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Abstract

We study the stochastic multi-armed bandits problem in the presence of adversarial corruption. We
present a new algorithm for this problem whose regret is nearly optimal, substantially improving
upon previous work. Our algorithm is agnostic to the level of adversarial contamination and can
tolerate a significant amount of corruption with virtually no degradation in performance.

1. Introduction

We consider the stochastic multi-armed bandit problem with adversarial corruptions. The classical
stochastic multi-armed bandits problem (Lai and Robbins, 1985) has long been studied, with many
algorithms including the Upper Confidence Bound (UCB) algorithm (Auer et al., 2002a) and the
Active Arm Elimination (AAE) algorithm (Even-Dar et al., 2006). (See, e.g., Bubeck et al., 2012 for
more details and many references.) Since the assumption that the rewards of the arms are stochastic
might appear quite rigid, the adversarial multi-armed bandit model has also been studied, with
algorithms like the EXP3 algorithm of Auer et al. (2002b).

The robustness of adversarial multi-armed bandit algorithms, however, comes at a heavy price:
their guarantees are often significantly weaker than those of stochastic algorithms, the regret of
which scales only logarithmically with the number of decision rounds. A natural question is there-
fore: can we obtain results with guarantees that degrade smoothly as one goes from the stochastic
setting towards the adversarial one? More concretely, we can retain the favorable guarantees of the
stochastic setting while tolerating a small amount of adversarial corruption? These questions were
the focus of the recent work by Lykouris et al. (2018), who studied the problem of stochastic multi-
armed bandit with adversarial corruptions. They motivated it by a variety of practical scenarios:
these range from click fraud in pay-per-click advertisements, to the presence of spam and malicious
reviews in recommendation systems.

The model of Lykouris et al. (2018) is a variant of the classic stochastic multi-armed bandit
problem, where each pull of an arm generates a stochastic reward that may be contaminated by
an adversary before it is revealed to the player. The difficulty of the problem then scales with
the total amount of corruption introduced by the adversary. Lykouris et al. (2018) point out that
standard stochastic algorithms like UCB and AAE can suffer severely from corruptions because the
adversary, using a small amount of corruption, can cause the actual best arm to be eliminated by the
algorithm, and hence make it fail miserably. To address this, they show how to add robustness to
these algorithms at the cost of moderate degradation in performance.

© 2019 A. Gupta, T. Koren & K. Talwar.
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1.1. The model

Before proceeding, let us describe the setup in some more detail. A player is faced with K arms,
indexed by [K] := {1,2,...,K}. Eacharmi € [K]is associated with a reward distribution, unknown
to the player, with mean ;. The best arm i* = arg max; J; is the one that maximizes the expected
reward; let ”* = ;» denote the maximal expected reward, and for any suboptimal arm i & i* consider
its gap A; = W* — W; € [0, 1]. The player interacts with the arms and has to repeatedly decide on an
arm to pull over the course of T decision rounds. This interaction is contaminated by an adversary,
that may corrupt the feedback observed by the player on at most C of these 7" rounds. (The eventual
definition of C will be a bit more general.) After each arm pull, the player observes the possibly
corrupted reward corresponding to that arm, and nothing else; this is traditionally called “bandit
feedback.” The player’s goal is to minimize her regret, which is the difference between the total
reward of the best arm and her own cumulative reward.

In this setting, the algorithm of Lykouris et al. (2018) achieves a regret bound of the form
5(KC Zi# 1 / A[).l That is, their bound is O(KC) times worse than the standard 5(21»# 1 / Ai)
bound achievable in the uncorrupted case by algorithms for the stochastic case such as UCB, yet is
still poly-logarithmic in the number of rounds 7. Importantly, their algorithm is agnostic to the level
of corruption inflicted by the adversary and need not know the value of C ahead of time. It is based
on a “multi-layered” scheme that automatically adapts to the amount of adversarial contamination:
the first layer is the fastest but also the most susceptible to corruptions, whereas the last is the most
robust but is also the slowest to learn.

1.2. Our results

We show how to get significantly better regret bounds for stochastic multi-armed bandits with ad-
versarial corruptions. We give a new algorithm for the problem that attains a regret bound which
removes the multiplicative dependence on C appearing in the existing bounds and trades it for an ad-
ditive dependence. Our algorithm is entirely agnostic to the corruption level C, and is also extremely
simple. Formally, our main theorem is the following:

Theorem (Theorem 1, informal). There exists an algorithm for stochastic MAB with adversarial
corruptions (called BARBAR; see Algorithm 1 below), the regret of which is with high probability

at most X
O(KC) + 0(7!2 A,-)‘

To put the parameters in context, consider an instance with K arms and gaps A; = v/K/T; in the
uncorrupted case, this is a prototypical hard instance where the minimax regret is @)(\/ﬁ ) and is
matched by both stochastic algorithms, like UCB, and adversarial algorithms, like ExP3. (In fact,
this instance was used to show the Q(v/KT) lower bound for adversarial bandits by Auer et al.,
2002b.) In the corrupted case, however, algorithms for the stochastic case might fail and suffer
linear Q(T) regret. We are robust to corruptions up to the level C = O(v/T/K), obtaining essentially
the same regret as in the uncorrupted case. In contrast, the previous bounds from Lykouris et al.
(2018) can only guarantee O(K'3C+/T) regret, and thus suffer from a degradation in performance
due to the corruptions already at level C = O(1) while becoming vacuous when C = Q(WTIK).

In the uncorrupted case, where C = 0, our result recovers the classical bounds (achieved, e.g., by
the UCB algorithm) up to a logarithmic factor. We also show that under several different conditions,

1. Here and throughout, the O notation suppresses all dependence on logarithmic terms.



ADVERSARIALLY-CORRUPTED STOCHASTIC BANDITS

it is possible to improve our regret bound and remove the factor of K from its first term; we leave as
an open question whether this is possible to achieve in the general, agnostic case without any further
assumptions.

1.3. Related work

Bridging between the stochastic and adversarial settings in multi-armed bandits, and in online learn-
ing more generally, has been a topic of significant interest in recent years. Most research in this di-
rection has focused on obtaining “the best of both worlds” guarantees (Bubeck and Slivkins, 2012;
Seldin and Slivkins, 2014; Auer and Chiang, 2016; Seldin and Lugosi, 2017; Zimmert and Seldin,
2018; Zimmert et al., 2019). The goal there is to achieve the better of the bounds at the two ex-
tremes: the worst case O(v/T)-type bound on any problem instance, and the better O(log T)-type
bound whenever the instance is actually stochastic. In particular, algorithms of this kind cannot
adapt to instances that are close to being stochastic, which are treated as fully adversarial. The
model we consider here aims to gradually interpolate between the two extremes, as one goes from
the stochastic setting and injects a moderate amount of adversarial corruptions.

Adversarial contaminations similar to those considered here have been studied before in the
context of bandit problems. Seldin and Slivkins (2014) and Zimmert and Seldin (2018) consider
a “moderately contaminated” regime in which the adversarial corruptions do not reduce the gap
min;;+A; by more than a constant factor at any point in time. The latter paper implies strong
regret bounds, comparable to the bounds given in this paper, but relies on a stringent condition
that constrains the leading arm (i.e., the one with the highest empirical cumulative reward) at any
point in time to being the true best arm. (We remark that our general bound can also be improved
under various conditions, see Section 4.) Kapoor et al. (2018) study a closely related model, where
each step is contaminated independently with probability . They also study a contextual bandit
model where the corruption is adversarial, subject to the constraint that for any prefix, at most an 1
fraction of the steps are corrupted. Altschuler et al. (2018) consider contaminated stochastic bandits
in the closely related best-arm identification setting, where rounds of a stochastic bandits instance
are contaminated uniformly at random by an “outlier” distribution, and the goal is to identify the
best arm in spite of the corruptions. This model of contamination is again weaker than the adaptive
adversarial model we consider here, and their goal is also somewhat different than ours.

A somewhat different flavor of robustness in multi-armed bandits has been explored by Bubeck
et al. (2013). Their “Robust UCB” algorithm can tolerate heavy-tailed distributions of rewards;
namely, it does not require boundness or sub-Gaussianity of the rewards, and instead only needs
them to have bounded variance (or any higher-order moment). These ideas were later adapted to
other bandit settings (e.g., Yu et al., 2018; Shao et al., 2018).

Finally, we acknowledge the long line of research in statistics (Huber, 1964) and statistical
(batch) learning (Valiant, 1985; Kearns and Li, 1988) on making algorithms robust to various kinds
of adversarial perturbations. There have been several recent advances in computationally efficient
algorithms for problems of this kind; see, e.g., Diakonikolas et al. (2016); Lai et al. (2016); Charikar
et al. (2017); Diakonikolas et al. (2018); Klivans et al. (2018) and the references therein.

2. Setup: Stochastic MAB with Adversarial Corruptions

We consider a multi-armed bandit problem with K arms, indexed by [K] = {1,2,...,K}. Each
arm i € [K] is associated with an unknown reward distribution with mean ;; for simplicity we
assume that the reward distributions are all supported in [0, 1],in which case W; € [0, 1]. We let
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i* = arg max; ll; denote the best arm, and let u* = p;» be the maximal expected reward. Finally,

for any arm i # i* we define the gap A; = W* — ; € [0, 1]; to simplify notation we assume that the
optimal arm is unique, in which case A; > 0 for all i # i*.

A player has to repeatedly choose an arm to pull and observe its reward as feedback, that may
be contaminated by an adversary; without loss of generality, we assume that the adversary is deter-
ministic. Formally, the interaction proceeds as follows. On each decisionroundr=1,...,T:

(i) A stochastic reward R! € [0, 1] is drawn for each arm i from its reward distribution;
(ii) The adversary observes the vector R’ and generates corrupted rewards R' € [0,11%;
(iii) The player picks i; € [K], possibly at random, and observes the corrupted reward Eft

The player is evaluated using the standard metric in stochastic MAB models of pseudo-regret
(henceforth called simply regret; see remark below about other possible notions of regret), given by

T

R(T) =Y (W —ki)-

=1

We will be interested in bounding the player’s regret in terms of the level of corruption introduced
by the adversary. To this end, we measure the level of corruption C as:

T
C=S R - R
t=1

Our main focus will be on the case where C is unknown, and the player has to be agnostic to
the level of corruption.

Remarks. Notice that we allow the adversary to be adaptive, in the sense that the corruptions on
round ¢ may be determined as a function of the player’s past choices as well as of the stochastic
rewards in the current and previous rounds. (However, the corruption on round ¢ is independent of
the choice of the player on the same round.) As a consequence, the corruption level C is a random
variable that depends on the stochastic rewards as well as on the player’s internal randomization;
the bounds we provide in this paper will depend on the realized value of this random variable.

Also note that our definition of regret above is precisely the familiar pseudo-regret metric ubiq-
uitous in stochastic MAB models. Our results directly extend to several other notions of regret; we
discuss this in detail in Section 5.

3. The BARBAR Algorithm

At a high level, our algorithm is similar in spirit to the Active Arm Elimination (AAE) algorithm
for stochastic bandits, but contains some crucial modifications that make it robust to corruptions.
The algorithm proceeds in epochs which increase exponentially in length: the m™ epoch has
length roughly 22", At the beginning of each epoch m, the algorithm computes an empirical estimate
A?"‘l of the gap of each arm i based on its pulls during the previous epoch; namely, we take the
difference between the reward-per-pull for arm i and a lower confidence bound for the highest
reward-per-pull of any arm in epoch m—1. The algorithm uses these estimates to bias towards pulling
the seemingly-better arms: each arm is pulled roughly (Ag”‘l)‘2 times, but never more than 22"
times, during epoch m. As a consequence, the algorithm never eliminates an arm permanently; it
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gives the seemingly-not-so-good arms some recourse by pulling them a small number of times in
each epoch. This, along with the fact that each epoch only uses information from the immediately
preceding epoch, ensures that any corruption has a bounded impact on the algorithm’s regret.

Algorithm 1 BARBAR: Bandit Algorithm with Robustness: Bad Arms get Recourse
1: Parameters: confidence & € (0, 1), time horizon T.
2: Initialize Tp = 0 and AY = 1 for all i € [K].
3: Set A = 1024 In(38 log, 7).
4: for epochs m=1,2,...do
Set nf" = MA" 1) for all i € [K].
Set Ny =Y oy n and Ty, = Ty + Npp.
fort=7T,_1+1to T, do
choose an arm i with probability n}" / N, and pull it.

© 2R

Set r" = S;/n}" where S; is the total reward from the pulls of arm i in this epoch.
10:  Setrl' = maxi{r;” - %A?”‘l}
11:  Set A = max{27", 7 —r"}

Formally, the BARBAR (Bandit Algorithm with Robustess: Bad Arms get Recourse) algorithm
is presented as Algorithm 1. The following is our main result: an O(KC + Zi#i* 1 / A,-) regret bound
for the BARBAR algorithm.

Theorem 1. With probability at least 1 — 8, the regret of Algorithm 1 is bounded by

(0] <KC + Z IOE.T log(g log T)) .

ihi* !

In Appendix B we give an example where our algorithm suffers Q(KC) regret, showing that our
analysis is essentially tight. To convert the bound of Theorem 1 into a bound on the expected regret
of the algorithm, one can set § = 1/T; then, with the remaining probability the regret is trivially
bounded by T and the expected contribution to the regret is O(1). Thus, the expected regret is
bounded by

0 <K E[C]+) % 1og2(KT)>.
i !

We now turn to prove Theorem 1. We start with a simple observation.

Lemma 2. The length N,, of epoch m satisfies
22D < N < KA2HMD)

Moreover, the number of epochs M is at most log, T.

Proof: The arm i, achieving the maximum in the definition of r}' has r}! —r;" < 0, so it has
Al' = 27" This immediately implies that N4 > nﬁ” = MAT Y2 = A2?". The upper bound
follows from the fact that each A}" is at least 27, and so n;"” < A2%" for each i. The bound on the
number of epochs M follows from the lower bound on N,,. [ |
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Let C!, be the random variable denoting the sum of the corruptions in epoch m to arm i’s reward,
and let C,, := max; C,. Let i’ be the random variable denoting the actual number of pulls of arm i
in epoch m. We define an event £ that captures the relevant tail bounds as follows:

2C, A
&= {Vm,i : |r;-"—},t,-|§N—m+ i6 and lengn;"}. (1)
m

Lemma 3. It holds that Pr[E] > 1 -4.

The lemma is obtained from the following concentration inequalities concerning the reward
estimates r;" computed by the algorithm and the number of arm pulls 7" it uses.

M16

Lemma 4. For any fixed i, m and any B > 4¢™'°, we have

2C 41n4
Pr|[r]" —w| > N7m+ nm B} <PB and Pr[fz?” 22n;~"] <B.
m i

Proof: For this proof, we condition on all random variables before epoch m, so that n}", N, and T,
are deterministic quantities. At each step in this epoch, we pick arm i with probability ¢} := n}" / Ny
Let Y/ be an indicator for arm i being pulled in step . Let R} be the stochastic reward of arm i on step
t and ¢! := R!—R! be the corruption added to this arm by the adversary in this step. Note that ¢} may
depend on all the stochastic rewards up to (and including) round ¢, and also on all previous choices
of the algorithm (though not the choice at step f). Finally, if we denote E,,, = [T,-1 + 1,...,Tp]
be the N,, many time-steps in epoch m, then the first random variable we aim to control can be
expressed as
= nim > YR+ ).
U t€Ep

For ease of analysis, let us break the sum above into two, and define

A=Y YR, By =) Yic.

teEU'I [eEm

Let us first bound the deviation of AY". Observe that Rf is an independent draw from a [0, 1]-
valued r.v. with mean |; and Y} is a independent draw from an {0, 1}-valued r.v. with mean g}".
Moreover, we have that E[A}'] = Ny, - (¢]"W;) = n}"W; < n". Hence, by a Chernoff-Hoeffding bound
(a multiplicative version thereof; see Theorem 9 in Appendix A), we have

Pr[A wl > /31n4/[3} < 9 @)
n n! 2

m

i
m i
i

Next we turn to bound the deviation of BY'. Consider the sequence of r.v.s X1, ..., X7 defined
by X; = (Y! —¢") - ¢! for all #. Then {X,}L, is a martingale difference sequence with respect to the
filtration {]—',}IT:] generated by the r.v.s {Yjs Yietkls<s {st }ietkys<i+1- Indeed, since the corruption ¢!
becomes a deterministic value when conditioned on F;_; (as we assume a deterministic adversary),
and since E[Y] | F,_1] = ¢}, we have

E[X, | Fl = E[Y] = ¢ | Firi] - ¢; = 0.
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Further, we have |X;| < 1 for all ¢, and we can bound the predictable quadratic variation of this
martingale as:
V=Y EX} | Fial < ) |ci| Var(¥)) < g/ > |eil.

1€En 1€En t€En
Applying a Freedman-type concentration inequality for martingales (see Theorem 10 in Appendix A),
we obtain that except with probability /4,
B q" V+1n4B q" In4B

l

nm — pn ! - /
! L t€Ey, ! L t€Ey,

Since ¢ = n!" / Npand ), E, |cf] < Cy, and further n* > A > 161n(4/B), we have with the same

probability that
B < 2C,, N In 4B
n" = Ny l6n™

Similar arguments show that —B!"/n/" satisfies this bound except with probability /4. It follows that

o

We can now combine Egs. (2) and (3) using a union bound to get the claimed bound, conditioned
on the values of n", N, T,,. Finally, since the bound holds for any realizations of these r.v.s, it also
holds unconditionally.

For the second claimed bound, we use a Chernoff-Hoeffding bound (Theorem 9 in Appendix A)
on the random variable 7" = ) E, Y!, when we again condition on past epochs and later remove
the conditioning. The expected value is [E[#]"] = n]" > A, and the probability that the r.v. is more
than twice its expectation is at most 2 exp(-n"/3) < 2 exp(-A/3) < B. This completes the proof. W

m
Bi
m
i

3)

n

2C, W47 B
>y <.
= Nn 16n™ | = 2

Proof of Lemma 3: We use Lemma 4 for each arm i and epoch m with § = & / (2K log, T); this
value satisfies B > 4e16. Since n" = MA"')2 and In(4/B) = /1024 = A /(4 - 16%), the lemma
implies

2C, At 5
Pr||r" - > ="+ =~ and #" >2n"| < .
Ny 16 Klog, T
A union bound over the K arms and the log, T epochs concludes the proof. |

For the rest of the analysis, we will condition on the event £. Our next step is to establish upper
and lower bounds on our estimate of the maximal reward ' in epoch m.

Lemma 5. Suppose that £ occurs. Then for all epochs m,
2C, At 2C,,
Ny g8 — * = Np

Proof: Recall that 7' = max;{r]" — %A;”‘l}. In particular, 7' > ri¥ — 11—6A;?1‘1; plugging in the lower
bound on ¥ implied by the event £, we get the left inequality. On the other hand, plugging in the
upper bound on 7" yields

2C, Al Al 2Cy,

2C
FTSmIaX{Mﬁ N, Y16 16 }=mgX{ui}+M;"=u*+M. ]
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We now establish upper and lower bounds on the gap estimate A}" of arm i on epoch m. For all
epochs m, define the discounted corruption rate

m

2C;
m = —. 4
p Z 8m—s1\]‘Y ( )

s=1

Lemma 6. Suppose that £ occurs. Then for all epochs m and arms i, it holds that
Al <2(A+27"+p).

Proof: The proof is by induction on m. For m = 1, the claim is trivially true for every i, be-
cause A" < 1 < 2-27. Next, suppose that the claim holds for m — 1. Using Lemma 5 and the
definition of the event £ (cf. Eq. (1)), we write

=t = 0 )+ (W - ) + (-

2C 2C m-1
<A+ A )
Ny, Ny, 16

Now using the induction hypothesis and the expression for p,,_;, we have

m—1

4C, 1 2C
Pt <A+ —Nm *3 (Ai +27m Dy 78’"—1—;N )
s=1 §

m

m
. 2C;
< 2<Ai+2 " 8’"—~‘Ns>
s=1

=2(Ai+27" +pu).

Since A = max{27", ]’ — r"}, the claim follows. [
Armed with this result, we now prove a lower bound on A"

Lemma 7. Suppose that £ occurs. Then for all epochs m and arms i, it holds that
A" > 1A -3p,, - 327
Proof: We write

m m m
A >rl-r;

m—1 m—1
> (X B (a2 A
Ny, 8 Ny, 16

where we use Lemma 5 to give a lower bound on 7' and Eq. (1) to give an upper bound on 7. Since
A; = W — |, the above expression is at least

4C,, AL Al
> A _<, LA ),

8 16
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which using Lemma 6 can be further lower bounded by

4Cn (3 3 1
>A -2 g+ 227D 4 A,
Non <8p 'y T3 >

Recalling the expression for p,,, the lemma follows. |
We are now ready to bound the regret of Algorithm 1 and prove our main result.

Proof of Theorem 1: We will prove that the claimed bound holds true under the event £, which
occurs with probability at least 1 — .

We decompose the total regret across epochs and within epochs, to the arms pulled. There are
" pulls of arm i in epoch m, each causing a regret of (W* — 1;). Thus the total regret can be written
as

M K M K
D> Wi <2ZZ<u —un =2 0y Al )

m=1 i=1 m=1 i=1 m=1 i=1

Fix an epoch m and an arm i and denote R := A;n}". Recall that n}" = l(A;-’”‘l)‘z, and consider
three cases as follows.
Case1: 0 < A; <4 / 2™, In this case we use the upper bound n}" < A2%20m=D “which follows from
A > 2m-1 This yields

m_ A AN
RIS ahi= g (©6)

Case2: A, >4 / 2" and ppo1 < A; / 32. In this case, Lemma 7 implies that
1 3 1 3 3 1
AP > iAi =3Pm-1— 12_(’"_1) > A ( ***** ) = A

In turn, we have n}' = 7L(A;-"*1)*2 < 3220 / A? from which it follows that

322\

R < .
I — Al

(N

Case 3: p,;.1 > A[/32 (and A; > 4/2’"). This rearranges to A; < 32p,,_;. We use again the upper
bound /" < X221 50 that

R < AA22D < 8hp,,_ 22", (®)
Considering the three cases, from Egs. (6) to (8) we have for all arms i # i* and epochs m that

3220
R;-n < T + 87\.pm,122m,
i
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and summing this over all epochs and arms, we have that the sum 3% S™X R is bounded by

M
Y k’iiéT +80Y (D pua2™).

ii* ! i#h*  m=1
For bounding the second term above, observe that

m—1
2C
2 2 s
me 12m<22m< 8m—1 vN>
=1
M 2m

_2ZCSZ gm-1- ‘N

=1 m=s

Since Ny > 222D (recall Lemma 2), the inner sum is upper bounded by

M
16 — 471
7 8m1s—k22]<

Combining the inequalities and plugging in the value of A gives the claimed regret bound. |

4. Better Bounds for Special Cases

In this section, we study a few special cases of the main model and show that under various kinds
of additional assumptions, we can obtain an improved regret bound in which the first term O(KC) is
improved to O(C). Some of these models are interesting in their own right; others serve to suggest
that a better bound of the form 5(C + Zi# 1 / A,-) may be achievable in the general case.

4.1. Corruption at a fixed unknown rate

Consider the scenario each round is contaminated independently and uniformly at random by the
adversary with probability 1 € (0, 1), which may be unknown to the player. From the point of
view of a stochastic bandits algorithm (such as Active Arm Elimination), this case is equivalent to
operating over an instance where the means ;s are adversarially perturbed by +1. (This again can
be seen from Lemma 4 with C,, = NN,,.) A regret bound of 5(nT + Zi#i* 1 / A,-) then follows.

4.2. Known corruption level

Now suppose that the corruption amount C is known to the player. In this case, consider the classical
Active Arm Elimination algorithm, with the modification that epoch m has length at least N, =
Q(C + 2" log(K/d)) which is ensured by pulling the winning arm sufficiently many times. Even if
all C corruptions fall in epoch m, Lemma 4 shows that the algorithm’s empirical estimates of the
means are accurate to within 5(2"”). It can be then verified that an arm with gap A; > 27" will be
eliminated before epoch m + O(1) with high probability, leading to a bound of O(C + S 1/A).

4.3. Corruption on an unknown prefix

Assume that the adversary’s corruption is known to take place only in the first C steps, where C may
be unknown. In this case, the simple algorithm that plays AAE for steps [2", 2"m+1) starting afresh
each time has regret O(C + . 1/A;).

10
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4.4. Known minimal gap

We can also obtain a similarly improved bound when the minimal gap A = min;~ A; is known.
Consider the following variant of our algorithm: in each epoch m, play last epoch’s winning arm 2"
times and play every other arm A / A? times. This algorithm gets regret K / A in each epoch from all
arms except the winning one. If the winning arm is i*, it causes no regret in this epoch. For the
winner to be an arm i # i*, the corruption in epoch m — 1 must be at least C,,, > (A; — A/8)22"D >
A;2%m=2) This results in an additional regret of O(A;2%™). Thus, the overall regret is 5(C + KA / A)
for any corruption level C.

4.5. Known maximal reward

Finally, consider the case where the player knows the value of u*. For this case, we change the
algorithm so that A" = max{27", u* — r, A;"‘I/Z}; i.e., we use our knowledge of the optimal bias,
and moreover our estimates of the gaps does not drop very fast. In this case, we prove the following
variant of Lemma 7:

Lemma 8. Suppose that € occurs. Then for all epochs m and arms i, it holds that

>ﬁ 2C’”.

Proof: If Af”‘l > A, then the change in the algorithm ensures that A;"‘l > A / 2. Otherwise, Eq. (1)
ensures that [ — u;| < 2Cm/Nm + A,-/16. Now
2C A A 2C,

Al > -7 > ) - — - — > — - —C,
T VR e (T ) N, 16>2 N,

Hence the claim follows. [ |

To bound the regret, the proof is similar to Theorem 1. Consider an arm i and epoch m such that
Cn / N < A; / 8. Lemma 8 implies that A]" > A; / 4, and hence the regret due to this arm i in the
next epoch m + 1 is nf™!A; = MA")2A; < O(L/A;). Summing this over all arms and epochs gives
us 0( Zi#ﬁ 1 / Ai). Next, for arms i and epochs m where C,, / N, > A / 8, the regret in the next
round is n?"”A,- < 4n'A;, since we ensured that A" > A:-”‘l / 2. Using the fact that A; < 8C), / Ny,
we have the regret is at most 32n/"C,, / N,,. Summing over all the arms in this epoch m + 1 gives us
32C,,, and then summing over all rounds gives us 32C. Hence, if we know p*, the total regret is at

most O(C) + O(Y_ .+ 1/A).
5. Discussion

We conclude with a discussion of various aspects of our model and results.
5.1. A Lower bound

We show an Q(C) lower bound for the pseudo-regret of any algorithm. Consider the case of two
arms with deterministic rewards 0 and 1, and consider an adversary that at each time step swaps the
rewards of the arms with probability 1/2. The expected total amount of corruption is therefore 7 / 2,
and it makes the arms appear indistinguishable to the algorithm. Thus, with constant probability the
algorithm will a suffer pseudo-regret of (C). This lower bound for C = T / 2 can be extended to
smaller C by placing this instance in the first 2C steps. In other words, for the pseudo-regret under
this contamination model there is a lower bound of (C) that holds for all C up to T / 2. Moreover
this lower bound holds even for the case of known C.

11
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5.2. Alternative notions of regret

So far we have focused on the pseudo-regret metric, which is the most common in stochastic bandit
problems. One might consider several other possible notions of regret. First, the realized regret with
respect to the actual corrupted rewards may be of interest:

T
/ _ ot pt
R =mex 2. (R -R;).
Under this metric, not only do the adversarial corruptions perturb the feedback observed by the
player, but they also affect the rewards she gains. As we discuss in Appendix C, any high-probability
bound on the pseudo-regret also implies a high-probability bound on the realized regret, and our
upper bounds transfer directly (up to a logarithmic factor) to this notion as well.

Note that for this notion of regret one could also attain an O(+/T)-type regret bound, at any level
of corruption C, using an adversarial bandits algorithm like EXP3. On the other hand, Lykouris et al.
(2018) show a lower bound of Q(C 1*5) on the regret for any algorithm that gets regret 0(10g2‘£(T)/A)
for the uncorrupted case, for any €,6 > 0. This lower bound still leaves open the possibility of
obtaining a “best of all worlds” type guarantee that smoothly interpolates between the favorable
stochastic guarantees and the robust adversarial results, which is meaningful even for C = Q(v/T).
(For example, one might allow for slightly suboptimal O(polylog(7T)/A) regret in the non-corrupted
case, which invalidates the latter lower bound.)

However, recalling the original motivation for our problem, the above realized regret is arguably
not the “correct” notion. In the motivating scenarios, such as click fraud or recommendation poison-
ing by fake reviewers, the rewards coming from the corruptions (the outliers) are not of interest, and
in fact, the goal is to perform well on the non-corrupted rewards (the inliers). The corresponding
definition of regret for such cases would take into account only the non-corrupted steps:

R, (T) = max (kf —INQZ),
i€[K]
te¢C

where C is the set of steps in which there was some corruption.> Our upper bounds, as well as the
simple ©(C) lower bound argued above, immediately extend to this notion as well.

As a consequence, this definition of regret does not admit o(C)-regret bounds for any C, and one
cannot hope for a robust O(v/T)-type regret guarantee that would hold for any level of corruption.
How do we square this with the O(v/T)-type upper bounds that hold for the classical definition of
regret, achieved by adversarial algorithms like EXP3? On the instance used to show the Q(C) lower
bound above, those algorithms will balance the linear regret on the inlier steps with a linear negative
regret on the outlier steps.

5.3. Open questions

Our work leaves a gap between the lower bound of Q(C) and the upper bound of O(KC), closing
which is a compelling open question. Improving the log® T dependence in our expected regret bound
to log T is another interesting problem for future investigation. Finally, it would also be interesting
to extend our results to other online prediction settings, e.g., linear bandits and contextual bandits.

2. Here we assume a slightly more restrictive definition of the corruption level, where C is the total number of rounds
corrupted by the adversary. This definition is consistent with most of the motivating scenarios discussed.
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Appendix A. Concentration Inequalities

In our analysis we require multiplicative versions of standard concentration inequalities, that provide
sharper rates for random variables with small expectations. First, we state a standard multiplicative
variant of the Chernoff-Hoeffding bound.

Theorem 9 (e.g., Dubhashi and Panconesi 2009, Theorem 1.1). Suppose that Xi,...,Xy are
independent [0, 1]-valued random variables, and let X = Zthl X;. Then for any € > 0,

2
Pr[|X — E[X]| > e E[X]] < 2exp (-21‘5[){]) .

X -E[X]| < \/3IE[X]1n%

Next, we record a variant of Freedman’s martingale concentration inequality, taken from Beygelz-
imer et al. (2011). (Technically, the concentration inequality in Beygelzimer et al. (2011) is stated
for the filtration generated by the martingale itself; the proof however extends straightforwardly to
more general filtrations.)

Equivalently, for any & > 0,

Pr >1-0.

Theorem 10 (Beygelzimer et al. 2011, Theorem 1). Suppose that X1, ..., X7 is a martingale dif-
ference sequence with respect to a filtration {F,}L,, and let X = ZZ:] X;. Assume that |X,| < b for
all t, and define V = Zszl E[X? | Fi_1]. Then for any & > 0,

1
Pr[XS Z+bln5} >1-0.

For completeness, we give a short proof of a slightly weaker bound.

Proof: We will prove a slightly weaker bound with a deviation of V/b + 4b1n(2/3). Freedman’s
inequality says that for any A > 0,6° > 0,

) 222
PI'[XZ;&/\VSG]SGXP —m .

Setting 6> = b, we have for all A > 0 that Pr[X > A > V/b] < eM**. We now apply a discretization
argument over A. Fix € > 0, and note that if X > V/b + € then there is an integer n > 1 such that
X > ne > V/b. Thus, by a union bound we have for any € > 4b1n2:

4 —neldb _ 6_8/417 —e/db
Pr[X2b+s} ZPr[X>n£> } Ze” T <267

n=1

Choosing € = 4b In(2/3) makes the right-hand side less than 9. [
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Appendix B. Tightness of Our Analysis

Here we give an example where our algorithm suffers regret Q(CK), showing that the first term in
our analysis is tight. Consider the case where the rewards of the arms are i; = 1 and y; = 0 for all
i # 1. In the uncorrupted case, for each epoch m > 1 we have A" =27 and A]" = r' = 1—% €
[1415, 1516]. Consequently, the m" epoch has length N,, = AQ22mD 4 O(K)) as long as we see no
corruptions.

Suppose C = N, = M2%D 4 O(K)) for some ¢ > 2log, K, say. In our example, all the
corruptions happen in epoch c. Specifically, we corrupt the high-value arm to also have payoff
zero in all N, time-steps in this epoch. This causes r{ < 0 and all A = 27 in essence we
lose all information from the previous epochs. Therefore the length of the next epoch becomes
Neyp = AK2%¢ ~ 2KC which is K times as much; moreover, each arm is pulled A22¢ ~ C times in
this epoch. The regret just from this epoch is =~ (K — 1)C, which shows we indeed need the factor
of K multiplying the C term in the regret for our algorithm.

Appendix C. From Pseudo-regret to Regret

Here we show how a (high probability) bound over the pseudo regret can be converted to a bound
into a (high probability) bound over the actual, realized regret in a black-box fashion. We assume
the regret is defined based on the uncorrupted stochastic rewards; the analogous notion that uses the
corrupted rewards is only an additive O(C) larger in the worst case. As a consequence, our (positive)
results regarding the pseudo regret immediately extend to the realized regret with respect to either
the corrupted or uncorrupted rewards.

Using the notation established in Section 2, recall that the pseudo regret is given by

T
R = (W —p;,) = Z TiA;,
=1 i
where T; is the number of times arm i was pulled. On the other hand, the (realized) regret is the

quantity
T

R'=max Y (Ri-R}).

Suppose that we have established a bound Pr(R < B) > 1 — 3 on the pseudo regret, where
B > max;» 1 / A;. We want to establish a high-probability bound on R’. Define the quantity:

T

R*=)_ (R.-R}).

=1

We will separately bound R’ — R* and R* — R. Applying Azuma’s inequality on the random
variable R* — R we have with probability at least 1 — J that

1
R*-R < /Z Tiln .
i
Applying Holder’s inequality,

1 1 1 1
* _ < A: - — In — = A: | . —In=).
R*-R g T;A; i In 5 < g T,A,) (Ilnzii*x i In 8>

i i#*
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Now, since B is a bound over the pseudo-regret we have that R =), 2 Tidi < B with probability
at least 1 — d. We have therefore shown that with probability at least 1 — 23,

1 1
R*-R <,/B —In <.
- rtl;etl*XA, nS

On the other hand, another application of Azuma’s inequality shows that with probability > 1-9,

K
R —R* < max (—A,-T+ \/Tltl).
i€[K] )

If ming~ A; > +/In(K/d)/T, then this difference is negative. Otherwise, it is bounded as

K 1. K
R —-R*</Thh—= < —In—.
SV STEEA TS

Also, we have max;» 1 / A; < B by assumption. It follows that with probability at least 1 — 39,

R’§B<1+\/1né+lnlg).

Note also that if B! In % . (max,-#,-* 1 / Ai) is bounded by a constant (as it typically is), then R’ is at
most O(B).
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