
Proceedings of Machine Learning Research vol 99:1–35, 2019 32nd Annual Conference on Learning Theory

Reasoning in Bayesian Opinion Exchange Networks Is PSPACE-Hard
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Abstract
We study the Bayesian model of opinion exchange of fully rational agents arranged on a network.
In this model, the agents receive private signals that are indicative of an unknown state of the world.
Then, they repeatedly announce the state of the world they consider most likely to their neighbors,
at the same time updating their beliefs based on their neighbors’ announcements.

This model is extensively studied in economics since the work of Aumann (1976) and Geanako-
plos and Polemarchakis (1982). It is known that the agents eventually agree with high probability
on any network. It is often argued that the computations needed by agents in this model are difficult,
but prior to our results there was no rigorous work showing this hardness.

We show that it is PSPACE-hard for the agents to compute their actions in this model. Further-
more, we show that it is equally difficult even to approximate an agent’s posterior: It is PSPACE-
hard to distinguish between the posterior being almost entirely concentrated on one state of the
world or another.
Keywords: Bayesian opinion exchange; Computational complexity.

1. Introduction

Background The problem of dynamic opinion exchange is an important field of study in eco-
nomics, with its roots reaching as far as the Condorcet’s jury theorem and, in the Bayesian context,
Aumann’s agreement theorem. Economists use different opinion exchange models as inspiration
for explaining interactions and decisions of market participants. More generally, there is extensive
interest in studying how social agents exchange information, form opinions and use them as a ba-
sis to make decisions. For a more comprehensive introduction to the subject we refer to surveys
addressed to economists (Acemoglu and Ozdaglar, 2011) and mathematicians (Mossel and Tamuz,
2017).

Many models have been proposed and researched, with the properties studied including, among
others, if the agents converge to the same opinion, the rate of such convergence, and if the consensus
decision is optimal with high probability (this is called learning). Two interesting aspects of the
differences between models are rules for updating agents’ opinions (e.g., fully rational or heuristic)
and presence of network structure.
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For example, in settings where the updates are assumed to be rational (Bayesian), there is ex-
tensive study of models where the agents act in sequence (see, e.g., Banerjee (1992); Bikhchandani
et al. (1992); Smith and Sørensen (2000); Acemoglu et al. (2011) for a non-exhaustive selection of
works that consider phenomena of herding and information cascades), as well as models with agents
arranged in a network and repeatedly exchanging opinions as time progresses (see some references
below). In this work we are interested in the latter class (network models), arguably becoming more
relevant given the ubiquity of networks in modern society.

On the other hand, similar questions are studied for models with so-called bounded rationality,
where the Bayesian updates are replaced with simpler, heuristic rules. Some well-known examples
include the DeGroot model (DeGroot, 1974; Golub and Jackson, 2010), the voter model (Clifford
and Sudbury, 1973; Holley and Liggett, 1975) and other related variants (Bala and Goyal, 1998;
Acemoglu et al., 2010; Arieli et al., 2019).

One commonly accepted reason for studying bounded rationality is that, especially in the net-
work case, Bayesian updates become so complicated as to make fully rational behavior intractable,
and therefore unrealistic. However, we are not aware of previous theoretical evidence or formal-
ization of that assertion. Together with another paper of the same authors addressed to economists
(Hązła et al., 2018), we consider this work as a development in that direction.

More precisely, we show that computing an agent’s opinion in one of the most important and
studied Bayesian network models is PSPACE-hard. Furthermore, it is PSPACE-hard even to ap-
proximate the rational opinion in any meaningful way. This improves on our NP-hardness result for
the same problem shown in Hązła et al. (2018). Our result is tight in the sense that there exists a
polynomial space algorithm computing the Bayesian opinion.

Our model and results We are concerned with a certain Bayesian model of opinion exchange and
reaching agreement on a network. We are going to call it the (Bayesian) binary action model. We
consider a network of honest, fully rational agents trying to learn a binary piece of information, e.g.,
will the price of an asset go up or down, or which political party’s policies are more beneficial to the
society. We call this information the state of the world. Initially, each agent receives an independent
piece of information (a private signal) that is correlated with the state of the world. According to
the principle that “actions speak louder than words”, at every time step the agents reveal to their
neighbors only one bit: Which of the two possible states they consider more likely. On the other
hand, we assume that the agents are honest truth-seekers and always truthfully reveal their preferred
state: According to economic terminology they act myopically rather than strategically.

More specifically, we assume that the state of the world is encoded in a random variable θ ∈
{T,F} (standing for True and False), distributed according to the uniform prior, shared by all agents.
A set of Bayesian agents arranged on a directed graphG = (V,E) performs a sequence of actions at
discrete times t = 0, 1, 2, . . . Before the process starts, each agent u receives a random private signal
S(u) ∈ {0, 1}. The collection of random variables {S(u) : u ∈ V } is independent conditioned on
θ. The idea is that S(u) = 1 indicates a piece of evidence for θ = T and S(u) = 0 is evidence
favoring θ = F.

At each time t ≥ 0, the agents simultaneously broadcast actions to their neighbors in G. The
action A(u, t) ∈ {T,F} is the best guess for the state of the world by agent u at time t: Letting
µ(u, t) be the respective Bayesian posterior probability that θ = T, the action A(u, t) = T if and
only if µ(u, t) > 1/2. In subsequent steps, agents update their posteriors based on their neighbors’
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actions (we assume that everyone is rational, and that this fact and the description of the model are
common knowledge) and broadcast updated actions. The process continues indefinitely.

We are interested in computational resources required for the agents to participate in the process
described above. That is, we consider the complexity of computing the action A(u, t) given the
private signal S(u) and history of observations {A(v, t′) : v ∈ N (u), t′ < t}, where N (u) denotes
the set of neighbors of u in G. Our main result is that it is worst-case PSPACE-hard for an agent to
distinguish between cases where µ(u, t) ≥ 1 − exp(−Θ(N)) and µ(u, t) ≤ exp(−Θ(N)), where
N is a naturally defined size of the problem. As a consequence, it is PSPACE-hard to compute
the action A(u, t). The result builds on a simpler reduction that shows NP-hardness of the same
problem already at time t = 2.

Note a hardness of approximation aspect of our result: A priori one can imagine a reduction
where it is difficult to compute the actionA(u, t) when the Bayesian posterior is close to the thresh-
old µ(u, t) ≈ 1/2. However, we demonstrate that it is already hard to distinguish between situations
where the posterior is concentrated on one of the extreme values µ(u, t) ≈ 0 (and therefore almost
certainly θ = F) and µ(u, t) ≈ 1 (and therefore θ = T).

Our result is tight in the sense that a natural exhaustive search algorithm for computing the
action A(u, t) (see Hązła et al. (2018)) can be implemented in polynomial space. Our hardness
results also carry over to other models. In particular, they extend to the case where the signals are
continuous, where the prior state of the world is not uniform etc. We also note that we may assume
that the agents are never tied or close to tied in their posteriors, see Remark 13.

Related literature Our result improves on our previous work (Hązła et al., 2018), where we
showed NP-hardness of approximating Bayesian opinion already at time t = 2. In Theorem 1 we
describe another NP-hardness reduction. This reduction is different and more complicated than the
one in Hązła et al. (2018). However, it is useful in that it allows us to bootstrap an induction leading
to a stronger notion of PSPACE-hardness.

One intriguing aspect of our result is a connection to Aumann’s agreement theorem. There
is a well-known discrepancy (see Cowen and Hanson (2002) for a distinctive take) between reality,
where we commonly observe (presumably) honest, well-meaning people “agreeing to disagree”, and
the Aumann’s theorem, stating that this cannot happen for Bayesian agents with common priors and
knowledge, i.e., the agents will always end up with the same estimate of the state of the world after
exchanging all relevant information. Our result hints at a computational explanation, suggesting that
reasonable agreement protocols might be intractable in the presence of network structure. This is
notwithstanding some positive computational results of Hanson (2003) and Aaronson (2005), which
focus on two agents and come with their own (perhaps unavoidable) caveats.

In particular, Aaronson (2005) considers a setting with two agents, each holding a private signal
consisting of n bits. The joint distribution of this 2n-bit signal is common knowledge of the agents.
Their task is to estimate f(x, y) for some function f : {0, 1}2n → [0, 1]. The agents refine their
estimates by exchanging messages. Aaronson (2005) studies the protocol where a message consists
of the Bayesian expectation E[f(x, y)] (given everything that the agent knows at the time) with an
added noise term. This noise allows for efficient computation in the sense that (assuming that some
basic operations on f are efficient) there is an algorithm approximating the estimate E[f(x, y)] in a
number of steps that does not depend on n. Therefore, the protocol exchanging a constant number
of messages can be implemented in constant number of steps.
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Our setting differs from Aaronson (2005) in that we assume very simple private signals, namely
conditionally independent bits. It is clear that in this case a network structure among a large number
of agents is necessary for computational hardness. Based on Aaronson’s result one could ask if
adding noise to agents’ messages in our model could make their computations efficient, at least at
early time like t = 2. It seems to us that restricting to a constant number of agents is essential to
Aaronson’s analysis and that our proof can be adapted to deal with noise. However, we leave the
details to the full version of this paper.

A good deal is known about the model we are considering. From Gale and Kariv (2003) (with
an error corrected by Rosenberg et al. (2009), see also similar analysis of earlier, related models in
Borkar and Varaiya (1982); Tsitsiklis and Athans (1984)) it follows that if the networkG is strongly
connected, then the agents eventually converge to the same action (or they become indifferent).
The work of Geanakoplos (1994) implies that this agreement is reached in at most |V | · 2|V | time
steps. Furthermore, Mossel et al. (2014) showed that in large undirected networks with non-atomic
signals, learning occurs: The common agreed action is equal to the state of the world θ, except with
probability that goes to zero as the number of agents grows. A good deal remains open, too. For
example, it is not known if the |V | · 2|V | bound on the agreement speed can be improved. In this
context it is also interesting to note the results of Mossel et al. (2016) who consider a variant of our
model with Gaussian structure and revealed beliefs. In contrast to the results presented here, it is
shown that in this case, agents’ computations are efficient (polynomial time) and convergence time
is O(|V | · diam(G)).

We find it interesting that the agents’ computations in the binary action model turn out to be not
just hard, but PSPACE-hard. PSPACE-hardness of partially observed Markov decision processes
(POMDPs) established by Papadimitriou and Tsitsiklis (1987) seems to be a result of a similar
kind. On the other hand, there are clear differences: We do not see how to implement our model
as POMDP, and embedding a TQBF instance in a POMDP looks more straightforward than what
happens in our reduction. Furthermore, and contrary to Papadimitriou and Tsitsiklis (1987), we
establish hardness of approximation. We are not aware of many other PSPACE-hardness of approx-
imation proofs. Exceptions are results obtained via PSPACE versions of the PCP theorem (Condon
et al., 1995, 1997) and a few other reductions (Marathe et al., 1994; Hunt et al., 1994; Jonsson,
1997, 1999) that concern, among others, some problems on hierarchically generated graphs and an
AI-motivated problem of planning in propositional logic.

We note that there are some results on hardness of Bayesian reasoning in static networks in
the AI and cognitive science context (see Kwisthout (2018) and its references), but this setting
seems quite different from dynamic opinion exchange models. Other related results include work
on computational hardness of distributed decision making in control theory (Papadimitriou and
Tsitsiklis, 1982; Tsitsiklis and Athans, 1985; Papadimitriou and Tsitsiklis, 1986).

Organization of the paper In Section 2 we give a full description of our model, and state the
results precisely. Section 3 contains a discussion of main proof ideas, while in Section 4 there are
some suggestions for future work.

The proofs are in the appendices: the NP reduction is described in Section A, the proof of
PSPACE-hardness is in Section B, a modification of the proof to use only a fixed number of private
signal distributions in Section C, and a proof of #P-hardness in a related revealed belief model in
Section D.
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2. The model and our results

In Section 2.1 we restate the binary action model in more precise terms and introduce some notation.
Section 2.2 contains the discussion of our results.

2.1. Binary action model

We consider the binary action model of Bayesian opinion exchange on a network. There is a directed
graph G = (V,E), the vertices of which we call agents. The world has a hidden binary state
θ ∈ {T,F} with uniform prior distribution. We will analyze a process with discrete time steps
t = 0, 1, 2, . . . At time t = 0 each agent u receives a private signal S(u) ∈ {0, 1}. The signals S(u)
are random variables with distributions that are independent across agents after conditioning on θ.
Accordingly, the distribution of S(u) is determined by its signal probabilities

pθ0(u) := Pr [S(u) = 1 | θ = θ0] , θ0 ∈ {T,F} .

Equivalently, it is determined by its log-likelihoods ratios (LLRs)

`b(u) = ln
Pr[S(u) = b | θ = T]

Pr[S(u) = b | θ = F]
= ln

Pr[θ = T | S(u) = b]

Pr[θ = F | S(u) = b]
, b ∈ {0, 1} .

Note that there is a one-to-one correspondence between probabilities pT and pF with pT 6= pF, and
LLRs `0, `1 with `0 · `1 < 0. We will always assume that a signal S(u) = 1 is evidence towards
θ = T and vice versa. This is equivalent to saying that pT > pF or `1 > 0 and `0 < 0. We allow
some agents to not receive private signals: This can be “simulated” by giving them non-informative
signals with pT(u) = pF(u). We will refer to all signal probabilities taken together as the signal
structure of the Bayesian network. A specific pattern of signals s ∈ {0, 1}|V ′| (where V ′ denotes
the subset of agents that receive informative signals) will be called a signal configuration.

We assume that all this structural information is publicly known, but the agents do not have
direct access to θ or others’ private signals. Agents are presumed to be rational, to know that
everyone else is rational, to know that everyone knows, etc. (common knowledge of rationality). At
each time t ≥ 0, we define µ(u, t) to be the belief of agent u: The conditional probability that θ = T
given everything that u observed at times t′ < t. More precisely, lettingN (u) be the (out)neighbors
of u in G and defining

H(u, t) :=
{
A(v, t′) : t′ < t, v ∈ N (u)

}
.

as the observation history of agent u we let µ(u, t) := Pr[θ = T | S(u), H(u, t)]. Accordingly, if
(u, v) ∈ E(G) we will say that agent u observes agent v.

Agent u broadcasts to its in-neighbors the action A(u, t) ∈ {T,F}, which is the state of the
world that u considers more likely according to µ(u, t) (assume that ties are broken in an arbitrary
deterministic manner, say, in favor of F). Then, the protocol proceeds to time step t + 1 and the
agents update their beliefs and broadcast updated actions. The process continues indefinitely. Note
that the beliefs and actions become deterministic once the private signals are fixed.

The first two time steps of the process are relatively easy to understand: At time t = 0 an agent
broadcastsA(u, 0) = T if and only if S(u) = 1 and the belief µ(u, 0) can be easily computed from
the LLR `S(u)(u). At time t = 1, an agent broadcasts A(u, 1) = T if and only if

`S(u)(u) +
∑

v∈N (u)

`S(v)(v) > 0 , (1)
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where the private signals S(v) can be inferred from observed actions A(v, 0). The sum (1) de-
termines the LLR associated with belief µ(u, 1). However, at later times the actions of different
neighbors are not independent anymore and accounting for those dependencies seems difficult.

Let Π be a Bayesian network, i.e., a directed graph G = (V,E) together with the signal struc-
ture. We do not commit to any particular representation of probabilities of private signals. Our
reduction remains valid for any reasonable choice. We are interested in the hardness of comput-
ing the actions that the agents need to broadcast. More precisely, we consider the complexity of
computing the function

BINARY-ACTION(Π, t, u,S(u), H(u, t)) := A(u, t)

that computes the action A(u, t) given the Bayesian network Π, time t, agent u, its private signal
S(u) and observation history H(u, t). Relatedly, we will consider computing the belief

BINARY-BELIEF(Π, t, u,S(u), H(u, t)) := µ(u, t) .

Note that computing BINARY-ACTION is equivalent to distinguishing between BINARY-BELIEF >
1/2 and BINARY-BELIEF ≤ 1/2.

2.2. Our results

Our first result implies that computing BINARY-ACTION at time t = 2 is NP-hard. We present it
as a standalone theorem, since the NP reduction and its analysis are used as a building block in the
more complicated PSPACE reduction.

Theorem 1 There exists an efficient reduction from a 3-SAT formula φ with N variables and M
clauses to an input of BINARY-ACTION(Π, t, u,H(u, t)) such that:
• The size (number of agents and edges) of the Bayesian graph G is O(N +M), the time is set

to t = 2 and agent u does not receive a private signal.
• All probabilities of private signals are efficiently computable real numbers satisfying

exp(−(O(N)) ≤ pθ0(v) ≤ 1− exp(−O(N)), v ∈ V, θ0 ∈ {T,F} .

• If φ is satisfiable, then the belief µ(u, 2) satisfies

µ(u, 2) = 1− exp(−Θ(N)) .

• If φ is not satisfiable, then we have

µ(u, 2) = exp(−Θ(N)) .

Corollary 2 Both distinguishing between the cases BINARY-BELIEF > 1− exp(−Ω(N)) and
BINARY-BELIEF < exp(−Ω(N)) and computing BINARY-ACTION are NP-hard. Further-
more, since meanings of the labels T and F can be reversed, computing BINARY-ACTION is also
coNP-hard.

Our main result improves Theorem 1 to PSPACE-hardness. It is a direct reduction from the
canonical PSPACE-complete language of true quantified Boolean formulas TQBF.
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Theorem 3 There exists an efficient reduction from a TQBF formula Φ

Φ = QKxK · · · ∃x1φ(xK , . . . ,x1) ,

where φ is a 3-CNF formula with N variables and M clauses, there are K variable blocks with
alternating quantifiers and the last quantifier is existential, to an input of the computational problem
BINARY-ACTION(Π, t, u,H(u, t)) such that:
• The number of agents in the Bayesian graph G is O(N2(N +M)), the time is set to t = 2K

and agent u does not receive a private signal.
• All probabilities of private signals are efficiently computable real numbers satisfying

exp(−(O(N)) ≤ pθ0(v) ≤ 1− exp(−O(N)), v ∈ V, θ0 ∈ {T,F} . (2)

• If Φ is true, then µ(u, 2K) = 1−exp(−Θ(N)). If Φ is false, then µ(u, 2K) = exp(−Θ(N)).

Corollary 4 Both distinguishing between the cases BINARY-BELIEF > 1 − exp(−Ω(N)) and
BINARY-BELIEF < exp(−Ω(N)) and computing BINARY-ACTION are PSPACE-hard.

Remark 5 Note that the statement of Theorem 3 immediately gives ΣK-hardness of approximating
BINARY-BELIEF at time t = 2K. Furthermore, due to the symmetric nature of the problem
(cf. Corollary 2), approximating BINARY-BELIEF at time t = 2K is also ΠK-hard.

Remark 6 For ease of exposition we define networks in the reductions to be directed, but due to
additional structure that we impose (see paragraph “Network structure and significant times” in
Section A) it is easy to see that they can be assumed to be undirected. This is relevant insofar as a
strong form of learning occurs only on undirected graphs (see Mossel et al. (2014)).

We briefly discuss the upper bounds for computing BINARY-BELIEF. As we explained in
Section 2.1, for t = 0, 1 there is a simple formula to compute an agent’s belief. If we assume t =
poly(n), then a natural exhaustive search algorithm (see Hązła et al. (2018)) can be implemented
in polynomial space, matching the lower bound from Theorem 3. On the other hand, we do not
know how to improve on this algorithm even for t = 2. We note, however, that since Corollary 2
establishes both NP-hardness and coNP-hardness, the problem for t = 2 is unlikely to be NP-
complete.

One possible objection to Theorem 3 is that it uses signal distributions with probabilities expo-
nentially close to zero and one. We do not think this is a significant issue, and it helps avoid some
technicalities. Nevertheless, in Section C we prove a version of Theorem 3 where all private signals
come from a fixed family of, say, at most fifty distributions. This is at the cost of a (non-asymptotic)
increase in the size of the graph.

Theorem 7 The reduction from Theorem 3 can be modified such that all private signals come from
a fixed family of at most fifty distributions.

Remark 8 It is possible to modify our proofs to give hardness of distinguishing between µ(u, t) ≤
exp(−Ω(NK)) and µ(u, t) ≥ 1− exp(−Ω(NK)) for any constant K (recall that N is the number
of variables in the formula φ). This is at the cost of allowing signal probabilities in the range

exp(−(O(NK)) ≤ pθ0(v) ≤ 1− exp(−O(NK))

or, in the bounded signal case, increasing the network size to O(NK+2). Consequently, in the latter
case we get hardness of approximation up to an exp(O(|V |α)) factor for any constant α < 1, where
|V | is the number of agents.
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3. Main proof ideas

NP-hardness The NP-hardness proof in Section A consists of an analysis of a composition of
several gadgets. We will think of the agent u from input to BINARY-ACTION as “observer” and
accordingly call it OBS. The Bayesian network features gadgets that represent variables and clauses.
The private signals in variable gadgets correspond to assignments w to the formula φ. Furthermore,
there is an “evaluation agent” EVAL that interacts with all clause gadgets. We use more gadgets
that “implement” counting to ensure that what OBS observes is consistent with one of two possible
kinds of signal configurations:
• S(EVAL) = 1 and the signals of variable agents correspond to an arbitrary assignment w.
• S(EVAL) = 0 and the signals of variable agents correspond to a satisfying assignment w.

Then, we use another gadget to “amplify” the information that is conveyed about the state of the
world by the signal S(EVAL). If φ has no satisfying assignment, then S(EVAL) = 1 and this be-
comes amplified to a near-certainty that θ = F (for technical reasons this is the opposite conclusion
than suggested by S(EVAL) = 1). On the other hand, we design the signal structure such that even
a single satisfying assignment tips the scales and amplifies to θ = T with high probability (whp).

We note that one technical challenge in executing this plan is that some of our gadgets are
designed to “measure” (e.g., count) certain properties of the private signals, but these measurements
use auxiliary agents with their own signals, affecting Bayesian beliefs. We need to be careful to
cancel out these unintended effects at every step.

PSPACE-hardness The high-level idea to improve on the NP-hardness proof is that once we
know that agents can solve hard problems, we can use them to help the observer agent solve an even
harder problem. Of course this has to be done in a careful way, since the answer to a partial problem
cannot be directly revealed to the observer (the whole point is that we do not know a priori what
this answer is).

We will show PSPACE-hardness by reduction from the canonical PSPACE-complete language
TQBF. More precisely, we use a representation of quantified Boolean formulas

Φ = QKxK · · ·Q1x1 : φ(xK , . . . ,x1) ,

where:
• Qi is a quantifier such that Qi ∈ {∃,∀}, Qi 6= Qi+1 and Q1 = ∃.
• xK , . . . ,x1 are blocks of variables such that their total count is |xK |+ . . .+ |x1| = N .
• φ is a 3-CNF formula over variables xK , . . . ,x1 with M clauses.

The language TQBF consists of all formulas Φ that are true. It is common and useful to think of Φ
as defining a “position” in a game, where “Player 1” chooses values of variables under existential
quantifiers, “Player 0” chooses values of variables under universal quantifiers, and the objective of
Player s is to evaluate φ to the value s. Under that interpretation, Φ ∈ TQBF if and only if Player
1 has a winning strategy in the given position.

Keeping that in mind, we can give an intuition for the proof: In the 3-SAT reduction, if the
formula had a satisfying assignment, then agent OBS could conclude whp. that the “hidden” as-
signment is satisfying, and θ = T. Otherwise, the hidden assignment is not satisfying and θ = F
whp. In the PSPACE reduction, the hidden assignment will correspond (whp.) to a “transcript”
of the game played according to a winning strategy for one of the players, and θ will be deter-
mined by the winning player. This will be achieved by implementing a sequence of observer agents
OBS1, . . . ,OBSK , where:
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• Ultimately, the hardness will be shown for the computation of agent OBSK .
• Agent OBSi directly observes variable agents in blocks xK , . . . ,xi+1. It will be useful to

think of OBSi as “computing” a logical formula with i − 1 quantifier switches (since from
the perspective of this agent blocks xK , . . . ,xi+1 are set to fixed values).
• For each i, there is a (slightly more complicated) gadget similar to the “EVAL-gadget” em-

ployed in the 3-SAT reduction. This gadget involves OBSi−1 as well as two new agents Bi
and Ci and is observed by OBSi. Its purpose is to “flip” relative LLRs of different types of
variable assignments to implement a quantifier switch.

4. Conclusion

A natural open question is to make progress on the approximate-case hardness in one of the models.
For example, one could try to establish NP-hardness for a worst-case network, but holding for signal
configurations arising with non-negligible probability. This might require significant new ideas.

Another interesting problem arises from trying to extend our results to the revealed belief model,
as discussed in Section D. Thinking in terms of games, consider a class of “no-mistakes-allowed”
games: Games where the player with winning strategy always has exactly one winning move, with
all alternative moves in a given position leading to a losing position (and this property holding
recursively in all positions reachable from the initial one).

Certainly deciding if a position is winning for the first player in such games is in PSPACE. On
the other hand, since such a game with all moves performed by the existential player corresponds
to a SAT formula with zero or one satisfying assignments, by the Valiant-Vazirani theorem (Valiant
and Vazirani, 1986) it is also (morally) NP-hard. This leaves a large gap between NP and PSPACE.

For example, suppose we want to prove Π2-hardness in the revealed belief model. Then it is
natural to consider formulas of the form ∀x∃y : φ(x,y), and the question becomes: How hard is it
to distinguish between the cases:
• YES: For all x, there exists unique yx such that φ(x,yx) = 1.
• NO: There exists unique x0 such that for all y we have φ(x0,y) = 0. For all other x, there

exists unique yx such that φ(x,yx) = 1.
How hard is this problem? In particular, can it be shown to be harder than NP (in some sense)?
Hardness of such games can be thought of as a generalization of the Valiant-Vazirani theorem.
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Appendix A. NP-hardness: Proof of Theorem 1

In this section we describe and analyze the reduction from 3-SAT to BINARY-ACTION, proving
Theorem 1. The reduction is used as a building block in the PSPACE-hardness proof, but it is also
useful in terms of developing intuition for the more technical proof of Theorem 3. We proceed by
explaining gadgets that we use, describing how to put them together in the full reduction, and finally
proving its correctness.

Threshold gadget Say there are agents v1, . . . , vK that do not observe anyone and receive private
signals S(vi) with respective LLRs `0(vi) and `1(vi). Additionally, there is an observer agent OBS
and we would like to reveal to it, at time t = 1, that the sum of LLRs of agents v1, . . . , vK exceeds
some threshold δ:

L :=
K∑
i=1

`S(vi)(vi) > δ ,

without disclosing anything else about the private signals.1 This is achieved by the gadget in Fig-
ure 1.

Figure 1: Threshold gadget.

v1

`0(v1)
`1(v1)

v2

`0(v2)
`1(v2)

· · · vK

`0(vK)
`1(vK)

C

−δ

D

δ

B E1 E2

OBS

Figure 2: Notation for the threshold gadget.

v1 v2 · · · vK

> δ

OBS

We describe the gadget for δ > 0. Agent C receives a private signal with `0(C) = −δ (and
arbitrary `1(C)) and agent D with `1(D) = δ. Agents B, E1 and E2 (we will call the latter two the
“dummy” agents) do not receive private signals.

We stress that our overall reduction will demonstrate the hardness of computation for agent
OBS. Therefore, we need to specify the observation history of OBS. By our tie-breaking con-
vention, it must be A(B, 0) = A(E1, 0) = A(E2, 0) = F. Furthermore, we specify A(B, 1) =
A(E2, 1) = T and A(E1, 1) = F.

Based on that information, agent OBS can infer that S(C) = 0, S(D) = 1 and, since the action
A(B, 2) is determined by the sign of L− δ, that L > δ. The purpose of agent D is to counteract the

1. We assume that δ is chosen such that L = δ never happens.
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effect of this “measurement” on the estimate of the state of the world by OBS. More precisely, let

P (s1, . . . , sK , θ0) := Pr

[
K∧
i=1

S(vi) = si ∧ θ = θ0

]
, (3)

P (s1, . . . , sK , sC , sD, θ0) := Pr

[
K∧
i=1

S(vi) = si ∧ S(C) = sC ∧ S(D) = sD ∧ θ = θ0

]
. (4)

Based on the discussion above, we have the following:

Claim 9 Let s1, . . . , sK be private signals of v1, . . . , vK . Similarly, let (sC , sD) be private signals
of C and D. Then:
• If

∑K
i=1 `si(vi) < δ, then there are no signals (sC , sD) that make (s1, . . . , sK , sC , sD) con-

sistent with observations of OBS.
• If

∑K
i=1 `si(vi) > δ, then there exists unique configuration (sC , sD) consistent with observa-

tions of OBS and the (prior) probability of this configuration when the state is θ0 is

P (s1, . . . , sK , sC , sD, θ0) = P (s1, . . . , sK , θ0) · α , (5)

whereα := (1−pT(C))pT(D) = e`0(C)+`1(D)(1−pF(C))pF(D) = e−δ+δ(1−pF(C))pF(D) =
(1− pF(C))pF(D) does not depend on θ0.

Similar reasoning can be used for the case when δ < 0 and/or checking the opposite inequality
L < δ. We will say that an agent OBS observes a threshold gadget if it observes agents B, E1 and
E2 and denote it as shown in Figure 2. Note that in our diagrams we use circles to denote agents
and boxes to denote gadgets. The latter typically contain several auxiliary agents.

Network structure and significant times It might appear that the threshold gadget is more com-
plicated than needed. The reason for this is that we will impose certain additional structure on the
graph to facilitate a more detailed analysis, which will be later used in the proof of Theorem 3.
Specifically, we will always make sure that the graph is a DAG, with only the observer agent having
in-degree zero. Furthermore, an agent will receive a private signal if and only if its out-degree is
zero (recall a directed edge B → C indicates that B observes C).

Furthermore, we will arrange the graph such that each agent will learn new information at a
single, fixed time step. That is, for every agent B there will exist a significant time t(B) such that
µ(B, t′) = 1/2 for t′ < t(B) and µ(B, t′) = µ(B, t(B)) for t′ > t(B). If B receives a private
signal, then t(B) = 0. Otherwise, t(B) is determined by the (unique) path length from B to an
out-degree zero agent. For example, in Figure 1 significant times are t(B) = t(E1) = t(E2) = 1
and t(OBS) = 2.

Accordingly, we will use notation µ(B) and A(B) to denote agent beliefs and actions at the
significant time. Let B and C be agents with t(B) < t(C)−1. In the following, we will sometimes
say that C observes B, even though that would contradict the significant time requirement (a direct
edge C → B implies that t(B) = t(C)−1). Whenever we do so, it should be understood that there
is a path of “dummy” nodes of appropriate length between B and C (cf. E1 and E2 in Figure 1).
For clarity, we will omit dummy nodes from the figures.
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Counting gadget Assume now that the agents v1, . . . , vK receive private signals with identical
LLRs `0 < 0 and `1 > 0 and that a number k, 1 ≤ k ≤ K is given. Then, building on the threshold
gadget, we can convey the information that exactly k out of K agents received private signal 1.
Letting δ := K`0 + (k − 0.5)(`1 − `0) and δ′ := δ + `1 − `0, we compose two threshold gadgets
as shown in Figure 3.

Figure 3: Counting gadget.

v1

`0, `1

· · · vK

`0, `1

> δ < δ′

B

−K`0 − k(`1 − `0)

OBS

Figure 4: Two counting gadgets illustrating the
notation. The equivalence symbol on
the right-hand gadget denotes presence
of the optional agent B.

u1 · · · uK

≥ k

v1 · · · vK

= k
≡

OBS

Agent B shown in Figure 3 is optional: Depending on our needs we will use the counting
gadget with or without it. It is used to preserve the original belief of OBS after learning the count of
private signals of agents vi. It receives a private signal with `b(B) := ` := −K`0 − k(`1 − `0) for
appropriate b ∈ {0, 1} (depending on the sign of `) and broadcasts the corresponding value of θ0.

Again, we emphasize that the gadget will be used in the context of the reduction, where we
specify the observation history of agent OBS. Therefore, the definition of the gadget includes the
values of private signals of agent B, as well as auxiliary agents in the counting gadgets, but not the
values of private signals of agents v1, . . . , vK .

By similar analysis as for the threshold gadget and using the P (·) notation as in (3)–(5) we we
can establish a formal claim similar to Claim 9:

Claim 10 Consider a counting gadget as shown in Figure 3. Let s1, . . . , sK be private signals of
agents v1, . . . , vK . Let s represent private signals of all auxiliary agents in the threshold gadgets
and sB a private signal of agent B.

Then, the only configurations s1, . . . , sK consistent with observations of OBS are those for
which

∑K
i=1 si = k. Furthermore, for any such configuration there exists a unique configuration s

(and sB , if agent B is present) such that (depending on the presence of B):

P (s1, . . . , sK , s, θ0) = P (s1, . . . , sK , θ0) · α = P (θ0) · α , (6)

P (s1, . . . , sK , s, sB, θ0) = β , (7)

where α := α(k,K, `0, `1) > 0 is easily computable and does not depend on s1, . . . , sK or θ0, but
the value of the other term P (θ0) is in general dependent on θ0. On the other hand, if B is present,
then β := β(k,K, `0, `1) > 0 does not depend at all on the private signals or state of the world.
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Remark 11 The same technique can be used to obtain inequalities (e.g., checking that at least k
out of K private signals are ones). However, note that in case of inequality only the version without
agentB, achieving guarantee (6), can be implemented. This is because in order to get (7) we use the
knowledge of the exact LLR shift induced by the fact that exactly k agents received positive signals,
i.e., K`0 + k(`1 − `0). Of course we lack this information if we only know that at least k agents
received positive signals.

We will say that an agent OBS observes the counting gadget if it observes both respective
threshold gadgets (and B, if present). We will denote counting gadgets as in Figure 4.

Not-equal gadget Another related gadget that we will use reveals to the observer that two agents
u, v with LLRs `0, `1 and m0,m1, respectively, receive opposite signals S(u) 6= S(v). Since
`0,m0 < 0 < `1,m1, this is achieved by using two threshold gadgets to check that `0 + m0 <
`S(u) +mS(v) < `1 +m1, where we set the thresholds in the threshold gadgets as `0 +m0 + ε and
`1 +m1 − ε for an appropriately small ε > 0. We will denote the not-equal gadget as in Figure 5.

Figure 5: Not-equal gadget.

u v

6=

OBS

Figure 6: Variable gadget.

xi ¬xi

= 1
≡

OBS

Figure 7: Clause gadget.

ηi = ¬x1 ∨ x3 ∨ ¬xN

¬x1 x3 ¬xN EVAL

OBS

≥ 1

Variable and clause gadgets Our reduction is from the standard form of 3-SAT, where we are
given a CNF formula on N variables x1, . . . , xN . The formula is a conjunction of M clauses
η1, . . . , ηM , where each clause is a disjunction of exactly three literals on distinct variables.

We introduce two global agents. One of them is called OBS and we mean it as an “observer
agent”. This is the agent for which we establish hardness of computation. We will follow the rule
that OBS observes all gadgets that are present in the network. Second, we place an “evaluation
agent” EVAL with private signal probabilities pT := 0.9 and pF := 0.4.

Furthermore, for each variable in the CNF formula, we introduce two agents xi and ¬xi that
receive private signals given by pT and pF. Then, we encompass those two agents in a counting
gadget with equivalence as shown in Figure 6.

For each clause ηi, we introduce a counting gadget on four agents: Three agents corresponding
to the literals in the clause (note that they are observed directly and not through the variable gadgets),
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and the EVAL agent. The gadget ensures that at least one of those agents received signal 1. An
illustration is provided in Figure 7.

The reduction We put the agents EVAL and OBS and the variable and clause gadgets together,
as explained in previous paragraphs. Finally, we add two more agents B and C. We will choose a
natural number r := γ · N for an absolute big enough constant γ > 0. Agent B receives private
signals with pT(B) = 1−αr1 and pF(B) = αr2 and agent C with pT(C) = 1−αr3 and pF(C) = αr4
for some α1, . . . , α4 that will be chosen in the correctness analysis. Let the corresponding LLRs be
o1, o2, o3, o4 (note that o1, o3 > 0 and o2, o4 < 0). We also insert two not-equal gadgets observed
by OBS: One of them is put between EVAL and B and the other one between B and C. The overall
construction is illustrated in Figure 8.

We are reducing to the problem of computing the action of agent OBS at its significant time
t = 2. Note that OBS observes all gadgets in the graph, and only gadgets. In particular, OBS directly
infers the signals of all auxiliary agents in the gadgets (so these signals are indirectly encoded in
the reduction), but the same cannot be said about the private signals S(x1), . . . ,S(xN ) of variable
agents. The observation historyH(OBS, 2) is naturally determined by specifications of the gadgets.

Figure 8: 3-SAT reduction for φ(x) = η1 ∧ . . . ∧ ηM .

x1 · · · xN

η1 · · · ηM

EVAL

`1, `0

B

o1, o2

C

o3, o4

6= 6=

OBS

Analysis of the reduction As a preliminary matter, the reduction indeed produces an instance of
polynomial size: The size of the graph is O(N +M) and the probabilities of private signals satisfy

exp(−O(N)) ≤ pθ0(u) ≤ 1− exp(−O(N)) .

We inspect the construction to understand which private signal configurations are consistent
with the observation history of agent OBS. Let w = (w1, . . . , wN ) be an assignment to the 3-SAT
formula. We will say that a signal configuration is consistent with assignment w if it satisfies
S(xi) = wi for every variable agent xi. First, let us summarize what the information available to
agent OBS at time t = 2.
• Agent OBS observesN variable gadgets. Each of those is a counting gadget with equivalence,

itself consisting of two threshold gadgets. The observation history of OBS determines the
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private signals of all auxiliary agents in those gadgets. It also ensures that S(xi) 6= S(¬xi)
for every variable gadget xi in any consistent signal configuration.
Furthermore, by Claim 10, for each assignment w there is exactly one configuration s(w) of
private signals of variable gadget agents that is consistent both with w and observation his-
tory. Letting S be a random variable consisting of those signals, formula (7) and conditional
independence of private signals imply

Pr [S = s(w) ∧ θ = θ0] = β = β(N,M) ,

where β does not depend2 on the assignment or on the state of the world θ.
• Agent OBS also observes M clause gadgets, each of them being a counting gadget without

equivalence. The gadget corresponding to a clause consisting of literals zi, zj , zk ensures that
S(zi) + S(zj) + S(zk) + S(EVAL) ≥ 1.
• Finally, it observes two not-equal gadgets, ensuring S(EVAL) 6= S(B) and S(B) 6= S(C).
This leads us to the following:

Claim 12
• For every assignment w = (w1, . . . , wN ), there exists exactly one signal configuration con-

sistent with w and observation history with S(EVAL) = 1,S(B) = 0,S(C) = 1.
• For every satisfying assignment w, there also exists exactly one consistent signal configura-

tion with S(EVAL) = 0,S(B) = 1,S(C) = 0.
• There are no other consistent configurations.

As a next step, we compare the LLRs of configurations corresponding to different assignments. To
this end, we let the quantity P (w, s0, θ0) be the a priori probability that private signals are in the
consistent configuration corresponding to assignment w, S(EVAL) = s0 and θ = θ0 (note that
this is a different definition than given in (3)). Furthermore, we set P (w, θ0) := P (w, 0, θ0) +
P (w, 1, θ0).

Keeping in mind the summary of knowledge of agent OBS and using Claims 9 and 10 together
with conditional independence of signals we conclude that for any assignment w:

P (w, 1,T) = q · 0.9 · αr1 · (1− αr3) ,
P (w, 1,F) = q · 0.4 · (1− αr2) · αr4

for some q(N,M) > 0 that does not depend on w. On the other hand, for any satisfying assignment
w we additionally have

P (w, 0,T) = q · 0.1 · (1− αr1) · αr3 ,
P (w, 0,F) = q · 0.6 · αr2 · (1− αr4) .

Each of those expressions is a product of four terms. The value q corresponds to the probabilities
of signals in variable agents and auxiliary agents in the gadgets. The other terms arise from private
signals of, respectively, EVAL, B and C.

2. This is the only place in the reduction where we used the equivalence version of the counting gadget. The point is
that the observer agent OBS learns that out of 2N “literal agents” exactly N received positive signals. Normally this
would imply a shift in belief of OBS, which we avoid by using the equivalence gadget.
In contrast, later on we will be trying to differentiate belief of OBS based on if an assignment is satisfying or not.
Intuitively, since we will want to preserve, or even amplify, this difference in belief, there will be no further need for
the equivalence gadget.
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We choose α3 := 0.9, α2 := α4 := 0.6, α1 := 0.4 and note that our choice of r = γN for large
enough γ ensures that we can estimate3

P (w, 1,T) ∈ q · 0.4r ·
(

1± 1

200N

)r
, (8)

P (w, 1,F) ∈ q · 0.6r ·
(

1± 1

200N

)r
, (9)

and, for satisfying assignments,

P (w, 0,T) ∈ q · 0.9r ·
(

1± 1

200N

)r
. (10)

P (w, 0,F) ∈ q · 0.6r ·
(

1± 1

200N

)r
. (11)

This in turn implies that for a satisfying assignment we have

P (w,T) ∈ q · 0.9r ·
(

1± 1

100N

)r
, P (w,F) ∈ q · 0.6r ·

(
1± 1

100N

)r
, (12)

and for an unsatisfying one

P (w,T) ∈ q · 0.4r ·
(

1± 1

100N

)r
, P (w,F) ∈ q · 0.6r ·

(
1± 1

100N

)r
. (13)

Accordingly, if the formula φ has a satisfying assignment w∗, it must be that the belief of agent
OBS at the significant time t = 2 can be bounded by

1− µ(OBS) =

∑
w∈{0,1}N P (w,F)∑

w∈{0,1}N P (w,F) + P (w,T)
≤
∑

w∈{0,1}N P (w,F)

P (w∗,T)
≤ 2N · 0.61r

0.89r
≤ 0.69r .

(14)

At the same time, this probability can be lower bounded as

1− µ(OBS) ≥ P (w∗,F)∑
w∈{0,1}N P (w,T) + P (w,F)

≥ 0.59r

2N+1 · 0.91r
≥ 0.64r . (15)

If the formula φ is not satisfiable, a simpler computation taking into account only equation (13)
gives

µ(OBS) ∈ [0.64r, 0.69r] . (16)

Hence, µ(OBS) = 1− exp(−Θ(N)) if φ is satisfiable and µ(OBS) = exp(−Θ(N)) otherwise.

3. In order to facilitate the proof of Theorem 3, the bounds below are slightly better than needed here.
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Handling of ties

Remark 13 There are some results and proofs about opinion exchange models that are sensitive
to the tie-breaking rule chosen (see, e.g., Example 3.46 in Mossel and Tamuz (2017)). We claim that
the reduction described above (as well as other reductions in this paper) does not suffer from this
problem.

Ideally, we would like to say that ties never arise in signal configurations that are consistent
with inputs to the reduction. This is seen to be true by inspection, with the following exception:
Agents that do not receive private signals are indifferent about the state of the world until their
significant time. We made this choice to simplify the exposition. Since significant times are common
knowledge, no agent places any weight on others’ actions before their significant time (regardless
of the tie-breaking rule used), and the analysis of the reduction is not affected in any way by this
fact.

That being said, the ties could be avoided altogether. For example, we could introduce an agent
EPS that is observed by everyone else at time t = 0, indicating the actionA(EPS) = T and private
signal S(EPS) = 1 corresponding to the LLR l1(EPS) = ε for a small constant ε > 0. Since LLRs
arising in the analysis of our reduction are always bounded away from zero, ε can be made small
enough so that the agent EPS does not affect other agents’ actions at their significant times. This
almost takes care of the problem, except for the agents without private signals at time t = 0 (since
they will acquire information from EPS only at time t = 1). This can be solved by giving each such
agent u an informative private signal with LLRs, say,

`1(u) = −`0(u) =
ε

100|V |
.

In that case u will output an action corresponding to its private signal at time t = 0, but its belief
due to private signal (and signals of all other non-informative agents that u observes) will become
dominated by the belief of EPS at time t = 1.

Appendix B. PSPACE-hardness: Proof of Theorem 3

The reduction Recall our formula

Φ = QKxK · · · ∃x1 : φ(xK , . . . ,x1) .

The reduction is defined inductively, with the overall structure illustrated in Figure 10. First,
we construct a network identical to the one used used in the 3-SAT reduction for the formula
φ(xK , . . . ,x1) (i.e., as if all variables were existential). We call the observer agent OBS1 and in-
troduce one difference: OBS1 additionally directly observes all variable agents in variable blocks
xK , . . . ,x2.

Next, for each 1 < i ≤ k we place two agents Bi and Ci with private signals according to
probabilities pT(Bi) := 1 − αr1, pF(Bi) := αr2, pT(Ci) := 1 − αr3, pF(Ci) := αr4. The parameter
r is chosen in the same way as in the 3-SAT reduction, i.e., r = γ · N for some absolute γ big
enough. The αj values depend on the parity of i and are provided in Table4 1.

4. These values are related to, but different from α1, . . . , α4 in Section A. This is because the computations in the base
case are different than in the inductive step.
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Table 1: Values of αj for even and odd i.
even i odd i

α1
4
9 · 0.9 0.9

α2 0.9 4
9 · 0.9

α3 0.9 4
9 · 0.9

α4
4
9 · 0.9 0.9

δ for “large” threshold 0.2r r

δ for “small” threshold −r −0.2r

We place a not-equal gadget between Bi and Ci. We would also like to place a not-equal gadget
between OBSi−1 and Bi. More precisely, we want a gadget that will convey that relevant actions
are different: A(OBSi−1) 6= A(Bi). We cannot use the standard not-equal gadget directly, since
OBSi−1 receives more complicated information than a single private signal. We now describe how
to overcome this difficulty, with an illustration in Figure 9.

We put in place a gadget between OBSi−1 and Bi and we want it to be functionally equivalent
to a not-equal gadget. We will call it a modified not-equal gadget. It consists of two modified
threshold gadgets. One of those gadgets ensures that A(OBSi−1) 6= T or A(Bi) 6= T (we will
call it a “large” threshold), and the other one ensures that A(OBSi−1) 6= F or A(Bi) 6= F (this is a
“small” threshold). Of course the conjunction of those two guarantees is thatA(OBSi−1) 6= A(Bi).
Since the analysis of two threshold gadgets is symmetric, we describe only the large threshold.

We call the main agent in the modified threshold gadget Ti (it is an equivalent of B in Figure 1).
Agent Ti:
• Does not receive a private signal.
• Observes agents OBSi−1 and Bi.
• Additionally observes all agents that OBSi−1 observes.
• Except that it does not observe variable agents in variable block xi.

The significant time of agent OBSi−1 is t = 2i−2 and we set the significant time of Ti to t = 2i−1.
Furthermore, we place two more agents T ′i and T ′′i corresponding to agentsC andD in Figure 1.

They both receive private signals and the values of those signals are hardcoded in the reduction.
Agent T ′i is observed by OBSi and Ti, and broadcasts LLR−δ. Agent T ′′i is observed only by OBSi
and broadcasts LLR δ. We still need to define the threshold value δ. This is not immediate, since we
only have bounds (14)–(16) on beliefs of agent OBSi−1, but it can be done. Precise values for both
large and small thresholds are given in Table 1. For the large threshold we specify in the observation
history that at the significant time A(Ti) = F, while for the small threshold we specify the opposite
A(Ti) = T.

Finally, we place an agent OBSi that observes the same agents as OBSi−1, except for variable
agents in variable block xi. Note that OBSi does not directly observe OBSi−1. Additionally, OBSi
observes the not-equal gadget between Bi and Ci and the modified not-equal gadget (meaning
Ti, T

′
i , and T ′′i in modified threshold gadgets) between OBSi−1 and Bi. OBSi does not receive a

private signal, and its significant time is t = 2i.
This concludes the definition of the reduction. We show hardness for the computation of agent

OBSK at time t = 2K. Again, since this agent observes only gadgets, its observation history is
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Figure 9: Modified threshold agent illustrated on case i = K = 2 and formula Φ = ∀y∃x :
φ(y,x) = 1. The gadget consists of agents T2, T ′2 and T ′′2 . These three agents serve the
role of B, C and D from Figure 1 and are all observed by agent OBS2 (see Figure 10).
The gadget implements “not-equal” behavior between agents OBS1 and B2.

The red arrow emphasizes that agent OBS1 directly observes variable agents associated
with y. Some significant times and LLRs are shown.

y x

φ

EVAL B C

6= 6=

OBS1

t = 2

B2

o1, o2

T2

t = 3

T ′2

−δ

T ′′2

δ

naturally determined by the semantics of the gadgets. We will show that the truth value of for-
mula Φ reduces to distinguishing between µ(OBSK) ≈ 1 and µ(OBSK) ≈ 0 and, by implication,
A(OBSK) = T and A(OBSK) = F.

Analysis: Preliminaries To start with, we note that the i-th stage of the inductive definition
adds O(i(N + M)) new agents (remembering that there are dummy agents that are not shown in
the figures). Consequently, the total number of agents is O(K2(N + M)) ≤ O(N2(N + M)).
Furthermore, the signal probabilities satisfy (2) by design.

To analyse the belief of agent OBSK , we need to start with more notation and definitions. For
i > 1 and a partial assignment to variable blocks w := (wK , . . . ,wi), let Φw be the formula

Φw := Qi−1xi−1 · · · ∃x1 : φ(wk, . . . ,wi,xi−1, . . . ,x1) ,

i.e., the original formula with “hard-coded” values of w.
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Figure 10: Schematic representation of the network in case K = 2 for formula Φ = ∀y∃x :
φ(y,x) = 1. The agents and gadgets added in the inductive definition for i = 2 are
marked in blue. For clarity, edges from the modified not-equal gadget (cf. Figure 9, here
marked with an exclamation point) are not shown.
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OBS2

Let Gi be the part of the network consisting of all agents created up to the i-th step of our
inductive definition. Therefore, G = GK ⊇ . . . ⊇ G1. Note that all variable and clause gadgets
are already present in G1. Compared to Gi−1, the subgraph Gi additionally contains agents OBSi
(observing private signals of xK , . . . ,xi+1), Bi and Ci, and two modified not-equal gadgets.

The network G was defined so that all actions of agents in Gi depend only on private signals of
agents in Gi. Furthermore, the belief µ(OBSi) depends only on private signals of variable agents
xK , . . . ,xi+1 and observations of gadgets by OBSi (with the latter determined by the reduction,
since OBSK observes all those gadgets as well).

We now need a careful definition in a similar vein to P (w; θ0) from the 3-SAT reduction. Given
i, 1 ≤ i ≤ K, an assignment (v,w) := (vK , . . . ,vi+1,wi, . . . ,w1), as well as θ0 ∈ {T,F} we let
Pi(v,w; θ0) be the probability that all of the following hold:

1. For all gadgets observed by the agent OBSi, OBSi observed the actions given by the reduc-
tion.

2. The assignment determined by the private signals of the variable agents is equal to (v,w).
3. The state of the world is θ = θ0.

One checks that Pi(v,w; θ0) depends only on private signals in Gi. To gain intuition, the reader is
invited to convince oneself that, provided that the modified not-equal gadget ensuresA(OBSi−1) 6=
A(Bi) (we still need to prove that), Pi(v,w; θ0) is always a sum over probabilities of one (if
φ(v,w) = 0) or two (in case φ(v,w) = 1) signal configurations on Gi.
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Finally, given v and α, ε ∈ (0, 1) we will say that state of the world θ0 is α-likely with error ε
if both

∃w : Pi(v,w; θ0) ≥ αr · (1− ε)r ,
∀w : Pi(v,w; θ0) ≤ αr · (1 + ε)r .

The analysis proceeds by induction on the block number i, with a two-part invariant we need to
maintain. The first part says that, letting ε := i

100N , there exists some β := β(i) ∈ (0, 1) such that
for every partial assignment v := (vK , . . . ,vi+1):

1. If i is odd and Φv is true, then T is β-likely with error ε and F is 2
3β-likely with error ε.

2. If i is odd and Φv is false, then T is 4
9β-likely with error ε and F is 2

3β-likely with error ε.
3. Symmetrically, if i is even and Φv is true, then T is 2

3β-likely with error ε and F is 4
9β-likely

with error ε.
4. If i is even and Φv is false, then T is 2

3β-likely with error ε and F is β-likely with error ε.
The second part of the invariant states that whenever Φv is true, the belief of agent OBSi sat-

isfies 1 − µ(OBSi) ∈ [0.64r, 0.69r]. Similarly, if Φv is false, then this belief satisfies µ(OBSi) ∈
[0.64r, 0.69r]. Note that this part applied to i = K implies the last bullet point in the statement of
Theorem 3, with µ(OBSK) being within exp(−Θ(N)) distance to either zero or one.

Base case To establish the base case i = 1 one has to go through the proof in Section A and con-
vince themselves that the analysis stays valid even when the agent OBS directly observes variable
agents vK , . . . ,v2. Then, the first invariant is established with

β(1) := q1/r · 0.9 ,

where q is the value featured in equations (12)-(13). For example, Φv being true means that the
respective 3-CNF formula φv(x1) is satisfiable. Taking a satisfying assignment w, we get by (12)

P1(v,w;T) = P (w;T) ≥ q · 0.9r · (1− ε)r = βr · (1− ε)r ,

P1(y,w;F) = P (w;F) ≥ q · 0.6r · (1− ε)r =

(
2

3
β

)r
· (1− ε)r .

On the other hand, by (12) and (13), for every assignment w, satisfying or not, we have

P1(v,w;T) ≤ max (q · 0.9r · (1 + ε)r, q · 0.4r · (1 + ε)r) ≤ βr · (1 + ε)r ,

P1(v,w;F) ≤ q · 0.6r · (1 + ε)r =

(
2

3
β

)r
· (1 + ε)r .

A similar computation gives the first invariant in case Φv is false, this time using only (13). The
second invariant is a direct consequence of equations (14)-(16).

Induction step We will analyze only even i, since the other case is analogous. Fix some v =
(vK , . . . ,vi+1). In the following we assume that all actions observed in gadgets are as given by
the reduction and that private signals for the initial blocks of variables are given by v. Let us call
private signal configurations on Gi−1 that satisfy those conditions consistent.

In this setting, every assignment of private signals vi in variable block xi determines the action
A(OBSi−1) and, by the second invariant, A(OBSi−1) = T if and only if the formula Φv,vi is true.
Accordingly, we divide consistent configurations into “T-configurations” and “F-configurations”.
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Our first objective is to show that the modified not-equal gadget (cf. Figure 10) ensures that
A(OBSi−1) 6= A(Bi). Let Ti be the main agent in a modified threshold gadget between OBSi−1
and Bi (cf. Figure 9). At its significant time t = 2i − 1, agent Ti observed everything that agent
OBSi−1 observed except for the assignment vi. It also observed the action A(OBSi−1) = θ0.
Therefore, the signal configurations on Gi−1 consistent with observations of Ti are exactly the θ0-
configurations. We let

pOBS(θ0) := E [µ(OBSi−1)] ,

where the expectation is over all θ0-configurations. By the second invariant, pOBS(F) is an average
over terms µ(OBSi−1) such that each term satisfies µ(OBSi−1) ∈ [0.64r, 0.69r]. Therefore, we
have

0.64r ≤ pOBS(F) ≤ 0.69r .

Similarly,

0.64r ≤ 1− pOBS(T) ≤ 0.69r .

Let m(θ0) := ln pOBS(θ0)
1−pOBS(θ0)

. We check that

m(T) ∈ [0.37r, 0.45r], m(F) ∈ [−0.45r,−0.37r] . (17)

We interpret m(θ0) as the LLR of agent Ti based only on observations from Gi−1, excluding its
observations of Bi and T ′i . On the other hand, Ti directly observes Bi and T ′i , which receive private
signals. The LLRs of Bi are given by

`1(Bi) = ln
1− αr1
αr2

= ln
1−

(
4
9 · 0.9

)r
0.9r

∈ [0.1r, 0.11r] (18)

`0(Bi) = ln
αr1

1− αr2
= ln

(
4
9 · 0.9

)r
1− 0.9r

∈ [−0.92r,−0.91r] . (19)

The LLR of T ′i is equal to −δ given by Table 1 depending on which modified threshold gadget we
are considering. If it is the “large” threshold, ensuring that A(OBSi−1) = F or A(Bi) = F, then
δ = 0.2r. If it is the “small” threshold, ensuring A(OBSi−1) = T or A(Bi) = T, then δ = −r.

To sum up, we can see agent Ti as receiving information from three sources: subnetwork Gi−1,
agent Bi and agent T ′i . Furthermore, signals from those three sources are independent. Therefore,
we can write the LLR of agent Ti at its significant time as

L = m(θ1) + `b(Bi)− δ , (20)

where θ1 := A(OBSi−1) and b := S(Bi).
Let us now focus on the large threshold. Recall that in this case we specified the action at the

significant time as A(Ti) = F, which by (20) means

m(θ1) + `b(Bi) < 0.2r . (21)
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But the bounds (17)-(19) imply that (21) holds if and only if θ1 = F or b = 0, i.e., if and only if
A(OBSi−1) = F or A(Bi) = F.

Similarly, consider agent Ti in the small threshold gadget. Since we defined its action at the
significant time as A(Ti) = T, similarly to (21) we have

m(θ1) + `b(Bi) > −r . (22)

Again checking (22) against (17)-(19), we see that (22) holds if and only if θ1 = T or b = 1, i.e., if
and only if A(OBSi−1) = T or A(Bi) = T.

Therefore, by observing two agents Ti in the modified threshold agents, agent OBSi learns that
A(OBSi−1) 6= A(Bi). Furthermore, recall that OBSi observes everything that OBSi−1 observes
except for signals in variable block xi. As a result, we have the following claim:

Claim 14 Any configuration in Gi−1 consistent with observations of OBSi−1 uniquely extends to
a configuration in Gi consistent with observations of OBSi such that A(OBSi−1) 6= A(Bi) and
A(Bi) 6= A(Ci).

What agent OBSi does not know compared to OBSi−1 is the assignment vi to variable block
xi. Therefore, the belief of OBSi is an average over all possible values of vi. What is more, a term
in this average for fixed vi is a product of the following independent probabilities (beliefs):
• The belief coming from Gi−1, which is equal to the belief of OBSi, for assignment (v,vi).
• The beliefs coming from auxiliary agents in the modified not-equal gadget between OBSi−1

and Bi and the not-equal gadget between Bi and Ci. By design, these agents do not affect the
overall belief of OBSi.
• The beliefs of Bi and Ci.
By inductive assumption, if Φv,vi ∈ TQBF, thenA(OBSi−1) = T, S(Bi) = 0 and S(Ci) = 1.

As a result, for any assignment to all variables (v,vi,w) we can write (cf. Table 1)

Pi(v,vi,w;T) = Pi−1(v,vi,w;T) · q · αr1 · (1− αr3) (23)

∈ Pi−1(v,vi,w;T) · q ·
(

0.9 · 4

9

)r
·
(

1± 1

200N

)r
Pi(v,vi,w;F) = Pi−1(v,vi,w;F) · q · (1− α2)

r · αr4

∈ Pi−1(v,vi,w;F) · q ·
(

0.9 · 4

9

)r
·
(

1± 1

200N

)r
where Pi−1(·), q and αj factors come from the three sources described in the items above.

On the other hand, if Φv,vi /∈ TQBF, then A(OBSi−1) = F, S(Bi) = 1, S(Ci) = 0 and,
similarly

Pi(v,vi,w; θ0) ∈ Pi−1(v,vi,w; θ0) · q · 0.9r ·
(

1± 1

200N

)r
. (24)

We conclude by establishing both invariants. Since i is even, by induction we know that for
some β′ = β(i− 1) ∈ (0, 1), if Φv,vi is true, then T is β′-likely and F is 2

3β
′-likely, and if Φv,vi is

false, then T is 4
9β
′-likely and F is 2

3β
′-likely, all with error i−1

100N .
Take β := β(i) := β′ · q1/r · 0.9 · 23 . We want to establish that if Φv is true, then T is 2

3β-likely
and F is 4

9β-likely, and if Φv is false, then T is 2
3β-likely and F is β-likely, all with error ε := i

100N .
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Since i is even, the quantifier Qi is universal and Φv is true if and only if Φv,vi is true for all
vi. To establish the first invariant in this case, we want to show two things. First, for every vi,w
it should hold P (v,vi,w;T) ≤

(
2
3β(1 + ε)

)r and P (v,vi,w;F) ≤
(
4
9β(1 + ε)

)r. Second, there
should exist vi,w such that P (v,vi,w;T) ≥

(
2
3β(1− ε)

)r and P (v,vi,w;F) ≥
(
4
9β(1− ε)

)r.
Indeed, by (23) and induction, if Φv,vi is true, then for every w:

Pi(v,vi,w;T) ≤ Pi−1(v,vi,w;T) · q ·
(

0.9 · 4

9

)r (
1 +

1

200N

)r
≤
(
β′
)r (

1 +
i− 1

100N

)r
· q ·

(
0.9 · 4

9

)r (
1 +

1

200N

)r
≤
(

2

3
· β
)r

(1 + ε)r , (25)

Pi(v,vi,w;F) ≤
(

2

3
· β′
)r (

1 +
i− 1

100N

)r
· q ·

(
0.9 · 4

9

)r (
1 +

1

200N

)r
≤
(

4

9
· β
)r

(1 + ε)r . (26)

At the same time, we can take arbitrary vi and wT,wF that achieve, respectivelyP (v,vi,w
T;T) ≥(

β′(1− i−1
100N )

)r and P (v,vi,w
F;F) ≥

(
2
3β
′(1− i−1

100N )
)r and see that we have

Pi(v,vi,w
T;T) ≥

(
2

3
· β
)r

(1− ε)r , (27)

Pi(v,vi,w
F;F) ≥

(
4

9
· β
)r

(1− ε)r , (28)

concluding that T is 2
3β-likely and F is 4

9β likely with error ε, just as we wanted.
On the other hand, if Φv is false, then we have two cases to consider. First, Φv,vi can be true,

in which case upper bounds (25)-(26) hold. However, we also know that there exists vi such that
Φv,vi is false, in which case, using (24), for all w:

Pi(v,vi,w;T) ≤ Pi−1(v,vi,w;T) · q · 0.9r ·
(

1 +
1

200N

)r
≤
(

4

9
· β′
)r (

1 +
i− 1

100N

)r
· q · 0.9r ·

(
1 +

1

200N

)r
≤
(

2

3
· β
)r

(1 + ε)r ,

Pi(v,vi,w;F) ≤
(

2

3
· β′
)r (

1 +
i− 1

100N

)r
· q · 0.9r ·

(
1 +

1

200N

)r
≤ βr · (1 + ε)r .

and similarly there exist wT,wF such that

Pi(v,vi,w
T;T) ≥

(
2

3
· β
)r

(1− ε)r ,

Pi(v,vi,w
F;F) ≥ βr · (1− ε)r ,
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establishing that T is 2
3β-likely and F is β-likely with error ε. This concludes the proof of the first

invariant
Finally, we need to use a computation similar as in (14) and (15) to check the second invariant.

If Φv is true, then, since T is 2
3β-likely and F is 4

9β-likely with error i
100N ,

1− µ(OBSi) =

∑
vi,w

Pi(v,vi,w;F)∑
vi,w

Pi(v,vi,w;T) + Pi(v,vi,w;F)

≤ 2Nβr(4/9)r(1 + i/100N)r

βr(2/3)r(1− i/100N)r
≤ 2N (2/3)r1.01r

0.99r
≤ (2/3)r · 1.03r · 2N ≤ 0.69r ,

1− µ(OBSi) ≥
βr(4/9)r(1− i/100N)r

2N+1βr(2/3)r(1 + i/100N)r
≥ (2/3)r0.99r

2N+11.01r
≥ (2/3)r · 0.97r · 2N ≥ 0.64r .

A symmetric computation confirms that the second invariant is preserved also when Φv is false.

Appendix C. Bounded signals: Proof of Theorem 7

One could object that our reduction uses private signal distributions with probabilities that are expo-
nentially close to zero and one. Given that it is a worst-case reduction, with relevant configurations
arising with exponentially small probability, we do not think this is a significant issue. In any case,
in this section we explain how to modify the proof of Theorem 3 so that it uses only a fixed collection
of (say, at most fifty) private signal distributions.

Note that the only agents we need to replace are B and C from the 3-SAT reduction, and Bi, Ci
from the induction step in the PSPACE reduction, as well as their associated not-equal gadgets. We
sketch the modifications on one example, since other cases are analogous. To this end, take even i
and consider Bi, Ci and their not-equal gadgets (cf. Figures 9 and 10).

Going back to the proof of Theorem 3, in particular equations (23)-(24), what we would like to
have is that for every consistent configuration on Gi−1, there should be a unique way of extending
it to a consistent configuration on Gi such that for an assignment (v,w) and θ0 ∈ {F,T},

Pi(v,w; θ0) = Pi−1(v,w; θ0) · q ·


αr1 if A(OBSi−1) = T and θ0 = T,
αr4 if A(OBSi−1) = T and θ0 = F,
αr3 if A(OBSi−1) = F and θ0 = T,
αr2 if A(OBSi−1) = F and θ0 = F,

for some q ∈ (0, 1) independent of (v,w, θ0). We are going to achieve this using two independent
gadgets corresponding to Bi and Ci. Again, we only sketch the construction for Bi. What we need,
then, is to create a gadget that extends every consistent configuration onGi−1 to a unique consistent
configuration on Gi such that

Pi(v,w; θ0) = Pi−1(v,w; θ0) · q ·


αr1 if A(OBSi−1) = T = θ0,
αr2 if A(OBSi−1) = F = θ0,
1 otherwise.

(29)
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This is achieved as shown in Figure 11. We create an agent H with fixed, arbitrary distribution,
say pF(H) = 1/4 and pT(H) = 3/4. Then, we add agents Dj , Ej , Fj for j = 1, . . . , r with private
signal distributions

pθ0(Ej) := pθ0 ,

pθ0(Dj) := pθ0(Fj) := qθ0 ,

for some (dependent on αi) values pF, pT, qF, qT that we will specify shortly.
For each triple Dj , Ej , Fj we also place three not-equal gadgets observed by OBSi: Respec-

tively, between H and Dj , Dj and Ej , and Ej and Fj . We also create an agent H ′ with the same
signal distribution as H , and a counting gadget with equivalence observed by OBSi, making sure
that S(H) + S(H ′) = 1 (this is to get rid of a small distortion in (29) due to the signal of agent
H; we will not worry about it from now on). Finally, we place a gadget between OBSi−1 and H
generalizing the modified not-equal gadget from Theorem 3. This gadget will be observed by OBSi
and we will fill in its details later.

Figure 11: Bounded signals gadget. One out of r parts is shown. The details of the modified not-
equal gadget between OBSi−1 and H are not shown, and the counting gadget between
H and H ′ is not included.

OBSi−1 H

3/4, 1/4

Dj

qT, qF

Ej

pT, pF

Fj

qT, qF

...

...

...
OBSi

6= 6= 6=! 6=

Let us assume for now that the modified not-equal gadget ensures that A(OBSi−1) 6= A(H)
in every consistent configuration. Then, since not-equal gadgets guarantee S(H) = S(Ej) 6=
S(Dj) = S(Fj) for every j, we claim that it is not difficult to see that every consistent configuration
on Gi−1 can be uniquely extended to a consistent configuration on Gi such that

Pi(v,w; θ0) = Pi−1(v,w; θ0) · q ·



(
q2T(1− pT)

)r if A(OBSi−1) = T and θ0 = T,(
q2F(1− pF)

)r if A(OBSi−1) = T and θ0 = F,(
(1− qT)2pT

)r if A(OBSi−1) = F and θ0 = T,(
(1− qF)2pF

)r if A(OBSi−1) = F and θ0 = F.

Comparing with (29), we need to find pF, pT, qF, qT satisfying

q2T(1− pT)

α1
= q2F(1− pF) = (1− qT)2pT =

(1− qF)2pF
α2

. (30)
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Separately comparing and transforming the terms in (30): second with fourth, and then first with
third, we get

pF =
α2q

2
F

α2q2F + (1− qF)2
, pT =

q2T
q2T + α1(1− qT)2

,

which can be substituted into comparison of the first and second term, yielding

q2T(1− qT)2

q2T + α1(1− qT)2
=

q2F(1− qF)2

α2q2F + (1− qF)2
.

Taking qT := 1 − ε for small enough ε > 0, this can be checked to have a solution with qF =
ε+O(ε2), pF = α2ε

2 +O(ε3) and pT = 1− α1ε
2 +O(ε3).

We still need to explain how to construct the modified not-equal gadget ensuring thatA(OBSi−1) 6=
A(H). This is a generalization of the construction in Figure 9 and is shown in Figure 12.

Figure 12: Implementation of the modified not-equal gadget (marked in blue in Figure 11).

OBSi−1 H Dj Ej Fj

...

...

...
T

· · ·

T ′1

−0.2

T ′′1

0.2

· · ·

T ′r

−0.2

T ′′r

0.2

OBSi

Yet again, it is achieved by combining two threshold gadgets and we focus on one of them.
Recall from Table 1 that this threshold was set at δ = 0.2r.

The threshold gadget will have a “counting agent” T and auxiliary agents T ′1, . . . , T
′
r and T ′′1 ,

. . . , T ′′r . Auxiliary agents receive private signals with LLRs `0(T ′j) := −0.2 and `1(T ′′j ) := 0.2.
Agent T observes OBSi−1, as well as other gadgets and agents in the network Gi−1, in the same
way as agent T1 in Figure 9. Additionally, it directly observes all agents with private signals in the
counting gadget between H and H ′, as well as all of Dj , Ej and Fj . Finally, it observes T ′1, . . . , T

′
r.

Agent OBSi observes T ′1, . . . , T
′
r, T

′′
1 , . . . , T

′′
r and T . As expected, we specify that at the significant

time OBSi observes actions A(T ′j) = F, A(T ′′j ) = T and A(T ) = F. Note that we do not need to
change the significant time of OBSi.

Assuming that A(OBSi−1) = θ1 and A(F ) = θ2, we use the same reasoning as in (20) to
compute the LLR m(θ1) that agent T can infer from looking at Gi−1, another LLR `(θ2) that
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can be inferred from looking at H,Dj , Ej , Fj and the LLR −δ = −0.2b arising from looking at
T ′1, . . . , T

′
b. The bounds on m(θ1) are the same as in (17), and as for `(θ2), from (30) we get, as

expected `(F) = −r ln 1
α1

and `(T) = r ln 1
α2

.
Since the private signals in these three parts of the graph are conditionally independent, these

LLRs can be added up to ensure that A(T ) = F if and only if

m(θ1) + `(θ2) < δ ,

which implies, the same as in the proof of Theorem 3, that in a consistent configuration either
θ1 = F or θ2 = F.

As mentioned, other cases proceed in a similar manner. One difference is that for agents B and
C in the base case (3-SAT reduction), EVAL is a simple agent with bounded signal (as opposed
to OBSi−1). However, this is only good news for us: We do not need to implement the modified
not-equal gadget, since a simple not-equal gadget between C and EVAL suffices.

Appendix D. #P-hardness of revealed beliefs

Revealed belief model: Our result In a natural variant of our model the agents act in exactly the
same manner, except that they reveal their full beliefs A(u, t) = µ(u, t) rather than just estimates
of the state θ. Accordingly, we call it the revealed belief model. We suspect that binary action
and revealed belief models have similar computational powers. Furthermore, we conjecture that if
the agents broadcast their beliefs rounded to a (fixed in advance) polynomial number of significant
digits, then our techniques can be extended to establish a similar PSPACE-hardness result.

However, if one instead assumes that the beliefs are broadcast up to an arbitrary precision, our
proof fails for a rather annoying reason: When implementing alternation from NP to Π2 in the
binary action model, if a formula φ has no satisfying assignments, we can exactly compute the
belief of the NP observer agent. However, in case φ has a satisfying assignment, we can compute
the belief only with high, but imperfect precision. The reason is that the exact value of the belief
depends on the number of satisfying assignments of φ. This imperfection can be “rounded away”
if the agents output a discrete guess for θ, but we do not know how to handle it if the beliefs are
broadcast exactly.

Nevertheless, one can obtain a #P-hardness proof in the revealed belief model. The proof is by
reduction from counting satisfying assignments in a 2-SAT formula. However, since the differences
in belief corresponding to different numbers of satisfying assignments are small, it is not clear if
they can be amplified, and consequently we do not demonstrate hardness of approximation (in that
respect our result is similar to Papadimitriou and Tsitsiklis (1987)). For ease of exposition we
introduce an additional relaxation to the model by allowing some agents to receive ternary private
signals.

Theorem 15 Assume the revealed belief model with beliefs transmitted up to arbitrary precision
and call the respective computational problem BINARY-BELIEF. Additionally, assume that some
agents receive ternary signals S(u) ∈ {0, 1, 2}.

There exists an efficient reduction that maps a 2-SAT formula φ with N variables, M clauses
and s satisfying assignments to an instance of BINARY-BELIEF(Π, t, u,H(u, t)) such that:
• The Bayesian network G has size O(N + M), the time is set to t = 2 and agent u does not

receive a private signal.
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• All private signal probabilities come from a fixed family of at most ten distributions.
• The likelihood ratio of u at time t = 2 satisfies

s

2N

(
1− 1

4N

)
≤ µ(u, 2)

1− µ(u, 2)
≤ s

2N

(
1 +

1

4N

)
.

In particular, rounding this ratio to the nearest multiple of 2−N yields s · 2−N and allows to
recover s.

Reduction Our reduction uses the DAG structure and the concept of significant time as explained
in Section A. The general idea is as in Theorem 1, with some adaptations to the counting setting and
revealed beliefs. We assume that the agents broadcast beliefs in the form of LLRs.

We define a common signal distribution with pT := 3/4 and pF := 1/4 and respective LLRs
`1 and `0. The graph we construct contains an observer agent OBS with no private signal and the
“evaluation” agent EVAL with a (pT, pF) private signal. Given a 2-SAT formula φ with variables
x1, . . . , xN and clauses η1, . . . , ηM , respective variable and clause gadgets are designed as follows:

For a variable xi, we create two agents xi and ¬xi, receiving (pT, pF) private signals. Those two
agents are observed by an auxiliary agent, which in turn is observed by agent OBS. The observation
history of OBS indicates that the auxiliary agent broadcasts LLR equal to `0 + `1. At the same time,
OBS observes another auxiliary agent with informative private signal, broadcasting LLR equal to
−`0 − `1. See Figure 13 for illustration. Since the LLR broadcast by the agent observing xi and
¬xi is the sum of their LLRs, we can perform an analysis similar to the threshold gadget in the
binary action model. The result is that the variable gadget ensures that S(xi) 6= S(¬xi) and that
each consistent signal configuration gives equal LLRs of θ = T and θ = F.

Figure 13: Revealed belief reduction: Variable gadget.
`0, `1

xi

`0, `1

¬xi
−`0 − `1

`0 + `1

OBS

In the clause gadget (see Figure 14) for a clause ηj there is an auxiliary agent observing four
agents:
• Two agents corresponding to the literals occurring in ηj .
• Agent EVAL.
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• Agent Fj that receives a private signal S(Fj) ∈ {0, 1, 2}. Its signal distribution is such that
the respective LLRs satisfy

m0 := `0(Fj) = ln
Pr[S(Fj) = 0 | θ = T]

Pr[S(Fj) = 0 | θ = F]
,

m1 := `1(Fj) = m0 + δ ,

m2 := `2(Fj) = m0 + 2δ , (31)

where δ := `1 − `0 = 2 ln 3. Furthermore, the probabilities q(θ0, b) := Pr[S(Ej) = b | θ =
θ0] for θ0 ∈ {T,F} and b ∈ {0, 1, 2} are chosen such that

q(T, 2)q(T, 0) = q(T, 1)2 = q(F, 2)q(F, 0) = q(F, 1)2 . (32)

One checks that (31) and (32) are achieved (with m0 = −δ) by setting q(T, 2) = q(F, 0) =
q′′, q(T, 1) = q(F, 1) = q′, q(T, 0) = q(F, 2) = 1 − q′ − q′′, where (q′′, q′) is the unique
positive solution of {

q′′

1−q′−q′′ = 9 ,

(q′)2 = q′(1− q′ − q′′) ,

which turns out to be q′′ = 9/13 and q′ = 3/13.
The auxiliary agent is observed by OBS, broadcasting belief 3`0 +m0 + 3δ.

Figure 14: Clause gadget.
ηj = ¬x1 ∨ x3

`0, `0 + δ

¬x1

`0, `0 + δ

x3

m0,m0 + δ
m0 + 2δ

Fj

`0, `0 + δ

EVAL

3`0 +m0 + 3δ

OBS

Since we want to be somewhat more precise in estimating LLRs induced by different assign-
ments, we introduce additional gadgets “neutralizing” LLRs induced by signals of agents Fj and
EVAL, illustrated in Figure 15. Their principle is basically the same as for the variable agents. For
example, for each agent Fj we introduce another agent Hj with the same signal distribution, an
agent observing both Fj and Hj and broadcasting 2m0 + 2δ to OBS and yet another agent broad-
casting opposite belief −2m0− 2δ to OBS. In all, these agents ensure that any private signals to Fj
and EVAL do not affect the LLR of the state of the world θ.
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Figure 15: Gadgets for Fj and EVAL agents.

−2m0 − 2δ

m0,m0 + δ
m0 + 2δ

Fj

m0,m0 + δ
m0 + 2δ

Hj

2m0 + 2δ

· · ·

`0, `1

EVAL

`0, `1

−`0 − `1

`0 + `1

OBS

Finally, we let r := 2N and introduce agents B1, . . . , Br and C1, . . . , Cr. Each agent Bi
receives a (pT, pF) private signal. Agent Ci observes agents EVAL and Bi and broadcasts `0 + `1 to
agent OBS (see Figure 16). This concludes the description of the reduction.

Figure 16: One of K parts of the “amplification” mechanism.
`0, `1

EVAL

`0, `1

Bi

Ci

`0 + `1

OBS

Analysis The analysis proceeds analogously to the proof of Theorem 1. First, the network is
clearly of size O(N +M) and has the required DAG structure with significant time t = 2 for agent
OBS. Next, we convince ourselves that the private signals consistent with observations of OBS can
be characterized as:
• For each assignment v there exists exactly one consistent configuration of private signals such

that S(EVAL) = 1 and S(Bi) = 0 for each i ∈ {1, . . . , r}.
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• For each satisfying assignment v there is exactly one consistent configuration such that S(EVAL) =
0 and S(Bi) = 1 for each i ∈ {1, . . . , r}.
• There are no other consistent signal configurations.
Let us define P (v, b, θ0) as the probability that θ = θ0 and that there arises the unique signal

configuration consistent with assignment v and S(EVAL) = b. The gadgets (recall the relation (32)
for agents Fj and Hj) ensure that P (·) is equal to

P (v, 1,T) = q ·
(

1

4

)r
, P (v, 1,F) = q ·

(
3

4

)r
,

and, for each assignment x that is satisfying, additionally

P (v, 0,T) = q ·
(

3

4

)r
, P (v, 0,F) = q ·

(
1

4

)r
,

where q is a universal common factor that depends only on N and M . Recalling that s denotes the
number of satisfying assignments in φ, we can conclude that the LLR of agent OBS at its significant
time t = 2 is given by

µ(OBS)

1− µ(OBS)
=
s · (3/4)r + 2N · (1/4)r

2N · (3/4)r + s · (1/4)r
=

s

2N
·

1 + 2N

s·3r

1 + s
2N ·3r

∈ s

2N
·
[
1− 1

3r
, 1 +

2N

3r

]
⊆ s

2N
·
[
1± 1

4N

]
.

In particular, ∣∣∣∣ µ(OBS)

1− µ(OBS)
− s

2N

∣∣∣∣ ≤ s

8N
<

1

2N+1
,

so rounding the likelihood ratio to the nearest multiple of 2−N successfully recovers the number of
satisfying assignments s.
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