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Abstract
Stochastic gradient descent (SGD) is one of the most widely used algorithms for large scale
optimization problems. While classical theoretical analysis of SGD for convex problems studies
(suffix) averages of iterates and obtains information theoretically optimal bounds on suboptimality,
the last point of SGD is, by far, the most preferred choice in practice. The best known results for last
point of SGD (Shamir and Zhang, 2013) however, are suboptimal compared to information theoretic
lower bounds by a log T factor, where T is the number of iterations. Harvey et al. (2018) shows that
in fact, this additional log T factor is tight for standard step size sequences of Θ

(
1√
t

)
and Θ

(
1
t

)
for non-strongly convex and strongly convex settings, respectively. Similarly, even for subgradient
descent (GD) when applied to non-smooth, convex functions, the best known step-size sequences
still lead to O(log T )-suboptimal convergence rates (on the final iterate). The main contribution of
this work is to design new step size sequences that enjoy information theoretically optimal bounds on
the suboptimality of last point of SGD as well as GD. We achieve this by designing a modification
scheme, that converts one sequence of step sizes to another so that the last point of SGD/GD with
modified sequence has the same suboptimality guarantees as the average of SGD/GD with original
sequence. We also show that our result holds with high-probability. We validate our results through
simulations which demonstrate that the new step size sequence indeed improves the final iterate
significantly compared to the standard step size sequences.
Keywords: Stochastic Gradient Descent, Machine Learning, Convex Optimization.

1. Introduction

Stochastic Gradient Descent (SGD) is one of the most popular algorithms for solving large-scale
empirical risk minimization (ERM) problems LeCun et al. (2015); Shalev-Shwartz et al. (2011);
Akiba et al. (2017). The algorithm updates the iterates using stochastic gradients obtained by
sampling data points uniformly at random. The algorithm has been studied for several decades
Bubeck (2015) but there are still significant gaps between practical implementations and theoretical
analyses. In particular, the standard analyses hold only for some kind of average of iterates, but
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most practitioners just use the final iterate of SGD. So, Shamir (2012) asked the natural question of
whether the final iterate of SGD, as opposed to average of iterates, is provably good. It was partly
answered in Shamir and Zhang (2013) which gave sub-optimality bound for the last point of SGD
but the obtained sub-optimality rates are O(log T ) worse than the information theoretically optimal
rates; T is the number of iterations.

Harvey et al. (2018) showed that the above result is tight for the standard step-size sequence used
by most existing theoretical results. The extra logarithmic factor is not due to the stochastic nature
of SGD. In fact, even for subgradient descent (GD) when applied to general non-smooth, convex
functions, the last point’s convergence rates are sub-optimal by O(log T ) factor.

So, this work addresses the following two fundamental questions:
“Does there exist a step-size sequence for which the last point of SGD when applied to general convex
functions as well as to strongly-convex functions has optimal error (sub-optimality) rate?”, and,

“Does there exist a step-size sequence for which the last point of GD when applied to general non-
smooth convex functions has optimal error (sub-optimality) rate?”
In this paper, we answer both the questions in the affirmative. That is, we provide novel step
size sequences and show that the final iterate of SGD run with these step size sequences has the
information theoretically optimal error (suboptimality) rate. In particular, for general non-smooth
convex functions, our results ensure an error rate of O( 1√

T
) and for strongly-convex functions, the

error rate is O( 1
T ). We also present high-probablity versions, i.e., we show that with probability at

least 1 − δ, the suboptimality is O

(√
log

1
δ

T

)
and O

(
log

1
δ

T

)
respectively. For GD, we show that a

similarly modified step-size sequence leads to suboptimality of O( 1
T ) and O( 1√

T
) for non-smooth

convex functions, with and with out strong convexity respectively, which is optimal.
In general, SGD takes the iterates near the optimum value but since the objective isn’t smooth near

the optimizer x∗, the gradients don’t become small even when the points are close to x∗. Standard
step sizes don’t decay appreciably with time to ensure fast enough convergence to x∗. Therefore the
iterates xt, after going close to x∗, start oscillating around it without actually approaching it. Our
new step sizes, ensure that the step sizes decay fast enough after a certain point, making the iterates
go closer to the optimum x∗. The exact mode of this decay ensures that the last iterate approaches
the optimum at the information theoretic rate.

Our step-size sequence requires that the number of iterations or horizon T is known apriori. In
contrast, standard step-size sequences do not require T apriori, and hence guarantee any-time results.
Information about T apriori helps us in ensuring that we do not drop step-size too early; only after
we are close to the optimum, does the step size drop rapidly. In fact, we conjecture that in absence of
apriori information about T , no step-size sequence can ensure the information theoretically optimal
error rates for final iterate of SGD.

Our results utilize a general step size modification scheme which ensures that the upper bounds
for the average function value with the original step sizes gets transferred to the last iterate when
the modified step sizes are used. A key technical contribution of the paper is the construction of a
sequence of averaging schemes which are ‘good’ with high probability such that the last averaging
scheme consists only of the last iterate and hence lets us conclude that the last iterate is ‘good’ with
high probability.

Related Work: Averaging was used first in the stochastic approximation setting by Polyak and
Juditsky (1992) to show optimal rates of convergence. Gradient Descent type methods have been
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shown to achieve information theoretically optimal error rates in the convex and strongly convex
settings when averaging of iterates is used (Nemirovsky and Yudin (1983),Zinkevich (2003),Cesa-
Bianchi et al. (2004), Kakade and Tewari (2009), Epoch GD in Hazan and Kale (2014) , SGD
Rakhlin et al. (2012) and Lacoste-Julien et al. (2012)). The question of the last iterate was first
considered in Shamir and Zhang (2013) and it gives a bound of O( log T√

T
) and O( log TT ) in expectation

for the general case and strongly convex case respectively. Harvey et al. (2018) show matching high
probability bounds and show that for the standard step sizes (O

(
1√
t

)
in the general case and O

(
1
t

)
in the strongly convex case), the logarithmic-suboptimal bounds are tight.

2. Conclusions and Discussion

We studied the fundamental question of sub-optimality of the last point of SGD/GD for general
non-smooth convex functions as well as for strongly-convex functions. We proposed a novel step-size
sequence that leads to information theoretically optimal rates in both the above mentioned settings.
Our result proves a more general result for any “modified step-size” of a decaying standard step-size,
and uses a novel technique of tracking best iterate in each time-interval and ensuring that the later
iterates do not significantly deviate from the best iterate in the previous time interval. We also provide
a high-probability bound using a super-martingale technique from Harvey et al. (2018). Simulations
show that our step-size indeed leads to better last point than the standard step-size sequences.

Our approach fundamentally exploits an assumption that we apriori know the total number of
iterations T . Hence, our result does not provide an any-time algorithm. In contrast, existing any-time
results have an extra log T multiplicative factor in the sub-optimality. We conjecture that this gap is
fundamental and every any-time algorithm would suffer from the extra log T factor.
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