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Abstract
We give a spectral algorithm for decomposing overcomplete order-4 tensors, so long as

their components satisfy an algebraic non-degeneracy condition that holds for nearly all (all
but an algebraic set of measure 0) tensors over (Rd)⊗4 with rank n 6 d2. Our algorithm is
robust to adversarial perturbations of bounded spectral norm.

Our algorithm is inspired by one which uses the sum-of-squares semidefinite programming
hierarchy (Ma, Shi, and Steurer STOC’16), and we achieve comparable robustness and
overcompleteness guarantees under similar algebraic assumptions. However, our algorithm
avoids semidefinite programming and may be implemented as a series of basic linear-
algebraic operations. We consequently obtain a much faster running time than semidefinite
programming methods: our algorithm runs in time Õ(n2d3) 6 Õ(d7), which is subquadratic
in the input size d4 (where we have suppressed factors related to the condition number of
the input tensor).
Keywords: overcomplete tensors, tensor rank decomposition, CP decomposition, spectral
algorithms, algebraic non-degeneracy, sum-of-squares proofs

1. Introduction

Tensors are higher-order analogues of matrices: multidimensional arrays of numbers. They
have broad expressive power: tensors may represent higher-order moments of a probability
distribution Anandkumar et al. (2014b), they are natural representations of cubic, quartic,
and higher-degree polynomials Richard and Montanari (2014); Hopkins et al. (2015), and
they appear whenever data is multimodal (e.g. in medical studies, where many factors
are measured) Acar et al. (2007); Beckmann and Smith (2005); Hai-Long et al.. Due to
these reasons, in recent decades tensors have emerged as fundamental structures in machine
learning and signal processing.

The notion of rank extends from matrices to tensors: a rank-1 tensor in (Rd)⊗k is a
tensor that can be written as a tensor product u(1) ⊗ · · · ⊗ u(k) of vectors u(1), . . . , u(k) ∈ Rd.
Any tensor T ∈ (Rd)⊗k can be expressed as a sum of rank-1 tensors, and the rank of T is the
minimum number of terms needed in such a sum. As is the case for matrices, we are often
interested in tensors of low rank: low-rank structure in tensors often carries interpretable
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meaning about underlying data sets or probability distributions, and the tensors that arise
in many applications are low-rank Anandkumar et al. (2014b).

Tensor decomposition is the natural inverse problem in the context of tensor rank: given
a d-dimensional symmetric k-tensor T ∈ (Rd)⊗k of the form

T =
∑
i6n

a⊗ki + E,

for vectors a1, . . . , an ∈ Rd and an (optional) error tensor E ∈ (Rd)⊗k, we are asked to output
vectors b1, . . . , bn as close as possible to a1, . . . , an (e.g. minimizing the Euclidean distance
‖bi − ai‖). The goal is to accomplish this with an algorithm that is as efficient as possible,
under the mildest-possible assumptions on k,a1, . . . , an, and E.

While tensor rank decomposition is a generalization of rank decomposition for matrices,
decomposition for tensors of order k > 3 differs from the matrix case in several key ways.

1. (Uniqueness) Under mild assumptions on the vectors a1, . . . , an, tensor decompositions
are unique (up to permutations of [n]), while matrix decompositions are often unique
only up to unitary transformation.

2. (Overcompleteness) Tensor decompositions often remain unique even when the number
of factors n is larger than the ambient dimension d (up to n = O(dk−1)), while a d× d
matrix can have only d eigenvectors or 2d singular vectors.

These features make tensor decompositions suitable for many applications where matrix
factorizations are insufficient. However, there is another major difference:

3. (Computational Intractability) While many matrix decompositions — eigendecomposi-
tions, singular value decompositions, LU -factorizations, and so on — can be found in
polynomial time, tensor decomposition is NP-hard in general Hillar and Lim (2013).

In spite of the NP-hardness of general tensor decomposition, many special cases admit
polynomial-time algorithms. A classic algorithm, often called Jennrich’s algorithm, recovers
the components a1, . . . , an from T when they are linearly independent (which requires n 6 d)
and E ≈ 0 using simultaneous diagonalization Harshman (1970); De Lathauwer et al. (1996).

More sophisticated algorithms improve on Jennrich’s in their tolerance to overcompleteness
(and the resulting lack of linear independence) and robustness to nontrivial error tensors
E. The literature now contains a wide variety of techniques for tensor decomposition: the
major players are iterative methods (tensor power iteration, stochastic gradient descent, and
alternating minimization), spectral algorithms, and convex programs. Convex programs,
and in particular the sum-of-squares semidefinite programming hierarchy (SoS), require the
mildest assumptions on k, a1, . . . , an,E among known polynomial-time algorithms Ma et al.
(2016). In pushing the boundaries of what is known to be achievable in polynomial time,
SoS-based algorithms have been crucial. However, the running times of these algorithms are
large polynomials in the input, making them utterly impractical for applications.

The main contribution of this work is a tensor decomposition algorithm whose robustness
to errors and tolerance for overcompleteness are similar to those of the SoS-based algorithms,
but with subquadratic running time. Other algorithms with comparable running times require
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either higher-order tensors,1 an exponentially small input error E (and hence are not robust),
or linear independence of the components a1, . . . , an and hence n 6 d.2

Our algorithm is comparatively simple, and can be implemented with a small num-
ber of dense matrix and matrix-vector multiplication operations, which are fast not only
asymptotically but also in practice.

Concretely, we study tensor decomposition of overcomplete 4-tensors under algebraic
nondegeneracy conditions on the tensor components a1, . . . , an. Algebraic conditions like ours
are the mildest type of assumption on a1, . . . , an known to lead to polynomial time algorithms
– our algorithm can decompose all but a measure-zero set of 4-tensors of rank n� d2, and in
particular we make no assumption that the components a1, . . . , an are random.3

When n� d2, our algorithm approximately recovers a 1− o(1) fraction of a1, . . . , an (up
to their signs) from T =

∑
i6n a

⊗4
i +E, so long as the spectral norm ‖E‖ is (significantly) less

than the minimum singular value of a certain matrix associated to the {ai}. (In particular,
nonsingularity of this matrix is our nondegeneracy condition on a1, . . . , an.) The algorithm
requires time Õ(n2d3) 6 O(d7), which is subquadratic in the input size d4.

Robustness, Overcompleteness, and Applications to Machine Learning Tensor
decomposition is a common primitive in algorithms for statistical inference that leverage
the method of moments to learn parameters of latent variable models. Examples of such
algorithms exist for independent component analysis / blind source separation De Lathauwer
et al. (2007), dictionary learning Barak et al. (2015); Ma et al. (2016); Schramm and Steurer
(2017), overlapping community detection Anandkumar et al. (2013); Hopkins and Steurer
(2017), mixtures of Gaussians Ge et al. (2015b), and more.

In these applications, we receive samples x ∈ Rd from a model distribution D(ρ) that is
a function of parameters ρ. The goal is to estimate ρ using the samples. The method-of-
moments strategy is to construct the third- or fourth-order moment tensor Ex⊗k (k = 3, 4)
from samples whose expectation Ex⊗k =

∑
i6n a

⊗k
i is a low rank tensor with components

a1, . . . , an, from which the model parameters ρ can be deduced.4 Since Ex⊗k is estimated
using samples, the tensor decomposition algorithm used to extract a1, . . . , an from Ex⊗k
must be robust to error from sampling. The sample complexity of the resulting algorithm
depends directly on the magnitude of errors tolerated by the decomposition algorithm.

Some model classes give rise to overcomplete tensors; roughly speaking, this occurs
when the number of parameters (the size of the description of ρ) far exceeds d2, where
d is the ambient dimension. Typically, in such cases, ρ consists of a collection of vectors
a1, . . . , an ∈ Rd with n � d. Such overcomplete models are widely used; for example, in
the dictionary learning setting, we are given a data set S and are asked to find a sparse
representation of S. This is a powerful preprocessing tool, and the resulting representations

1. Higher-order tensors are costly because they are larger objects, and for learning applications they often
require a polynomial increase in sample complexity.

2. There are also existing robust algorithms which tolerate some overcompleteness when a1, . . . , an are
assumed to be random; in this paper we study generic a1, . . . , an, which is a much more challenging
setting than random a1, . . . , an Anandkumar et al. (2014a); Hopkins et al. (2016).

3. Although decompositions of 4-th order tensors can remain unique up to n ≈ d3, no polynomial-time
algorithms are known which successfully decompose tensors of overcompleteness n� d2.

4. Any constant k, rather than just k = 3, 4, may lead to polynomial-time learning algorithms, but the cost
is typically gigantic polynomial sample complexity and running time, scaling like dk, to estimate and
store a k-th order tensor.
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are more robust to perturbations, but assembling a truly sparse, effective dictionary often
requires representing d-dimensional data in a basis with n � d elements Lewicki and
Sejnowski (2000); Elad (2010). Recent works also relate the problem of learning neural
networks with good generalization error to tensor decomposition, showing a connection
between overcompleteness and the width of the network Mondelli and Montanari (2018).5

Using tensor decomposition in such settings requires algorithms with practical running
times, error robustness, and tolerance to overcompleteness. The strongest polynomial-
time guarantees for overcomplete dictionary learning and similar models currently rely on
overcomplete tensor decomposition via the SoS method Ma et al. (2016); our work is an
important step towards giving lightweight, spectral algorithms for such problems.

1.1. Our Results

Our contribution is a robust, lightweight spectral algorithm for tensor decomposition in the
overcomplete regime. We require that the components satisfy an algebraic non-degeneracy
assumption satisfied by all but a measure-0 set of inputs. At a high level, we require that
a certain matrix associated with the components of the tensor have full rank. Though the
assumption may at first seem complicated, we give it formally here:

Definition 1 Let Π⊥2,3 be the projector to the orthogonal complement of the subspace of
(Rd)⊗3 that is symmetric in its latter two tensor modes. Equivalently, Π⊥2,3 = 1

2(Id− P2,3),
where P2,3 is the linear operator that interchanges the second and third modes of (Rd)⊗3.

Definition 2 Let Πimg(M) denote the projector to the column space of the matrix M . Equiv-
alently, Πimg(M) = (MM>)−1/2M = M(M>M)−1/2, where (MM>)−1/2 is the whitening
transform of M and is equal to the Moore-Penrose pseudoinverse of (MM>)1/2.

Definition 3 Vectors a1, . . . , an ∈ Rd are κ-non-degenerate if the matrix K(a1, . . . , an),
defined below, has minimum singular value at least κ > 0. If κ = 0, we say that the {ai} are
degenerate.

The matrix K(a1, . . . , an) is given by choosing for each i ∈ [n] a matrix Bi whose columns
form a basis for the orthogonal complement of ai in Rd, assembling the d3 × n(d− 1) matrix
H whose rows are given by ai ⊗ ai ⊗B(j)

i as

H =

 a>1 ⊗ a>1 ⊗B>1
...

a>n ⊗ a>n ⊗B>n


and letting K(a1, . . . , an) = Π⊥2,3Πimg(H>).

We note that when n � d2 then all but a measure-zero set of unit (a1, . . . , an) ∈ Rdn
satisfy the condition that κ > 0. We expect also that for n � d2, if a1, . . . , an ∈ Rd are

5. Strictly speaking, this work shows a reduction from tensor decomposition to learning neural nets, but the
connection between width and overcompleteness is direct regardless.

4



A Robust Spectral Algorithm for Overcomplete Tensor Decomposition

independent uniformly random unit vectors then κ > Ω(1) – we provide simulations in
support of this, and for a variety of other families of random vectors, in Appendix H.6

Some previous works on tensor decomposition under algebraic nondegeneracy assumptions
also give smoothed analyses of nondegeneracy, showing that small random perturbations of
arbitrary vectors are 1

poly(d) -well-conditioned (for differing notions of well-conditioned-ness)
Bhaskara et al. (2014); Ma et al. (2016). We expect that a similar smoothed analysis is
possible for κ-non-degeneracy, though because of the specific form of the matrix K(a1, . . . , an)
it does not follow immediately from known results. We defer this to future work.

Given this non-degeneracy condition, we robustly decompose the input tensor in time
Õ(n

2d3

κ ), where we have suppressed factors depending on the smallest singular value of a
matrix flattening of our tensor.

Theorem [Special case of Theorem 25] Suppose that d 6 n 6 d2, and that a1, . . . , an ∈ Rd
are κ-non-degenerate unit vectors for κ > 0, and suppose that T is their 4-tensor perturbed
by noise, T ∈ (Rd)⊗4 such that T =

∑
i∈[n] a

⊗4
i + E, where E is a perturbation such that

‖E‖ 6 ε
log d in its d2 × d2 reshaping. Suppose further that when reshaped to a d2 × d2 matrix,

‖T−1‖ 6 O(1) and that ‖
∑

i∈[n](a
⊗3
i )(a⊗3i )>‖ 6 O(1).

There exists an algorithm decompose with running time Õ(n2d3κ−1), so that for every
such T there exists a subset S ⊆ {a1, . . . , an} of size |S| > 0.99n, such that decompose(T)
with high probability returns a set of t = Õ(n) unit vectors b1, . . . , bt where every ai ∈ S is
close to some bj, and each bj is close to some ai ∈ S:

∀ai ∈ S, max
j
|〈bj , ai〉| > 1−O

( ε
κ2

)1/8
, and ∀j ∈ [t], max

ai∈S
|〈bj , ai〉| > 1−O

( ε
κ2

)1/8
.

Furthermore, if a1, . . . , an are random unit vectors, then with high probability they satisfy
the conditions of this theorem with κ = Ω(1).

When n 6 d, our algorithm still obtains nontrivial guarantees (though the runtime asymptotics
are dominated by other terms); however in this regime, a combination of the simpler algorithm
of Schramm and Steurer (2017) and a whitening procedure gives comparable guarantees.

We remark that our full theorem, Theorem 25, does not pose as many restrictions on
the {ai}; we do not generally require that ‖T−1‖ 6 O(1) or that ‖

∑
i(a
⊗3
i )(a⊗3i )>‖ 6

O(1). However, allowing these quantities to depend on d and n affects our runtime and
approximation guarantees, and so to simplify presentation we have made these restrictions
here; we refer the reader to Theorem 25 for details.

Furthermore, in the theorem stated above we recover only a 0.99-fraction of the vectors,
and we require the perturbation to have magnitude O( 1

log d). This is again a particular
choice of parameters in Theorem 25, which allows for a four-way tradeoff among accuracy,
magnitude of perturbation, fraction of components recovered, and runtime. For example,
if the perturbation is 1

poly(d) in spectral norm, then we may recover all components in time

6. Furthermore, standard techniques in random matrix theory prove that when a1, . . . , an are random then
matrices closely related to K(a1, . . . , an) are well-conditioned; for instance this holds (roughly speaking)
if (H>1 H)−1/2 and (H>2 H)−1/2 are removed. However, inverses and pseudoinverses of random matrices,
especially those with dependent entries like ours, are infamously challenging to analyze – we leave this
challenge to future work. See Appendix H for details.
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Algorithm Type Rank Robustness Assumptions Runtime
Lathauwer et al.
(2007) algebraic n 6 d2 ‖E‖∞ 6 2−O(d) algebraic Õ(n3d4)
Anandkumar
et al. (2017) iterative n 6 o(d1.5) ‖E‖ 6 o( n

d2
) random, warm

start Õ(nd3)

Ge and Ma (2017) iterative n 6 O(d2) E = 0 random, warm
start Õ(nd4)

Ma et al. (2016) SDP n 6 d2 ‖E‖ 6 0.01 algebraic > nd24

Schramm and
Steurer (2017) spectral n 6 d ‖E‖ 6 O( log log dlog d ) orthogonal Õ(d2+ω)

this paper spectral n 6 d2 ‖E‖ 6 O( 1
log d) algebraic Õ(n2d3)

Table 1: A comparison of tensor decomposition algorithms for rank-n 4-tensors in (Rd)⊗4. Here
ω denotes the matrix multiplication constant. A robustness bound ‖E‖ 6 η refers to the
requirement that a d2 × d2 reshaping of the error tensor E have spectral norm at most
η. Some of the algorithms’ guarantees involve a tradeoff between robustness, runtime,
and assumptions; where this is the case, we have chosen one representative setting of
parameters. See Section G for details. Above, “random” indicates that the algorithm
assumes a1, . . . , an are independent unit vectors (or Gaussians) and “algebraic” indicates
that the algorithm assumes that the vectors avoid an algebraic set of measure 0.

Õ(n2d3κ−1); alternatively, if the perturbation has spectral norm η2 = Θ(1), then we may
recover an 0.99-fraction of components in time Õ(n2+O(η)d3κ−1) up to accuracy 1−O( η

κ2
)1/8.

Again, we refer the reader to Theorem 25 for the full tradeoff.
Finally, a note about our recovery guarantee: we guarantee that every vector returned by

the algorithm is close to some component, and furthermore that most components will be
close to some vector. It is possible to run a clean-up procedure after our algorithm, in which
nearby approximate components bj are clustered to correspond to a specific ai; depending
on the proximity of the ai to each other, this may require stronger accuracy guarantees, and
so we leave this procedure as an independent step. Our guarantee does not include signs,
but this is because the tensor T is an even-order tensor, so the decomposition is only unique
up to signings as (−ai)⊗4 = a⊗4i .

1.2. Related works

The literature on tensor decomposition is broad and varied, and we will not attempt to
survey it fully here (see e.g. the survey Kolda and Bader (2009) or the references within
Anandkumar et al. (2014b); Ge and Ma (2017) for a fuller picture). We will give an idea of
the relationship between our algorithm and others with provable guarantees.

For simplicity, we focus on order-4 tensors. Algorithms with provable guarantees for
tensor decomposition fall broadly into three classes: iterative methods, convex programs,
and spectral algorithms. For a brief comparison to previous works, we include Table 1.

Iterative Methods. Iterative methods are a class of algorithms that maintain one (or
sometimes several) estimated component(s) b, and update the estimate using a variety of
update rules. Some popular update rules include tensor power iteration Anandkumar et al.
(2014b), gradient descent Ge and Ma (2017), and alternating-minimization Anandkumar
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et al. (2014c). Most of these methods have the advantage that they are fast; the update
steps usually run in time linear in the input size, and the number of updates to convergence
is often polylogarithmic in the input size.

The performance of the most popular iterative methods has been well-characterized in
some restricted settings; for example, when the components {ai} are orthogonal or linearly
independent Anandkumar et al. (2014b); Ge et al. (2015a); Sharan and Valiant (2017), or are
independently drawn random vectors Anandkumar et al. (2017); Ge and Ma (2017). Many
of these analyses require a “warm start,” or an initial estimate b that is more correlated with
a component than a typical random starting point. Few provable guarantees are known for
the non-random overcomplete regime, or in the presence of arbitrary perturbations.

Convex Programming. Convex programs based on the sum-of-squares (SoS) semidefi-
nite programming (SDP) relaxation yield the most general provable guarantees for tensor
decomposition. These works broadly follow a method of pseudo-moments: interpreting the
input tensor

∑
i∈[n] a

⊗k
i as the k-th moment tensor EX⊗k of a distribution X on Rd, this

approach uses SoS to generate surrogates (or pseudo-moments) for higher moment tensors,
like EX⊗100k =

∑
i∈[n] a

⊗100k
i . It is generally easier to extract the components a1, . . . , an

from
∑

i∈[n](a
⊗100
i )⊗k than from

∑
i∈[n] a

⊗k
i , because the vectors {a⊗100i } have fewer algebraic

dependencies than the vectors {ai}, and are farther apart in Euclidean distance. Of course,
EX⊗100k =

∑
i∈[n] a

⊗100k
i is not given as input, and even in applications where the input is

negotiable, it may be expensive or impossible to obtain such a high-order tensor. The SoS
method uses semidefinite programming to generate a surrogate which is good enough to be
used to find the vectors a1, . . . , an

Work on sum-of-squares relaxations for tensor decomposition began with the quasi-
polynomial time algorithm of Barak et al. (2015); this algorithm requires only mild well-
conditioned-ness assumptions, but also requires high-order tensors as input, and runs in
quasi-polynomial time. This was followed by an analysis showing that, at least in the setting
of random a1, . . . , an, the SoS algorithm can decompose substantially overcomplete tensors
of order 3 Ge and Ma (2015). This line of work finally concluded with the work of Ma, Shi,
and Steurer Ma et al. (2016), who give sum-of-squares based polynomial-time algorithms for
tensor decomposition in the most general known settings: under mild algebraic assumptions
on the components, and in the presence of adversarial noise, so long as the noise tensor has
bounded spectral norm in its matrix reshapings.

These SoS algorithms have the best known polynomial-time guarantees, but they are
formidably slow. The work of Ma et al. (2016) uses the degree-8 sum-of-squares relaxation,
meaning that to find each of the n components, one must solve an SDP in Ω(d8) variables.
While these results are important in establishing that polynomial-time algorithms exist for
these settings, their runtimes are far from efficient.

Spectral algorithms from Sum-of-Squares Analyses. Inspired by the mild assump-
tions needed by SoS algorithms, a line of work has used the analyses of SoS in order to design
more efficient spectral algorithms, which ideally work for similarly broad classes of tensors.

At a high level, these spectral algorithms use eigendecompositions of specific matrix poly-
nomials to directly construct approximate primal and dual solutions to the SoS semidefinite
programs, thereby obtaining the previously mentioned “surrogate moments” without having
to solve an SDP. Since the SoS SDPs are quite powerful, constructing (even approximate)
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solutions to them directly and efficiently is a nontrivial endeavor. The resulting matrices
are only approximately SDP solutions — in fact, they are often far from satisfying most
of the constraints of the SoS SDPs. There is a tradeoff between how well these spectrally
constructed solutions approximate the SoS output and how efficiently the algorithm can
be implemented. However, by carefully choosing which constraints to satisfy, these works
are able to apply the SDP rounding algorithms to the approximate spectrally-constructed
solutions (often with new analyses) to obtain similar algorithmic guarantees.

The work of Hopkins et al. (2016) was the first to adapt the analysis of SoS for random
a1, . . . , an presented by Ge and Ma (2015) to obtain spectral algorithms for tensor decompo-
sition, giving subquadratic algorithms for decomposing random overcomplete tensors with
n 6 O(d4/3). As SoS algorithms have developed, so too have their faster spectral counterparts.
In particular, Schramm and Steurer (2017) adapted some of the SoS arguments presented in
Ma et al. (2016) to give robust subquadratic algorithms for decomposing orthogonal 4-tensors
in the presence of adversarial noise bounded only in spectral norm.

Our result builds on the progress of both Ma et al. (2016); Schramm and Steurer (2017).
The SoS algorithm of Ma et al. (2016) was the first to robustly decompose generic overcomplete
tensors in polynomial time. The spectral algorithm of Schramm and Steurer (2017) obtains
a much faster running time for robust tensor decomposition, but sacrifices overcompleteness.
Our work adapts (and improves upon) the SoS analysis of Ma et al. (2016) to give a spectral
algorithm for the robust and overcomplete regime. Our primary technical contribution is
the efficient implementation of the lifting step in the SoS analysis of Ma et al. (2016) as an
efficient spectral algorithm to generate surrogate 6th order moments ; this is the subject of
Appendix C, and we give an informal description in Section 2.

FOOBI The innovative FOOBI (Fourth-Order Cumulant-Based Blind Identification) al-
gorithm of Lathauwer et al. (2007) was the first method with provable guarantees for
overcomplete 4-th order tensor decomposition under algebraic nondegeneracy assumptions.
Like our algorithm, FOOBI can be seen as a lifting procedure (to an 8-th order tensor)
followed by a rounding procedure. The FOOBI lifting procedure inspires ours – although ours
runs faster because we lift to a 6-tensor rather than an 8-tensor – but the FOOBI rounding
step is quite different, and proceeds via a clever simultaneous diagonalization approach.
The advantage our algorithm offers over FOOBI is twofold: first, it provides formal, strong
robustness guarantees, and second, it has a faster asymptotic runtime.

To the first point: for a litmus test, consider the case that n = d and a1, . . . , an ∈ Rd
are orthonormal. On input T =

∑n
i=1 a

⊗4
i +E, our algorithm recovers the ai for arbitrary

perturbations E so long as they are bounded in spectral norm by ‖E‖ 6 1/ poly log d.7

We are not aware of any formal analyses of FOOBI when run on tensors with arbitrary
perturbations of this form. Precisely what degree of robustness should be expected from this
modified FOOBI algorithm is unclear. The authors of Lathauwer et al. (2007) do suggest
(without analysis) a modification of their algorithm for the setting of nonzero error tensors E,
involving an alternating-minimization method for computing an approximate simultaneous
diagonalization. Because the problem of approximate simultaneous diagonalization is non-
convex, establishing robustness guarantees for the FOOBI algorithm when augmented with

7. In contrast, most iterative methods, such as power iteration, can only handle perturbations of spectral
norm at most ‖E‖ 6 1/poly(d).

8



A Robust Spectral Algorithm for Overcomplete Tensor Decomposition

the approximate simultaneous diagonalization step appears to be a nontrivial technical
endeavor. We think this is an interesting and potentially challenging open question.

Further, while the running time of FOOBI depends on the specific implementation of its
linear-algebraic operations, we are unaware of any technique to implement it in time faster
than Õ(n3d4). In particular, the factor of d4 appears essential to any implementation of
FOOBI; it represents the side-length of a d4×d4 square unfolding of a d-dimensional 8-tensor,
which FOOBI employs extensively. By contrast, our algorithm runs in time Õ(n2d3), which
is (up to logarithmic factors) faster by a factor of nd.

2. Overview of algorithm

We now describe a simple decomposition algorithm for orthogonal 3-tensors: Gaussian
rounding (Harshman (1970)). We then build on that intuition to describe our algorithm.

Orthogonal, undercomplete tensors. Suppose that u1, . . . , ud ∈ Rd are orthonormal
vectors, and that we are given T =

∑
i∈[d] u

⊗3
i . As a first attempt at recovering the ui, one

might be tempted to choose the first “slice” of T , the d × d matrix T1 =
∑

i ui(1) · uiu>i ,
and compute its singular value decomposition (SVD). However, if |ui(1)| = |uj(1)| for some
i 6= j ∈ [d], the SVD will not allow us to recover these components. In this setting, Gaussian
rounding allows us to exploit the additional mode of T : If we sample g ∼ N (0, Idd), then we
can take the random flattening T (g) =

∑
i〈g, ui〉 · uiu>i ; because the 〈g, ui〉 are independent

standard Gaussians, they are distinct with probability 1, and an SVD will recover the ui
exactly. Moreover, this algorithm also solves k-tensor decomposition for orthogonal tensors
with k > 4, by treating

∑
i∈[d] u

⊗k
i as the 3-tensor

∑
i∈[d] u

⊗k−1
i ⊗ ui ⊗ ui.

Challenges of overcomplete tensors. In our setting, we have unit vectors {ai}i∈[n] ⊂ Rd

with n > d, and T =
∑

i a
⊗4
i (focusing for now on the unperturbed case). Since n > d, the

components a1, . . . , an are not orthogonal: they are not even linearly independent. So, we
cannot hope to use Gaussian rounding as a black box. While the vectors a1⊗ a1, . . . , an⊗ an
may be linearly independent, the spectral decompositions of the matrix

∑
i∈[n](a

⊗2
i )(a⊗2i )>

are not necessarily useful, since its eigenvectors may not be close to any of the vectors ai,
and may be unique only up to rotation.

Challenges of perturbations. Returning momentarily to the orthogonal setting with
n 6 d, new challenges arise when the perturbation tensor E is nonzero. For an orthogo-
nal 4-tensor T =

∑
i∈[d] u

⊗4
i + E, the Gaussian rounding algorithm produces the matrix∑

i∈[d]〈g, u
⊗2
i 〉uiuiT +Eg for some d× d matrix Eg. The difficulty is that even if the spectral

norm ‖E‖ � σmin(
∑

i∈[d](u
⊗2
i )(u⊗2i )T) = 1, the matrix Eg sums many slices of the tensor E,

and so the spectrum of Eg can overwhelm that of
∑

i∈[d]〈g, u
⊗2
i 〉uiuiT.

This difficulty is studied in Schramm and Steurer (2017), where it is resolved by SoS-
inspired preprocessing of the tensor T . We borrow many of those ideas in this work.

Algorithmic strategy. We now give an overview of our algorithm. Algorithm 1 summa-
rizes the algorithm, omitting details concerning robustness and fast implementation.

There are two main stages to the algorithm: the first stage is lifting, where the input
rank-n 4-tensor over Rd is lifted to a corresponding rank-n 3-tensor over a higher dimensional
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space Rd2 ; this creates an opportunity to use Gaussian rounding on the newly-created tensor
modes. In the second rounding stage, the components of the lifted tensor are recovered using
a strategy similar to Gaussian rounding and then used to find the components of the input.

This parallels the form of the SoS-based overcomplete tensor decomposition algorithm of
Ma et al. (2016), where both stages rely on SoS semidefinite programming. Our main technical
contribution is a spectral implementation of the lifting stage; our spectral implementation of
the rounding stage reuses many ideas of Schramm and Steurer (2017), adapted round the
output of our new lifting stage.

Lifting. The goal of the lifting stage is to transform the input T =
∑

i∈[n](a
⊗2
i )(a⊗2i )T to

an orthogonal 3-tensor. Let W = T−1/2 and observe that the whitened vectors W (a⊗2i ) are
orthonormal; therefore we will want to use T to find the orthogonal 3-tensor

∑
i∈[n](Wa⊗2i )⊗3.

The lifting works by deriving Span(a⊗3i )i∈[n] from Span(a⊗2i )i∈[n], where the latter is
simply the column space of the input T . By transforming Span(a⊗3i ) using W = T−1/2,
we obtain Span(W (a⊗2i ) ⊗ ai). Since {W (a⊗2i ) ⊗ ai}i∈[n] are orthonormal, the orthogonal
projector to their span is in fact equal to

∑
i(W (a⊗2i )⊗ ai)(W (a⊗2i )⊗ ai)T, which is only a

reshaping and a final multiplication by W away from the orthogonal tensor
∑

i(W (a⊗2i ))⊗3.
The key step is the operation which obtains Span(a⊗3i ) from Span(a⊗2i ). It rests on an

algebraic “identifiability” argument, which establishes that for almost all problem instances
(all but an algebraic set of measure 0), the subspace Span(a⊗3i ) is equal to Span(a⊗2i )⊗ Rd
intersected with the symmetric subspace Span({x ⊗ x ⊗ x}x∈Rd). Since we can compute
Span(ai⊗ai) from the input and since the symmetric subspace is easy to describe, we are able
to perform this lifting step efficiently. The simplest version of the identifiability argument is
given in Lemma 4, and a more robust version that includes a condition number analysis is
given in Section C.1.

Lemma 4 (Simple Identifiability) Let a1, . . . , an ∈ Rd with n 6 d2. Let S denote
Span({a⊗2i }) and let T denote Span({a⊗3i }) and assume both have dimension n. Let sym ⊆
(Rd)⊗3 be the linear subspace sym = Span({x⊗ x⊗ x}x∈Rd) . For each i, let {bi,j}j∈[d−1] be
an arbitrary orthonormal basis the orthogonal complement of ai in Rd. Let also

K ′T :=


a1 ⊗ a1 ⊗ b1,1 − a1 ⊗ b1,1 ⊗ a1

...
ai ⊗ ai ⊗ bi,j − ai ⊗ bi,j ⊗ ai

...
an ⊗ an ⊗ bn,d−1 − an ⊗ bn,d−1 ⊗ an

 ,

Then if K ′ has full rank n(d− 1), it follows that (S ⊗ Rd) ∩ sym = T .

Proof To show that T ⊆ (S ⊗ Rd) ∩ sym, we simply note that {ai ⊗ ai ⊗ ai}i∈[n] form a
basis for T and are also each in both S ⊗ Rd and sym.

To show that (S⊗Rd)∩ sym ⊆ T , we take some y ∈ (S⊗Rd)∩ sym. Since y is symmetric
under mode interchange, we express y in two ways as

y =
∑
i

ai ⊗ ai ⊗ ci =
∑
i

ai ⊗ ci ⊗ ai .
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Then by subtracting these two expressions for y from each other, we find

0 =
∑
i

ai ⊗ (ai ⊗ ci − ci ⊗ ai).

We express ci = 〈ai, ci〉ai +
∑

j γijbij for some vector γ. Then the symmetric parts cancel
out, leaving

0 =
∑
ij

γij ai ⊗ (ai ⊗ bij − bij ⊗ ai) = K ′γ .

Since K ′ is full rank by assumption, this is only possible when γ = 0. Therefore, ci ∝ ai for
all i, so that y ∈ T .

Remark 5 Although the condition number from the matrix K ′ here is not the same as
the one derived from K from Definition 3, it is off by at most a multiplicative factor of
2‖T−1‖−1/2. To see this, K in Definition 3 is given as K = Π⊥2,3Πimg(HT), whereas we
may write K ′ = 2Π⊥2,3H

T = 2Π⊥2,3Πimg(HT)(HH
T)1/2 = 2K(HHT)1/2. Therefore, ‖K ′−1‖ >

1
2‖K

−1‖ ‖H−1‖. By (Ma et al., 2016, Lemma 6.3), ‖H−1‖2 > ‖T−1‖.

Robustness. To ensure that our algorithm is robust to perturbations E, we must argue
that the column span of T and T + E are close to each other so long as E is bounded in
spectral norm, and furthermore than the lifting operation still produces a subspace V which is
close to Span({W (ai⊗ ai)⊗ ai}). This is done via careful application of matrix perturbation
analysis to the identifiability argument. By operating with W only on third-order vectors
and matrices over (Rd)⊗3, we also avoid incurring factors of the fourth-order operator norm
‖T‖ in the condition numbers, instead only incurring a much milder sixth-order penalty
‖
∑
a⊗3i a⊗3i

T‖. For details, see Section C.2.

Rounding. If we are given direct access to T in the absence of noise, the rounding stage
can be accomplished with Gaussian rounding. However when we allow T to be adversarially
perturbed the situation becomes more delicate. Our rounding stage is an adaptation of
Schramm and Steurer (2017), though some modifications are required for the additional
challenges of the overcomplete setting. It recovers the components of an approximation of a
3-tensor with n orthonormal components, provided that said approximation is within ε

√
n

in Frobenius norm distance. The technique is built around Gaussian rounding, but in order
to have this succeed in the presence of ε

√
n Frobenius norm noise, the large singular values

are truncated from the rectangular matrix reshapings of the 3-tensor: this ensures that the
rounding procedure is not entirely dominated by any spectrally large terms in the noise.

After we recover approximations of the orthonormal components bi ≈ Wa⊗2i , we wish
to extract the ai. Naively one could simply apply W−1, but this can cause errors in the
recovered vectors to blow up by a factor of ‖W−1‖. Even when the {ai} are random vectors,
‖W−1‖ = Ω(poly(d)).8 Instead, we utilize the projector to Span{W (ai⊗ ai)⊗ ai} computed
in the lifting step: we lift bi, project it into the span to obtain a vector close toW (ai⊗ai)⊗ai,
and reshape it to a d2 × d matrix whose top right-singular vector is correlated with ai. This
extraction-via-lifting step allows us to circumvent a loss of ‖W−1‖ in the error.

8. This is in contrast to ‖W‖, which is O(1) in the random case.
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Algorithm 1 Sketch of full algorithm, in the absence of noise
Input: A 4-tensor T ∈ (Rd)⊗4, so that T =

∑n
i=1 a

⊗4
i for unit vectors ai ∈ Rd.

1. Take the square reshaping T ∈ Rd2×d2 of T and compute its whitening W = T−1/2

(where T−1/2 refers to the Moore-Penrose pseudo-inverse of the positive-semidefinite
square root of T ) and the projector Π2 = WTW to the image of T .

2. Lifting : Compute the lifted tensor T′ ∈ (Rd2)⊗3 so that T′ =
∑

i(Wa⊗2i )⊗3. (See
Algorithm 2 for full details).

(a) Find a basis for the subspace S3 = (img T )⊗ Rd ∩ sym: take S3 to be the top-n
eigenspace of (Π2 ⊗ Id)Πsym(Π2 ⊗ Id). Then by Lemma 4, S3 = Span(a⊗3i ) .

(b) Find the projector Π3 to the space (W ⊗ Id)S3 = Span(Wa⊗2i ⊗ ai).
(c) Compute the orthogonal 3-tensor: since {Wa⊗2i ⊗ ai} is an orthonormal basis,

Π3 =
∑

i
(Wa⊗2i ⊗ ai)(Wa⊗2i ⊗ ai)

T .

Therefore, reshape Π3 as
∑

i(Wa⊗2i )⊗ (Wa⊗2i )⊗ (a⊗2i ) and multiply W into the
third mode to obtain T′.

3. Rounding : Use Gaussian rounding to find the components ai. (In the presence of noise,
this step becomes substantially more delicate; see Algorithms 3 to 5).

(a) Compute a random flattening of T′ by contracting with g ∼ N (0, Idd2) along the
first mode, T ′(g) =

∑
i〈g, (Wa⊗2i )〉 · (Wa⊗2i )(Wa⊗2i )>

(b) Perform an SVD on T ′(g) to recover the eigenvectors (Wa⊗21 ), . . . , (Wa⊗2n ).

(c) Apply W−1 to each eigenvector to obtain the a⊗2i , and re-shape a⊗2i to a matrix
and compute its eigenvector to obtain ai.

Organization of technical details.

The full implementation details and the analysis of our algorithm are given in the following
sections of the appendix. First, Appendix B sets up some primitives for spectral subspace
perturbation analysis and linear-algebraic procedures on which we build the full algorithm
and its analysis. Then Appendix C covers the lifting stage of the algorithm in detail, while
Appendix D elaborates on the rounding stage. Finally, in Appendix E we combine these
tools to prove Theorem 25.

In Appendix H, we detail simulations strongly suggesting that various families of random
tensors (uniform, discrete, sparse, and spiked) with n � d2 components have constant
condition number κ.
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Appendix A. Preliminaries

Linear algebra We use Idd to denote the d× d identity matrix, or just Id if the dimension
is clear from context. For any subspace S, we use ΠS to denote the projector to that subspace.
For M a matrix, img(M) refers to the image, or columnspace, of M .

We will, in a slight abuse of notation, use M−1 to denote the Moore-Penrose pseudo-
inverse of M . Except where explicitly specified, this will never be assumed to be equal to the
proper inverse, so that, e.g., in general MM−1 = Πimg(M) 6= Id and (AB)−1 6= B−1A−1.

For a matrix B ∈ Rm×n, we will use the whitening matrix W = (BB)−1/2, which maps
the columns of B to an orthonormal basis for img(B), so that (WB)(WB)> = Πimg(B).
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We denote by sym ⊆ (Rd)⊗3 the linear subspace

sym = Span({x⊗ x⊗ x}x∈Rd) .

Note that (Πsym)(i,j,k);(i′,j′,k′) is (|{i, j, k}|!)−1 when {i, j, k} = {i′, j′, k′} and zero otherwise.

Tensor manipulations When working with tensors T ∈ (Rd)⊗k, we will sometimes
reshape the tensors to lower-order tensors or matrices; in this case, if S1, . . . , Sm are a
partition of k, then T(S1,...,Sm) is the tensor given by identifying the modes in each Si into
a single mode. For S ⊂ [d]k, we will also sometimes use the notation T (S) to refer to the
entry of T indexed by S.

A useful property of matrix reshapings is that u ⊗ v reshapes into the outer product
uvT. Linearity allows us to generalize this so, e.g., the reshaping of (U ⊗ V )M for U ∈ Rn×n
and V ∈ Rm×m and M ∈ R(n⊗m)×q is equal to UM ′(V ⊗ Idq), where M ′ ∈ Rn×(m⊗q) is the
reshaping of M . Since reshapings can be easily done and undone by exchanging indices,
these identities will sometimes allow more efficient computation of matrix products over
tensor spaces.

We will on occasion use a · as a placeholder in a partially applied multiple-argument
function: for instance ∂

∂yf(·, y) = limh→0
1
h(f(·, y + h)− f(·, y)).

Appendix B. Tools for analysis and implementation

In this section, we briefly introduce some tools which we will use often in our analysis.

B.1. Robustness and spectral perturbation

A key tool in our analysis of the robustness of Algorithm 1 comes from the theory of the
perturbation of eigenvalues and eigenvectors.

The lemma below combines the Davis-Kahan sin-Θ theorem with Weyl’s inequality to
characterize how top eigenspaces are affected by spectral perturbation.

Theorem 6 (Perturbation of top eigenspace) Suppose Q ∈ RD×D is a symmetric
matrix with eigenvalues λ1 > λ2 > . . . > λD. Suppose also Q̃ ∈ RD×D is a symmetric matrix
with ‖Q− Q̃‖ 6 ε. Let S and S̃ be the spaces generated by the top n eigenvectors of Q and
Q̃ respectively. Then,

sin(S, S̃)
def
= ‖ΠS −ΠS̃ΠS‖ = ‖ΠS̃ −ΠSΠS̃‖ 6

ε

λn − λn+1 − 2ε
. (B.1)

Consequently,

‖ΠS −ΠS̃‖ 6
2ε

λn − λn+1 − 2ε
. (B.2)

Proof We first prove the theorem assuming that Q and Q̃ are symmetric. By Weyl’s
inequality for matrices Weyl (1912), the nth eigenvalue of Q̃ is at least λn − 2ε. By Davis
and Kahan’s sin-Θ theorem Davis and Kahan (1970), since the top-n eigenvalues of Q̃ are
all at least λn − 2ε and the lower-than-n eigenvalues of Q are all at most λn+1, the sine
of the angle between S and S̃ is at most ‖Q − Q̃‖/(λn − λn+1 − 2ε). The final bound on
‖ΠS −ΠS̃‖ follows by triangle inequality.
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B.2. Efficient implementation and runtime analysis

It is not immediately obvious how to implement Algorithm 1 in time Õ(n2d3), since there
are steps that require we multiply or eigendecompose d3 × d3 matrices, which if done naively
might take up to Ω(d9) time.

To accelerate our runtime, we must take advantage of the fact that our matrices have
additional structure. We exploit the fact that in certain reshapings our tensors have low-rank
representations. This allows us to perform matrix multiplication and eigendecomposition
(via power iteration) efficiently, and obtain a runtime that is depends on the rank rather
than on the dimension.

For example, the following lemma, based upon a result of Allen-Zhu and Li (2016),
captures our eigendecomposition strategy in a general sense.

Lemma 7 (Implicit gapped eigendecomposition) Suppose a symmetric matrix M ∈
Rd×d has an eigendecomposition M =

∑
j λj vjvj

T, and that Mx may be computed within t
time steps for x ∈ Rd. Then v1, . . . , vn and λ1, . . . , λn may be computed in time Õ(min(n(t+
nd)δ−1/2, d3)), where δ = (λn − λn+1)/λn. The dependence on the desired precision is
polylogarithmic.

Proof The n(t + nd)δ−1/2 runtime is attained by LazySVD in (Allen-Zhu and Li, 2016,
Corollary 4.3). While LazySVD’s runtime depends on nnz(M) where nnz denotes the number
of non-zero elements in the matrix, in the non-stochastic setting nnz(M) is used only as a
bound on the time cost of multiplying a vector by M , so in our case we may substitute O(t)
instead.

The d3 time is attained by iterated squaring of M : in this case, all runtime dependence
on condition numbers is polylogarithmic.

The following lemma lists some primitives for operations with the tensor T′ ∈ (Rd2)⊗3 in
Algorithm 1, by interpreting it as a 6-tensor in (Rd)⊗6 and using a low-rank factorization of
the square reshaping of that 6-tensor.

Lemma 8 (Implicit tensors) For a tensor T ∈ (R[d]2)⊗3, suppose that the matrix
T ∈ R[d]3×[d]3 given by T(i,i′,j),(k,k′,j′) = T(i,i′),(j,j′),(k,k′) has a rank-n decomposition T = UVT

with U, V ∈ Rd3×n and n 6 d2. Such a rank decomposition provides an implicit representation
of the tensor T. This implicit representation supports:

Tensor contraction: For vectors x, y ∈ R[d]2, the computation of (xT ⊗ yT ⊗ Id)T or
(xT ⊗ Id⊗ yT)T or (Id⊗ xT ⊗ yT)T in time O(nd3) to obtain an output vector in Rd2 .

Spectral truncation: For R ∈ Rd2×d4 equal to one of the two matrix reshapings T{1,2}{3} or
T{2,3}{1} of T, an approximation to the tensor T61, defined as T after all larger-than-1
singular values in its reshaping R are truncated down to 1. Specifically, letting ρk be the
kth largest singular value of R for k 6 O(n), this returns an implicit representation of a
tensor T′ such that ‖T′−T61‖F 6 (1+δ)ρk‖T‖F and the reshaping of T′ corresponding
to R has largest singular value no more than 1+(1+δ)ρk. The representation of T′ also
supports the tensor contraction, spectral truncation, and implicit matrix multiplication
operations, with no more than a constant factor increase in runtime. This takes time
Õ(n2d3 + k(nd3 + kd2)δ−1/2).
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Implicit matrix multiplication: For a matrix R ∈ R[d]2×[d]2 with rank at most O(n), an
implicit representation of the tensor (RT ⊗ Id ⊗ Id)T or (Id ⊗ Id ⊗ RT)T, in time
O(nd4). This output also supports the tensor contraction, spectral truncation, and
implicit matrix multiplication operations, with no more than a constant factor increase
in runtime. Multiplication into the second mode (Id⊗RT⊗ Id)T may also be implicitly
represented, but without support for the spectral truncation operation.

The implementation of these implicit tensor operations consists solely of tensor reshapings,
singular value decompositions, and matrix multiplication. However, the details get involved
and lengthy, and so we defer their exposition to Section F.

Appendix C. Lifting

This section presents Algorithm 2, which lifts a well-conditioned 4-tensor T of rank at most
d2 in (Rd)⊗3 to T′, an orthogonalized version of the 6-tensor in the same components in
(Rd2)⊗3; that is, we obtain an orthogonal 3-tensor T′ whose components correspond to
the orthogonalized Kronecker squares of the components of T. Section C.1 presents the
identifiability argument giving robust algebraic non-degeneracy conditions under which the
algorithm succeeds.

Although we assume that the tensor components ai are unit vectors, throughout this
section we will keep track of factors of ‖ai‖ so as to better elucidate the scaling and dimensional
analysis.

Algorithm 2 Function lift(T, n)

Input: T ∈ (Rd)⊗4, n ∈ N with n 6 d2.

1. Use Lemma 7 to find the top-n eigenvalues and corresponding eigenvectors of the
square matrix reshaping of T, and call the eigendecomposition T = QΛQT. This also
yields W = QΛ−1/2QT and ΠS = QQT.

2. Use Lemma 7 again to find the top-n eigendecomposition of ΠS⊗RdΠsymΠS⊗Rd , im-
plementing multiplication by ΠS⊗Rd as (ΠS⊗Rdv)(·,·,i) = QQTv(·,·,i) and implementing
Πsym as a sparse matrix. Call the result RΣRT and take ΠS3 = RRT.

3. Find a basis B′ for the columnspace of M3 = (W ⊗ Id)ΠS3(W ⊗ Id). Implement this as

(B′)( · , · ,i); · = QΛ−1/2QTR( · , · ,i); · .

4. Use Gram-Schmidt orthogonalization to find an orthonormalization B of B′. Call the
projection operator to this basis Π3 = BBT.

5. Instantiate an implicit tensor in (Rd2)⊗3 with Lemma 8, using BBT as the SVD of its
underlying d3 × d3 reshaping. Output this as (Id ⊗W−1 ⊗ Id)T′, meaning a tensor
which, when W−1 is multiplied into its second mode, becomes equal to T′.

Output: (Id⊗W−1 ⊗ Id)T′ ∈ (Rd2)⊗3, implicitly as specified by Lemma 8, and Π3 ∈ Rd3×d3 .
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The following two lemmas will argue that the algorithm is correct, and that it is fast.
First, Lemma 9 states that the output of Algorithm 2 is an orthogonal 3-tensor whose
components are W (ai ⊗ ai), where the ai are the components of the original 4-tensor and
W is the whitening matrix for the ai ⊗ ai. Furthermore, if the error in the input is small in
spectral norm compared to some condition numbers, the Frobenius norm error in the output
robustly remains within a small constant of

√
n.

The main work of the lemma is deferred to Lemma 13 in Section C.2, which repeatedly
applies Davis and Kahan’s sin-Θ theorem (Theorem 6) to say that the top eigenspaces
of various matrices in the algorithm are relatively unperturbed in spectral norm by small
spectral norm error in the matrices. After that, we simply bound the Frobenius norm error
of a rank-n matrix by 2

√
n times its spectral norm error, and reason that Frobenius norms

are unchanged by tensor reshapings.

Lemma 9 (Correctness of lift) Let a1, . . . , an ∈ Rd and suppose that T =
∑

i∈[n] a
⊗4
i +

E satifies ‖E12;34‖ 6 ε σ2nµ
−1κ2 for some ε < 1/63, where σn is the nth eigenvalue of∑

i∈[n] a
⊗2
i a⊗2i

T and µ is the operator norm of
∑
‖ai‖−2a⊗3i a⊗3i

T and κ is the condition
number from Lemma 11. Then the outputs (Id ⊗W−1 ⊗ Id)T′ and Π3 of lift(T, n) in
Algorithm 2 satisfy ∥∥∥∥∥T′ −∑

i

‖ai‖−2(W (ai ⊗ ai))⊗3
∥∥∥∥∥
F

6 126 ε σ−1/2n

√
n

and ∥∥∥Π3 −ΠSpan(Wa⊗2
i ⊗ai)

∥∥∥ 6 63 ε .

Proof By Lemma 13, the ΠS3 computed in step 2 as the projector to the top-n eigenspace
of ΠS⊗RdΠsymΠS⊗Rd satisfies ‖ΠS3 − ΠSpan(a⊗3

i )‖ 6 18 εσnµ
−1, and subsequently, the Π3

computed in steps 3 and 4 as the projector to (W ⊗ Id)S3 satisfies ‖Π3 −ΠSpan(Wa⊗2
i ⊗ai)

‖ 6
63 ε.

Since the rank of the error is at most 2n, the Frobenius norm error is at most 126 ε
√
n, and

since {‖ai‖−1Wa⊗2i ⊗ ai} is an orthonormal set of vectors, the projector to Span(Wa⊗2i ⊗ ai)
is just the sum of the self-outer-products of vectors in that set, so∥∥∥Π3 −

∑
‖ai‖−2(Wa⊗2i ⊗ ai)(Wa⊗2i ⊗ ai)

T
∥∥∥
F
6 126 ε

√
n .

Reshaping the d3×d3 matrix Π3 into a tensor in (Rd2)⊗3 does not change the Frobenius norm
error, and finally, multiplying in the last factor ofW may contribute a factor of ‖W‖ = σ

−1/2
n ,

so that in the end, ‖T′ −
∑

i ‖ai‖−2(W (ai ⊗ ai))⊗3‖F 6 126 ε σ
−1/2
n
√
n.

The next lemma states that the running time is Õ(n2d3) multiplied by some condition
numbers. We assume that asympotically faster matrix multiplications and pseudo-inversions
are not used, so that, for instance, squaring a d× d matrix takes time Θ(d3).

Lemma 10 (Running time of lift) Let a1, . . . , an ∈ Rd and suppose that T =∑
i∈[n] a

⊗4
i + E satisfies the conditions stated in Lemma 9. Let σn be the nth eigenvalue of∑

i∈[n] a
⊗2
i a⊗2i

T and κ the condition number from Lemma 11. Then lift(T, n) in Algorithm 2

runs in time Õ(nd4σ
−1/2
n + n2d3κ−1), and the efficient implementation steps are correct.
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Proof Step 1 of lift invokes Lemma 7 on a d2 × d2 matrix T , recovering n dimensions
with a spectral gap of δ = σn. This requires time Õ((nd4 + n2d2)σ

−1/2
n ).

Step 2 again invokes Lemma 7, this time on a d3×d3 matrix ΠS⊗RdΠsymΠS⊗Rd , recovering
n dimensions with a spectral gap of at least κ2 − 2ε ∈ Ω(κ2). Multiplying by ΠS⊗Rd may
be done in time O(nd3) due to its expression as (ΠS⊗Rdv)(·,·,i) = QQTv(·,·,i), since the third
mode of (Rd)⊗3 is unaffected by ΠS⊗Rd = QQT⊗ Id, and this is a concatenation of d different
matrix-vector multiplies that take O(nd2) time each. Multiplying by Πsym takes O(d3) time,
since the (i, j, k)th row of Πsym has at most 6 nonzero entries corresponding to the different
permutations of (i, j, k). Thus the overall time to multiply a vector by ΠS⊗RdΠsymΠS⊗Rd is
O(nd3), so that Lemma 7 gives a runtime of Õ((n2d3 + n2d3)κ−1) for this step.

Step 3 is a concatenation of d different matrix products, each of which involves multiplying
a d2 × n matrix R(·,·,i);· by a n× d2 matrix Λ1/2QT and then multiplying the resulting n× n
matrix by a d2 × n matrix Q. Each product thus takes O(n2d2) time, and since there are
d of them the entire step takes O(n2d3) time. The result is equal to (QΛ1/2QT ⊗ Idd)R =
(W ⊗Id)R, whose columns form a basis for the columnspace ofM3 = (W ⊗Id)RΣRT(W ⊗Id).

Step 4 applies Gram-Schmidt orthonormalization on n vectors in Rd3 , taking Õ(n2d3)

time. And step 5 takes constant time. Therefore, lift takes time Õ(nd4σ
−1/2
n +n2d3κ−1).

C.1. Algebraic identifiability argument

The main lemma in this section gives a more careful analysis of the algebraic identifiability
argument from Lemma 4, in order to obtain a quantitative condition number bound.

Lemma 11 (Main Identifiability Lemma) Let a1, . . . , an ∈ Rd with n 6 d2. Let S
denote Span({a⊗2i }) and let S3 denote Span({a⊗3i }) and assume both have dimension n. For
each i, let {bi,j}j∈[d−1] be an arbitrary orthonormal basis for vectors in Rd orthogonal to ai,
and let

HT :=


a1 ⊗ a1 ⊗ b1,1

...
ai ⊗ ai ⊗ bi,j

...
an ⊗ an ⊗ bn,d−1

 .

Let R = (HHT)−1/2H be a column-wise orthonormalization of H, and let K = 1
2(Id−P2,3)R,

where P2,3 is the permutation matrix that exchanges the 2nd and 3rd modes of (Rd)⊗3. Then
if κ = σmin(K) is non-zero (so that K is full rank),

(S ⊗ Rd) ∩ sym = S3 ,

and furthermore,
‖ΠS⊗RdΠsymΠS⊗Rd −ΠS3‖ 6 1− κ2 .

Proof Let W = (
∑

i a
⊗2
i a⊗2i

T)−1/2 and let T denote the columnspace of (W 2 ⊗ Id)H. The
columns of W 2H form a basis for the subspace of S⊗Rd orthogonal to S3 since each column
of W 2H is orthogonal to every a⊗3i . Therefore,

ΠS⊗Rd = ΠS3 + ΠT .
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Multiplying this with Πsym and itself and then applying the identities ΠsymΠS3 = ΠS3Πsym =
ΠS3 and ΠS3ΠT = ΠTΠS3 = 0,

ΠS⊗RdΠsymΠS⊗Rd = ΠS3 + ΠTΠsymΠT .

Therefore,
‖ΠS⊗RdΠsymΠS⊗Rd −ΠS3‖ 6 ‖ΠsymΠT ‖2 .

We would thus like to show that ‖ΠsymΠT ‖2 6 1− κ2.
Since ‖ΠsymΠT ‖2 = maxy′∈T ‖Πsymy

′‖2/‖y′‖2 = 1−miny′∈T ‖(Id− Πsym)y′‖2/‖y′‖2, it
is enough to show that miny′∈T ‖(Id− Πsym)y′‖/‖y′‖ > κ. By Lemma 12, that is implied by
‖(Id−Πsym)y‖/‖y‖ > κ for y ∈ img(H).

Since Πsym � Π2,3 where Π2,3 is the projector to the space invariant under interchange
of the second and third modes of (Rd)⊗3 and Π2,3 = 1

2(Id + P2,3), we see that ‖(Id −
Πsym)y‖/‖y‖ > ‖12(Id − P2,3)y‖/‖y‖ for y ∈ img(H). Since the columns of R are an
orthonormal basis for img(H), for x = R−1y spanning all of Rn we have

‖(Id− P2,3)y‖
2‖y‖

=
‖(Id− P2,3)Rx‖

2‖Rx‖
=
‖(Id− P2,3)Rx‖

2‖x‖
=
‖Kx‖
‖x‖

.

The expression on the right is the definition of κ. Therefore, ‖(Id− Πsym)y‖/‖y‖ > ‖12(Id−
P2,3)y‖/‖y‖ = κ.

Lemma 12 For each i, let {bi,j}j∈[d−1] be an arbitrary orthonormal basis for vectors in Rd
orthogonal to ai, and let

HT :=


a1 ⊗ a1 ⊗ b1,1

...
ai ⊗ ai ⊗ bi,j

...
an ⊗ an ⊗ bn,d−1

 .

Let H ′ = (W 2⊗ Id)H. If ‖(Id−Πsym)y‖ > t‖y‖ for all y ∈ img(H), then ‖(Id−Πsym)y′‖ >
t‖y′‖ for all y′ ∈ img(H ′).

Proof
Let S = Span(a⊗2i ) and S3 = Span(a⊗3i ) ⊆ sym. Observe that img(H ′) ⊆ S ⊗ Rd =

img(H) + S3. Therefore, for every y′ ∈ img(H ′) there will be some y ∈ img(H) and some
z ∈ S3 such that y′ = y + z. Also, since S3 ⊥ img(H ′), we have z ⊥ y′, and therefore
‖y‖ = ‖y′ − z‖ > ‖y′‖.

So if the premise of the lemma holds and ‖(Id−Πsym)y‖ > t‖y‖ for all y ∈ img(H), it
will also be the case that ‖(Id−Πsym)y′‖ = ‖(Id−Πsym)(y + z)‖ > t‖y‖ > t‖y′‖.
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C.2. Robustness arguments

The main lemma of this section gives all of the spectral eigenspace perturbation arguments
needed to argue the correctness and robustness of Algorithm 2. Here we essentially repeatedly
apply Davis and Kahan’s sin-Θ theorem (Theorem 6) through a sequence of linear algebraic
transformations, along with triangle inequality and some adding-and-subtracting, to argue
that the desired top eigenspace remains stable against the spectral-norm errors melded in at
each step.

Lemma 13 (Subspace perturbation for lift) Let T =
∑

i∈[n] a
⊗2
i a⊗2i

T and let T̃ be a
matrix with ‖T − T̃‖ 6 ε σ2nµ

−1κ2 for some ε < 1/63, where σn is the nth eigenvalue of T and
µ is the operator norm of

∑
‖ai‖−2a⊗3i a⊗3i

T and κ is the condition number from Lemma 11.
Let S = Span({a⊗2i }) = img(T ) and let S̃ = img(T̃ ). Also let S3 = Span({a⊗3i }). Then

‖ topn
(
ΠS̃⊗RdΠsymΠS̃⊗Rd

)
−ΠS3‖ 6 18 ε σnµ

−1 ,

where topn denotes the top-n eigenspace. Furthermore, letting S̃3 = topn(ΠS̃⊗RdΠsymΠS̃⊗Rd)

and W = T−1/2 and W̃ = T̃−1/2, we have

‖Π(W̃⊗Id)S̃3
−Π(W⊗Id)S3

‖ 6 63 ε .

Proof For brevity, let Π = ΠS⊗Rd and let Π̃ = ΠS̃⊗Rd . We write

Π̃ Πsym Π̃ − Π Πsym Π =
(
Π̃−Π

)
Πsym Π̃ + Π Πsym

(
Π̃−Π

)
.

Since ‖T − T̃‖ 6 ε σ2nµ
−1κ2, by Theorem 6, ‖Π̃ − Π‖ = ‖ΠS̃ − ΠS‖ 6 3εσnµ

−1κ2. Since
projectors don’t increase spectral norm, we conclude

‖Π̃ Πsym Π̃−Π Πsym Π‖ 6 6εσnµ
−1κ2 .

Furthermore, by Lemma 11, Π Πsym Π = ΠS3 + Z, where Z is a symmetric matrix with
‖Z‖ 6 1 − κ2 whose columnspace is orthogonal to S3 since ΠS3ΠS⊗RdΠsymΠS⊗Rd = ΠS3 .
Therefore,

‖Π̃ΠsymΠ̃− (ΠS3 + Z)‖ 6 6εσnµ
−1κ2 .

The top-n eigenspace of (ΠS3 + Z) is S3 and the nth and (n+ 1)th eigenvalues of (ΠS3 + Z)
differ by at least κ2. So by Theorem 6,

‖ topn(Π̃ΠsymΠ̃)−ΠS3‖ 6 18εσnµ
−1 .

Multiplying by W multiplies this error by at most a factor of ‖W‖2 = σ−1n , so that

‖(W ⊗ Id)ΠS̃3
(W ⊗ Id)− (W ⊗ Id)ΠS3(W ⊗ Id)‖ 6 18 εµ−1 .

And ‖(W̃ ⊗ Id)ΠS̃3
(W̃ ⊗ Id)− (W ⊗ Id)ΠS̃3

(W ⊗ Id)‖ 6 3ε since ΠS̃3
(W ⊗ Id) has a spectral

norm at most σ−1/2n , so that

‖(W̃ ⊗ Id)ΠS̃3
(W̃ ⊗ Id)− (W ⊗ Id)ΠS3(W ⊗ Id)‖ 6 21 εµ−1 .
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By Lemma 14, the smallest eigenvalue of (W ⊗ Id)ΠS3(W ⊗ Id) is at least µ−1. Therefore,
by Theorem 6, ‖Π(W⊗Id)S̃3

−Π(W⊗Id)S3
‖ 6 63 ε.

The following utility lemma is used to reduce the impact of condition numbers on
the algorithm. It shows that when multiplying a third-order tensor in the span of a⊗3i
by the second-order whitener W = T−1/2 = (

∑
i a
⊗2
i a⊗2i

T)−1/2, the penalty to the error
may be expressed in terms of a sixth-order condition number – the spectral norm of U =∑
‖ai‖−2a⊗3i a⊗3i

T – instead of the fourth-order one given by T .
The reason this is important is that

∑
i a
⊗2
i a⊗2i

T suffers from spurious directions: directions
v ∈ R⊗2 in which Tv may be very large, but v is not close to any of the ai⊗ai, or in fact any
rank-1 2-tensor at all. For example, for n random Gaussian vectors, the spurious direction is
given by Φ = Eg∼N(0,1) g ⊗ g, which will have ‖TΦ‖ ≈ n/d.

The sixth-order object U =
∑
‖ai‖−2a⊗3i a⊗3i

T does not suffer with this problem for n up to
Õ(n2), due to cancellation with the odd number of modes. For instance, U Eg∼N(0,1) g⊗3 = 0

and ‖U(Φ⊗ u)‖ ≈ n/d2 for all unit u ∈ Rd and U generated from random Gaussian vectors.

Lemma 14 (Sixth-order condition numbers) Let a1, . . . , an ∈ Rd with n 6 d2. Let
W = (

∑
i a
⊗2
i a⊗2i

T)−1/2 have rank n. Let U be the matrix
∑
‖ai‖−2a⊗3i a⊗3i

T. Then for a
vector v ∈ Span(a⊗3i ), the following hold:

‖(W ⊗ Id)v‖ 6 ‖U−1‖1/2‖v‖ ,

‖(W ⊗ Id)v‖ > ‖U‖−1/2‖v‖ .

Proof Let v =
∑
µi‖ai‖−1a⊗3i . Then

‖(W ⊗ Id)v‖2 =
∑

µiµj‖ai‖−1‖aj‖−1〈W (aj ⊗ aj),W (ai ⊗ ai)〉〈aj , ai〉 =
∑

µ2i ,

using the fact that {W (ai ⊗ ai)}i is an orthonormal set of vectors.

Appendix D. Rounding

In this section, we show how to “round” the lifted tensor to extract the components. That is,
assuming we are given the tensor

T =
∑
i∈[n]

(Wa⊗2i )⊗3 + E

where E is a tensor of Frobenius norm at most ε
√
n, we show how to find the components ai.

Lemma 15 Suppose a1, . . . , an ∈ Rd are unit vectors satisfying the identifiability assumption
from Lemma 9, and suppose we are given an implicit rank-n representation of the tensor
T =

∑
i(Wa⊗2i )⊗3+E ∈ (Rd2)⊗3, where ‖E‖F 6 ε

√
n, and an implicit rank-n representation

of a matrix Π3 such that ‖Π3 −
∑

i((Wa⊗2i )⊗ ai)((Wa⊗2i )⊗ ai)>‖ 6 ε < 1
2 .
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Then for any β, δ ∈ (0, 1) so that βδ = Ω(ε) and δ = Ω(ε), there is a randomized
algorithm that with high probability in time O( 1

βn
1+O(β)d3) with Õ(n2d3) preprocessing time

recovers a unit vector u such that for some i ∈ [n],

〈ai, u〉2 > 1− ‖W‖ ·O
(
ε

β

)1/8

,

so long as ‖W‖
(
ε
β

)1/8
< C for a universal constant C.

Further, there is an integer m > (1−δ)n so that repeating the above algorithm Õ(n) times

recovers unit vectors u1, . . . , um so that 〈ui, ai〉2 > 1−‖W‖ ·O
(
ε
δβ

)1/8
for all i ∈ [m] (up to

re-indexing), again so long as ‖W‖
(
ε
δβ

)1/8
< C, and with a total runtime of Õ( 1

βn
2+O(β)d3).

We will prove this theorem in four steps. First, in Appendix D.1 we will show how to
recover vectors that are (with reasonable probability) correlated with the whitened Kronecker
squares of the components, Wa⊗2i . In Appendix D.2, we’ll give an algorithm that given
a vector close to the whitened square Wa⊗2i , recovers a vector close to the component ai.
In Appendix D.3, we give an algorithm that tests if a vector a ∈ Rd is close to one of the
components {ai}i∈[n]. In these first three sections, we omit runtime details; in Appendix D.4
we put the arguments together and address runtime details as well.

D.1. Recovering candidate whitened and squared components

Here, we give an algorithm for recovering components that have constant correlation with the
Wa⊗2i . In this subsection, our result applies in generality to arbitrary orthonormal vectors
b1, . . . , bn ∈ Rd2 . The algorithm and its analysis follow almost directly from Schramm and
Steurer (2017); for completeness we re-state the important lemmas here, and detail what
little adaptation is necessary.

Lemma 16 Suppose that b1, . . . , bn ∈ Rd2 are orthonormal. Then if T =
∑

i∈[n] b
⊗3
i + E

for a tensor E with ‖E‖F 6 ε
√
n and δ = Ω(ε), Ω( εδ ) 6 β < 1, repeating steps 2 & 3

of Algorithm 3 Õ(nO(β)) times will with high probability recover a unit vector u such that
〈u, bi〉2 > 1 − ε

δβ for some i ∈ [n]. Furthermore, repeating steps 2 & 3 of Algorithm 3
Õ(n1+O(β)) times will with high probability recover m > (1− δ) · n unit vectors u1, . . . , um
such that for each ui there exists j ∈ [n] so that 〈ui, bj〉2 > 1− ε

δβ .
9

The proof follows from two lemmas:

Lemma 17 The tensor T61 computed in step 1 of Algorithm 3 remains close to S =
∑

i b
⊗3
i

in Frobenius norm, ‖T61 − S‖F 6 ε
√
n, and furthermore

‖T61
{1,2}{3}‖ 6 1 and ‖T61

{1,3}{2}‖ 6 1.

9. In particular, if we choose δ = log log n · ε, we will will recover all but ε · n log logn of the bi in Õ(n)
repetitions.
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Algorithm 3 Rounding to a whitened component
Function round(T, β, ε):
Input: a tensor T ∈ (Rd2)⊗3, a spectral gap bound β, and an error tolerance ε.

1. Decrease the spectral norm of the error term in rectangular reshapings:

(a) compute T ′, the projection of T{1,2}{3} to O, the set of d4 × d2 matrices with
spectral norm at most 1

(b) compute T61, the projection of T ′{1,3}{2} to O (may be done up to ε
√
n Frobenius

norm error).

2. Compute a random flattening of T61 along the {1} mode: for g ∼ N (0, Idd2), compute

T (g) =
∑
i∈[d2]

gi · T (i, ·, ·).

3. Recover candidate component vectors: compute uL(g) and uR(g), the top left- and
right-singular vectors of T (g) using O( 1

β log d) steps of power iteration.

Output: the candidate components uL(g) and uR(g).

The proof of Lemma 17 is identical to the proof of (Schramm and Steurer, 2017, Lemma 4.5),
and uses the fact that distances decrease under projection to convex sets to control the error,
and the fact that the truncation operation is equivalent to multiplication by a contractive
matrix to argue that T61 has bounded norm in both reshapings.

Lemma 18 Suppose that in spectral norm ‖T{1,2}{3}‖, ‖T{1,3}{2}‖ 6 1, and also that ‖T −∑
i b
⊗3
i ‖F 6 ε

√
n. Let T (g) be the random flattening of T produced in step 2 of Algorithm 3,

and let uL(g) and uR(g) be the top left- and right-signular vectors of T (g) respectively. Then
there is a universal constant C such that for any δ > C · ε and Ω( εδ ) 6 β < 1, for a 1− δ
fraction of j ∈ [n],

P
g∼N(0,Id)

(
〈uL(g), bj〉2 > 1− ε

δβ
or 〈uR(g), bj〉2 > 1− ε

δβ

)
> Ω̃

(
n−1−O(β)

)
,

and further when this event occurs the ratio of the first and second singular values of T (g) is
lower bounded by β, σ1(T (g))

σ2(T (g))
> 1 + β.

Proof By assumption, T61 = S+E for S =
∑

i∈[n] b
⊗3
i , and E is a tensor of Frobenius norm

at most ε
√
n and spectral norms ‖E{1,2}{3}‖ 6 1 and ‖E{1,3}{2}‖ 6 1. For g ∼ N (0,Σ−1),

we have

T (g) = S(g) + E(g) =

∑
k∈[n]

〈g, bk〉 · bkb>k

+

∑
i∈[d2]

gi · Ei

 ,

where we use Ei = E(i, ·, ·) to refer to the d2 × d2 matrix given by taking the {2}, {3}
flattening of E restricted to coordinate i in mode 1.
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The proof of the lemma is now identical to that of (Schramm and Steurer, 2017, Lemma
4.6 and Lemma 4.7). There are two primary differences: the first is that in Schramm and
Steurer (2017) the tensor has four modes, and our tensor effectively has 3 modes. This
difference is negligible, since in Schramm and Steurer (2017), two of the four modes are
always identified anyway.

The second difference is that we choose parameters differently. We take the parameter
β appearing in (Schramm and Steurer, 2017, Lemma 4.6) so that β = Ω( εδ )

10; this is to
emphasize that for small ε� 1

n , one can recover all m = n of the components. Because the
proof is otherwise the same, we merely sketch an overview here.

The first term in isolation is a random flattening of an orthogonal tensor, and so with
probability 1 the eigenvectors of the first term are precisely the bk. The second term, which
is the flattening of the noise term, introduces complications; however, the combination of
the spectral norm bound and the Frobenius norm bound on E is enough to argue (using a
matrix Bernstein inequality, Markov’s inequality and the orthogonality of the bi) that the
random flattening of E cannot have spectral norm larger than ε/δ in more than 1− δ of the
bk’s directions.

To finish the proof, we perform a large deviation analysis on the coefficients 〈g, bk〉, lower
bounding the probability that for the 1− δ fraction of the bk that are not too aligned with
the spectrum of E, there is a sufficiently large gap between 〈g, bk〉 and the 〈g, bi〉 for i 6= k
so that bk is correlated with the top singular vectors of T (g).11 The bound on the ratio of
the singular values comes from (Schramm and Steurer, 2017, Lemma 4.7) as well.

Proof [Proof of Lemma 16] The proof simply follows by applying Lemma 17, then Lemma 18.

D.2. Extracting components from the whitened squares

We now present the following simple algorithm which recovers a vector close to ai, given
a vector close to W (a⊗2i ). For convenience we will again work with generic orthonormal
vectors bi in place of the W (a⊗2i ), and we will assume we have access to the matrix Π3 (the
approximate projector to Span{W (a⊗2i )⊗ ai}) computed in Algorithm 2.

Lemma 19 Suppose b1, . . . , bn ∈ Rd2 are orthonormal vectors and a1, . . . , an ∈ Rd, and
Π3 ∈ Rd3×d3 is such that ‖Π3 −

∑
i bib

>
i ⊗ aia>i ‖ 6 ε. Then if u ∈ Rd2 is a unit vector with

〈u, bi〉2 > 1− θ for θ < 1
10 , then the output a ∈ Rd of Algorithm 4 on u has the property that

|〈a, ai〉| > 1− 4θ1/4 − 4
√
ε.

Proof Let P3 =
∑

i bib
>
i ⊗ aia>i . By assmption we can write the approximate projector

Π3 = P3 +E, for a matrix E of spectral norm ‖E‖ 6 ε. Based on these expressions we can

10. We comment that the parameter c appearing in the statement of (Schramm and Steurer, 2017, Lemma
4.6) is larger than

√
2; this is necessary for the application of (Schramm and Steurer, 2017, Lemma 4.7),

and is not clear from the lemma statement but is implicit in the proof.
11. We note that to obtain correlation 1 − ε

δβ
, one must directly use the proof of (Schramm and Steurer,

2017, Lemma 4.7), rather than the statement of the lemma (which has assumed that 2ε(1+β)
βδ

6 0.01, and
replaced the expression 1− 2ε(1+β)

βδ
) with the lower bound 0.99).
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Algorithm 4 Extracting the component from the whitened square
Function extract(u,Π3):
Input: a unit vector u ∈ (Rd)⊗2 such that 〈u, bi〉2 > 1− θ for some i ∈ [n], and a projector
Π3 ∈ Rd3×d3 such that ‖Π3 −

∑
i bib

>
i ⊗ aia>i ‖ 6 ε.

1. Compute the matrix M = Π3(uu
> ⊗ Id).

2. Compute the top-left singular vector v of M .

3. Taking the reshaping V = v{3}{1,2}, let a = V u.

Output: the vector a ∈ Rd

re-express the product,

M = Π3(uu
> ⊗ Id) = P3(uu

> ⊗ Id) + E(uu> ⊗ Id).

By assumption, the second term is a matrix of spectral norm at most ‖E‖ 6 ε.
We now consider the first term. If u = c · bi + w, then for the first term we have

P3(uu
> ⊗ Id) = P3

(
c2 · bib>i ⊗ Id

)
+ P3

(
(c · biw> + c · wb>i + ww>)⊗ Id

)
The second term is again a matrix of spectral norm at most 3c · ‖w‖ = 3c ·

√
1− c2. The

first term can be further simplified as

P3(c
2 · bib>i ⊗ Id) = c2 ·

∑
i

〈bi, bi〉bib>i ⊗ aia>i = c2 · bib>i ⊗ aia>i ,

by the orthogonality of the bi. This is a rank-1 matrix with singular value c2. Therefore,
M = c2(bi ⊗ ai)(bi ⊗ ai)> + Ẽ where ‖Ẽ‖ 6 ε+ 3c

√
1− c2. It follows from Lemma 20 that

if v is the top unit left-singular vector of M , then 〈v, bi ⊗ ai〉2 > 1− 2
c2
‖Ẽ‖.

Now, in step 3 when we re-shape v to a d× d2 matrix V of Frobenius norm 1, because v
is a unit vector we have that V = aib

>
i + Ṽ for Ṽ of spectral norm ‖Ṽ ‖ 6 ‖Ṽ ‖F 6

√
2
c2
‖Ẽ‖.

Therefore,
V u = (aib

>
i )(c · bi + w) + Ṽ u = c(1− 〈w, bi〉) · ai + Ṽ u,

and the latter vector has norm at most ‖Ṽ ‖, and 〈w, bi〉 6 ‖w‖ 6
√

1− c2. Finally, substi-
tuting c =

√
1− θ and using our bound on ‖Ẽ‖ and ‖Ṽ ‖ and some algebraic simplifications,

the conclusion follows.

Lemma 20 Suppose that M = uv> + E for u ∈ Rd, v ∈ Rk unit vectors and E ∈ Rd×k a
matrix of spectral norm ‖E‖ 6 ε. Then if x, y are the top left- and right-singular vectors of
M , |〈x, u〉|, |〈y, v〉| > 1− 2ε.

Proof Let M =
∑

i σixiy
>
i be the singular value decomposition of M , with σ1 > · · · > σd.

We have that
1− ε 6 u>Mv 6 σ1.
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On the other hand, if with 〈x1, u〉 = α 6 1 and 〈y1, v〉 = β 6 1,

σ1 = x>1 My1 6 αβ + ε.

Therefore,
|α|, |β| > αβge1− 2ε,

and thus min{|α|, |β|} > 1− 2ε.

D.3. Testing candidate components

The following algorithm allows us to test whether a candidate component u is close to some
component ai.

Algorithm 5 Testing component membership
Function test(u, θ,ΠS3):
Input: A unit vector û, and the correlation parameter θ. Also, Π3, an approximate projector
to Span{(Wa⊗2i )⊗ ai}.

1. Compute ρ = ((Wû⊗2)⊗ û).

2. If ‖Π3ρ‖22 < (1− θ)‖ρ‖22, return false. Otherwise, return true.

Lemma 21 Let P3 be the projector to Span{(Wa⊗2i ) ⊗ ai}, and suppose that we have
Π3 such that ‖Π3 − P3‖ 6 ε < 1

2 . Then if Algorithm 5 is run on a vector û such that
〈û, ai〉2 6 1− θ − 2ε for all i ∈ [n], then Algorithm 5 returns false.

Converseley, if Algorithm 5 is run on a vector û with 〈û, ai〉2 > 1−
(

θ−ε
10‖W‖

)2
> 1− 1

10

for some i ∈ [n], then when run on a unit vector û, Algorithm 5 returns true.

Proof By assumption, we can write Π3 = P3 +E for P3 the projector to Span{(Wa⊗2i )⊗ai}
and E a matrix of spectral norm at most ε. From this, we have

Π3(Wû⊗2)⊗ û = P3(Wû⊗2)⊗ û+ E(Wû⊗2)⊗ û, (D.1)

and ‖E(Wû⊗2)⊗ û‖ 6 ε‖Wû⊗2‖. Now, we can write Wû⊗2 =
∑

i ciW (ai ⊗ ai) + e, where
e is orthogonal to Span{Wa⊗2i }, and we can further write

(Wû⊗2)⊗ û =
∑
i 6=j

ciγj · (Wa⊗2i )⊗ b(i)j +
∑
i

ciγi · (Wa⊗2i )⊗ ai + e⊗ û,

where {b(i)j }j 6=i is an orthogonal basis for the orthogonal complement of ai in Rd. By definition,

P3(Wa⊗2i )⊗ b(i)j = 0, as this is orthogonal to every vector in Span{(Wa⊗2i )⊗ ai}. Therefore,

P3(Wû⊗2)⊗ û =
∑
i

ciγi · (Wa⊗2i )⊗ ai.
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Now, if 〈û, ai〉2 6 τ for all i ∈ [n], then γ2i 6 τ for all i ∈ [n]. It thus follows that
‖P3(Wû⊗2)⊗ û‖2 6 maxi γ

2
i ·
∑

j c
2
j 6 τ · ‖Wû⊗2‖22. Combining this with Eq. (D.1), we have

that
‖Π3(Wû⊗2)⊗ û‖22 6 (τ + ε

√
τ + ε2) · ‖Wû⊗2‖22 6 (τ + 2ε)‖Wû⊗2‖22,

for ε < 1
2 . It follows that if 〈û, ai〉2 = τ < 1 − θ − 2ε for all i ∈ [n], then the algorithm

returns false.
Converseley, if without loss of generality û = ζ · a1 + ê for ê ∈ Rd orthogonal to a1, then

Wû⊗2 = ζ2 ·Wa⊗21 + We′ with ‖We′‖22 6 (1 − ζ2) · ‖W‖2. Measuring the correlation of
Wû⊗2 with Wa⊗21 , we have that c1 > ζ2. Also γ1 > ζ, which implies

P3(Wû⊗2)⊗ û = ζ3 · (Wa⊗21 )⊗ a1 + ẽ.

where ẽ is a leftover term with ‖ẽ‖ 6
√

1− ζ2 · ‖Wû⊗2‖+ ζ2
√

1− ζ2 (where we have used
the PSDness of W ). Combining this with Eq. (D.1),

Π3(Wû⊗2)⊗ û = ζ3(Wa⊗21 )⊗ a1 + ẽ+ E(Wû⊗2)⊗ û.

For convenience let ρ̂ = ẽ+E(Wû⊗2)⊗ û; from our previous observations, we have ‖ρ̂‖ 6
(ε+

√
1− ζ2)‖Wû⊗2‖+ ζ2

√
1− ζ2.

Now, if 〈û, a1〉2 = ζ2 > 1− η, we have that

(1− η)−√η‖W‖ 6 ‖Wû⊗2‖ 6 (1− η) +
√
η‖W‖.

From this,

‖Π3(Wû⊗2)‖ > ζ3 − ‖ρ̂‖ > (1− η)3/2 − (ε+
√
η)‖Wû⊗2‖ − (1− η)

√
η

>
√

1− η(‖Wû⊗2‖ − √η‖W‖)− (ε+
√
η)‖Wû⊗2‖ − (1− η)

√
η

> (1− ε− 2
√
η)‖Wû⊗2‖ − 2

√
η‖W‖,

> (1− ε− 5
√
η‖W‖)‖Wû⊗2‖.

where we have used that η < 1
10 . Thus, if η <

(
θ−ε

10‖W‖

)2
, Algorithm 5 does not return false.

D.4. Putting things together

Finally, we prove Lemma 15.
Proof [Proof of Lemma 15] By the assumptions of the theorem, we have access to an
implicit rank-n representation of T =

∑
i∈[n](W (a⊗2i ))⊗3 + E ∈ (Rd2)⊗3, where W =(∑

i∈[n](a
⊗2
i )(a⊗2i )>

)−1/2
, and with ‖T − E‖F 6 ε

√
n. For convenience we denote bi =

W (a⊗2i ). Note that the bi are orthonormal vectors in Rd2 . We also have implicit access to a
rank-n representation of Π3, where ‖Π3 −

∑
i(bi ⊗ ai)(bi ⊗ ai)>‖ 6 ε.

We first run step 1 of Algorithm 3 to produce the tensor which we will round. Then,
for ` = Õ(n1+O(β)) independent iterations, we run steps 2 & 3 of Algorithm 3 to produce
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candidate whitened squares u1, . . . , u`, then run Algorithm 4 on the ui to produce candidate
components ûi, and finally run Algorithm 5 to check if ûi is close to aj for some j ∈ [n].

We show that step 1 of Algorithm 3 takes time Õ(n2d3). Since T is at most ε
√
n in

Frobenius norm away from a tensor that is a rank-n projector in both rectangular reshapings
T{1,2},{3} and T{2,3},{1}, the (2n)th singular values in either reshaping must be at most
ε: otherwise the error term would have over n singular values more than ε and therefore
Frobenius norm more than ε

√
n. Also ‖T‖F =

√
n because it is a rank-n projector in its

square matrix reshaping. Therefore, by Lemma 8, step 1 requires time Õ(n2d3+n(nd3+nd2))
to return an ε

√
n-approximation in Frobenius norm to the projected matrix.12 Note that

this step only needs to be carried out once regardless of how many times the algorithm is
invoked for a specific input T , so the Õ(n2d3) runtime is incurred as a preprocessing cost.

Then, again by Lemma 8, steps 2 & 3 require time Õ( 1
βnd

3), since the ratio of the first
and second singular values of the the matrix is 1 + Ω(β), and since O( 1

β log d) steps of power
iteration with T (g) can be implemented by choosing the random direction g ∼ N (0, Idd2),
the starting direction v1 ∈ Rd2 , and then computing vt+1 = (Id⊗ g> ⊗ vt)T61 where T61 is
the truncated tensor.

Thus, if we choose β, δ satisfying the requirements of Lemma 16, after Õ(nO(β)) iterations
of steps 2 & 3 we will recover a vector u ∈ Rd2 such that 〈u, bi〉2 > 1−3 εβ , and after Õ(n1+O(β))

iterations of steps 2 & 3 we will recover vectors ut1 , . . . , utm so that 〈uti , bi〉2 > 1− 3 ε
βδ for

m > (1− δ)n of the i ∈ [n].
Next, applying Lemma 19 to each of the good candidate vectors obtained in Algorithm 3,

Algorithm 4 will give us candidate components ût1 , . . . , ûtm so that 〈ûti , ai〉2 > 1− 4
√
ε−

4
(

3ε
δβ

)1/4
. Since Π3 has rank n, we write it as UUT for U ∈ Rd3×n. Then we may reshape

(uuT ⊗ Id)Π3 as uuTU ′(UT ⊗ Id), where U ′ is the d2 × nd reshaping of U . Multiplying
uT through takes O(nd3) time and then reshaping the result back results in (uuT ⊗ Id)Π3.
Therefore, by Lemma 7, each invocation of Algorithm 4 requires Õ(nd3) operations.

Finally, from Lemma 21, we know that if we run Algorithm 5 with θ = 10‖W‖ ·(
2ε1/4 + 2

(
3ε
δβ

)1/8)
+ 2ε, we will reject any û such that 〈û, ai〉2 6 1− θ − 2ε for all i ∈ [n],

and will keep all of the good outputs of Algorithm 4. Each iteration of Algorithm 5 requires
time O(d4 + nd3 + d3), since we form the vector (Wû⊗2)⊗ û, then multiply with the rank-n
matrix Π3, and ultimately compute a norm.

This completes the proof.

D.5. Cleaning

Lemma 22 Suppose there is a set of indices J with |J | = m and let A ⊆ {ai | i ∈ J}. Let
SAk = Span(a⊗k | a ∈ A) for any k and let ΠAk be the projector to SAk . Let S = Span(a⊗2i )
and S3 = Span(a⊗3i ).

12. Some of the lemmas we apply, out of concerns for compatibility with Schramm and Steurer (2017), assume
that the maximum singular value of T61 is at most 1. Though one could re-do the previous analysis with
minimal consequences under the assumption that the spectral norm is at most 1 + ε, for brevity we note
that we may instead multiply the whole tensor by 1

1−ε , and because the tensor has Frobenius norm at
most (1 + 3ε)

√
n, this costs at most 4ε

√
n additional Frobenius norm error.
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Suppose Π is a projector such that ‖Π − ΠA2‖ 6 δ and ‖Π(Id − ΠS)‖ 6 ε2. Suppose
Π3 is a projector such that ‖Π3 − ΠS3‖ 6 ε3. Let Π′ = topm[(Π ⊗ Id)Π3(Π ⊗ Id)]. Then
‖Π′ −ΠA3‖ 6 ?.

As a consequence, if we have access to unit vectors ui such that 〈ui, W̃ (a⊗2i )〉 > 1− γ,
we obtain vi such that 〈vi,W (a⊗2i )〉 > 1− ? and furthermore, ‖

∑
vivi

T −ΠA2‖ 6 ?.

Proof Since {ai ⊗ ai} is linearly independent, take bi =
∑

j αijaj ⊗ aj so that

Π−ΠA2 = E +
∑

βibibi
T = E +

∑
i

βi
∑
j,k∈J

αijαik(aj ⊗ aj)(ak ⊗ ak)T ,

where E has rank up to 2m and ‖E‖ 6 2ε2.

Appendix E. Combining lift and round for final algorithm

In this section we describe and analyze our final tensor decomposition algorithm, proving
our main theorem.

Algorithm 6 Main algorithm for overcomplete 4-tensor decomposition
Function decompose(T ):
Input: a tensor T ∈ (Rd)⊗4, numbers β, δ, ε ∈ (0, 1), numbers σ, κ0 ∈ R>0, and n 6 d2.

1. Run lift(T, n) from Algorithm 2 to obtain an implicit tensor T ′ and an implicit matrix
Π3, using σ, κ0 as upper bounds on condition numbers σn, κ.

2. Run the algorithm specified by Lemma 15 on input (T ′,Π3, ε, β, δ) with independent
randomness t = Õ(n) times, to obtain vectors u1, . . . , ut.

Output: u1, . . . , ut

Definition 23 (Signed Hausdorff distance) For sets of vectors a1, . . . , an ∈ Rd and
b1, . . . , bm ∈ Rd, we define the signed Hausdorff distance to be the maximum of the following
two quantities. (1) maxi∈[n] minj∈[m],σ∈±1 ‖ai − σbj‖ and (2) maxi∈[m] minj∈[n],σ∈±1 ‖bi −
σaj‖.

Definition 24 (Condition number of a1, . . . , an) Let a1, . . . , an ∈ Rd. Let {bij}j∈[d−1]
be an arbitrary orthonormal basis for the orthogonal complement of ai in Rd. Let

HT :=


a1 ⊗ a1 ⊗ b1,1

...
ai ⊗ ai ⊗ bi,j

...
an ⊗ an ⊗ bn,d−1

 .

31



A Robust Spectral Algorithm for Overcomplete Tensor Decomposition

Let R = (HHT)−1/2H be a column-wise orthonormalization of H, and let K = 1
2(Id−P2,3)R,

where P2,3 is the permutation matrix that exchanges the 2nd and 3rd modes of (Rd)⊗3. The
condition number κ of a1, . . . , an is the minimum singular value of K.

Theorem 25 For every d, n ∈ N and ε, β, δ ∈ (0, 1) and σ, κ0 ∈ R>0 there is a randomized
algorithm decomposed,n,ε,β,δ,σ,κ0(T ) with the following guarantees. For every set of unit
vectors a1, . . . , an ∈ Rd and every E ∈ (Rd)⊗4 such that

1. the operator norm of the square matrix flattening of E satisfies ‖E12;34‖
σ7
nµ
−1κ2

6 ε,

2. κ = κ(a1, . . . , an) > κ0

3. σn > σ

where

1. σn is the n-th singular value of the matrix
∑

i6n(a⊗2i )(a⊗2i )T,

2. µ is the operator norm of
∑

i6n(a⊗3i )(a⊗3i )T, and

3. κ is the condition number of a1, . . . , an as in Definition 24.

there is a subset S ⊆ {a1, . . . , an} of size |S| > (1−δ)n such that given input T =
∑

i6n a
⊗4
i +

E the algorithm produces a set B = {b1, . . . , bt} of t = Õ(n) vectors which with probability at
least 0.99 over the randomness in the algorithm has

signed-Hausdorff-distance(S,B) 6 O

(
ε

δβ

)1/16

.

Furthermore, the algorithm decomposed,n,ε,β,δ,σ,κ0 runs in time

Õ

(
nd4√
σ

+
n2d3

κ0
+
n2+O(β)d3

β

)
.

We record some intuitive explanations of the parameters in Theorem 25.

• σ, κ0 are bounds on the minimum singular values of matrices associated to a1, . . . , an,
used to determine the necessary precision of linear-algebraic manipulations performed
by the algorithm. Decreasing σ, κ0 yields an algorithm tolerating less well-conditioned
tensors, at the expense of running time and/or accuracy guarantees.

• δ determines what fraction of the vectors a1, . . . , an the algorithm is allowed to fail to
return. By decreasing δ the algorithm recovers a larger fraction of a1, . . . , an, at the
cost of increasing running time and/or decreasing per-vector accuracy.

• β determines the per-vector accuracy of the algorithm. Increasing β improves the
accuracy of the algorithm, but with exponential cost in the running time.

• ε governs the magnitude of allowable noise E. Increasing ε yields a more noise-tolerant
algorithm, at the expense of the accuracy of recovered vectors.
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We record the following corollary, which follows from Theorem 25 by choosing parameters
appropriately.

Corollary 26 For every n, d ∈ N and σ > 0 (independent of n, d) there is an algorithm
with the following guarantees. The algorithm takes input T =

∑
i6n a

⊗4
i + E, and so long as

1. κ(a1, . . . , an) > σ

2. the minimum nonzero eigenvalue of
∑

i6n(a⊗2i )(a⊗2i )> is at least σ

3. ‖
∑

i6n(a⊗3i )(a⊗3i )>‖ 6 1/σ, and

4. ‖E12;34‖ 6 poly(σ)/(log n)O(1),

with high probability the algorithm recovers Õ(n) vectors b1, . . . , bt such that there is a set
S ⊆ {a1, . . . , an} with |S| > (1− o(1))n such that the signed Hausdorff distance from S to
{b1, . . . , bt} is o(1), in time Õ(n2d3/ poly(σ)).

Furthermore, hypotheses (2),(3) hold for random unit vectors a1, . . . , an with σ = 0.1 so
long as n 6 d2/(log n)O(1), and experiments in Appendix H strongly suggest that (1) does as
well.

Proof [Proof of Theorem 25] Let W = (
∑

i6n a
⊗2
i (a⊗2i )>)−1/2. By Lemma 9, the implicit

tensor T ′ and matrix Π3 returned by lift satisfy∥∥∥∥∥T ′ −∑
i6n

(W (ai ⊗ ai))⊗3
∥∥∥∥∥
F

6 O(εσ9/2n

√
n)

and ∥∥∥Π3 −ΠSpan(Wa⊗2
i ⊗ai)

∥∥∥ 6 O(εσ4n) .

So, by Lemma 15, with high probability there is a subset S ⊆ {a1, . . . , an} of sizem > (1−δ)n
such for each ai ∈ S there is uj among the vectors u1, . . . , ut returned by the rounding
algorithm with

〈ai, uj〉2 > 1−O
(

1

δ1/8
· 1

β1/8
· ε1/8 · ‖W‖ ·

√
σn

)
= 1−O

(
ε

δβ

)1/8

where the equality follows because ‖W‖ = σ
−1/2
n . Furthermore, each of the vectors u1, . . . , ut

is similarly close to some ai ∈ S. This proves the claimed upper bound on the Hausdorff
distance.

The running time follows from putting together Lemma 10 and the running time bounds
of Lemma 15.
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Appendix F. Tools for analysis and implementation

Lemma [Restatement of Lemma 8] For a tensor T ∈ (R[d]2)⊗3, suppose that the matrix
T ∈ R[d]3×[d]3 given by T(i,i′,j),(k,k′,j′) = T(i,i′),(j,j′),(k,k′) has a rank-n decomposition T = UVT

with U, V ∈ Rd3×n and n 6 d2. Such a rank decomposition provides an implicit representation
of the tensor T. This implicit representation supports:

Tensor contraction: For vectors x, y ∈ R[d]2, the computation of (xT ⊗ yT ⊗ Id)T or
(xT ⊗ Id⊗ yT)T or (Id⊗ xT ⊗ yT)T in time O(nd3) to obtain an output vector in Rd2 .

Spectral truncation: For R ∈ Rd2×d4 equal to one of the two matrix reshapings T{1,2}{3} or
T{2,3}{1} of T, an approximation to the tensor T61, defined as T after all larger-than-1
singular values in its reshaping R are truncated down to 1. Specifically, letting ρk be the
kth largest singular value of R for k 6 O(n), this returns an implicit representation of a
tensor T′ such that ‖T′−T61‖F 6 (1+δ)ρk‖T‖F and the reshaping of T′ corresponding
to R has largest singular value no more than 1+(1+δ)ρk. The representation of T′ also
supports the tensor contraction, spectral truncation, and implicit matrix multiplication
operations, with no more than a constant factor increase in runtime. This takes time
Õ(n2d3 + k(nd3 + kd2)δ−1/2).

Implicit matrix multiplication: For a matrix R ∈ R[d]2×[d]2 with rank at most O(n), an
implicit representation of the tensor (RT ⊗ Id ⊗ Id)T or (Id ⊗ Id ⊗ RT)T, in time
O(nd4). This output also supports the tensor contraction, spectral truncation, and
implicit matrix multiplication operations, with no more than a constant factor increase
in runtime. Multiplication into the second mode (Id⊗RT⊗ Id)T may also be implicitly
represented, but without support for the spectral truncation operation.

Proof
Tensor contraction We start with multiplication of two vectors x, y ∈ Rd2 into two of
the modes of T. Without loss of generality (by interchange of U and V ), there are two cases:
we want either to compute the vector flattening of (x⊗ Idd)

TUVT(y ⊗ Idd), or, expressing
x =

∑d
i=0 ri ⊗ si, we want

∑
i (Idd ⊗ Idd ⊗ ri)TUVT(y ⊗ si). For both these cases, we first

compute VT(y ⊗ Idd).
We compute VT(y ⊗ Idd) as [VT(y ⊗ Idd)]·;i = VT

·;(·,·,i)y. This is a concatenation of d
different matrix-vector multiplications using n× d2 matrices, and so it takes O(nd3) time.

Then to find (xT ⊗ Idd)UV
T(y ⊗ Idd), we simply repeat the above procedure to find

(xT ⊗ Idd)U and then multiply the d× n and n× d matrices together in O(nd2) time.
To find

∑
i (Idd ⊗ Idd ⊗ ri)TUVT(y ⊗ si) after finding the rank decomposition x =∑d

i=0 ri ⊗ si which takes O(d3) time by SVD, we multiply each si into our computed
value of VT(y ⊗ Idd) to obtain d different n-dimensional vectors ti = VT(y ⊗ si). Since there
are d of these vectors and each is a matrix-vector multiplication with an n× d matrix, this
takes O(nd2) time. Then

∑
i (Idd ⊗ Idd ⊗ ri)TUti can be reshaped as a multiplication of

a d2 × nd reshaping of U with the vector
∑

i ti ⊗ ri. It takes O(nd3) time to perform the
matrix-vector multiplication, and O(nd2) time to sum up

∑
i ti ⊗ ri.

Spectral truncation Next, we truncate the larger-than-1 singular values of the ({1}, {2, 3})
and ({3}, {1, 2}) matrix reshapings R ∈ Rd2×d4 of T. Without loss of generality, suppose we
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are in the ({3}, {1, 2}) case. In this case, we would like to find the right-singular vectors and
singular values of the operator that takes y ∈ Rd2 to the vector flattening of the d×d3 matrix
UVT(y ⊗ Idd). Letting Z be the nd× d2 reshaping of V , this is the same as (U ⊗ Idd)Zy,
which shares its right-singular vectors with M := ZT(UTU ⊗ Idd)Z.

We claim that matrix-vector multiplication by M can be implemented in O(nd3) time,
with O(n2d3) preprocessing time for computing the product UTU . The matrix-vector
multiplications by Z and ZT take time O(nd3), and then multiplying Zy by UTU ⊗ Idd is
reshaping-equivalent to multiplying UTU into the n× d matrix reshaping of Zy, which takes
O(n2d) time with the precomputed n × n matrix UTU . Therefore, LazySVD (Allen-Zhu
and Li, 2016, Corollary 4.4) takes time Õ(n2d3δ−1/2) to yield a rank-k eigendecomposition
PΛPT such that ‖M1/2 − PΛ1/2PT‖ 6 (1 + δ)ρk.

To obtain the output T′ of this procedure, let (PΛ1/2PT − Id)>0 be PΛ1/2PT − Id with
all of its nonpositive eigenvalues removed: this may be implemented by removing nonpositive
entries from Λ1/2 − Id. Then implicitly multiply (Id − (PΛ1/2PT − Id)>0) into the third
mode of T (although this matrix has rank larger than n, we may implement it by implicitly
subtracting (Id⊗Id⊗(PΛ1/2PT−Id)>0)T from T). We are trying to approximate multiplying
(Id− (M1/2− Id)>0) into the third mode of T, so let ∆ = (M1/2− Id)>0− (PΛ1/2PT− Id)>0

be the difference. Then ‖∆‖ 6 ‖M1/2−PΛ1/2PT‖ 6 (1 + δ)ρk, so that we suffer an additive
error of at most (1 + δ)ρk in spectral norm. And the final error in the low-rank representation
is (∆⊗ Id)UVT. Since ‖∆⊗ Id‖ 6 (1 + δ)ρk and UVT has Frobenius norm ‖T‖F , we find a
final error of (1 + δ)ρk‖T‖F in Frobenius norm.

Implicit matrix multiplication Finally, to implicitly multiply a d2 × d2 rank-n matrix
R into a mode of T, simply store the singular value decomposition R = PΣQT. Whenever a
vector needs to be multiplied into that mode in the future, multiply that vector by R before
carrying out the implicit tensor operation as previously specified, and if a vector needs to
be output from that mode, multiply it by RT before outputting. This incurs a time cost of
O(nd2) per operation.

A special case arises in the spectral truncation operation, where we do not allow implicit
multiplication to have been done in the second mode. Suppose then without loss of generality
that R was multiplied into the first mode of T and we truncate the ({3}, {1, 2}) matrix
reshaping. Then we will have to compute UT(RRT⊗Idd)U instead of UTU in the preprocessing
step. This can be done by multiplying RT = QΣPT with the d2 × nd reshaping of U , which
takes O(n2d3) time per future spectral truncation operation.

Appendix G. Notes on Table 1

We record a few notes on parameter regimes used to compare various algorithms for tensor
decomposition in Table 1.

• Robust algorithms with algebraic assumptions often require ‖E‖ 6 σ(a1, . . . , an), where
σ(a1, . . . , an) is some measure of well-conditioned-ness of a1, . . . , an, the details of which
may vary from algorithm to algorithm. In this table we report results for the setting
that σ(a1, . . . , an) > Ω(1); such values of σ (for all the notions of well-conditioned-ness
represented) are achieved by random a1, . . . , an.
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• The algorithm of Anandkumar et al. (2017) is phrased for 3-tensors rathern than
4-tensors; this is the origin of the rank bound n 6 d1.5 rather than d 6 n2 achieved
by algorithms for 4-tensors. In general for k-tensors one expects efficient algorithms
to tolerate overcompleteness n 6 dk/2 (despite tensor rank factorizations remaining
unique for much larger n), so the overcompleteness guarantee of Anandkumar et al.
(2017) is comparable to the other algorithms.

• We have estimated the running time of the SoS algorithm of Ma et al. (2016) by
assuming that the semidefinite programs involved are solved using standard black-box
techniques (e.g the ellipsiod method).

Appendix H. Simulations for condition number of random tensors

In this section we report on computer simulations which strongly suggest that if a1, . . . , an are
i.i.d. random unit vectors with n� d2 then with high probability κ(a1, . . . , an) > Ω(1). We
computed κ for several values of n, d on with a1, . . . , an taken to be i.i.d. uniformly random
unit vectors. Our results are consistent with the hypothesis that κ(a1, . . . , an) > c− Õ(n/d2)
for some absolute constant c ≈ 1/2:

We expect the values of d, n employed here – d ≈ 10, n ≈ 100, so that κ is the condition
number of a certain random matrix of dimensions about 103 × 103 – to be predictive of the
asymptotic behavior of κ(a1, . . . , an), because the spectra of random matrices display strong
concentration even in relatively small dimensions.

We also note that the hypothesis that κ > c − Õ(n/d2) is well supported by the fact
that relatively standard techniques from random matrix theory yield the same bound for a
closely related random matrix to K(a1, . . . , an) from Definition 3. In particular, the following
may be proved by a long but standard calculation, using Matrix Bernstein and decoupling
inequalities:

Lemma 27 (Condition number of basic swap matrix) Let a1, . . . , an be independent
random d-dimensional unit vectors. Let Bi ∈ R(d−1)×d be a random basis for the orthogonal
complement of ai in Rd. Let P ∈ Rd3×d3 be the permutation matrix which swaps second and

36



A Robust Spectral Algorithm for Overcomplete Tensor Decomposition

third modes of (Rd)⊗3. Let

A = E
a
(a⊗ a⊗ Id)(a⊗ a⊗ Id)> .

Let R ∈ Rd3×n(d−1) have n blocks of dimensions d3 × (d− 1), where the i-th block is

Ri = A−1/2(ai ⊗ ai ⊗Bi)− PA−1/2(ai ⊗ ai ⊗Bi)

where we abuse notation and denote the PSD square root of the pseudoinverse of A by
A−1/2. Then there is a function d′(d) = Θ(d2) such that E ‖R>R− d′(d) · Id‖ 6 O(log d)2 ·
max(d

√
n, n, d3/2). In particular, if d� n� d2,

E ‖ 1
d′(d)R

>R− Id‖ 6 O(n(log d)2/d2) .

The matrix R from this lemma differs from K only in the use of A−1/2 in place of
(H>1 H1)−1/2, (H>2 H2)−1/2. While we expect A−1/2 (a non-random matrix) to be close to both
(H>1 H1)

−1/2, (H>2 H2)
−1/2 (at least in subspaces close to Im(H1) and Im(H2), respectively)

establishing this is a challenging task in random matrix theory – in particular, both inverses
of random matrices and spectra of random matrices with dependent entries are notoriously
difficult to analyze. We leave this challenge to future work.

In this section we report on computer simulations which strongly suggest that if the
components a1, . . . , an are n � d2 random unit vectors from a variety of ensembles, then
with high probability κ(a1, . . . , an) > Ω(1). The ensembes include:

1. Spherical measure: a1, . . . , an ∈ Rd are i.i.d. random unit vectors (see Fig. 1).

2. Sparse: a1, . . . , an ∈ Rd are sampled i.i.d. by choosing 1
4d coordinates in [d] uniformly

at random, sampling each of those coordinates from N (0, 1), and setting the rest to 0
(see Fig. 2).

3. Hypercube: a1, . . . , an ∈ Rd are i.i.d. samples from {0, 1}d (see Fig. 3).

4. Spiked covariance: a1, . . . , an ∈ Rd are sampled from N (0, Id + λ · uu>) for a random
unit vector u and λ > 0. We note that in this case, though the covariance matrix of
a1, . . . , an has condition number O( 1λ), our experimental results support the hypothesis
that κ(a1, . . . , an) = Ω(1) for λ as large as λ = 1

2d (see Fig. 4).

These ensembles are designed to capture a number of characteristics of real data which we
would like the condition number to be robust to: sparsity, discrete values, and correlations
(of relatively extreme magnitude).

In each of these cases, we computed κ for several values of n, d on with a1, . . . , an taken
to be i.i.d. uniformly random unit vectors. Our results are consistent with the hypothesis
that (with high probability) κ(a1, . . . , an) > c− Õ(n/d2) for some absolute constant c ≈ 1

2 .
We expect the values of d, n employed here – d ≈ 10, n ≈ 100, so that κ is the condition

number of a certain random matrix of dimensions about 103 × 103 – to be predictive of the
asymptotic behavior of κ(a1, . . . , an), because the spectra of random matrices display strong
concentration even in relatively small dimensions.
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Figure 1: Condition number as a function of dimension d and lifted overcompleteness n/d2

for vectors sampled from the spherical measure.

Figure 2: Condition number as a function of dimension d and lifted overcompleteness n/d2

for random sparse vectors.
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Figure 3: Condition number as a function of dimension d and lifted overcompleteness n/d2

for vectors sampled from the Boolean hypercube.

Figure 4: Condition number as a function of dimension d and lifted overcompleteness n/d2

for vectors sampled from N (0, Id + 1
2d · uu

>) for a random unit vector u.
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We also note that the hypothesis that κ > c − Õ(n/d2) is well supported by the fact
that relatively standard techniques from random matrix theory yield the same bound for a
closely related random matrix to K(a1, . . . , an) from Definition 3. In particular, the following
may be proved by a long but standard calculation, using Matrix Bernstein and decoupling
inequalities:

Lemma 28 (Condition number of basic swap matrix) Let a1, . . . , an be independent
random d-dimensional unit vectors. Let Bi ∈ R(d−1)×d be a random basis for the orthogonal
complement of ai in Rd. Let P ∈ Rd3×d3 be the permutation matrix which swaps second and
third modes of (Rd)⊗3. Let

A = E
a
(a⊗ a⊗ Id)(a⊗ a⊗ Id)> .

Let R ∈ Rd3×n(d−1) have n blocks of dimensions d3 × (d− 1), where the i-th block is

Ri = A−1/2(ai ⊗ ai ⊗Bi)− PA−1/2(ai ⊗ ai ⊗Bi)

where we abuse notation and denote the PSD square root of the pseudoinverse of A by
A−1/2. Then there is a function d′(d) = Θ(d2) such that E ‖R>R− d′(d) · Id‖ 6 O(log d)2 ·
max(d

√
n, n, d3/2). In particular, if d� n� d2,

E ‖ 1
d′(d)R

>R− Id‖ 6 O(n(log d)2/d2) .

The matrix R from this lemma differs from K only in the use of A−1/2 in place of
(H>1 H1)−1/2, (H>2 H2)−1/2. While we expect A−1/2 (a non-random matrix) to be close to both
(H>1 H1)

−1/2, (H>2 H2)
−1/2 (at least in subspaces close to Im(H1) and Im(H2), respectively)

establishing this is a challenging task in random matrix theory – in particular, both inverses
of random matrices and spectra of random matrices with dependent entries are notoriously
difficult to analyze. We leave this challenge to future work.
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