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Abstract
Given a vector of probability distributions, or arms, each of which can be sampled independently,
we consider the problem of identifying the partition to which this vector belongs from a finitely
partitioned universe of such vector of distributions. We study this as a pure exploration problem
in multi-armed bandit settings and develop sample complexity bounds on the total mean number
of samples required for identifying the correct partition with high probability. This framework
subsumes well studied problems such as finding the best arm or the best few arms. We consider
distributions belonging to the single parameter exponential family and primarily consider partitions
where the vector of means of arms lie either in a given set or its complement. The sets considered
correspond to distributions where there exists a mean above a specified threshold, where the set is
a half space and where either the set or its complement is a polytope, or more generally, a convex
set. In these settings, we characterize the lower bounds on mean number of samples for each arm
highlighting their dependence on the problem geometry. Further, inspired by the lower bounds,
we propose algorithms that can match these bounds asymptotically with decreasing probability of
error. Applications of this framework may be diverse. We briefly discuss a few associated with
simulation in finance.
Keywords: multi-armed bandits, best arm identification, pure exploration, partition identification

1. Introduction

Suppose that Q denotes a collection of vectors ν = (ν1, . . . , νK) where each νi is a probability
distribution on R. Further, Q = ∪m

i=1Ai where the component sets Ai are disjoint, and thus
partition Q. In this set-up, given µ = (µ1, . . . , µK) ∈ Q, we consider the problem of identifying
the correct component Ai that contains µ. The distributions (µi : i ≤ K) are not known to us,
however, it is possible to generate independent samples from each µi. We call this the partition
identification or PI problem.

We consider algorithms that sequentially and adaptively generate samples from each distribution
in µ and then after generating finitely many samples, stop and announce a component of Q that is
inferred to contain µ. Specifically, we study the δ-correct algorithms in the P I framework.

Definition 1 An algorithm is said to be δ-correct for the PI problem Q = ∪m
i=1Ai, if, for ev-

ery µ ∈ Q, for any specified δ ∈ (0, 1), it restricts the probability of announcing an incorrect
component to at most δ.
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More generally, in similar sequential decision making problems, algorithms are said to provide
δ-correct guarantees if the probability of incorrect decision is bounded from above by δ for each
δ ∈ (0, 1).

In multi-armed bandit (MAB) literature, for any ν ∈ Q, generating a sample from distribution
νi is referred to as sampling from, or pulling, an arm i. The PI framework is quite general and
captures popular pure exploration problems studied in the MAB literature. For instance, the problem
of finding the best arm, that is, the arm with the highest mean, is well studied and fits PI framework
(see, e.g., in learning theory Garivier and Kaufmann (2016), Kaufmann et al. (2016), Russo (2016),
Jamieson et al. (2014), Bubeck et al. (2011), Audibert and Bubeck (2010), Even-Dar et al. (2006),
Mannor and Tsitsiklis (2004); in earlier statistics literature - Jennison et al. (1982), Bechhofer et al.
(1968), Paulson et al. (1964); in simulation theory literature - Glynn and Juneja (2004), Kim and
Nelson (2001), Chen et al. (2000), Dai (1996), Ho et al. (1992)).

More generally, identifying r arms (for some r < K) with the the largest r means amongst K
distributions also is a PI problem ( see, e.g., Kaufmann and Kalyanakrishnan (2013), Kalyanakr-
ishnan et al. (2012)).

Sample complexity of an algorithm is defined as the expected total number of arms pulled by
the algorithm before it terminates. Further, δ-correct guarantees provided by algorithms impose
constraints on expected number of times each arm must be pulled. These constraints are made
explicit using the ‘transportation inequality’ developed by Garivier and Kaufmann (2016). (Their
work in turn is built upon ‘change of measure’ based earlier analysis that goes back at least to Lai
and Robbins (1985). See also Mannor and Tsitsiklis (2004), Burnetas and Katehakis (1996)). The
transportation inequality allows us to formulate the problem of arriving at efficient lower bounds on
sample complexity in the PI framework as an optimization problem - a linear program with in-
finitely many constraints; this also has an equivalent max-min formulation. We refer to the resulting
optimization problem as the lower bound problem.

The advantage of PI framework is that it provides a unified approach to tackle a large class
of problems, both in developing efficient lower bounds on the sample complexity of δ-correct algo-
rithms, as well as in arriving at δ-correct algorithms with sample complexity that asymptotically (as
δ→ 0) matches the developed lower bounds under certain distributional restrictions on the arms.

To further analyze the lower bound problem, we assume that each arm distribution belongs to a
single parameter exponential family (SPEF). See, e.g., Cappé et al. (2013), Garivier and Kaufmann
(2016), Kaufmann et al. (2016), where similar distributional restrictions are imposed (see Glynn and
Juneja (2018) for need for distributional restrictions). Examples of SPEF distributions include Bi-
nomial, Poisson, Gaussian with known variance, Gamma with known shape parameter. See, Cappé
et al. (2013) for an elaborate discussion on SPEF distributions. Any member of SPEF distribution
can be uniquely represented by its mean. This allows us to consider the partition problem in the
parameter space (i.e.,Q ⊂ RK) instead of the distribution space. This further allows us to highlight
the geometrical structure of the lower bound problem in a relatively simple manner.

We solve the lower bound problem for SPEF distributions, so that Q ⊂ RK. Our focus is
primarily on Q = A1 ∪A2, where we consider the following settings:

Threshold crossing problem: For a threshold u ∈ R, A1 = {ν ∈ RK : maxi≤K νi > u} and
A2 = {ν ∈ RK : maxi≤K νi < u}, we explicitly solve the lower bound problem for each µ ∈ Q.
We refer to this as the threshold crossing problem, and point to the elegant asymmetry in the lower
bounds depending upon whether µ ∈ A1 or µ ∈ A2. This problem was also analysed in-depth
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in Kaufmann et al. (2018). In Appendix A, we briefly discuss how this problem arises naturally in
financial portfolio risk measurement involving nested simulations.
Half-space problem: For specified (a1, . . . , aK, b) ∈ RK+1, A1 = {ν ∈ RK : ∑K

i=1 aiνi > b} and
A2 = {ν ∈ RK : ∑K

i=1 aiνi < b}, we characterize the solution to the lower bound problem for each
µ ∈ Q.
Convex set problem: When A2 is a closed convex set and A1 is its complement in RK, we
characterize the solution to the lower bound problem for each µ ∈ A1. We also do this for µ ∈ A1
whenA1 is a polytope, andA2, a complement ofA1, is a union of half-spaces. In these settings we
highlight the geometric structure of the problem and propose geometry based simple algorithms to
compute the lower bound solutions. Further, we use the duality approach (through Sion’s Minimax
Theorem) to considerably simplify our analysis.

Applications of the half-space and the convex set problem are many. These include identify-
ing acceptable combination of projects in capital budgeting where samples of profitability from
each project is a random output of a simulation model, and there may be constraints on the over-
all expected profitability from the selected projects as well as on minimum expected profitability
from each project. Applications also include selecting financial assets in an investments portfolio
with similar constraints on expected portfolio returns, and on minimum expected returns from each
security.

Garivier and Kaufmann (2016) solve the lower bound problem in the best arm setting. They
further use the solution to arrive at an adaptive δ-correct algorithm whose stopping rule is based on
the generalized likelihood ratio test earlier proposed in Chernoff (1959). Also, see Albert (1961).
The sample complexity of their proposed algorithm is shown to asymptotically match the lower
bound solution (as δ → 0). Under mild conditions, we show that the solution to the PI lower
bound problem is a continuous function of the underlying expectation of arms (see Lemma 13).
This allows us to adapt their algorithm to the PI setting, to again arrive at an adaptive δ-correct
algorithm whose sample complexity asymptotically matches the corresponding lower bound.

The PI framework was also considered in Chernoff (1959) whereQ was restricted to be finite.
Albert (1961) generalized this work to allow forQ with infinite elements. The key difference of our
paper compared to these references is that we work in a δ-correct framework that provides explicit
error guarantees. Their work involves guarantees with constants that are not explicitly available.
Further, as mentioned earlier, we use duality methods, and exploit the geometry of the solution to
the lower bound problem to solve it efficiently. These issues are not considered in Chernoff (1959)
and Albert (1961).
Roadmap: In Section 2, we state the transportation inequality from Kaufmann et al. (2016) and
state the resultant lower bound problem inPI framework as an optimization problem. We also spell
out preliminaries such as SPEF distributions and related assumptions in this section. In Section 3,
we characterize the solution to the lower bound problem for various special cases of partition of Q
into disjoint setsA1 andA2. For the threshold crossing problem (Section 3.1), we give a closed form
expression for the solution to the lower bound problem. For the half-space problem (Section 3.2), we
give a simple characterization of the solution that allows for easy numerical evaluation. Similarly,
for the problem whereQ is partitioned into a convex set and its complement, we derive some useful
properties of the solution to the lower bound problem (Sections 3.3, 3.4). In Section 4, we propose a
δ-correct algorithm that in substantial generality achieves the derived lower bounds asymptotically
as δ decreases to zero. The detailed proofs are given in the appendices.
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2. Preliminaries and basic optimization problem

Recall that Q denotes a collection of vectors ν = (ν1, . . . , νK) where each νi is a probability
distribution in R. Further, Q = ∪m

i=1Ai where the Ai are disjoint, and thus partition Q.
Let KL(µi||νi) =

∫
log( dµi

dνi
(x))dµi(x) denote the Kullback-Leibler divergence between dis-

tributions µi and νi. We further assume that for each ν, ν̃ ∈ Q, the components νi and ν̃i for each i
are mutually absolutely continuous. For p, q ∈ (0, 1), let

d(p, q) := p log
(

p
q

)
+ (1− p) log

(
1− p
1− q

)
,

that is, d(p, q) denotes the KL-divergence between Bernoulli distributions with mean p and q, re-
spectively. For any set B, let Bc denote its complement, Bo its interior, B̄ its closure and ∂B its
boundary.

Under a δ-PAC algorithm, and for µ ∈ Aj, the following transportation inequality follows from
Kaufmann et al. (2016):

K

∑
i=1

EµNi KL(µi||νi) ≥ d(δ, 1− δ) ≥ log
(

1
2.4δ

)
(1)

for any ν ∈ Ac
j , where Ni denotes the number of times arm i is pulled by the algorithm. Taking

ti = EµNi/ log( 1
2.4δ ), our lower bound on sample complexity problem can be modelled as the

following convex programming problem, when µ ∈ Aj (call it O1):

min
t=(t1,...,tK)

∑K
i=1 ti

s.t. inf
ν∈Ac

j

K

∑
i=1

tiKL(µi||νi) ≥ 1, ti ≥ 0 ∀i.

Letting wi =
ti

∑j tj
and PK , {w ∈ Rk : wi ≥ 0 ∀i, ∑K

i=1 wi = 1} denote the K-dimensional
probability simplex, O1 maybe equivalently stated as

max
w∈PK

inf
ν∈Ac

j

K

∑
i=1

wiKL(µi||νi). (Problem LB)

Let C∗(µ) be the optimal value of the above problem. The lower bound on the total expected
number of samples is then given by log( 1

2.4δ )T
∗(µ) where T∗(µ) = 1/C∗(µ).

Remark 2 While the optimization problem O1 is equivalent to Problem LB, one advantage of the
former is that it can be viewed as a linear program with infinitely many constraints, or a semi-infinite
linear program (see, e.g., López and Still (2007)). Then linear programming duality provides a great
deal of insight into the solution structure. However, we instead present our analysis using the max-
min Problem LB, since Sion’s minimax theorem can be applied on it to directly arrive at the solution.

Single Parameter Exponential Families (SPEF): In the remaining paper, we consider SPEF of
distributions for each arm. For each 1 ≤ i ≤ K, let ρi denote a reference measure on the real
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line, and let Λi(η) , log
(∫

x∈R
exp(ηx)dρi(x)

)
. Λi is referred to as a cumulant or a log-partition

function. Further, set Di , {η : Λi(η) < ∞}.
An SPEF distribution for arm i and η ∈ Di, pi,η , has the form dpi,η(x) = exp(ηx−Λi(η))dρi(x).

Note that Λi is C∞ in Do
i (see, e.g., 2.2.24 Dembo and Zeitouni (2011)). Further, Λi(η) is a convex

function of η ∈ Do
i , and if the underlying distribution is non-degenerate, then it is strictly convex.

Let Λ∗i denote the Legendre-Fenchel transform of Λi, that is, Λ∗i (θ) = supη∈Di
(ηθ −Λi(η)).

Further, let µi denote the mean under pi,ηi . Then, µi = Λ′i(ηi) for ηi ∈ Do
i . In particular, µi is

a strictly increasing function of ηi, and there is a one-to-one mapping between the two. Below we
suppress the notational dependence of µi on ηi and vice-versa.

Let Ui , {Λ′i(ηi), ηi ∈ Do
i }. Since Λ′i(ηi) is strictly increasing for ηi ∈ Do

i , Ui is an open
interval, and sans the boundary cases, denotes the value of means attainable for arm i. For ηi ∈ Do

i ,
the following are well known and easily checked: ηi = Λ∗i

′(µi), and

Λ∗i (µi) + Λi(ηi) = µiηi. (2)

For ηi, βi ∈ Do
i , It is easily seen that KL(pi,ηi ||pi,βi) = Λi(βi) − Λi(ηi) − µi(βi − ηi), where

again µi = Λ′i(ηi). We denote the above by Ki(µi|νi) with νi = Λ′i(βi) emphasizing that when the
two distributions are from the same SPEF, Kullback-Leibler divergence only depends on the mean
values of the distributions. Using (2), we have

Ki(µi|νi) = Λ∗i (µi)−Λ∗i (νi)− βi(µi − νi), (3)

where βi = Λ∗i
′(νi). Again, it can be shown that Λ∗i is C∞ in Ui (see, 2.2.24 Dembo and Zeitouni

(2011)), and it is strictly convex if Λi is strictly convex. Thus, Ki is C∞ in Ui with respect to each
of its arguments.

In the remaining paper, Problem LB refers to

max
w∈PK

inf
ν∈Ac

j

K

∑
i=1

wiKL(µi|νi), (4)

each Ak a subset of RK, and again µ ∈ Aj.

Remark 3 For any w ∈ PK, the sub-problem in LB, infν∈Ac
j
∑K

i=1 wiKL(µi|νi), has an elegant
geometrical interpretation. For c > 0, consider the sublevel set

S(µ, w, c) ,

{
ν :

K

∑
i=1

wiKL(µi|νi) ≤ c

}
.

Then, for element-wise strictly positive w, S(µ, w, 0) = {µ}. The set S(µ, w, c) for some c > 0
intersects with Ac

j . Further, the set shrinks as c reduces. We are looking for the smallest c = c∗ for
which S(µ, w, c) has a non-empty intersection with Āc

j . Equivalently, we are looking for the first
c > 0 for which the set grows beyond the interior of Aj and intersects with Āc

j . Thus,

inf
ν∈Āc

j

K

∑
i=1

wiKL(µi|νi) = inf{c : S(µ, w, c) ∩ Āc
j 6= ∅}.
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a1⌫1 + a2⌫2 = b

⌫1

⌫2

A1c

(µ1, µ2) = (0, 0)

w1
⌫2
1

2
+ w2

⌫2
2

2
= c

Figure 1: Geometrical view of the sub-problem in LB. Two arms with standard Gaussian distribu-
tion. A1 is a half-space in R2, and µ = (0, 0) ∈ A1.

Figure 1 demonstrates this in a simple setting of two arms. Arm i, for i = 1, 2, is Gaussian dis-
tributed with mean µi = 0 and variance 1. A1 = {(ν1, ν2) ∈ R2 : a1ν1 + a2ν2 < b} for

a1, a2, b > 0, and it contains (µ1, µ2) = (0, 0). KL(µi|νi) =
ν2

i
2 for i = 1, 2. The convex set

S(µ, w, c) is tangential to a1ν1 + a2ν2 = b at c = c∗.

Conditions on KL-Divergence: Since Λ∗i is a convex function, we have that Ki is convex in its first
argument. Since Ki(µi|νi) decreases with νi for νi ≤ µi, and it increases with νi for νi ≥ µi, it is a
quasi-convex function of νi. For many known SPEFs, including Bernoulli, Poisson, Gaussian with
known variance and Gamma with known shape parameter, the KL-divergence is also strictly convex
in the second argument. But there are also SPEFs for which it is not convex in the second argument,
e.g., Rayleigh, centered Laplacian and negative Binomial (with number of failures fixed).

Our analysis is substantially simplified when ∑K
i=1 wiKL(µi|νi) is a strictly convex function of

ν. This is ensured by Assumption 1:

Assumption 1 For each i, Do
i is non-empty and Λi(ηi) is strictly convex for ηi ∈ Do

i . Further, for
any µi ∈ Ui, Ki(µi|νi) is a strictly convex function of νi ∈ Ui.

We also make the following assumption to ease some technicalities. This assumption holds for
most distributions encountered in practice.

Assumption 2 For any µi ∈ Ui, Ki(µi|νi)→ ∞ as νi → ∂Ui with νi taking values in Ui.

3. Lower bounds for some PI problems

In this section we explore the structure of Problem LB in a number of settings. In each setting we
specify A1 and A2, and Q is set to A1 ∪A2.

3.1 Threshold crossing problem: Let U =×K
i=1 Ui, A1 = {µ ∈ U : maxi≤K µi > u}, and

A2 = {µ ∈ U : maxi≤K µi < u}.
Theorem 4 below points to an interesting asymmetry that arises in the lower bound problem

associated with threshold crossing as a function µ ∈ Q.
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Theorem 4 Suppose that (u, . . . , u) ∈ U . Consider µ ∈ A1 such that, w.l.o.g., for some i ≥ 1,

µj > u for j = 2, . . . , i, µj < u for i + 1 ≤ j ≤ K,

and K1(µ1|u) > Kj(µj|u) for j = 1, . . . , i. Then, Problem LB has a unique solution given by

w∗1 = 1, and w∗j = 0 for j = 2, . . . , K. (5)

The lower bound on expected total number of samples generated equals 1
K1(µ1|u) × log( 1

2.4δ ).
When µ ∈ A2, Problem LB has a unique solution given by

w∗j ∝ 1/Kj(µj|u), 1 ≤ j ≤ K, (6)

and the lower bound on expected total number of samples generated equals ∑K
j=1

1
Kj(µj|u) × log( 1

2.4δ ).

Intuitive explanation for the lower bound asymmetry in the two cases µ ∈ A1 and µ ∈ A2 is
as follows: When µ ∈ A1, any algorithm has to establish with at least 1− δ probability that there
exists at least one arm above u. The lower bound is then achieved by focussing on the arm that is
most separated from u. That is, arm i with µi > u and with the largest value of Ki(µi|u). On the
other hand, when µ ∈ A2, any algorithm would need to rule that each and every arm has mean less
than u, again while controlling the probability of error for each arm.

In Appendix A, Example 1, we discuss how the threshold crossing problem arises naturally in
nested simulation used in financial portfolio risk measurement.

3.2 Half-space problem: We consider the problem of identifying the half-space to which the
mean vector belongs. Set A1 = {ν ∈ RK ∩ U : ∑K

k=1 akνk < b} and A2 = {ν ∈ RK ∩ U :
∑K

k=1 akνk > b}. W.l.o.g. each ai can be taken to be non-zero and b > 0. Problem LB may be
formulated as: For µ ∈ A1, and non-empty A2,

max
w∈PK

inf
ν∈Ā2

K

∑
j=1

wjKj(µj|νj). (7)

Theorem 5 Under Assumptions 1, 2, and that A2 is non-empty, there is a unique optimal solution
(w∗, ν∗) to Problem LB. Further,

Ki(µi|ν∗i ) = K1(µ1|ν∗1 ) ∀i, (8)

K

∑
k=1

akν∗k = b, (9)

ν∗i > µi if ai > 0, and ν∗i < µi if ai < 0. (10)

Relations (8), (9) and (10) uniquely specify ν∗ ∈ U . Moreover,

w∗i
ai

K′i(µi|ν∗i ) =
w∗1
a1

K′1(µ1|ν∗1 ) ∀i, (11)

where the derivatives are with respect to the second argument.
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The proof details are given in the appendix. Ignoring technicalities, the intuition for (8) follows
from Sion’s Minimax Theorem, which, loosely speaking, implies that (7) equals

inf
ν∈RK∩U :

∑K
k=1 akνk≥b

max
w∈PK

K

∑
j=1

wjKj(µj|νj) = inf
ν∈RK∩U :

∑K
k=1 akνk≥b

max
j

Kj(µj|νj).

Relations (8), (9) and (10) then follow from KKT conditions applied to RHS above. Uniqueness of
ν∗ follows as maxj Kj(µj|νj) is a strictly convex function of ν. Equation (11) corresponds to the
slope matching that occurs as the boundary of the sub-level set associated with w∗ (see Remark 3)
is tangential to the hyperplane ∑K

k=1 akνk = b.
Algorithm to determine ν∗ and w∗: Recall that Ki(µi|νi) equals zero at νi = µi. It strictly
increases with νi for νi ≥ µi and it strictly reduces with νi for νi ≤ µi. Assume w.l.o.g. that a1 > 0,
and for ν1 ≥ µ1, consider the function νi(ν1) = K−1

i (K1(µ1|ν1)) where νi(ν1) ≥ µi if ai > 0, and
νi(ν1) ≤ µi if ai < 0. Now, the function h(ν1) , ∑K

i=1 aiνi(ν1) < b for ν1 = µ1 and it strictly
increases with ν1. Further, observe that as ν1 ↑ u1, νi(ν1) ↑ ui if ai > 0, and νi(ν1) ↓ ui if ai < 0.
Thus, h(ν1) ↑ ∑K

i=1 aiûi and ν1 can be increased to a unique ν∗ ∈ U so that h(ν∗1 ) = b, and (8) and
(10) hold. (11) can then be used to compute w∗.

3.3 A2 is a convex set: To avoid undue technicalities, assume that Q ⊂ U . Suppose that A2
is a non-empty closed convex set and µ ∈ A1. Let the associated lower bound problem be denoted
by Problem CVX.

max
w∈PK

inf
ν∈A2

K

∑
j=1

wjKj(µj|νj). (Problem CVX)

Recall that C∗ denotes the optimal value for Problem CVX (it is easily seen to be finite). Under
Assumption 1, ∑K

j=1 wjKj(µj|·) is strictly convex and there is a unique ν ∈ ∂A2 that achieves the
minimum in the sub-problem infν∈A2 ∑K

j=1 wjKj(µj|νj). Let ν(w) denote this unique solution for
any w ∈ PK. Lemma 6 below shows that for every optimal solution to Problem CVX, the same ν
achieves the minimum in the above sub-problem.

Lemma 6 Under Assumption 1, for any w∗, s∗ that are optimal for Problem CVX, ν(w∗) = ν(s∗).

Let ν∗ be the unique value of ν which achieves the minimum in the sub-problem for every
optimal solution. In Theorem 16, we provide an alternate characterization of ν∗, as well as a char-
acterization of the solution of Problem CVX.

Some notation is needed to state Theorem 16. For any index set J ⊆ [K] and vector ν ∈ RK,
let νJ denote the projection of the vector ν on to the lower dimensional subspace with coordinate
set given by J . Similarly, for any set B ⊆ RK, let BJ denote its projection onto the subspace
restricted to the coordinate set J , i.e, BJ = {νJ : ν ∈ B}. Note that if B is convex, then BJ is
also convex. If B is the c-sublevel set of a convex function f , then

BJ = {νJ : f (νJ , νJ c) ≤ c for some νJ c ∈ R|J
c|} = {νJ : inf

νJ c∈R|J c |
f (νJ , νJ c) ≤ c}.

In other words, BJ is the c-sublevel set of the function hJ := infνJ c∈R|J c | f (νJ , νJ c).
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⌫1

⌫2

A2

(µ1, µ2) = (0, 0)

(⌫⇤1 , ⌫⇤2 )

max

✓
⌫2
1

2
,
⌫2
2

2

◆

⌫1 = ⌫2

Figure 2: Algorithm to solve (12) in a simple setting of two arms with standard Gaussian distribu-
tion. A2 is a closed convex set and µ = (0, 0) ∈ A1. Since ν∗2 > ν∗1 , I = {2}. This
suggests that it is optimal to only sample arm 2 to separate µ = (0, 0) from A2.

Theorem 7 Suppose that µ ∈ A1,A2 is non-empty,Q ⊂ U , and Assumptions 1 and 2 hold. Then,
for any optimal solution (w∗, ν∗) to Problem CVX, the ν∗ uniquely solves the min-max problem

inf
ν∈A2

max
i

Ki(µi|νi). (12)

Further, the following are necessary and sufficient conditions for such an (w∗, ν∗). Let I =
argmaxi Ki(µi|ν∗i ). Then,

1. w∗i = 0 ∀i ∈ I c,

2. ν∗I ∈ ∂(A2)I , and

3. there exists a supporting hyperplane of (A2)I at ν∗I given by ∑i∈I aiνi = b such that

ν∗i > µi if ai > 0, and ν∗i < µi if ai < 0 ∀i ∈ I , (13)

w∗i
ai

K′i(µi|ν∗i ) =
w∗j
aj

K′j(µj|ν∗j ) ∀i, j ∈ I . (14)

Problem CVX (and indeed Problem LB) may heuristically be viewed as a game between an
optimal algorithm and nature. An algorithm picks a w ∈ PK that provides a recipe for propor-
tionate sampling of different arms. Nature then selects a ν ∈ A2 that for a given w minimizes
∑K

j=1 wjKj(µj|νj), and hence for the algorithm is the most difficult to separate from µ. The al-
gorithm looks for a w that maximizes this minimum separation. Theorem 7 makes an interesting
observation that for convex A2, the algorithm has the option of not sampling some arms. Maxi-
mum separation may be obtained by focusing on a subset of arms and showing that they are well
separated from the projection of A2 along the subspace associated with these arms.

Condition (3) in Theorem 7 highlights the fact that along the projected space, finding a solution
to Problem CVX is equivalent to finding a solution to an appropriate half-space problem that is
tangential to the projected convex set.
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Remark 8 Since maxi Ki(µi|νi) is a strictly convex function of ν, (12) shows that Problem CVX
maybe solved for ν∗ using any standard convex programming solver. Remark 9 below emphasizes
the point that w∗ is easily calculated once ν∗ is known, if there is a unique supporting hyperplane
in R|I|, of (A2)I at ν∗I .

Figure 2 demonstrates how a steepest descent based procedure may work to solve (12) in a
simple setting of two arms. Arm i, for i = 1, 2, is Gaussian distributed with mean µi = 0 and

variance 1. KL(µi|νi) =
ν2

i
2 for i = 1, 2. The algorithm starts at a point (ν1, ν2) ∈ A2 with

ν2 > ν1. Steepest descent direction to minimize maxi=1,2
ν2

i
2 corresponds to reducing ν2 until

ν2 = ν1. It then corresponds to decending along the direction ν1 = ν2, until boundary of A2
is hit. In Figure 2, the algorithm continues to descend along the boundary reducing the value of

maxi=1,2
ν2

i
2 until the optimal point (ν∗1 , ν∗2 ). Since ν∗2 > ν∗1 , we have I = {2}. Thus, the lower

bound analysis suggests that it is optimal to only sample arm 2 to separate µ = (0, 0) from A2.

Remark 9 Condition 3 shows that the problem has a unique solution, i.e., the optimal w∗ is a
singleton, if there is a unique supporting hyperplane of (A2)I at ν∗I . Consider the case where
A2 = {ν : f (ν) ≤ c} is the c-sublevel set of a convex function f . Then, (A2)I is the c-sublevel
set of the function h : <|I| → <, h(νI ) := infνIc∈R|Ic | f (νI , νI c). Further suppose that h(·) is a
smooth function. Then, the unique tangential hyperplane at ν∗I is given by∇h(ν∗I )

ᵀ(νI − ν∗I ) = 0.

In particular, in this case for i ∈ I , w∗i ∝
∂h
∂νi

(ν∗I )

K′i(µi |ν∗i )
.

3.4 A1 is a polytope In Section 3.3, A2 is convex, while A1 need not be. This allowed us to
explicitly characterize the solution to the lower bound problem. We now briefly consider the case
where A1 is convex, and A2 need not be. Specifically, we examine the case where A1 is a polytope
so that A2 is a union of half-spaces. Just as the single half-space problem was useful in studying
the case where A2 is convex, analyzing A2 when it is a union of half-spaces, may provide insights
to a more general problem whereA2 is a union of convex sets. The latter may be an interesting area
for future research.

Let

Bj , {ν ∈ RK :
K

∑
k=1

aj,kνk ≥ bj}, (15)

each bj ≥ 0, and A2 = ∪m
j=1Bj be the union of these half-spaces. To ease technicalities, suppose

that U = RK. The lower bound problem may be expressed as

C∗(µ) = max
w∈PK

inf
ν∈∪m

j=1Bj

K

∑
i=1

wiKi(µi|νi). (16)

LetW(µ) denote the optimal solution set. Lemma 10 shows that the optimization problem in
(16) has a unique solution, that is,W(µ) is a singleton.

Lemma 10 There is a unique w ∈ PK that achieves the maximum in (16).

Remark 11 It is easy to see that the best arm identification problem is a special case of this
problem. To see this, suppose arm 1 has the highest mean among the K arms, i.e., µ1 > µj ∀j 6= 1.
We then have A2 = ∪K

j=2Bj, where for any j, Bj = {ν ∈ RK : νj ≥ ν1}.

10
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Observe that infν∈A2 ∑K
i=1 wiKi(µi|νi) being an infimum of linear functions of w, is a concave

function of w, for any A2. Thus, standard gradient descent methods can be used to solve (16), once
an algorithm exists for solving g(µ, w) , infν∈∪m

j=2Bj ∑K
i=1 wiKi(µi|νi). This is straightforward as

inf
ν∈∪m

j=2Bj

K

∑
i=1

wiKi(µi|νi) = min
j≤m

inf
ν∈Bj

K

∑
i=1

wiKi(µi|νi).

Thus, one may solve the strictly convex problem gj(µ, w) , infν∈Bj ∑K
i=1 wiKi(µi|νi) for each j

and set g(µ, w) = minj≤m gj(µ, w). An algorithm for numerically solving for gj(µ, w) is easily
designed and is given in Appendix C. An outline of a simple algorithm to compute C∗(µ) is as
follows:

(i) Given a w, for each j, solve the strictly convex optimization problem infν∈Bj ∑K
i=1 wiKi(µi|νi)

to determine gj(µ, w).

(ii) Compute g(µ, w) = minj≤m gj(µ, w). Use a numerical procedure to determine the gradient of
g(µ, w) with respect to w. Update w using any version of gradient-descent, and repeat.

In Appendix C.0.1, we restrict ourselves to two arms, both having a Gaussian distribution with
known and common variance. This simple setting lends itself to elegant comprehensive analysis
and a graphical interpretation.

4. An asymptotically optimal algorithm

In this section, we outline a δ-correct algorithm (Algorithm 1) for the PI problem which, under
mild conditions, achieves asymptotically optimal mean termination time as δ → 0. Both the algo-
rithm and its analysis closely follow the best arm identification in Garivier and Kaufmann (2016).
The sampling rule used in the algorithm (described below) is inspired by the lower bound Problem
LB. The stopping rule follows from the generalised likelihood ratio method (see Chernoff (1959)).

In Problem LB, letW(µ) and C∗(µ), respectively denote the optimal solution set and optimal
value. Let V(µ, w) and g(µ, w), respectively denote the optimal solution set and optimal value
of the inner sub-problem. We consider settings where Problem LB has a unique optimal solution.
That is, |W(µ)| = 1. As seen in Section 3, for threshold crossing, half space problem and the
polytope problem, Problem LB has a unique optimal solution. When A2 is a closed convex set and
the associated ν∗ ∈ ∂A2 is a smooth point (with a unique supporting hyperplane), then Problem LB
again has a unique optimal solution. Lemma 13 below, shows that solution to Problem LB,W(µ),
is continuous function of µ when |W(µ)| = 1, an important requirement in proving Theorem 12.
Recall that in Problem LB, µ ∈ Aj.

Sampling Rule: The essential idea is to draw samples according to estimated optimal sampling
ratios obtained by solving Problem LB with empirical means substituting the true means. In other
words, if µ̂(t) is the vector of empirical means of the arms at time t, an arm is chosen to bring the ra-
tio of total number of samples for all the arms closer to an optimal ratio ŵ(t) ∈ W(µ̂(t)). But this
simple strategy may result in erroneously giving too few samples to an arm due to initial bad esti-
mates preventing convergence to the correct value in subsequent sample allocations. This difficulty
can be dealt with through forced exploration for each arm to ensure sufficiently fast convergence.

Garivier and Kaufmann (2016) propose a ‘D-Tracking’ rule along these lines for the best arm
problem that ensures convergence to the correct sampling ratio. We also use this rule as the sampling

11
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rule in our algorithm. The rule can be described as follows. Let Ni(t) denote the number of samples
of arm i at sampling step t for all i and let ŵ(t) ∈ W(µ̂(t)). If there exists an arm i such that
Ni(t) <

√
t− K/2, choose that arm. Otherwise, choose an arm that has the maximum difference

between the estimated optimal ratio and the actual fraction of samples, i.e., an arm is chosen from
argmaxi ŵi(t)− Ni(t)/t. This sampling rule has the following properties:
(i) each arm gets Ω(

√
t),

(ii) if the estimated sampling ratios W(µ̂(t)) converge to an optimal ratio W(µ), then the actual
fraction of samples also converges to the same optimal ratio.

Stopping Rule: Let threshold function β(t, δ) = log
(

c t2 log(1/δ)2K+1

δ

)
, where c is an appropriately

chosen constant. The term log(1/δ)2K+1 in this expression was not used by Garivier and Kauf-
mann (2016), as they ignore a technicality in proving δ-correctness of the algorithm (see proof of
Theorem 12 in Appendix E).

The stopping rule uses a threshold rule that imitates the lower bound (1). It first finds the
partition in which the empirical mean vector µ̂(t) lies. Denote this partition after generating t
samples by A(t). If infν∈Ac(t) ∑i Ni(t)Ki(µ̂i(t)|νi) ≥ β(t, δ), then it stops and declares A(t) as
the partition containing µ. Else, it continues to sample arms according to the D-Tracking rule.

Algorithm 1 Algorithm for one parameter exponential families
Sample each arm once. Set µ̂(0) to the observed sample average of each arm. Set t = 1
At sample t,
Compute weights w(µ̂(t− 1)) and sample according to D-Tracking rule . Sampling Rule
Let µ̂(t) ∈ A(t).
If infν∈Ac(t) ∑i Ni(t)Ki(µ̂i(t)|νi) ≥ β(t, δ) then . Termination Rule
Declare µ ∈ A(t).
end if
Else Increment t by 1 and continue.

Sample complexity analysis: Let TU(δ) be the time at which Algorithm 1 terminates. Then we
have the following guarantee.

Theorem 12 Suppose thatQ ⊂ U and Assumptions 1 and 2 hold. If Problem LB has a unique opti-
mal solution, i.e., if |W(µ)| = 1, then Algorithm 1 is a δ-correct algorithm with lim supδ→0

E[TU(δ)]

log( 1
δ )
≤

C∗(µ)−1.

The proof of Theorem 12 is along the lines of Garivier and Kaufmann (2016), and is given in
Appendix D for completeness. The following continuity result is critical to the proof.

Lemma 13 Under conditions of Theorem 12, the function g is continuous at (µ, w) for any w ∈
PK. Further, if Problem LB has a unique optimal solution, then this solution is continuous at µ.

For notational ease, let A denote Aj and Ac denote Q−Aj. If Āc is compact, then Theorem 2.1
in Fiacco and Ishizuka (1990) implies that g is continuous at (µ, w). Continuity of the optimal
solution W(µ) to Problem LB at µ when W(µ) is a singleton also follows from Theorem 2.2 in
Fiacco and Ishizuka (1990). The details for general Āc are given in Appendix D. A small simulation
experiment illustrating that the non-asymptotic performance of the proposed algorithm is not much
worse than the asymptotic limit is given in Appendix E.

12
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Appendix A. Threshold Crossing Problem

In this section first in Example 1, we discuss how the threshold crossing problem arises naturally in
nested simulation used in financial portfolio risk measurement. We then prove Theorem 4.

Example 1 Consider the problem of measuring tail risk in a portfolio comprising financial deriva-
tives. The key property of a financial derivative is that as a function of underlying stock prices or
other financial instruments, it’s value is a conditional expectation (see, e.g., Duffie (2010), Shreve
(2004)). Thus, the value of a portfolio of financial securities that contains financial derivatives can
also be expressed as a conditional expectation given the value of underlying financial instruments.

Suppose that (X1, . . . , XK), where each Xt is a vector in a Euclidean space, denote the macroce-
conomic variables and financial instruments at time t, such as prevailing interest rates, stock index
value and stock prices, on which the value of a portfolio depends. For notational convenience we
have assumed that times take integer values.

Portfolio loss amount at any time t is a function of Xt , (X1, . . . , Xt) and is given by E(Yt|Xt)
for some random variable Yt (see, e.g. Gordy and Juneja (2010), Broadie et al. (2011) for further
discussion on portfolio loss as a conditional expectation, and the need for nested simulation). The
quantity E(Yt|Xt) is not known, however, conditional on Xt, independent samples of Yt can be
generated via simulation. Our interest is in estimating the probability that the portfolio loss by time
K exceeds a large threshold u or

γ , P( max
1≤t≤K

Zt ≥ u), (17)

where Zt = E(Yt|Xt).
These probabilities typically do not have a closed form expression and are estimated using

Monte Carlo simulation. An algorithm to estimate this probability maybe nested and is given as
follows:

1. Repeat the outer loop iterations for 1 ≤ j ≤ n.

2. At outer loop iteration j, generate through Monte Carlo a sample of underlying factors (X1,j, . . . , XK,j).

3. Given this sample, we need to ascertain whether

Wj , max
1≤t≤K

Zt,j ≥ u,
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where Zt,j = E(Yt|Xt,j). This fits our framework of threshold crossing problem where we
may sequentially generate conditionally independent samples of Yt for each t conditional on
(X1,j, . . . , Xt,j) and arrive at an indicator Ŵj that equals Wj with probability ≥ 1− δ.

Then,

γ̂n(∆) ,
1
n

n

∑
j=1

Ŵj

denotes our estimator for γ. There are interesting technical issues related to optimally distributing
computational budget in deciding the number of samples in the outer loop, in the inner loop and the
value of δ to be selected. These issues, however, are not addressed in the paper and may be a topic
for future research.

Proof of Theorem 4: To see (5), first observe that due to continuity of each Kj(µj|νj) as a function
of νj ∈ Uj, we have

inf
ν∈A2

K

∑
j=1

wjKj(µj|νj) = inf
ν∈Ā2

K

∑
j=1

wjKj(µj|νj),

where recall that for any set A, Ā denotes its closure. The RHS above is solved by

ν = (u, . . . , u, µi+1, . . . , µk)

in the sense that for any other ν̃ ∈ Ā2,

K

∑
j=1

wjKj(µj|ν̃j) ≥
K

∑
j=1

wjKj(µj|νj) =
i

∑
j=1

wjKj(µj|u).

Our lower bound problem reduces to

max
w∈PK

i

∑
j=1

wjKj(µj|u).

This can easily be seen to be solved uniquely by w∗1 = 1, w∗j = 0 for j = 2, . . . , K, and
the optimal value C∗ is K1(µ1|u). The lower bound on the overall expected number of samples
generated is then given by log( 1

2.4δ )/C∗.

To see (6), observe that to simplify infν∈Ā1 ∑K
j=1 wjKj(µj|νj), it suffices to consider ν(s) ∈ Ā1

for each s (1 ≤ s ≤ K) where

ν(s) , (µ1, . . . , µs−1, u, µs+1, . . . , µk),

in the sense that for any ν ∈ Ā1

K

∑
j=1

wjKj(µj|νj) ≥ min
s=1,...,K

K

∑
j=1

wjKj(µj|νj(s)) = min
s=1,...,K

wsKs(µs|u).

The lower bound problem then reduces to

max
w∈PK

min
j

wjKj(µj|u).
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The solution to this problem is given by

w∗j ∝ 1/Kj(µj|u) ∀j,

and the optimal value C∗ is
(

∑K
j=1

1
Kj(µj|u)

)−1
. The lower bound on the overall expected number of

samples generated is equal to log( 1
2.4δ )/C∗. �

Appendix B. The half space lower bound problem

In this section we restate (to aid readability) Theorem 5 as Theorem 14 and prove it. We also state
and prove Lemma 15 needed for proof of Theorem 14.

Theorem 14 Under Assumptions 1, 2, and thatA2 is non-empty, there is a unique optimal solution
(w∗, ν∗) to Problem LB. Further,

Ki(µi|ν∗i ) = K1(µ1|ν∗1 ) ∀i, (18)

K

∑
k=1

akν∗k = b, (19)

ν∗i > µi if ai > 0, and ν∗i < µi if ai < 0. (20)

Relations (18), (19) and (20) uniquely specify ν∗ ∈ U . Moreover,

w∗i
ai

K′i(µi|ν∗i ) =
w∗1
a1

K′1(µ1|ν∗1 ) ∀i, (21)

where the derivatives are with respect to the second argument.

Let ui = sup{u ∈ Ui}, and ui = inf{u ∈ Ui}. Further, set

ûi = ui if ai > 0, and ûi = ui if ai < 0.

The following lemma is useful in proving Theorem 14.

Lemma 15 Under Assumption 2, the following are equivalent

1. A2 6= ∅.

2. ∑K
i=1 aiûi > b.

3. There exists a unique ν∗ ∈ U such that (18), (19) and (20) hold.

Proof [Proof of Lemma 15:]
Claim 1 implies existence of ν such that ∑K

i=1 aiνi > b and Ki(µi|νi) < ∞ for all i. Claim 2
follows as

K

∑
i=1

aiνi <
K

∑
i=1

aiûi.
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To see that Claim 2 implies Claim 3, recall that Ki(µi|νi) equals zero at νi = µi. It strictly
increases with νi for νi ≥ µi and it strictly reduces with νi for νi ≤ µi.

Assume w.l.o.g. that a1 > 0, and for ν1 ≥ µ1, consider the function

νi(ν1) = K−1
i (K1(µ1|ν1))

where νi(ν1) ≥ µi if ai > 0, and νi(ν1) ≤ µi if ai < 0. Now, the function

h(ν1) ,
K

∑
i=1

aiνi(ν1) < b

for ν1 = µ1 and it strictly increases with ν1.
Further, observe that as ν1 ↑ u1, νi(ν1) ↑ ui if ai > 0, and νi(ν1) ↓ ui if ai > 0. Thus,

h(ν1) ↑ ∑K
i=1 aiûi and thus there exists a unique ν∗ ∈ U so that h(ν∗1 ) = b, and (18) and (20) hold.

To see that Claim 3 implies Claim 1, observe that Claim 3 guarantees that

(ν∗1 , ν2(ν
∗
1 ), . . . , νK(ν

∗
1 )) ∈ U

By selecting ν1 > ν∗1 and sufficiently small, Claim 1 follows.

Proof of Theorem 14:
Lemma 15 guarantees the existence of ν∗, w∗ that solve (18), (19), (20) and (21). Here, observe

that (21) defines w∗.
Note that ν∗ is the solution to the optimization problem:

inf
ν∈Ā2

K

∑
j=1

w∗j Kj(µj|νj).

This can be verified by observing that the first order KKT conditions for this convex programmimg
problem are given by (19), (20) and (21). (recall that Ā2 = {ν : ∑K

i=1 aiνi ≥ b}). Further, from
(18), it follows that

inf
ν∈Ā2

K

∑
j=1

w∗j Kj(µj|νj) =
K

∑
j=1

w∗j Kj(µj|ν∗j ) = K1(µ1|ν∗1 ).

For any another feasible solution w̃, we have

inf
ν∈Ā2

K

∑
i=1

w̃iKi(µi|νi) ≤
K

∑
i=1

w̃iKi(µi|ν∗i ) ≤ K1(µ1|ν∗1 ),

which shows that w∗ is an optimal solution to the problem.
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Uniqueness: It remains to show that above is a unique solution to (Problem LB). We skip the
details as, in Section 3, Lemma 10, we prove uniqueness of the solution for a general case where
Ā2 is a union of half-spaces. �

3.3 Lower bounds when A2 is convex:
In this section we prove the results stated in Section 3.3. We first prove Lemma 6. We then

restate Theorem 7 as Theorem 16 and prove it.

Proof of Lemma 6: First note that infν∈Ac ∑K
j=1 wjKj(µj|νj) is a concave function of w. This

shows that, if w∗ and s∗ are two optimal solutions, then αw∗ + (1− α)s∗ for α ∈ (0, 1) is another
optimal solution. Since it is optimal, we have

K

∑
j=1

(αw∗j + (1− α)s∗j )Kj(µj|νj(αw∗ + (1− α)s∗)) = C∗.

Now due to Assumption 1,

K

∑
j=1

w∗j Kj(µj|νj(αw∗ + (1− α)s∗)) > C∗

if ν(αw∗ + (1− α)s∗) 6= ν(w∗) and

K

∑
j=1

s∗j Kj(µj|νj(αw∗ + (1− α)s∗)) > C∗

if ν(αw∗ + (1− α)s∗) 6= ν(s∗), it follows that ν(w∗) = ν(αw∗ + (1− α)s∗) = ν(s∗). �

Theorem 16 Suppose that µ ∈ A1, A2 is non-empty, Q ⊂ U , and Assumptions 1 and 2 hold.
Then, for any optimal solution (w∗, ν∗) to Problem CVX, the ν∗ uniquely solves the min-max prob-
lem

inf
ν∈A2

max
i

Ki(µi|νi). (22)

Further, the following are necessary and sufficient conditions for such an (w∗, ν∗). Let I =
argmaxi Ki(µi|ν∗i ). Then,

1. w∗i = 0 ∀i ∈ I c,

2. ν∗I ∈ ∂(A2)I , and

3. there exists a supporting hyperplane of (A2)I at ν∗I given by ∑i∈I aiνi = b such that

ν∗i > µi if ai > 0, and ν∗i < µi if ai < 0 ∀i ∈ I , (23)

w∗i
ai

K′i(µi|ν∗i ) =
w∗j
aj

K′i(µj|ν∗j ) ∀i, j ∈ I . (24)
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Proof [Proof of Theorem 16]
Let Bn denote a closed ball centered at µ with radius n. Consider n sufficiently large so that

ν̃ defined as the solution to (22) lies in Bn (since the objective function maxi Ki(µi|νi) is strictly
convex in ν, such a ν̃ is unique).

Since A2 ∩ Bn is a compact set, and ∑K
i=1 wiKi(µi|νi) is continuous in w and ν and concave in

w ∈ PK and convex in ν ∈ A2 ∩ Bn, by Sion’s Minimax Theorem

max
w∈PK

inf
ν∈A2∩Bn

K

∑
i=1

wiKi(µi|νi) = infν∈A2∩Bn maxw∈PK ∑K
i=1 wiKi(µi|νi)

= infν∈A2∩Bn maxi Ki(µi|νi)

= infν∈A2 maxi Ki(µi|νi). (25)

Observe that

rn(w) , inf
ν∈A2∩Bn

K

∑
i=1

wiKi(µi|νi)

is continuous in w (see Theorem 2.1 in Fiacco and Ishizuka (1990)) and decreases with n to r(w) ,
infν∈A2 ∑K

i=1 wiKi(µi|νi). Thus, we have uniform convergence (see Theorem 7.13 in Rudin (1976))

sup
w∈PK

|rn(w)− r(w)| → 0.

This in turn implies that
max
w∈PK

rn(w)→ max
w∈PK

r(w).

From (25) it follows that LHS above is independent of n. Therefore, the min-max relation

max
w∈PK

inf
ν∈A2

K

∑
i=1

wiKi(µi|νi) = inf
ν∈A2

max
i

Ki(µi|νi) (26)

holds.
Now if (w∗, ν∗) is a saddlepoint of the min-max problem, and since ν∗ is unique, it equals ν̃.

Necessity of conditions on optimal (w∗, ν∗): Let I = argmaxi Ki(µi|ν∗i ). The minimax equal-
ity in (26) shows that (w∗, ν∗) is a saddle point, and therefore, w∗ solves the optimization problem

max
(w1,...,wK)∈PK

K

∑
j=1

wjKj(µj|ν∗j ). (27)

From this, it is easy to see that w∗i = 0 ∀i ∈ I c.
To see 2, note that ν∗ uniquely solves the optimization problem

min
(ν1,...,νK)∈A2

K

∑
j=1

w∗j Kj(µj|νj). (28)

If ν∗I is in the interior of (A2)I , it is easy to come up with ν 6= ν∗ on ∂A2, with a smaller value
of ∑K

j=1 w∗j Kj(µj|νj).
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Now, consider the convex set

C :=

{
νI ∈ R|I| : ∑

i∈I
w∗i Ki(µi|νi) < ∑

i∈I
w∗i Ki(µi|ν∗i )

}

(convexity of C follows from Assumption 1). By the separating hyperplane theorem, there exists a
hyperplane ∑i∈I aiνi = b that separates C and (A2)I . Since ν∗I ∈ ∂C ∩ ∂(A2)I , this hyperplane
passes through ν∗I , and is a supporting hyperplane to both convex sets C and (A2)I . From the fact
that it is a supporting hyperplane to C at ν∗I , we have

w∗i
ai

K′i(µi|ν∗i ) =
w∗j
aj

K′i(µj|ν∗j ) ∀i, j ∈ I .

This proves Condition 3.

Sufficiency: Let ν∗ and w∗ be such that Conditions 1, 2, 3 hold. Note that ∑i∈I aiµi < b and
(A2)I ⊆ {νI : ∑i∈I aiνi ≥ b}. Then, from Theorem 14, w∗I and ν∗I solve the following half space
problem in the lower dimensional subspace restricted to coordinate set I :

max
wI∈PI

inf
νI :∑i∈I aiνi≥b

∑
i∈I

wiKi(µi|νi).

In particular,
inf

νI :∑i∈I aiνi≥b
∑
i∈I

w∗i Ki(µi|νi) = ∑
i∈I

w∗i Ki(µi|ν∗i ).

Further, for any wI , note that

inf
νI∈(A2)I

∑
i∈I

wiKi(µi|νi) ≥ inf
νI :∑i∈I aiνi≥b

∑
i∈I

wiKi(µi|νi).

This shows that

inf
ν∈A2

K

∑
j=1

w∗j Kj(µj|νj) = inf
νI∈(A2)I

∑
i∈I

w∗i Ki(µi|νi) = ∑
i∈I

w∗i Ki(µi|ν∗i ) = max
i

Ki(µi|ν∗i ).

Now, consider any w̃ which is a feasible solution of Problem CVX. Then,

inf
ν∈A2

K

∑
i=1

w̃iKi(µi|νi) ≤
K

∑
i=1

w̃iKi(µi|ν∗i ) ≤ max
i

Ki(µi|ν∗i ).

This proves our claim that w∗, ν(w∗) = ν∗ form an optimal solution.
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Appendix C. Lower bound analysis when A1 is a polytope

In this section we first outline a simple algorithm to solve the sub problem

gj(µ, w) = inf
ν∈Bj

K

∑
i=1

wiKi(µi|νi)

as discussed in Section 3.4. We then provide a proof of Lemma 10. In Appendix C.0.1, we con-
sider two arms, both with Gaussian distribution and known and common variance. In this simple
setting, we conduct a comprehensive analysis of the lower bound problem and provide a graphical
interpretation of the solutions.

Solving gj(µ, w): Observe that solving for gj(µ, w) is equivalent to solving

inf
ν:∑K

i=1 aiνi≥b

K

∑
i=1

wi fi(νi), (29)

for a given w ∈ PK, where each fi is strictly convex, and fi(µi) = f ′i (µi) = 0, and without loss
of generality b > 0. Again, without loss of generality, we assume that wi > 0 for each i. The
existence of a unique solution is best seen from the graphical interpretation in Remark 3. We now
discuss how this may be efficiently computed.

Observe that f ′i is a strictly increasing function. Let hi denote the inverse function of f ′i . hi is
also strictly increasing.

The first order conditions applied to (29) imply that the optimal solution ν∗ satisfies

ν∗i = hi

(
λai

wi

)

for a non-negative λ such that
K

∑
i=1

aihi

(
λai

wi

)
= b. (30)

Observe that ∑K
i=1 aihi(

λai
wi
) equals 0 for λ = 0, and it strictly increases with increase in λ. Thus

one may use any line search method to find λ that solves (30).

Proof of Lemma 10: Denote the optimal value of (16) by C∗. We first show that if q, s ∈ PK
are two distinct optimal solutions and ν(q), ν(s) ∈ Ac, respectively achieve the minimum in the
sub-problem, then ν(q) 6= ν(s). To see this, suppose ν(q) = ν(s) = ν ∈ ∂Bj for some 1 ≤ j ≤ m.
Then ν achieves the minimum in the subproblem infν∈Bj ∑K

i=1 wiKi(µi|νi) for both w = q and
w = s. Hence, both q, s solve the following equations:

K

∑
i=1

wiKi(µi|νi) = C∗, (31)

wi

aj,i
K′i(µi|νi) =

w1

aj,1
K′1(µ1|ν1) ∀i. (32)

This is a contradiction as the above set of equations has a unique solution.
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Now, suppose q, s ∈ PK are two distinct optimal solutions of the convex program (16). Then
any convex combination z = αq + (1 − α)s is also an optimal solution. Let ν(z) achieve the
minimum in the sub-problem for z. Then

C∗ =
K

∑
i=1

ziKi(µi|νi(z)) = α
K

∑
i=1

qiKi(µi|νi(z)) + (1− α)
K

∑
i=1

siKi(µi|νi(z)).

In addition, for any ν, we have ∑K
i=1 wiKi(µi|νi) ≤ C∗ for both w = q and w = s. Then, the above

equality is possible only if ∑K
i=1 qiKi(µi|νi(z)) = ∑K

i=1 siKi(µi|νi(z)) = C∗. This in turn implies
that ν(z) achieves the minimum in the sub-problem for both q, s, which is a contradiction to our
earlier result. Hence proved. �

C.0.1. TWO ARMS GAUSSIAN SETTING

To illustrate the issues that arise with A2 being a union of half-spaces, consider a simple setting of
two arms. Both are assumed to have a Gaussian distribution and the variance of each arm is assumed
to be 1/2. W.l.o.g. mean of each arm is set to zero. Then, for j = 1, 2,

Bj = {ν ∈ R2 : aj,1ν1 + aj,1ν2 ≥ bj}, (33)

and A2 = B1 ∪ B2 be the union of the two half-spaces. To avoid degeneracies we assume that each
aj,k 6= 0. Further suppose that a1,1

a1,2
6= a2,1

a2,2
so that A2 is non-convex.

The lower bound problem is then given by

max
(w1,w2)∈P2

inf
ν∈A2

2

∑
i=1

wiν
2
i . (34)

The following geometrical result provides useful insights towards solution of (34).

Proposition 17 For w1, w2, C > 0, a necessary and sufficient condition for an ellipse of the form

w1ν2
1 + w2ν2

2 = C (35)

to be uniquely tangential to lines
a1,1ν1 + a1,2ν2 = b1 (36)

and
a2,1ν1 + a2,2ν2 = b2 (37)

is that

min
k=1,2
| a2,k

a1,k
| < b2

b1
< max

k=1,2
| a2,k

a1,k
|. (38)

Then, the tangential ellipse is specified by

w1

C
=

(a1,2a2,1)
2 − (a1,1a2,2)2

(b2a1,2)2 − (b1a2,2)2 (39)

and
w2

C
=

(a1,2a2,1)
2 − (a1,1a2,2)2

(b1a2,1)2 − (b2a1,1)2 . (40)
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The ellipse (35) meets the line (36) at point
(

Ca1,1

w1b1
,

Ca1,2

w2b1

)

and it meets line (37) at point (
Ca2,1

w1b2
,

Ca2,2

w2b2

)
.

Proof A necessary and sufficient condition for ellipse (35) to be tangential to line (36) at point
(ν∗1 , ν∗2 ) is for (ν∗1 , ν∗2 ) to satisfy the two equations of ellipse and the line, respectively, and the slope
matching condition

w1ν∗1
a1,1

=
w2ν∗2
a1,2

. (41)

The fact that (ν∗1 , ν∗2 ) satisfies (35) and (36) implies that (41) equals C/b2. Plugging (ν∗1 , ν∗2 ) from
(41) into (35), we observe,

a2
1,1

w1
+

a2
1,2

w2
=

b2
1

C
.

Similarly, considering the other half-space, we get

a2
2,1

w1
+

a2
2,2

w2
=

b2
2

C
.

The result follows by solving the two equations.

Theorem 18 The solution to (34) depends in the following way on the underlying parameters
Case 1: (

b2

b1

)2

≥
(

a2
2,1

|a1,1|
+

a2
2,2

|a1,2|

)
(|a1,1|+ |a1,2|)−1. (42)

In this case, (34) reduces to the half-space problem where A2 = B1 so that the optimal solution to
(34) is given by

w∗i =
|a1,i|

|a1,1|+ |a1,2|
, i = 1, 2, (43)

and the optimal value C∗ = b2
1

(|a1,1|+|a1,2|)2 .
Case 2: (

b2

b1

)2

≤
(

a2
1,1

|a2,1|
+

a2
1,2

|a2,2|

)−1

(|a2,1|+ |a2,2|).

This simply corresponds to Case 1, with the (a1,1, a1,2, b1) interchanged with (a2,1, a2,2, b2).
Case 3:
(

a2
1,1

|a2,1|
+

a2
1,2

|a2,2|

)−1

(|a2,1|+ |a2,2|) <
(

b2

b1

)2

<

(
a2

2,1

|a1,1|
+

a2
2,2

|a1,2|

)
(|a1,1|+ |a1,2|)−1. (44)

Here (38) holds, and the optimal w∗1 and w∗2 are given by (39) and (40), respectively.
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Proof Case 1:
First consider the half-space problem where A2 = B1. Our analysis in Section 3.2 shows that

there is a unique (w∗1 , w∗2) and (ν∗1 , ν∗2 ) that solves the resulting problem, and

sign(a1,1)ν
∗
1 = |ν∗1 | = sign(a1,2)ν

∗
2 = |ν∗2 |,

a1,1ν∗1 + a1,2ν∗2 = b1 so that

|ν∗1 | = |ν∗2 | =
b1

|a1,1|+ |a1,2|
.

Further, from
w∗1ν∗1
a1,1

=
w∗2ν∗2
a1,2

, (45)

it follows that for the half-space problem, w∗i ∝ |a1,i| is the optimal solution and the optimal value

C∗ = b2
1

(|a1,1|+|a1,2|)2 .
Returning to (34), we show that when (42) is true and and w∗i ∝ |a1,i|,

inf
ν∈B2

2

∑
i=1

w∗i Ki(µi|νi) = inf
ν:a2,1ν1+a2,2ν2≥b2

w∗1ν2
1 + w∗2ν2

2 ≥ C∗

and hence w∗i ∝ |a1,i| continues to be optimal for (34).
We first find the point (κ∗1 , κ∗2) ∈ B2 that achieves the minimum in the above optimization

problem. We know that (κ∗1 , κ∗2) satisfies

a2,1κ∗1 + a2,2κ∗2 = b2,

and the slope matching condition
w∗1κ∗1
a2,1

=
w∗2κ∗2
a2,2

.

It follows from easy calculations that

inf
ν:a2,1ν1+a2,2ν2≥b2

w∗1ν2
1 + w∗2ν2

2 =
b2

2
a2

2,1
w∗1

+
a2

2,2
w∗2

=
b2

2(
a2

2,1
|a1,1| +

a2
2,2
|a1,2|

)
(|a1,1|+ |a1,2|)

.

The above expression is greater than b2
1

(|a1,1|+|a1,2|)2 when (42) is true, which gives us the required
result.

Case 2: Case 2 follows similarly as Case 1.

Case 3:
It is easy to see that (44) implies (38).
Let (w∗1 , w∗2) denote the optimal solution to (34). It is clear that the corresponding ellipse must

be tangential to both the half lines a1,1ν1 + a1,2ν2 = b1 and a2,1ν1 + a2,2ν2 = b2, since if it does not
touch one of these half lines, then the associated constraint can be ignored in solving (34). However,
that violates (44).

Therefore, the solution is provided by Proposition 17.
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Appendix D. Analysis related to the proposed algorithm

In this section, we first prove Lemma 13. Then, in Lemma 19 we summarize results from Garivier
and Kaufmann (2016) on the D-tracking rule that we use in our proof of Theorem 12. This proof is
more or less identical to that in Garivier and Kaufmann (2016). We keep it here for completeness.

Proof of Lemma 13: First suppose that Āc is compact. The fact that g is continuous at (µ, w) fol-
lows from the continuity results for non-linear programs. Specifically, since the objective function
is continuous in ν and Āc is compact, Theorem 2.1 in Fiacco and Ishizuka (1990) implies that g is
continuous at (µ, w).

Now consider non-compact Āc and define

gn(µ, w) = inf
ν∈Āc∩Bn

K

∑
i=1

wiKi(µi|νi)

for each n where Bn is an Euclidean closed ball of radius n centred at µ. n is taken to be sufficiently
large so that Āc ∩ Bn is non-empty.

Then, gn(µ, w) is continuous in (µ, w) and decreases with n to g(µ, w). Since this convergence
is uniform, it follows that g(µ, w) is continuous in (µ, w).

To see that the optimal solution to Problem LB is continuous at µ ifW(µ) is a singleton, note
that the problem is equivalent to maxw∈PK g(µ, w). Since g(µ, ·) is continuous on PK andW(µ) is
a singleton, from Theorem 2.2 in Fiacco and Ishizuka (1990), we conclude that the optimal solution
W(µ) is continuous at µ. �

Lemma 19 The D-tracking rule ensures that mini Ni(t) ≥
(√

t− K/2
)+
− 1 and that for all

ε > 0, for all t0, there exists tε ≥ t0 such that if supt≥t0
maxi

∣∣ŵi(t)− wi
∣∣ ≤ ε for some w ∈ PK,

then

sup
t≥tε

max
i

∣∣∣∣
Ni(t)

t
− wi

∣∣∣∣ ≤ 3(K− 1)ε.

Proof of Theorem 12: Recall that µ ∈ A. We first prove that the probability of error is at most δ.

Pµ[error] ≤ Pµ

[
∃t ≥ 1 : inf

ν∈A∑
i

Ni(t)Ki(µ̂i(t)|νi) ≥ β(t, δ); µ̂t ∈ Ac

]

≤
∞

∑
t=1

Pµ

[
∑

i
Ni(t)Ki(µ̂i(t)|µi) ≥ β(t, δ)

]

≤
∞

∑
t=1

eK+1
(

β(t, δ)2 log t
K

)K

e−β(t,δ)

The last inequality above follows from Magureanu et al. (2014) extended from Bernoulli family to
SPEF.
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Recall that β(t, δ) = log
(

c t2 log(1/δ)2K+1

δ

)
. If c is chosen large enough s.t.

∞

∑
t=1

eK+1

c t2 log(1/δ)2K+1

(
[log(c t2) + log((2K + 1) log(1/δ)) + log(1/δ)]2 log t

K

)K

≤ 1, (46)

then
Pµ[error] ≤ δ.

(Above in (46), we need to restrict δ to less than 1 to avoid LHS blowing up to infinity.)

Next, we prove the upper bound on the mean termination time. Let By
∞(x) denote a Euclidean

ball around x of length y under the max norm.
Fix an ε > 0. From the continuity of w at µ, there exists ξ > 0 such that for any µ′ ∈ Bξ

∞(µ)

we have w(µ′) ∈ Bε
∞(w(µ)). For any T ∈ N, define the event ET :=

⋂T
t=h(T){µ̂(t) ∈ B

ξ
∞(µ)}.

It is easy to show that (see Lemma 19 of Garivier and Kaufmann (2016)) there exist constants B, C
depending on ε and µ such that

Pµ [E c
T] ≤ B exp

(
−CT1/8

)
.

Note that ξ, ET, B, C are all functions of ε and µ.
Now, for every ε > 0, define

C∗ε (µ) = inf
µ′∈Bξ(ε)

∞ (µ),
w′∈B3(K−1)ε

∞ (w(µ))

g(µ′, w′).

By the continuity of w and g, we have

lim
ε→0

C∗ε (µ) = C∗(µ) = (T∗(µ))−1.

From Lemma 19, for any ε > 0, we have for every T ≥ Tε that on ET(ε),

∥∥∥N(t)
t
− w(µ)

∥∥∥
∞
≤ 3(K− 1)ε ∀t >

√
T,

which in turn implies that

g
(

µ̂(t),
N(t)

t

)
≥ C∗ε (µ) ∀t >

√
T.

Since the termination rule in the algorithm is given by

g
(

µ̂(t),
N(t)

t

)
≥ β(t, δ)

t
,

for T ≥ Tε, on ET(ε), we have

min(TU(δ), T) ≤
√

T + ∑T
t=
√

T

{
C∗ε (µ) <

β(t,δ)
t

}

≤
√

T + β(T,δ)
C∗ε (µ)

.
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Now, let

T0(δ) := inf
{

T ∈N :
√

T +
β(T, δ)

C∗ε (µ)
< T

}
.

Therefore, for any T ≥ max{Tε, T0(δ)}, on ET(ε), we have TU(δ) < T, which gives us

E[TU(δ)] ≤
∞

∑
T=1

P[TU(δ) > T] ≤ max{Tε, T0(δ)}+
∞

∑
T=1

P[ET(ε)
c].

It easily follows that

T0(δ) =
1

C∗ε (µ)
(O (log (1/δ)) + O (log log (1/δ))) .

This gives us

lim sup
δ→0

E[TU(δ)]

log
( 1

δ

) ≤ 1
C∗ε (µ)

.

Now, letting ε go to zero, we get

lim sup
δ→0

E[TU(δ)]

log
( 1

δ

) ≤ lim
ε→0

1
C∗ε (µ)

= T∗(µ).

�

Appendix E. Simulation experiment

Our proof for the proposed algorithm is asymptotic as δ → 0. To test the efficacy of the algorithm
for practically relevant values of δ and to compare its performance to the case where δ is small, we
conduct a small simulation experiment. We consider the half-space problem in the four Bernoulli
arms setting. The associated hyper-plane is given by

x1 + x2 + x3 + x4 = 2.6,

and mean vector µ = (0.5, 0.5, 0.5, 0.5). We consider δ ranging from 0.05 to 0.001. Figure 3
plots the average computational effort of the proposed algorithm (2,000 independent trials were
conducted for each δ), and compares it to the theoretical lower bound for this half-space problem.
The key conclusion is that while the relative performance improves somewhat as δ → 0, it is not
that much worse than the limit even for practically reasonable values of δ such as 0.05 or 0.01.
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Figure 3: The four arm half-space problem.The relative performance of the algorithm compared to
the lower bound does not deteriorate much with increasing δ.
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