈
wtwt −U ,Lt

〉
− 2θ

(where we used a bound on the spectral norm of Lt), setting θ = 1/T gives:

T∑
t=1

E
[〈
wtwt −U ,Lt

〉]
≤ d log T

η
+ (1− γ)

T∑
t=1

E
[〈
W t − W̃ t+1, L̃t

〉]
+ 2γT + 2.

A.4. The proof of Lemma 10

Let W t =
∑d

i=1 λiuiu
T
i be the eigendecomposition of W t. Note that due to the assumption that

Lt has spectral norm bounded by 1, |`t| = | tr(Ltwtw
T
t )| ≤ ‖Lt‖∞ tr(wtw

T
t ) ≤ 1. We prove the

bound separately for the two cases corresponding to the different values of B.

On-diagonal sampling (B = 1). When B = 1, we have

L̃t = 2`tW
−1/2
t uiu

T
iW

−1/2
t ,

for some i ∈ {1, . . . , d}, so that Bt = 2`tuiu
>
i is rank-one, with single nonzero eigenvalue bt,1 =

2`t. Using (3) gives 〈
W t − W̃ t, L̃t

〉
=

4η`2t
1 + 2η`t

,

and the claimed result follows by noticing that our assumption on η guarantees |η`t| ≤ 1
2d ≤

1
4 .

Off-diagonal sampling (B = 0). We now have

L̃t = `t(W
−1
t wtw

T
tW

−1
t −W

−1
t ), where wt =

d∑
i=1

si
√
λiui.
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Denoting v = W
−1/2
t wt =

∑d
i=1 siui, we get

Bt = W
1/2
t L̃tW

1/2
t = `t(vv

> − I)

Using orthonormality of {ui}Ti=1 we have ‖v‖2 =
∑

i s
2
i = d, which means that Bt has a single

eigenvalue `t(d− 1), with the remaining d− 1 eigenvalues all equal to −`t. Using (3):〈
W t − W̃ t, L̃t

〉
=

η`2t (d− 1)2

1 + η`t(d− 1)
+ (d− 1)

η`2t
1− `t

≤ 2η`2t
(
(d− 1)2 + (d− 1)

)
≤ 2η`2td

2,

where in the last step we used our assumption on η that ensures both |η`t| ≤ 1
2 and |η (d− 1) `t| ≤

1
2 . This concludes the proof.

A.5. The proof of Lemma 11

Let W t =
∑

i λiuiu
T
i be the eigendecomposition of W t. Since γ > 0 the algorithm sample

from matrix V = (1 − γ)W t + γ
dI , which has the same eigenvectors as W t, and eigenvalues

µi = (1− γ)λi + γ/d. Sparse sampling draws indices I and J independently from µ.
Assume the event I = J = i occurred with probability µ2

i , for which L̃t = `ii
µ2i
uiu

T
i , with `ii =

tr(Ltuiu
T
i ). This means that Bt = W

1/2
t L̃tW

1/2
t = `iiλi

µ2i
uiu

T
i has single non-zero eigenvalue

bt,1 = `iiλi
µ2i

. Using (a+ b)2 ≥ 4ab we have µ2
i ≥ 4(1− γ)γλi/d ≥ 2γλi/d, where we used γ ≤ 1

2

which follows from our assumptions. This implies |bt,1| ≤ |`ii|d2γ ≤
1
2η , which by (3) gives

〈
W t − W̃ t, L̃t

〉
=

ηb2t,1
1 + ηbt,1

≤ 2ηb2t,1 = 2η
`2iiλ

2
i

µ4
i

. (6)

Now assume event I = i 6= j = J occurred with probability µiµj , for which L̃t =
s`ij

2µiµj
(uiu

T
j +

uju
T
i ) with `ij = 1

2 tr(Lt(ui + suj)(ui + suj)
T), where s is a random sign. This means that

Bt =
s`ij
√
λiλj

2µiµj
(uiu

T
j + uju

T
i ) has two nonzero eigenvalues equal bt,± = ±s `ij

√
λiλj

2µiµj
. Using the

previously derived bound µ2
i ≥ 2γλi/d, we have |bt,±| ≤

√
λiλj

2
√

4γ2λiλj/d2
= 1

4γ/d = 1
4η ≤

1
2η , which,

similarly as in (6), implies〈
W t − W̃ t, L̃t

〉
≤ 2ηb2t,+ + 2ηb2t,− ≤ 2η

`2ijλiλj

µ2
iµ

2
j

. (7)

Taking conditional expectation and using (6) and (7) then gives

E[
〈
W t − W̃ t, L̃t

〉
] ≤ 2η

∑
ij

µiµj
Es[`2ii]λiλj
µ2
iµ

2
j

= 2η
∑
ij

Es[`2ii]λiλj
µiµj

≤ 8η
∑
ij

Es[`2ii],

where Es[·] is the remaining randomization over the sign, and in the last inequality we used λi
µi

=
λi

(1−γ)λi+γ/d
≤ λi

(1−γ)λi
= 1

1−γ ≤ 2 (because γ ≤ 1
2 ). For the final step of the proof, let us recall the

notation Lij = uT
iLuj and notice that `2ii = L2

ii, whereas for i 6= j:

Es[`2ij ] =
1

4
Es
[
(Lii + 2sLij + Ljj)

2
]

=
1

4

(
(Lii + Ljj)

2 + 4L2
ij

)
≤ 1

4

(
2L2

ii + 2L2
jj + 4L2

ij

)
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where in the second equality we used Es[s] = 0 (so that the cross-terms disappear), while in the last
inequality we used (a+ b)2 ≤ 2a2 + 2b2. Thus, we obtained∑

ij

Es
[
`2ij
]
≤ d

∑
i

L2
ii +

∑
i 6=j

L2
ij ≤ d

∑
ij

L2
ij = d ‖L‖2F ,

thus proving the statement of the lemma.

A.6. The proof of Corollary 5

From the non-negativity and boundedness of the loss matrices it follows that `t = tr(wtw
T
tLt) ∈

[0, 1], which implies `2t ≤ `t. Let L∗T = minu:‖u‖=1 E
[∑T

t=1 〈uuT,Lt〉
]
≤ L

∗
T be the expected

loss of the optimal comparator, and let L̂T = E
[∑T

t=1 `t
]

be the algorithm’s expected cumulative
loss. By Theorem 3 (using `2t ≤ `t):

regretT = L̂T − L∗T ≤
d log T

η
+ η(d2 + 1)L̂T + 2

which can be reordered to imply the bound for η < 1/(d2 + 1):

(1− η(d2 + 1))regretT ≤
d log T

η
+ η(d2 + 1)L

∗
T + 2

Thus, if L∗T ≥ 16d3 log T , we can set η =
√

log T

dL
∗
T

≤ 1
2(d2+1)

and obtain the bound

regretT ≤ 6d3/2
√
L
∗
T log T + 2

Otherwise, we can set η = 1/(2(d2 + 1)) and get

regretT ≤ 24d3 log T + 4.

A.7. The proof of Theorem 8

In this section, we provide the proof of our lower bound presented in Theorem 8. Our overall proof
strategy is based on the classical recipe for proving worst-case lower bounds in bandit problems—
see, e.g., Theorem 5.1 in Auer et al. (2002) or Theorem 6.11 in Cesa-Bianchi and Lugosi (2006).
Specifically, we will construct a stochastic adversary and show a lower bound on the regret of any
deterministic learning algorithm on this instance, which implies a lower bound on randomized al-
gorithms on any problem instance by Yao’s minimax principle (Yao, 1977). The lower bound for
deterministic strategies will be proven using classic information-theoretic arguments. The adver-
sary’s strategy will be to draw u ∈ Rd uniformly at random from the unit sphere before the first
round of the game, and play with loss matrices of the form

Lt = ZtI − εuuT,
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where Zt ∼ N(0, 1) and ε ∈ [0, 1] is a tuning parameter that will be chosen later. An important
feature of this construction is that it keeps the signal-to-noise ratio small by correlating the losses
of each action through the global loss Zt suffered by each action. This technique is inspired by the
work of Cohen et al. (2017), and is crucially important for obtaining a linear scaling with d in our
lower bound.

Note that spectral norm of Lt is not bounded, but has sub-Gaussian tails. This, however, comes
(almost) without loss of generality: by Theorem 7 from Shamir (2015) the lower bound for such
sub-Gaussian losses can be converted into a lower bound on the bounded losses at a cost of mere√

log T .
Define Eu [·] = E [ ·|u] as the expectation conditioned on u and E0 [·] as the total expectation

when ε = 0. Observe that we have Eu [Lt] = −εuuT, so we can bound the loss of the comparator
as

E

[
inf

U : tr(U)=1

T∑
t=1

tr(ULt)

]
≤ E

[
Eu

[
T∑
t=1

tr(uuTLt)

]]
= −εT,

where we defined Eu [·] = E [ ·|u] as the expectation conditioned on u. On the other hand, the
expected loss of the learner is given by

E

[
T∑
t=1

tr(wtw
T
tLt)

]
= −εE

[
Eu

[
T∑
t=1

tr(wtw
T
tuu

T)

]]
,

so the regret can be lower-bounded as

regretT ≥ εT − εE

[
Eu

[
T∑
t=1

tr(wtw
T
tuu

T)

]]
.

Now note that

E

[
E0

[
T∑
t=1

tr(wtw
T
tuu

T)

]]
= E0

[
T∑
t=1

tr(wtw
T
tE [uuT])

]
= E0

[
T∑
t=1

tr

(
wtw

T
t

I

d

)]
=
T

d
,

where we used the fact that u is independent of w1, . . . ,wT when ε = 0, and that E [uuT] = I
d

when u is uniformly distributed over the unit sphere. Thus, the regret can be rewritten as

regretT ≥ εT
(

1− 1

d

)
− εE

[
Eu

[
T∑
t=1

tr(wtw
T
tuu

T)

]
− E0

[
T∑
t=1

tr(wtw
T
tuu

T)

]
︸ ︷︷ ︸

=∆u

]
,

which leaves us with the problem of upper-bounding ∆u.
To this end, let `T = (`1, . . . , `T ) be the sequence of losses generated by the deterministic

strategy, and let pu(`T ) denote the density of `T conditionally on u. Notice that wt is completely
determined by gt−1. Furthermore, let p0(gT ) denote the corresponding density of `T when ε = 0,
implying that Lt = ZtI for all t. Defining F (gT ) =

∑T
t=1 tr(wtw

T
tuu

T), we can write ∆u as

∆u =

∫
F (`T )

(
pu(`T )− p0(`T )

)
d`T ≤

∫
pu(`T )≥p0(`T )

F (`T )
(
pu(`T )− p0(`T )

)
d`T

≤ T
∫
pu(`T )≥p0(`T )

(
pu(`T )− p0(`T )

)
d`T ≤ TDTV(p0‖pu) ≤ T

√
1

2
DKL(p0‖pu),
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where DTV(·‖·) and DKL(·‖·) denote, respectively, the total variation distance and the Kullback-
Leibler (KL) divergence between two distributions, and the last step uses Pinsker’s inequality, while
the second inequality uses F (gT ) =

∑
t(w

T
tu)2 ≤ T . By the chain rule for the KL divergence, we

have

DKL(p0‖pu) =

T∑
t=1

E0

[
DKL

(
p0(`t|`t−1)

∥∥pu(`t|`t−1)
)]

Now, the loss in round t can be written as `t = wT
tLtwt. By the definition of Lt, the conditional

distribution of `t is Gaussian with unit variance under both pu and p0: `t = Zt − ε(wT
tu)2 ∼

N(−ε(wT
tu)2, 1) under pu and `t = Zt ∼ N(0, 1) under p0. Thus, the conditional KL divergence

between the two distributions can be written as

DKL

(
p0(gt|gt−1)

∥∥pu(gt|gt−1)
)

=
1

2
ε2(wT

tu)4,

which implies

∆u ≤
T

2
ε

√√√√ T∑
t=1

E0 [(wT
tu)4].

In order to bound E [∆u], we use Jensen’s inequality E
[√
·
]
≤
√
E [·] to write

E [∆u] ≤ T

2
ε

√√√√ T∑
t=1

E [E0 [(wT
tu)4]] =

T

2
ε

√√√√ T∑
t=1

E0 [E [(wT
tu)4]],

where in the last step we swapped the order of expectations as u is independent of `1, . . . , `T under
p0. Since u is distributed uniformly over the unit sphere, (wT

tu) has the same distribution as u1.
Using the fact that u2

1 ∼ Beta
(

1
2 ,

d−1
2

)
(Devroye, 1986), this implies:

E
[
(wT

tu)4
]

= E
[
u4

1

]
=

3

d(d+ 2)
,

Thus, we arrive to the bound

E [∆u] ≤ T

2
ε

√
T

3

d(d+ 2)
≤ T 3/2

d
ε,

which, put together with the previous calculations, eventually gives

regretT ≥ εT
(

1− 1

d

)
− ε2T

3/2

d
.

Bounding 1 − 1
d ≥

1
2 and setting ε = dT−1/2/4 gives regretT = Ω(d

√
T ), which by aforemen-

tioned Theorem 7 from Shamir (2015) implies the claim in the theorem.
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Appendix B. Efficient implementation of the update

In this section, we give details on the efficient implementation of the mirror descent update (1):

(update step) W̃ t+1 = argmin
W

{
DR(W ‖W t) + η tr(WL̃t)

}
,

(projection step) W t+1 = argmin
W∈W

DR(W ‖W̃ t+1),

with the Bregman divergence induced by the negative log-determinant regularizer:

DR(W ‖U) = tr(U−1W )− log
det(W )

det(U)
− d

As we will show, the algorithm runs in time Õ(d) per trial for sparse sampling method, and in time
Õ(d3) for dense sampling method. In what follows, we assume that the eigenvalue decomposition
W t =

∑
i µiuiu

T
i is given at the beginning of trial t, where {ui}di=1 are the eigenvectors, and

{λi}di=1 are the eigenvalues ofW t (sorted in a decreasing order), and we dropped the trial index for
the sake of clarity. The eigenvalues ofW t then get mixed with a uniform distribution:

λi = (1− γ)µi + γ
1

d
, i = 1, . . . , d

(with γ = 0 for dense sampling) and are used to sample the action of the algorithm.

B.1. The update step

We have shown in Section 4 that the unprojected solution is given by (2):

W̃ t+1 = W
1/2
t (I + ηBt)

−1W
1/2
t , where Bt = W

1/2
t L̃tW

1/2
t .

Sparse sampling. Two indices I, J ∈ {1, . . . , d} are independently sampled from the same dis-
tribution satisfying P [J = i] = P [I = i] = λi (which takes negligible O(log d) time).

When I = J , the algorithm plays with w = uI , receives `t, and the loss estimate is given by
L̃ = `

λ2I
uIu

T
I . As uI is one of the eigenvectors ofW t, we obtainBt = `t

µI
λ2I
uIu

T
I . This means that

W t and I + ηBt commute so that W̃ t+1 has the same eigensystem as W t and it only amounts to
computing the eigenvalues (µ′1, . . . , µ

′
d) of W̃ t+1, which are given by:

µ′i =

{
µi for i 6= I,

1
1+η`tµI/λ

2
I
µI for i = I.

As the eigenvectors do not change, and only one eigenvalue is updated, the eigendecomposition of
W̃ t+1 is updated in time O(1).

When I 6= J , the algorithm plays with w = 1√
2
(uI + suJ), where s ∈ {−1, 1} is a random

sign. The loss estimate is L̃ = s`
2λIλJ

(uIu
T
J +uJu

T
I), which givesBt =

√
µIµJs`
2λIλJ

(uIu
T
J +uJu

T
I).

To simplify notation, we denote:

I + ηBt = I + β(uIu
T
J + uJu

T
I), where β =

η
√
µIµJs`

2λIλJ
.
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Due to rank-two representation of Bt, which involves only two eigenvectors of W t, the eigenvec-
tors and eigenvalues of W̃ t+1 will be the same as for W t, except for those associated with the
drawn indices I and J . Specifically, it can be verified by a direct computation that the inverse of
I + ηBt is given by:

(I + β(uIu
T
J + uJu

T
I))
−1

= I +
β2

1− β2
(uIu

T
I + uJu

T
J)− β

1− β2
(uIu

T
J + uJu

T
I).

Multiplying the above from both sides byW 1/2
t gives:

W̃ t+1 = W t +
β2

1− β2
(µIuIu

T
I + µJuJu

T
J)−

β
√
µIµJ

1− β2
(uIu

T
J + uJu

T
I)

=
∑

i/∈{I,J}

µiuiu
T
i +

1

1− β2

(
µIuIu

T
I + µJuJu

T
J − β

√
µIµJ(uIu

T
J + uJu

T
I)
)
.

As the term in parentheses on the right-hand side only concerns the subspace spanned by uI and
uJ , W̃ t+1 has eigendecomposition W̃ t+1 =

∑
i/∈{I,J} µiuiu

>
i +µ+u1u

T
+ +µ−u−u

T
−, where u+

and u− are linear combinations of uI and uJ . Specifically:

µ± =
µI + µJ ±

√
(µI − µJ)2 + 4µIµJβ2

2(1− β2)
,

u± =
−β√µIµJuI + (µ±(1− β2)− µI)uJ√

β2µIµJ + (µ±(1− β2)− µI)2
.

Thus, we only need to update two eigenvalues and their corresponding eigenvectors, which can be
done in O(d).

Dense sampling. For the “on-diagonal” sampling, Bt = 2`tuiu
T
i , where ui is one of the eigen-

vectors ofW t. This means thatW t and I+ηBt commute so that W̃ t+1 has the same eigensystem
as W t and it only amounts to computing the eigenvalues (λ′1, . . . , λ

′
d) of W̃ t+1, which are given

by:

λ′j =

{
λj for j 6= i

1
1+2η`t

λi for j = i

For the “off-diagonal” sampling, we have Bt = `t(vtv
T
t − I) where vt =

∑d
i=1 siui. Using

Sherman-Morrison formula we can invert I + ηBt = I(1− η`t) + η`tvtv
T
t to get:

W̃ t+1 =
1

1− η`t
W

1/2
t

(
I − η`tvtv

T
t

1 + η(d− 1)`t

)
W

1/2
t ,

where we used vT
tvt = ‖vt‖2 = d. To calculate the eigendecomposition of W̃ t+1, we rewrite the

expression above as:

W̃ t+1 =
1

1− η`t
U

(
Λ− η`tṽtṽ

T

t

1 + η(d− 1)`t︸ ︷︷ ︸
A

)
UT,
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where U = [u1, . . . ,ud] stores the eigenvectors of W t as columns, Λ = diag(λ1, . . . , λd), and
ṽt =

∑d
i=1 siλ

1/2
i ei, with ei being the i-th unit vector (with i-th coordinate equal to 1 and re-

maining coordinates equal to 0). Thus, we first calculate the eigendecomposition of A, and then
multiply the resulting eigenvectors by U to get the eigendecomposition of W̃ t+1. We note that A
is a rank-one update of the diagonal matrix, which eigendecomposition can be calculated in O(d2)
(Gu and Eisenstat, 1994). However, the multiplication of eigenvectors ofA by U still takes O(d3),
which is also the dominating cost of the whole update with dense sampling.

B.2. The projection step

The projection step reduces to solving:

W t = argmin
W∈W

tr
(
W̃
−1

t+1W
)
− log det(W ). (8)

We first argue that W t and W̃ t+1 have the same eigenvectors, and the projection only affects the
eigenvalues. Note that det(W ) only depends on the eigenvalues of W and not on its eigenvec-
tors. Furthermore, for any symmetric matrices A and B, tr(AB) ≥

∑d
i=1 λd−i(A)λi(B), where

λi(A), λi(B) denote the eigenvalues of A and B, respectively, sorted in a decreasing order (Bern-
stein, 2009, Fact 5.12.4). This means that if we let ν = (ν1, . . . , νd) and µ = (µ1, . . . , µd) denote

the eigenvalues of W̃ t+1 and W , respectively, sorted in a decreasing order, then tr(W̃
−1

t+1W ) ≥∑d
i=1 ν

−1
i µi, with the equality if and only if the eigenvectors of W̃ t+1 andW−1 are the same. This

means that if we fix the eigenvalues of W , then the right-hand side of (8) is minimized by W̃ t+1

andW t sharing their eigenvectors.
Thus, the projection can be reduced to finding the eigenvalues µ ofW t:

µ = argmin
µ∈M

d∑
i=1

µi
νi
− logµi, M = {µ : µ1 ≥ µ2 ≥ . . . ≥ µ1 ≥ 0,

∑
i

µi = 1}

In fact, the first constraint inM is redundant, as the positivity of µi is implied by the domain of the
logarithmic function, and if µi < µi+1 for any i such that νi > νi+1, then it is straightforward to
see that swapping the values of µi and µi+1 decreases the objective function. Taking the derivative
of the right-hand side and incorporating the constraint

∑
i µi = 1 by introducing the Lagrange

multiplier θ gives for any i = 1, . . . , d:

ν−1
i − µ

−1
i + θ = 0 =⇒ µi =

1

ν−1
i + θ

The value of θ satisfying
∑

i µi = 1 can now be easily obtained by a root-find algorithm, e.g., by
the Newton method (alternatively, we can cast the problem as one-dimensional minimization of a
convex function f(θ) = −

∑
i log(µ−1

i + θ) − θ). As the time complexity of a single iteration is
O(d) and the number of iterations required to achieve error of order ε is at mostO(log ε−1), the total
runtime is O(d log ε−1). Since the errors may generally accumulate over time we need to set ε−1

to scale polynomially with T (so that the total error at the end of the game will still be negligible),
which means that the runtime is of order O(d log T ) = Õ(d).
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Appendix C. Matrix Hedge and Tsallis regularizers

In this section we explain some technical difficulties that we faced while attempting to analyze
variants of our algorithm based on the regularization functions most commonly used in multi-armed
bandit problems: Tsallis entropies and the Shannon entropy (known as the quantum entropy function
in the matrix case). This section is not to be regarded as a counterexample against any of these
algorithms, but rather a summary of semi-formal arguments suggesting that the algorithms derived
from these regularization functions may fail to give near-optimal performance guarantees. In fact,
we believe that obstacles we outline here might be impossible to overcome.

Matrix Hedge. Consider the online mirror descent algorithm (1) equipped with the quantum
negative entropy regularizer R(U) = tr(U logU) and any unbiased loss estimate L̂t satisfying
|ηL̃t| = O(1) (which can be achieved by an appropriate amount of forced exploration, without loss
of generality). This corresponds to a straightforward bandit variant of the algorithm known as Ma-
trix Hedge (MH) (Tsuda et al., 2005; Arora et al., 2005; Warmuth and Kuzmin, 2008). Following
standard derivations (e.g., by Hazan et al., 2017), one can easily show an upper bound on the regret
of the form

regretT ≤
ln d

η
+ c1η

T∑
t=1

E
[
tr
(
W tL̃

2

t

)]
+ c2,

for some constants c1 and c2. What is thus left is to bound the “variance” terms E
[
tr
(
W tL̃

2

t

)]
by

a (possibly dimension-dependent) constant for all t, and tune the learning rate appropriately. While
this is easily accomplished in the standard multi-armed bandit setup by exploiting the properties of
importance-weighted loss estimates, controlling this term becomes much harder in the matrix case.

We formally show below that the variance term described above cannot be upper bounded by
any constant for any natural choice of unbiased loss estimator. In what follows, we drop the time
index t for the sake of clarity. We assume the loss estimate has a general form L̃ = `H , where ` =
〈L,wwT〉 is the observed loss andH is some matrix that does not depend on ` (but will depend on
the actionwwT of the learner). Notably, this class of loss estimators include all known unbiased loss
estimators for linear bandits. We will show that when L � αI , then E

[
tr
(
WL̃

2
)]
≥ c

λmin(W ) ,
where α and c are some positive constants, and λmin(W ) is the smallest eigenvalue of W . This
clearly implies that one cannot upper bound the variance terms by a constant, since there is no way
in general to lower bound λmin(W ) by a constant independent of T .

To make the analysis as simple as possible, consider the case d = 2 and (without loss of gen-
erality) assume W = diag(λ1, λ2). Let w = (w1, w2) be the action of the algorithm. Since
E [wwT] = W we have:

E
[
w2

1

]
= λ1, E

[
w2

2

]
= λ2.

Furthermore the observed loss is given by:

` = tr(wwTL) = wTLw = w2
1L11 + w2

2L22 + w1w2L12,

where Lij are the entries of L. The condition E
[
L̃
]

= L thus implies:

E
[
(w2

1L11 + 2w1w2L12 + w2
2L22)H12

]
= L12,

where H12 is the off-diagonal entry of H . The right-hand side of the above does not depend on
L11 and L22, and since these numbers can be arbitrarily chosen by the adversary, the left-hand side
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cannot depend on them either. This means that E
[
w2

1H12

]
= E

[
w2

2H12

]
= 0, and E [w1w2H12] =

1
2 . From the last expression we get:

1

2
= E [w1w2H12] ≤

√
E
[
w2

1w
2
2

]√
E
[
H2

12

]
=⇒ E

[
H2

12

]
≥ 1

4E
[
w2

1w
2
2

] ≥ 1

4 min{λ1, λ2}

where the inequality on the left is Cauchy–Schwarz, while the inequality on the right uses

E
[
w2

1w
2
2

]
≤ E

[
w2

1

]
= λ1, E

[
w2

1w
2
2

]
≤ E

[
w2

2

]
= λ2.

From the assumption L � αI we have ` ≥ α, which gives

E
[
tr(WL̃

2
)
]

= E
[
tr(W `2H2)

]
≥ α2E

[
tr(WH2)

]
.

Since

WH2 =

[
λ1 0
0 λ2

] [
H11 H12

H12 H22

] [
H11 H12

H12 H22

]
=

[
λ1(H2

11 +H2
12) λ1(H11H12 +H12H22)

λ2(H11H12 +H12H22) λ2(H2
22 +H2

12)

]
,

this implies

E
[
tr(WH2)

]
= λ1E

[
H2

11

]
+ λ2E

[
H2

22

]
+ E

[
H2

12

]
≥ E

[
H2

12

]
≥ 1

4 min{λ1, λ2}
,

and therefore E
[
tr(WL̃

2
)
]
≥ γ2

4λmin(W ) .

Tsallis regularizers. A similar analysis can be done for the case of matrix Tsallis regularizers
R(U) = − tr(Uα) with α ∈ (0, 1), which are related to Tsallis entropy (Abernethy et al., 2015;
Allen-Zhu et al., 2015; Allen-Zhu et al., 2017). In this case the variance term tr(W tL̃

2

t ) in Matrix
Hedge can be replaced by the squared local norms of the losses (Shalev-Shwartz, 2011; Lattimore
and Szepesvári, 2019; Hazan, 2015), defined as ∇−2R(W t)[L̃t, L̃t]. where ∇−2R is the inverse
Hessian of the regularizer. As the Tsallis regularizer is a symmetric spectral function, one can get a
closed-form expression for the quadratic form of its Hessian Lewis and Sendov (2002). Employing
convex duality (by identifying ∇−2R with ∇2R∗, where R∗ is the convex conjugate of R), and
lower bounding, one arrives at the following simple bound on the local norm:

∇−2R(W t)[L̃t, L̃t] ≥ c tr(W tL̃tW
1−α
t L̃t).

It is known that the negative entropy is the α → 1 limit of (properly normalized) Tsallis reg-
ularizer, while the α → 0 limit is the log-determinant regularizer. Interestingly, the expression
above indeed turns into the MH variance term tr(W tL̃

2

t ) for α = 1, and to the term tr(B2
t ) with

Bt = W
1/2
t L̃tW

1/2
t for α = 0, which we encountered in our proofs (compare with (3) for η → 0).

One can repeat the same arguments as in the case of the MH variance term to obtain the lower
bound

Et
[
tr(W tL̃tW

1−α
t L̃t)

]
≥ c

(λmin(W t))
α ,
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as long as the loss estimate is unbiased and has the same general form as in the MH case. This
suggests that the only way to control these local norms is to take α = 0, resulting in the log-
determinant regularizer that we use in our main algorithms in the present paper.

We would like to stress one more time that the above arguments do not constitute a lower bound
on the performance of these algorithms; we merely lower-bound the terms from which all known
upper bounds are derived for linear bandit problems. At best, this suggests that significantly new
techniques are required to prove positive results about these algorithms. We ourselves are, however,
more pessimistic and believe that these algorithms cannot provide regret guarantees of optimal order.

31


	Introduction
	Related work

	Preliminaries
	Algorithms and main results
	Dense sampling
	Sparse sampling
	Upper bounds on the regret
	Lower bound on the regret

	Analysis
	Computational cost

	Discussion
	Ommitted proofs
	The proof of Lemma 1
	The proof of Lemma 2
	The proof of Lemma 9
	The proof of Lemma 10
	The proof of Lemma 11
	The proof of Corollary 5
	The proof of Theorem 8

	Efficient implementation of the update
	The update step
	The projection step

	Matrix Hedge and Tsallis regularizers

