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Abstract
Variance reduction techniques like SVRG (Johnson and Zhang, 2013) provide simple and fast al-
gorithms for optimizing a convex finite-sum objective. For nonconvex objectives, these techniques
can also find a first-order stationary point (with small gradient). However, in nonconvex optimiza-
tion it is often crucial to find a second-order stationary point (with small gradient and almost PSD
hessian). In this paper, we show that Stabilized SVRG – a simple variant of SVRG – can find an
ε-second-order stationary point using only Õ(n2/3/ε2 + n/ε1.5) stochastic gradients. To our best
knowledge, this is the first second-order guarantee for a simple variant of SVRG. The running time
almost matches the known guarantees for finding ε-first-order stationary points.
Keywords: nonconvex optimization, saddle point, variance reduction

1. Introduction

Nonconvex optimization is widely used in machine learning. Recently, for problems like matrix
sensing (Bhojanapalli et al., 2016), matrix completion (Ge et al., 2016), and certain objectives for
neural networks (Ge et al., 2017b), it was shown that all local minima are also globally optimal,
therefore simple local search algorithms can be used to solve these problems.

For a convex function f(x), a local and global minimum is achieved whenever the point has
zero gradient: ∇f(x) = 0. However, for nonconvex functions, a point with zero gradient can also
be a saddle point. To avoid converging to saddle points, recent results (Ge et al., 2015; Jin et al.,
2017a,b) prove stronger results that show local search algorithms converge to ε-approximate second-
order stationary points – points with small gradients and almost positive semi-definite Hessians (see
Definition 1).

In theory, Xu et al. (2018) and Allen-Zhu and Li (2017) independently showed that finding a
second-order stationary point is not much harder than finding a first-order stationary point – they
give reduction algorithms Neon/Neon2 that can converge to second-order stationary points when
combined with algorithms that find first-order stationary points. Algorithms obtained by such re-
ductions are complicated, and they require a negative curvature search subroutine: given a point x,
find an approximate smallest eigenvector of ∇2f(x). In practice, standard algorithms for convex
optimization work in a nonconvex setting without a negative curvature search subroutine.
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What algorithms can be directly adapted to the nonconvex setting, and what are the simplest
modifications that allow a theoretical analysis? For gradient descent, Jin et al. (2017a) showed
that a simple perturbation step is enough to find a second-order stationary point, and this was later
shown to be necessary (Du et al., 2017). For accelerated gradient, Jin et al. (2017b) showed a simple
modification would allow the algorithm to work in the nonconvex setting, and escape from saddle
points faster than gradient descent. In this paper, we show that there is also a simple modification
to the Stochastic Variance Reduced Gradient (SVRG) algorithm (Johnson and Zhang, 2013) that is
guaranteed to find a second-order stationary point.

SVRG is designed to optimize a finite sum objective f(x) of the following form:

f(x) :=
1

n

n∑
i=1

fi(x),

where evaluating f would require evaluating every fi. In the original result, Johnson and Zhang
(2013) showed that when fi(x)’s are L-smooth and f(x) is µ strongly convex, SVRG finds a point
with error ε in time O(n log(1/ε)) when L/µ = O(n). The same guarantees were also achieved by
algorithms like SAG (Roux et al., 2012), SDCA (Shalev-Shwartz and Zhang, 2013) and SAGA (De-
fazio et al., 2014), but SVRG is much cleaner both in terms of implementation and analysis.

SVRG was analyzed in nonconvex regimes, Reddi et al. (2016) and Allen-Zhu and Hazan (2016)
showed that SVRG can find an ε-first-order stationary point using O(n

2/3

ε2
+n) stochastic gradients.

Li and Li (2018) analyzed a batched-gradient version of SVRG and achieved the same guarantee
with much simpler analysis. These results can then be combined with the reduction (Allen-Zhu
and Li, 2017; Xu et al., 2018) to give complicated algorithms for finding second-order stationary
points. Using more complicated optimization techniques, it is possible to design faster algorithms
for finding first-order stationary points, including FastCubic (Agarwal et al., 2016), SNVRG (Zhou
et al., 2018b), SPIDER-SFO (Fang et al., 2018). These algorithms can also combine with procedures
like Neon2 to give second-order guarantees.

In this paper, we give a variant of SVRG called Stabilized SVRG that is able to find ε-second-
order stationary points, while maintaining the simplicity of the SVRG algorithm. See Table 1 for
a comparison between our algorithm and existing results. The main term Õ(n2/3/ε2) in the run-
ning time of our algorithm matches the analysis with first-order guarantees. All other algorithms
that achieve second-order guarantees require negative curvature search subroutines like Neon2, and
many are more complicated than SVRG even without this subroutine.

2. Preliminaries

2.1. Notations

We use N, R to denote the set of natural numbers and real numbers respectively. We use [n] to
denote the set {1, 2, · · · , n}. Let Ib be a multi-set of size b whose i-th element (i = 1, 2, ..., b)
is chosen i.i.d. from [n] uniformly (Ib is used to denote the samples used in a mini-batch for
the algorithm). For vectors we use 〈u, v〉 to denote their inner product, and for matrices we use
〈A,B〉 :=

∑
i,j AijBij to denote the trace of AB>. We use ‖ · ‖ to denote the Euclidean norm for

a vector and spectral norm for a matrix, and λmax(·), λmin(·) to denote the largest and the smallest
eigenvalue of a real symmetric matrix.

Throughout the paper, we use Õ(f(n)) and Ω̃(f(n)) to hide poly log factors on relevant param-
eters. We did not try to optimize the poly log factors in the proof.
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Algorithm Stochastic Gradients Guarantee Simple
SVRG (Reddi et al., 2016)

(Allen-Zhu and Hazan, 2016)
O(n

2/3

ε2
+ n) 1st-Order X

Minibatch-SVRG (Li and Li, 2018) O(n
2/3

ε2
+ n) 1st-Order X

Neon2+SVRG (Allen-Zhu and Li, 2017) Õ(n
2/3

ε2
+ n

ε1.5
+ n3/4

ε1.75
) 2nd-Order ×

Neon2+FastCubic/CDHS
(Agarwal et al., 2016; Carmon et al., 2016)

Õ( n
ε1.5

+ n3/4

ε1.75
) 2nd-Order ×

SNVRG++Neon2 (Zhou et al., 2018a,b) Õ(n
1/2

ε2
+ n

ε1.5
+ n3/4

ε1.75
) 2nd-Order ×

SPIDER-SFO+ (Fang et al., 2018) Õ(n
1/2

ε2
+ 1

ε2.5
) 2nd-Order ×

Stabilized SVRG (this paper) Õ(n
2/3

ε2
+ n

ε1.5
) 2nd-Order X

Table 1: Optimization algorithms for non-convex finite-sum objective
2.2. Finite-Sum Objective and Stationary Points

Now we define the objective that we try to optimize. A finite-sum objective has the form

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)
}
, (1)

where fi maps a d-dimensional vector to a scalar and n is finite. In our model, both fi(x) and f(x)
can be non-convex. We make standard smoothness assumptions as follows:

Assumption 1 Each individual function fi(x) has L-Lipschitz Gradient, that is,

∀x1, x2 ∈ Rd, ‖∇fi(x1)−∇fi(x2)‖ ≤ L‖x1 − x2‖.

This implies that the average function f(x) also has L-Lipschitz gradient. We assume the aver-
age function f(x) and individual functions have Lipschitz Hessian. That is,

Assumption 2 The average function f(x) has ρ-Lipschitz Hessian, which means

∀x1, x2 ∈ Rd, ‖∇2f(x1)−∇2f(x2)‖ ≤ ρ‖x1 − x2‖;

each individual function fi(x) has ρ′-Lipschitz Hessian, which means

∀x1, x2 ∈ Rd, ‖∇2fi(x1)−∇2fi(x2)‖ ≤ ρ′‖x1 − x2‖.

These two assumptions are standard in the literature for finding second-order stationary points
(Ge et al., 2015; Jin et al., 2017a,b; Allen-Zhu and Li, 2017). The goal of non-convex optimization
algorithms is to converge to an approximate-second-order stationary point.

Definition 1 For a differentiable function f , x is a first-order stationary point if ‖∇f(x)‖ = 0; x
is an ε-first-order stationary point if ‖∇f(x)‖ ≤ ε.

For twice-differentiable function f , x is a second-order stationary point if

‖∇f(x)‖ = 0 and λmin(∇2f(x)) ≥ 0.

If f is ρ-Hessian Lipschitz, x is an ε-second-order stationary point if

‖∇f(x)‖ ≤ ε, and λmin(∇2f(x)) ≥ −√ρε.
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This definition of ε-second-order stationary point is standard in previous literature (Ge et al.,
2015; Jin et al., 2017a,b). Note that the definition of second-order stationary point uses the Hessian
Lipschitzness parameter ρ of the average function f(x) (instead of ρ′ of individual function). It is
easy to check that ρ ≤ ρ′. In Appendix F we show there are natural applications where ρ′ = Θ(d)ρ,
so in general algorithms that do not depend heavily on ρ′/ρ are preferred.

2.3. SVRG Algorithm

In this section we give a brief overview of the SVRG algorithm. In particular we follow the mini-
batch version in Li and Li (2018) which is used for our analysis for simplicity.

SVRG algorithm has an outer loop. We call each iteration of the outer loop an epoch. At the
beginning of each epoch, define the snapshot vector x̃ to be the current iterate and compute its
full gradient ∇f(x̃). Each epoch of SVRG consists of m iterations. In each iteration, the SVRG
algorithm picks b random samples (with replacement) from [n] and form a multi-set Ib, and then
estimate the gradient as:

vt :=
1

b

∑
i∈Ib

(∇fi(xt)−∇fi(x̃) +∇f(x̃))

After estimating the gradient, the SVRG algorithm performs an update xt+1 ← xt − ηvt, where
η is the step size. The choice of gradient estimate gives an unbiased estimate of the true gradient,
and often has much smaller variance compared to stochastic gradient descent. The pseudo-code for
minibatch-SVRG is given in Algorithm 1.

Algorithm 1 SVRG(x0,m, b, η, S)
Input: initial point x0, epoch length m, minibatch size b, step size η, number of epochs S.
Output: point xSm.
1: for s = 0, 1, · · · , S − 1 do
2: Compute ∇f(xsm).
3: for t = 1, 2, . . . ,m do
4: Sample b i.i.d. numbers uniformly from [n] and form a multi-set Ib.
5: vsm+t−1 ← 1

b

∑
i∈Ib

(
∇fi(xsm+t−1)−∇fi(xsm) +∇f(xsm))

)
.

6: xsm+t ← xsm+t−1 − ηvsm+t−1.
7: end for
8: end for
9: return xSm.

3. Our Algorithms: Perturbed SVRG and Stabilized SVRG

In this paper we give two simple modifications to the original SVRG algorithm. First, similar to
perturbed gradient descent (Jin et al., 2017a), we add perturbations to SVRG algorithm to make
it escape from saddle points efficiently. We will show that this algorithm finds an ε-second-order
stationary point in Õ((n

2/3L∆f
ε2

+
n
√
ρ∆f

ε1.5
)(1 + ( ρ′

n1/3ρ
)2)) time, where ∆f := f(x0) − f∗ is the

difference between initial function value and the optimal function value. This algorithm is efficient
as long as ρ′ ≤ ρn1/3, but can be slower if ρ′ is much larger (see Appendix F for an example where
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ρ′ = Θ(d)ρ). To achieve stronger guarantees, we introduce Stabilized SVRG, which is another
simple modification on top of Perturbed SVRG that improves the dependency on ρ′.

3.1. Perturbed SVRG

Algorithm 2 Perturbed SVRG(x0,m, b, η, δ,G )
Input: initial point x0, epoch length m, minibatch size b, step size η, perturbation radius δ, thresh-

old gradient G
1: for s = 0, 1, 2, · · · do
2: Compute∇f(xsm).
3: if not currently in a super epoch and ‖∇f(xsm)‖ ≤ G then
4: xsm ← xsm + ξ, where ξ uniformly ∼ B0(δ), start a super epoch
5: end if
6: for t = 1, 2, · · · ,m do
7: Sample b i.i.d. numbers uniformly from [n] and form a multi-set Ib.
8: vsm+t−1 ← 1

b

∑
i∈Ib

(
∇fi(xsm+t−1)−∇fi(xsm) +∇f(xsm))

)
.

9: xsm+t ← xsm+t−1 − ηvsm+t−1.
10: if Stopping condition is met then Stop super epoch
11: end for
12: end for

Similar to gradient descent, if one starts SVRG exactly at a saddle point, it is easy to check
that the algorithm will not move. To avoid this problem, we propose Perturbed SVRG. A high
level description is in Algorithm 2. Intuitively, since at the beginning of each epoch in SVRG the
gradient of the function is computed, we can add a small perturbation to the current point if the
gradient turns out to be small (which means we are either near a saddle point or already at a second-
order stationary point). Similar to perturbed gradient descent in Jin et al. (2017a), we also make sure
that the algorithm does not add a perturbation very often - the next perturbation can only happen
either after many iterations (Tmax) or if the point travels enough distance (L ). The full algorithm
is a bit more technical and is given in Algorithm 4 in appendix.

Later, we will call the steps between the beginning of perturbation and end of perturbation a
super epoch. When the algorithm is not in a super epoch, for technical reasons we also use a version
of SVRG that stops at a random iteration (not reflected in Algorithm 2 but is in Algorithm 4).

For perturbed SVRG, we have the following guarantee:

Theorem 2 Assume the function f(x) is ρ-Hessian Lipschitz, and each individual function fi(x) is
L-smooth and ρ′-Hessian-Lipschitz. Let ∆f := f(x0) − f∗, where x0 is the initial point and f∗

is the optimal value of f . There exist mini-batch size b = Õ(n2/3), epoch length m = n/b, step
size η = Õ(1/L), perturbation radius δ = Õ(min( ρ1.5

√
ε

max(ρ2,(ρ′/m)2)
, ρ0.75ε0.75

max(ρ,ρ′/m)
√
L

)), super epoch

length Tmax = Õ( L√
ρε), threshold gradient G = Õ(ε), threshold distance L = Õ(

√
ερ

max(ρ,ρ′/m)),

such that Perturbed SVRG (Algorithm 4) will at least once get to an ε-second-order stationary point
with high probability using

Õ
((n2/3L∆f

ε2
+
n
√
ρ∆f

ε1.5
)(

1 + (
ρ′

n1/3ρ
)2
))
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stochastic gradients.

3.2. Stabilized SVRG

Algorithm 3 Stabilized SVRG(x0,m, b, η, δ,G )
Input: initial point x0, epoch length m, minibatch size b, step size η, perturbation radius δ, thresh-

old gradient G
1: for s = 0, 1, 2, · · · do
2: Compute∇f(xsm).
3: if not currently in a super epoch and ‖∇f(xsm)‖ ≤ G then
4: vshift ← ∇f(xsm).
5: xsm ← xsm + ξ, where ξ uniformly ∼ B0(δ), start a super epoch
6: end if
7: for t = 1, 2, · · · ,m do
8: Sample b i.i.d. numbers uniformly from [n] and form a multi-set Ib.
9: vsm+t−1 ← 1

b

∑
i∈Ib

(
∇fi(xsm+t−1)−∇fi(xsm) +∇f(xsm))

)
− vshift.

10: xsm+t ← xsm+t−1 − ηvsm+t−1.
11: if Stopping condition is met then Stop super epoch and vshift ← 0.
12: end for
13: end for

In order to relax the dependency on ρ′, we further introduce stabilization in the algorithm.
Basically, if we encounter a saddle point x̃, we will run SVRG iterations on a shifted function
f̂(x) := f(x)−〈∇f(x̃), x− x̃〉, whose gradient at x̃ is exactly zero. Another minor (but important)
modification is to perturb the point in a ball with much smaller radius compared to Algorithm 2. We
will give more intuitions to show why these modifications are necessary in Section 4.3.

The high level ideas of Stabilized SVRG is given in Algorithm 3. In the pseudo-code, the
key observation is that gradient on the shifted function is equal to the gradient of original function
plus a stabilizing term. Detailed implementation of Stabilized SVRG is deferred to Algorithm 5.
For Stabilized SVRG, the time complexity in the following theorem only has a poly-logarithmic
dependency on ρ′, which is hidden in Õ(·) notation.

Theorem 3 Assume the function f(x) is ρ-Hessian Lipschitz, and each individual function fi(x)
is L-smooth and ρ′-Hessian Lipschitz. Let ∆f := f(x0) − f∗, where x0 is the initial point and
f∗ is the optimal value of f . There exists mini-batch size b = Õ(n2/3), epoch length m = n/b,
step size η = Õ(1/L), perturbation radius δ = Õ(min(

√
ε√
ρ ,

m
√
ρε

ρ′ )), super epoch length Tmax =

Õ( L√
ρε), threshold gradient G = Õ(ε), threshold distance L = Õ(

√
ε√
ρ), such that Stabilized SVRG

(Algorithm 5) will at least once get to an ε-second-order stationary point with high probability using

Õ(
n2/3L∆f

ε2
+
n
√
ρ∆f

ε1.5
)

stochastic gradients.

In previous work (Allen-Zhu and Li, 2017), it has been shown that Neon2+SVRG has similar
time complexity for finding second-order stationary point, Õ(n

2/3L∆f
ε2

+ nρ2∆f
ε1.5

+ n3/4ρ2
√
L∆f

ε1.75
). Our

result achieves a slightly better convergence rate using a much simpler variant of SVRG.
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4. Overview of Proof Techniques

In this section, we illustrate the main ideas in the proof of Theorems 2 and 3. Similar to many
existing proofs for escaping saddle points, we will show that Algorithms 2 and 3 can decrease the
function value efficiently either when the current point xt has a large gradient (‖∇f(xt)‖ ≥ ε) or
has a large negative curvature (λmin(∇2f(xt)) ≤ −

√
ρε). Since the function value cannot decrease

below the global optimal f∗, the algorithms will be able to find a second-order stationary point
within the desired number of iterations.

In the proof, we use G to denote the threshold of the gradient norm. Starting from a saddle
point, the super-epoch ends if the number of steps exceeds the threshold Tmax or the distance to the
saddle point exceeds the threshold distance L . Throughout the analysis, we use s(t) to denote the
index of the snapshot point of iterate xt. More precisely, s(t) = mbt/mc.

4.1. Exploiting Large Gradients

There have already been several proofs that show SVRG can converge to a first-order stationary
point, and our proof here is very similar. First, we show that the gradient estimate is accurate as
long as the current point is close to the snapshot point.

Lemma 4 For any point xt, let the gradient estimate be vt := 1
b

∑
i∈Ib(∇fi(xt) − ∇fi(xs(t)) +

∇f(xs(t))), where xs(t) is the snapshot point of the current epoch. Then, with probability at least
1− ζ, we have

‖vt −∇f(xt)‖ ≤ O
( log(d/ζ)L√

b

)
‖xt − xs(t)‖.

This lemma is standard and the version for expected square error was proved in Li and Li (2018).
Here we only applied simple concentration inequalities to get a high probability bound.

Next, we show that the function value decrease is lower bounded by the summation of gradient
norm squares. The proof of the following lemma is adopted from Li and Li (2018) with minor
modifications.

Lemma 5 For any epoch, suppose the initial point is x0, which is also the snapshot point for this
epoch. Assume for any 0 ≤ t ≤ m− 1, ‖vt −∇f(xt)‖ ≤ C1L√

b
‖xt − x0‖, where C1 = Õ(1) comes

from Lemma 4. Then, given η ≤ 1
3C1L

, b ≥ m2, we have

f(x0)− f(xt) ≥
t−1∑
τ=0

η

2
‖∇f(xτ )‖2

for any 1 ≤ t ≤ m.

Using this fact, we can now state the guarantee for exploiting large gradients.

Lemma 6 For any epoch, suppose the initial point is x0. Let xt be a point uniformly sampled from
{xτ}mτ=1. Then, given η = Θ̃(1/L), b ≥ m2, for any value of G we have two cases:

1. if at least half of points in {xτ}mτ=1 have gradient no larger than G , we know ‖∇f(xt)‖ ≤ G
holds with probability at least 1/2;

2. otherwise, we know f(x0)− f(xt) ≥ η
2
mG 2

4 holds with probability at least 1/5.
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Further, no matter which case happens we always have f(xt) ≤ f(x0) with high probability.

As this lemma suggests, our algorithm will stop at a random iterate when it is not in a super
epoch (this is reflected in the detailed Algorithms 4 and 5). In the first case, since there are at least
half points with small gradients, by uniform sampling, we know the sampled point must have small
gradient with at least half probability. In the second case, the function value decreases significantly.
Proofs for lemmas in this section are deferred to Appendix B.

4.2. Exploiting Negative Curvature - Perturbed SVRG

Section 4.1 already showed that if the algorithm is not in a super epoch, with constant probability
every epoch of SVRG will either decrease the function value significantly, or end at a point with
small gradient. In the latter case, if the point with small gradient also has almost positive semi-
definite Hessian, then we have found an approximate-second-order stationary point. Otherwise, the
algorithm will enter a super epoch, and we will show that with a reasonable probability Algorithm 2
can decrease the function value significantly within the super epoch.

For simplicity, we will reset the indices for the iterates in the super epoch. Let the initial point
be x̃, the point after the perturbation be x0, and the iterates in this super epoch be x1, ..., xt.

The proof for Perturbed SVRG is very similar to the proof of perturbed gradient descent in Jin
et al. (2017a). In particular, we perform a two point analysis. That is, we consider two coupled
samples of the perturbed point x0, x

′
0. Let e1 be the smallest eigendirection of Hessian H :=

∇2f(x̃). The two perturbed points x0 and x′0 only differ in the e1 direction. We couple the two
trajectories from x0 and x′0 by choosing the same mini-batches for both of them. The iterates of the
two sequences are denoted by x0, ..., xt and x′0, ..., x

′
t respectively. Our goal is to show that with

good probability one of these two points can escape the saddle point.
To do that, we will keep track of the difference between the two sequences wt = xt − x′t.

The key lemma in this section uses Hessian Lipschitz condition to show that the variance of wt
(introduced by the random choice of mini-batch) can actually be much smaller than the variance we
observe in Lemma 4. More precisely,

Lemma 7 Let {xt} and {x′t} be two SVRG sequences running on f that use the same choice of
mini-batches. Let xs(t) be the snapshot point for iterate t. Letwt := xt−x′t and Pt = max(‖xs(t)−
x̃‖, ‖x′s(t) − x̃‖, ‖xt − x̃‖, ‖x

′
t − x̃‖). Then, with probability at least 1− ζ, we have

‖ξt − ξ′t‖ ≤ O
( log(d/ζ)√

b

)
min

(
L‖wt − ws(t)‖+ ρ′Pt(‖wt‖+ ‖ws(t)‖), L(‖wt‖+ ‖ws(t)‖)

)
.

This variance is often much smaller than before as in the extreme case, if ρ′ = 0 (individual
functions are quadratics), the variance is proportional to Õ(L/

√
b)‖wt − ws(t)‖. In the proof we

will show that wt cannot change very quickly within a single epoch so ‖wt−ws(t)‖ is much smaller
than ‖wt‖ or ‖ws(t)‖. Using this new variance bound we can prove:

Lemma 8 (informal) Let {xt} and {x′t} be two SVRG sequences running on f that use the same
choice of mini-batches. Assumew0 = x0−x′0 aligns with e1 direction and |〈e1, w0〉| ≥ δ

4
√
d
. Setting

the parameters appropriately we know with high probability max(‖xT − x̃‖, ‖x′T − x̃‖) ≥ L , for
some T ≤ Õ(1/(ηγ)).
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Figure 1: SVRG trajectories on the original function f and the stabilized function f̂ . The size of the
blue circle at each point indicates the magnitude of the variance.

Intuitively, this lemma is true because at every iterate we expect wt to be multiplied by a factor
of (1 + ηγ) if the iterate follows exact gradient, and the variance bound from Lemma 7 is tight
enough. The precise statement of the lemma is given in Lemma 16 in Appendix C. The lemma
shows that one of the points can escape from a local neighborhood, which by the following lemma
is enough to guarantee function value decrease:

Lemma 9 Let x0 be the initial point, which is also the snapshot point of the current epoch. Let
{xt} be the iterates of SVRG running on f starting from x0. Fix any t ≥ 1, suppose for every
0 ≤ τ ≤ t−1, ‖ξτ‖ ≤ C1L√

b
‖xτ−xs(τ)‖, whereC1 comes from Lemma 4. Given η ≤ 1

3C1L
, b ≥ m2,

we have
‖xt − x0‖2 ≤

4t

C1L
(f(x0)− f(xt)).

This lemma can be proved using the same technique as Lemma 5. All proofs in this section are
deferred to Appendix C.

4.3. Exploiting Negative Curvature - Stabilized SVRG

The main problem in the previous analysis is that when ρ′ is large, the variance estimate in Lemma 7
is no longer very strong. To solve this problem, note that the additional term ρ′Pt(‖wt‖+ ‖ws(t)‖)
is proportional to Pt (the maximum distance of the iterates to the initial point). If we can make
sure that the iterates stay very close to the initial point for long enough we will still be able to use
Lemma 7 to get a good variance estimate.

However, in Perturbed SVRG, the iterates are not going to stay close to the starting point x̃, as
the initial point x̃ can have a non-negligible gradient that will make the iterates travel a significant
distance (see Figure 1 (a)). To fix this problem, we make a simple change to the function to set the
gradient at x̃ equal to 0. More precisely, define the stabilized function f̂(x) := f(x)−〈∇f(x̃), x−
x̃〉. After this stabilization, at least the first few iterates will not travel very far (see Figure 1 (b)).
Our algorithm will apply SVRG on this stabilized function.

For the stabilized function f̂(x), we have ∇f̂(x̃) = 0, so x̃ is an exact first-order stationary
point. In this case, suppose the initial radius of perturbation δ is small, we will show that the behav-
ior of the algorithm has two phases. In Phase 1, the iterates will remain in a ball around x̃ whose
radius is Õ(δ), which allows us to have very tight bounds on the variance and the potential changes

9
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Figure 2: Two phases of a super epoch in Stabilized SVRG
in the Hessian. By the end of Phase 1, we show that the projection in the negative eigendirections
ofH = ∇2f(x̃) is already at least Ω̃(δ). This means that Phase 1 has basically done a negative cur-
vature search without a separate subroutine! Using the last point of Phase 1 as a good initialization,
in Phase 2 we show that the point will eventually escape. See Figure 2 for the two phases.

The rest of the subsection will describe the two phases in more details in order to prove the
following main lemma:

Lemma 10 (informal) Let x̃ be the initial point with gradient ‖∇f(x̃)‖ ≤ G and λmin(H) =
−γ < 0. Let {xt} be the iterates of SVRG running on f̂ starting from x0, which is the perturbed
point of x̃. Let T be the length of the current super epoch. Setting the parameters appropriately we
know with probability at least 1/8, f(xT ) − f(x̃) ≤ −C5

γ3

ρ2
; and with high probability, f(xT ) −

f(x̃) ≤ C5
20

γ3

ρ2
, where T = Õ( 1

ηγ ), C5 = Θ̃(1).

Basically, this lemma shows that starting from a saddle point, with constant probability the
function value decreases by Ω̃(γ

3

ρ2
) after a super epoch; with high probability, the function value

does not increase by more than Õ(γ
3

ρ2
). The precise statement of this lemma is given in Lemma 22

in Appendix D. Proofs for lemmas in this section are deferred to Appendix D.

4.3.1. ANALYSIS OF PHASE 1

Let S be the subspace spanned by all the eigenvectors of H with eigenvalues at most − γ
log(d) . Our

goal is to show that by the end of Phase 1, the projection of xt − x̃ on subspace S becomes large
while the total movement ‖xt − x̃‖ is still bounded. To prove this, we use the following conditions
to define Phase 1:

Stopping Condition: An iterate xt is in Phase 1 if (1) t ≤ 1/ηγ or (2) ‖ProjS(xt − x̃)‖ ≤ δ
10 .

If both conditions break, Phase 1 has ended. Intuitively, the second condition guarantees that
the projection of xt− x̃ on subspace S is large at the end of Phase 1. The first condition makes sure
that Phase 1 is long enough such that the projection of xt − xt−1 along positive eigendirections of
H has shrunk significantly, which will be crucial in the analysis of Phase 2.

With the above two conditions, the length of Phase 1 can be defined as

T1 = sup

{
t|∀t′ ≤ t− 1,

(
t′ ≤ 1

ηγ

)
∨
(
‖ProjS(xt′ − x̃)‖ ≤ δ

10

)}
. (2)

10
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The main lemma for Phase 1 gives the following guarantee:

Lemma 11 (informal) By choosing η = Õ(1/L), b = Õ(n2/3) and δ = Õ(min(γρ ,
mγ
ρ′ )), with

constant probability, the length of the first phase T1 is Θ̃(1/ηγ) and

‖xT1 − x̃‖ ≤ Õ(δ) and ‖ProjS(xT1 − x̃)‖ ≥ 1

10
δ.

We will first show that the iterates in Phase 1 cannot go very far from the initial point:

Lemma 12 (informal) Let T1 be the length of Phase 1. Setting parameters appropriately we know
with high probability ‖xt − xt−1‖ ≤ Õ(1

t )δ for every 1 ≤ t ≤ min(T1,
log(d)
ηγ ).

The formal version of the above lemma is in Lemma 19. Taking the sum over all t and note
that

∑T
t=1 1/t = Θ(log T ), this implies that the iterates are constrained in a ball whose radius is not

much larger than δ. If we choose δ to be small enough, within this ball Lemma 7 will give very sharp
bounds on the variance of the gradient estimates. This allows us to repeat the two-point analysis
in Section 4.2 and prove that at least one sequence must have a large projection on S subspace
within log(d)

ηγ steps. Recall that in the two point analysis, we consider two coupled samples of the
perturbed points x0, x

′
0. The two perturbed points x0 and x′0 only differ in the e1 direction. These

two sequences {xt} and {x′t} share the same choice of mini-batches at each step. Basically, we
prove after log(d)

ηγ steps, the difference between two sequences along e1 direction becomes large,
which implies that at least one sequence must have large distance to x̃ on S subspace. The formal
version of the following lemma is in Lemma 20.

Lemma 13 (informal) Let {xt} and {x′t} be two SVRG sequences running on f̂ that use the same
choice of mini-batches. Assume w0 = x0 − x′0 aligns with e1 direction and |〈e1, w0〉| ≥ δ

4
√
d
. Let

T1, T
′
1 be the length of Phase 1 for {xt} and {x′t} respectively. Setting parameters appropriately

with high probability we have min(T1, T
′
1) ≤ log(d)

ηγ . W.l.o.g., suppose T1 ≤ log(d)
ηγ and we further

have ‖xT1 − x̃‖ ≤ Õ(1)δ, ‖ProjS(xT1 − x̃)‖ ≥ 1
10δ.

Remark 14 We note that the guarantee of Lemma 13 for Phase 1 is very similar to the guarantee
of a negative curvature search subroutine: we find a direction xT1 − x̃ that has a large projection
in subspace S, which contains only the very negative eigenvectors ofH.

4.3.2. ANALYSIS OF PHASE 2

By the guarantee of Phase 1, we know if it is successful xT1− x̃ has a large projection in subspace S
of very negative eigenvalues. Starting from such a point, in Phase 2 we will show that the projection
of xt− x̃ in S grows exponentially and exceeds the threshold distance within Õ( 1

ηγ ) steps. In order
to prove this, we use the following expansion,

xt − x̃ = (I − ηH)(xt−1 − x̃)− η∆t−1(xt−1 − x̃)− ηξt−1,

where ∆t−1 =
∫ 1

0 (∇2f̂(x̃ + θ(xt−1 − x̃)) − H)dθ. Intuitively, if we only have the first term, it’s
clear that ‖ProjS(xt − x̃)‖ ≥ (1 + ηγ

log(d))‖ProjS(xt−1 − x̃)‖. The norm in subspace S increases
exponentially and will become very far from x̃ in a small number of iterations. Our proof bounds
the Hessian changing term η∆t−1(xt−1 − x̃) and variance term ηξt−1 separately to show that they
do not influence the exponential increase. The main lemma that we will prove for Phase 2 is:

11
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Lemma 15 (informal) Assume Phase 1 is successful in the sense that T1 ≤ log(d)
ηγ and ‖xT1−x̃‖ ≤

Õ(1)δ, ‖ProjS(xT1 − x̃)‖ ≥ 1
10δ. Setting parameters appropriately with high probability we know

there exists T = Õ( 1
ηγ ) such that ‖xT − x̃‖ ≥ Ω̃(γρ ).

The precise version of the above lemma is in Lemma 21 in Appendix D. Similar to Lemma 8,
the lemma above shows that the iterates will escape from a local neighborhood if Phase 1 was
successful (which happens with at least constant probability). We can then use Lemma 9 to bound
the function value decrease.

4.4. Proof of Main Theorems

Finally we are ready to sketch the proof for Theorem 3. For each epoch, if the gradients are large, by
Lemma 6 we know with constant probability the function value decreases by at least Ω̃(n1/3ε2/L).
For each super epoch, if the starting point has significant negative curvature, by Lemma 10, we
know with constant probability the function value decreases by at least Ω̃(ε1.5/

√
ρ). We also know

that the number of stochastic gradient for each epoch is Õ(n) and that for each super epoch is
Õ(n+ n2/3L/

√
ρε). Thus, we know after

Õ

(
L∆f

n1/3ε2
· n+

√
ρ∆f

ε1.5
· (n+

n2/3L
√
ρε

)

)

stochastic gradients, the function value will decrease below the global optimal f∗ with high proba-
bility unless we have already met an ε-second-order stationary point. Thus, we will at least once get
to an ε-second-order stationary point within Õ(n

2/3L∆f
ε2

+
n
√
ρ∆f

ε1.5
) stochastic gradients. The formal

proof of Theorem 3 is deferred to Appendix E. The proof for Theorem 2 is almost the same except
that it uses Lemma 8 instead of Lemma 10 for the guarantee of the super epoch.

5. Conclusion

This paper gives a new algorithm Stabilized SVRG that is able to find an ε-second-order stationary
point using Õ(n

2/3L∆f
ε2

+
n
√
ρ∆f

ε1.5
) stochastic gradients. To our best knowledge this is the first

algorithm that does not rely on a separate negative curvature search subroutine, and it is much
simpler than all existing algorithms with similar guarantees. In our proof, we developed the new
technique of stabilization (Section 4.3), where we showed if the initial point has exactly 0 gradient
and the initial perturbation is small, then the first phase of the algorithm can achieve the guarantee
of a negative curvature search subroutine. We believe the stabilization technique can be useful for
analyzing other optimization algorithms in nonconvex settings without using an explicit negative
curvature search. We hope techniques like this will allow us to develop nonconvex optimization
algorithms that are as simple as their convex counterparts.
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Appendix A. Detailed Descriptions of Our Algorithm

In this section, we give the complete descriptions of the Perturbed SVRG and Stabilized SVRG
algorithms.

Perturbed SVRG Perturbed SVRG is given in Algorithm 4. The only difference of this algorithm
with the high level description in Algorithm 2 is that we have now stated the stopping condition
explicitly, and when the algorithm is not running a super epoch, we choose a random iterate as the
starting point of the next epoch (this is necessary because of the guarantee in Lemma 5).

In the algorithm, the break probability in Step 16 is used to implement the random stopping.
Breaking the loop with this probability is exactly equivalent to finishing the loop and sampling
xsm+t for t = 1, 2, ...,m uniformly at random.

Algorithm 4 Perturbed SVRG(x0,m, b, η, δ, Tmax,G ,L )
Input: initial point x0, epoch length m, minibatch size b, step size η, perturbation radius δ, super-

epoch length Tmax, threshold gradient G , threshold length L
1: super epoch← 0.
2: for s = 0, 1, 2, · · · do
3: Compute∇f(xsm).
4: if super epoch = 0 ∧ ‖∇f(xsm)‖ ≤ G then
5: super epoch← 1.
6: x̃← xsm, tinit ← sm.
7: xsm ← xsm + ξ, where ξ uniformly ∼ B0(δ).
8: end if
9: for t = 1, 2, · · · ,m do

10: Sample b i.i.d. numbers uniformly from [n] and form a multi-set Ib.
11: vsm+t−1 ← 1

b

∑
i∈Ib

(
∇fi(xsm+t−1)−∇fi(xsm) +∇f(xsm))

)
.

12: xsm+t ← xsm+t−1 − ηvsm+t−1.
13: if super epoch = 1 ∧

(
‖xsm+t − x̃‖ ≥ L ∨ sm+ t− tinit ≥ Tmax

)
then

14: super epoch← 0; Break.
15: else if super epoch = 0 then
16: Break with probability 1

m−(t−1) .
17: end if
18: end for
19: x(s+1)m ← xsm+t.
20: end for

Stabilized SVRG Stabilized SVRG is given in Algorithm 5. The only differences between Sta-
bilized SVRG and Perturbed SVRG is that Stabilized SVRG adds an additional shift of −∇f(x̃)
when it is in a super epoch (stabilizing = 1 in the algorithm).
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Algorithm 5 Stabilized SVRG(x0,m, b, η, δ, Tmax,G ,L )
Input: initial point x0, epoch length m, minibatch size b, step size η, perturbation radius δ, super-

epoch length Tmax, threshold gradient G , threshold length L
1: stabilizing ← 0.
2: for s = 0, 1, 2, · · · do
3: Compute ∇f(xsm).
4: if stabiling = 0 ∧ ‖∇f(xsm)‖ ≤ G then
5: stabilizing ← 1.
6: x̃← xsm, tinit ← sm.
7: xsm ← xsm + ξ, where ξ uniformly ∼ B0(δ).
8: end if
9: for t = 1, 2, · · · ,m do

10: Sample b i.i.d. numbers uniformly from [n] and form a multi-set Ib.
11: vsm+t−1 ← 1

b

∑
i∈Ib

(
∇fi(xsm+t−1)−∇fi(xsm) +∇f(xsm))

)
− stabilizing×∇f(x̃).

12: xsm+t ← xsm+t−1 − ηvsm+t−1.
13: if stabilizing = 1 ∧

(
‖xsm+t − x̃‖ ≥ L ∨ sm+ t− tinit ≥ Tmax

)
then

14: stabilizing ← 0; Break.
15: else if stabilizing = 0 then
16: Break with probability 1

m−(t−1) .
17: end if
18: end for
19: x(s+1)m ← xsm+t.
20: end for
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Appendix B. Proofs of Exploiting Large Gradients

In this section, we adapt the proof from Li and Li (2018) to show that SVRG can reduce the function
value when the gradient is large. First, we give guarantees on the gradient estimate (Lemma 4). Note
that previously such bounds were known in the expectation sense, here we convert the bounds to a
high probability bound by applying a vector Bernstein’s inequality (Lemma 29).

Lemma 4 For any point xt, let the gradient estimate be vt := 1
b

∑
i∈Ib(∇fi(xt) − ∇fi(xs(t)) +

∇f(xs(t))), where xs(t) is the snapshot point of the current epoch. Then, with probability at least
1− ζ, we have

‖vt −∇f(xt)‖ ≤ O
( log(d/ζ)L√

b

)
‖xt − xs(t)‖.

Proof of Lemma 4. In order to apply Bernstein inequality, we first show for each i, the norm of
(∇fi(xt)−∇fi(xs(t)) +∇f(xs(t))−∇f(xt)) is bounded.

‖∇fi(xt)−∇fi(xs(t)) +∇f(xs(t))−∇f(xt)‖
=‖∇f(xt)−∇f(xs(t))− (∇fi(xt)−∇fi(xs(t)))‖
≤‖∇f(xt)−∇f(xs(t))‖+ ‖(∇fi(xt)−∇fi(xs(t)))‖
≤2L‖xt − xs(t)‖,

where the last inequality is due to the smoothness of f and fi.
Then, we bound the summation of variance of each term as follows.

σ2 :=
∑
i∈Ib

E[‖∇f(xt)−∇f(xs(t))− (∇fi(xt)−∇fi(xs(t)))‖2]

≤
∑
i∈Ib

E[‖∇fi(xt)−∇fi(xs(t))‖2]

≤
∑
i∈Ib

L2‖xt − xs(t)‖2

= bL2‖xt − xs(t)‖2,

where the first inequality is due to E[‖X − E[X]‖2] ≤ E[X2] and the second inequality holds
because the gradient of fi is L-Lipschtiz.

Then, according to the vector version Bernstein inequality (Lemma 29), we have

Pr[‖bvt − b∇f(xt)‖ ≥ r] ≤ (d+ 1) exp
( −r2/2

bL2‖xt − xs(t)‖2 +
2L‖xt−xs(t)‖·r

3

)
Thus, with probability at least 1− ζ, we have

‖vt −∇f(xt)‖ ≤ O
( log(d/ζ)L√

b

)
‖xt − xs(t)‖,

where O(·) hides constants. �
Using this upperbound on the error of gradient estimates, we can then show that the function

value decreases as long as the norms of gradients are large along the path. Note that this part of the
proof is also why we require b ≥ m2, which results in the n2/3 term in the running time.
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Lemma 5 For any epoch, suppose the initial point is x0, which is also the snapshot point for this
epoch. Assume for any 0 ≤ t ≤ m− 1, ‖vt −∇f(xt)‖ ≤ C1L√

b
‖xt − x0‖, where C1 = Õ(1) comes

from Lemma 4. Then, given η ≤ 1
3C1L

, b ≥ m2, we have

f(x0)− f(xt) ≥
t−1∑
τ=0

η

2
‖∇f(xτ )‖2

for any 1 ≤ t ≤ m.

Proof of Lemma 5. First, we obtain the relation between f(xt) and f(xt−1) as follows. For any
1 ≤ t ≤ m,

f(xt) ≤f(xt−1) + 〈∇f(xt−1), xt − xt−1〉+
L

2
‖xt − xt−1‖2 (3)

=f(xt−1) + 〈∇f(xt−1)− vt−1, xt − xt−1〉+ 〈vt−1, xt − xt−1〉+
L

2
‖xt − xt−1‖2

=f(xt−1) + 〈∇f(xt−1)− vt−1,−ηvt−1〉 −
(1

η
− L

2

)
‖xt − xt−1‖2 (4)

=f(xt−1) + η‖∇f(xt−1)− vt−1‖2 − η〈∇f(xt−1)− vt−1,∇f(xt−1)〉

−
(1

η
− L

2

)
‖xt − xt−1‖2

=f(xt−1) + η‖∇f(xt−1)− vt−1‖2 −
1

η
〈xt − x̄t, xt−1 − x̄t〉 −

(1

η
− L

2

)
‖xt − xt−1‖2

(5)

=f(xt−1) + η‖∇f(xt−1)− vt−1‖2 −
(1

η
− L

2

)
‖xt − xt−1‖2

− 1

2η

(
‖xt − x̄t‖2 + ‖xt−1 − x̄t‖2 − ‖xt − xt−1‖2

)
=f(xt−1) +

η

2
‖∇f(xt−1)− vt−1‖2 −

η

2
‖∇f(xt−1)‖2 −

( 1

2η
− L

2

)
‖xt − xt−1‖2, (6)

where (3) holds due to smoothness condition, and (4) and (5) follow from these two definitions, i.e.,
xt := xt−1 − ηvt−1 and x̄t := xt−1 − η∇f(xt−1).

According to the assumption, we have ‖∇f(xt−1) − vt−1‖2 ≤
C2

1L
2

b ‖xt−1 − x0‖2. Choosing
η ≤ 1

3C1L
, we have

f(xt) ≤ f(xt−1) +
ηL2C2

1

2b
‖xt−1 − x0‖2 −

η

2
‖∇f(xt−1)‖2 −

( 1

2η
− L

2

)
‖xt − xt−1‖2

≤ f(xt−1) +
LC1

6b
‖xt−1 − x0‖2 −

η

2
‖∇f(xt−1)‖2 − LC1‖xt − xt−1‖2

≤ f(xt−1) +
( L

6b
+

L

2t− 1

)
C1‖xt−1 − x0‖2 −

η

2
‖∇f(xt−1)‖2 − L

2t
C1‖xt − x0‖2,

where the last inequality uses Young’s inequality ‖xt−x0‖2 ≤
(
1+ 1

α

)
‖xt−1−x0‖2 +(1+α)‖xt−

xt−1‖2 by choosing α = 2t− 1.
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Now, adding the above inequalities for all iterations 1 ≤ t ≤ t′, where t′ ≤ m,

f(xt′) ≤f(x0)−
t′∑
t=1

η

2
‖∇f(xt−1)‖2 −

t′∑
t=1

L

2t
C1‖xt − x0‖2

+

t′∑
t=1

( L
6b

+
L

2t− 1

)
C1‖xt−1 − x0‖2

=f(x0)−
t′∑
t=1

η

2
‖∇f(xt−1)‖2 −

t′−1∑
t=1

(L
2t
− L

6b
− L

2t+ 1

)
C1‖xt − x0‖2

− L

2t′
C1‖xt′ − x0‖2

≤f(x0)−
t′∑
t=1

η

2
‖∇f(xt−1)‖2 − L

2t′
C1‖xt′ − x0‖2 (7)

where (7) holds because L
2t −

L
6b −

L
2t+1 ≥ 0 for any 1 ≤ t ≤ m as long as b ≥ m2.

Thus, for any 1 ≤ t′ ≤ m, we have

f(x0)− f(xt′) ≥
t′−1∑
τ=0

η

2
‖∇f(xτ )‖2.

�
A limitation of Lemma 5 is that it only guarantees function value decrease when the sum of

squared gradients is large. However, in order to connect the guarantees between first and second
order steps, we want to identify a single iterate that has a small gradient. We achieve this by stopping
the SVRG iterations at a uniformly random location.

Lemma 6 For any epoch, suppose the initial point is x0. Let xt be a point uniformly sampled from
{xτ}mτ=1. Then, given η = Θ̃(1/L), b ≥ m2, for any value of G , we have two cases:

1. if at least half of points in {xτ}mτ=1 have gradient no larger than G , we know ‖∇f(xt)‖ ≤ G
holds with probability at least 1/2;

2. Otherwise, we know f(x0)− f(xt) ≥ η
2
mG 2

4 holds with probability at least 1/5.

Further, no matter which case happens we always have f(xt) ≤ f(x0) with high probability.

Proof of Lemma 6. Let {xτ}mτ=0 be the iterates of SVRG starting from x0. Then, there are two
cases:

• If at least half of points of {xτ}mτ=1 have gradient norm at most G , then it’s clear that a
uniformly sampled point xt has gradient norm ‖∇f(xt)‖ ≤ G with probability at least 1/2.

• Otherwise, we know at least half of points from {xτ}mτ=1 has gradient norm larger than
G . Then, as long as the sampled point falls into the last quarter of {xτ}mτ=1, we know∑t−1

τ=0 ‖∇f(xτ )‖2 ≥ mG 2

4 . Thus, for a uniformly sampled point xt, with probability at least
1/4, we have

∑t−1
τ=0 ‖∇f(xτ )‖2 ≥ mG 2

4 .
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𝑥𝑥𝑠𝑠 𝑡𝑡

𝑥𝑥𝑠𝑠 𝑡𝑡
′

𝑤𝑤𝑠𝑠 𝑡𝑡

𝑥𝑥𝑡𝑡

𝑥𝑥𝑡𝑡′

𝑤𝑤𝑡𝑡
𝑤𝑤𝑠𝑠 𝑡𝑡

𝑤𝑤𝑡𝑡 − 𝑤𝑤𝑠𝑠 𝑡𝑡

Figure 3: Comparison between ‖wt − ws(t)‖ and ‖wt‖+ ‖ws(t)‖
According to Lemma 4 and the union bound, we know there exists C1 = Õ(1) such that
with high probability, ‖vt − ∇f(xt)‖ ≤ C1L√

b
‖xt − x0‖ holds for every 0 ≤ t ≤ m − 1.

Combining with Lemma 5, we know given η ≤ 1
3C1L

, b ≥ m2, we have f(x0) − f(xt) ≥∑t−1
τ=0

η
2‖∇f(xτ )‖2 for any 1 ≤ t ≤ m. By another union bound, we know with probability

at least 1/5, f(x0)− f(xt) ≥ η
2
mG 2

4 .

Again by Lemma 4 and Lemma 5, we know f(xt) ≤ f(x0) holds with high probability. �

Appendix C. Proofs of Exploiting Negative Curvature - Perturbed SVRG

In this section, we show that starting from a point with negative curvature, Perturbed SVRG can
decrease the function value significantly after a super epoch.

As discussed in Section 4.2, we use two point analysis to show that with good probability one
of these two points can escape the saddle point. Let x̃ be the initial point of the super epoch. We
consider two coupled samples of the perturbed point x0, x

′
0. The two perturbed points x0 and x′0

only differ in the e1 direction, where e1 is the smallest eigendirection of Hessian H := ∇2f(x̃).
Let the SVRG iterates running on f starting from x0 and x′0 be {xt} and {x′t} respectively. We will
keep track of the difference between the two sequences wt = xt − x′t, and show that wt increases
exponentially and becomes large after one super epoch, which means at least one sequence must
escape the initial point x̃.

In the following proof, we first show that the variance of wt can be well bounded. This is the
place where we use the assumption that each individual function is ρ′-Hessian Lipschitz.

Lemma 7 Let {xt} and {x′t} be two SVRG sequences running on f that use the same choice of
mini-batches. Let xs(t) be the snapshot point for iterate t. Letwt := xt−x′t and Pt = max(‖xs(t)−
x̃‖, ‖x′s(t) − x̃‖, ‖xt − x̃‖, ‖x

′
t − x̃‖). Then, with probability at least 1− ζ, we have

‖ξt − ξ′t‖ ≤ O
( log(d/ζ)√

b

)
min

(
L‖wt − ws(t)‖+ ρ′Pt(‖wt‖+ ‖ws(t)‖), L(‖wt‖+ ‖ws(t)‖)

)
.

In the extreme case, if each individual function fi is exactly a quadratic function, then we know
ρ′ = 0 and the variance is proportional to Õ(L/

√
b)‖wt − ws(t)‖. As illustrated in Figure 3, wt

cannot change very quickly within a single epoch so ‖wt − ws(t)‖ is much smaller than ‖wt‖ or
‖ws(t)‖.
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Proof of Lemma 7. Similar as the proof in Lemma 4, here we use Bernstein inequality to prove
that the difference between the variances of two coupled sequences is also upper bounded.

Recall that,

ξt − ξ′t =(vt −∇f(xt))− (v′t −∇f(x′t))

=
1

b

∑
i∈Ib

((
∇fi(xt)−∇fi(xs(t)) +∇f(xs(t))−∇f(xt)

)
−
(
∇fi(x′t)−∇fi(x′s(t)) +∇f(x′s(t))−∇f(x′t)

))
,

where Ib is a uniformly sampled multi-set of [n] with size b.
Let the Hessian of f at x̃ be H and let the Hessian of fi at x̃ be Hi for each i. Let ξt,i − ξ′t,i be

the i-th term in the above sum. In order to apply Bernstein inequality, we first show for each i,∥∥ξt,i − ξ′t,i∥∥
≤
∥∥∥(∇fi(xt)−∇fi(x′t))− (∇fi(xs(t))−∇fi(x′s(t)))

∥∥∥
+
∥∥∥(∇f(xt)−∇f(x′t))− (∇f(xs(t))−∇f(x′s(t)))

∥∥∥
=

∥∥∥∥∫ 1

0
∇2fi(x

′
t + θ(xt − x′t))dθ(xt − x′t)−

∫ 1

0
∇2fi(x

′
s(t) + θ(xs(t) − x′s(t)))dθ(xs(t) − x

′
s(t))

∥∥∥∥
+

∥∥∥∥∫ 1

0
∇2f(x′t + θ(xt − x′t))dθ(xt − x′t)−

∫ 1

0
∇2f(x′s(t) + θ(xs(t) − x′s(t)))dθ(xs(t) − x

′
s(t))

∥∥∥∥
=
∥∥∥Hiwt + ∆i

twt − (Hiws(t) + ∆i
s(t)ws(t))

∥∥∥+
∥∥Hwt + ∆twt − (Hws(t) + ∆s(t)ws(t))

∥∥
≤‖Hi‖‖wt − ws(t)‖+ ‖∆i

t‖‖wt‖+ ‖∆i
s(t)‖‖ws(t)‖

+ ‖H‖‖wt − ws(t)‖+ ‖∆t‖‖wt‖+ ‖∆s(t)‖‖ws(t)‖
≤2L‖wt − ws(t)‖+ 2ρ′Pt(‖wt‖+ ‖ws(t)‖)

where ∆i
t =

∫ 1
0 (∇2fi(x

′
t + θ(xt − x′t))−Hi)dθ(xt − x′t) and ∆t =

∫ 1
0 (∇2f(x′t + θ(xt − x′t))−

H)dθ(xt−x′t). The last inequality holds since each individual function is L-smooth and ρ′ Hessian
Lipschitz. Specifically, due to the L-smoothness, we have ‖Hi‖, ‖H‖ ≤ L. Because of the Hessian
Lipschitz condition and the definition of Pt, we have ‖∆i

t‖, ‖∆i
s(t)‖, ‖∆t‖, ‖∆s(t)‖ ≤ ρ′Pt.

Then, we bound the summation of variance of each term as follows.

σ2

:=
∑
i∈Ib

E
∥∥ξt,i − ξ′t,i∥∥2

≤
∑
i∈Ib

E
[∥∥∥(∇fi(xt)−∇fi(x′t))− (∇fi(xs(t))−∇fi(x′s(t)))

∥∥∥2
]

≤
∑
i∈Ib

(
L‖wt − ws(t)‖+ ρ′Pt(‖wt‖+ ‖ws(t)‖)

)2
=b
(
L‖wt − ws(t)‖+ ρ′Pt(‖wt‖+ ‖ws(t)‖)

)2
,
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where the first inequality is due to E[‖X − E[X]‖2] ≤ E[X2].
Then, according to the vector version Bernstein inequality (Lemma 29), with probability at least

1− ζ, we have

‖ξt − ξ′t‖ ≤ O
( log(d/ζ)√

b

) (
L‖wt − ws(t)‖+ ρ′Pt(‖wt‖+ ‖ws(t)‖)

)
,

where O(·) hides constants.
In order to prove the other bound for the variance difference, we can use smoothness condition

to bound each term as follows.

‖ξt,i − ξ′t,i‖
≤‖∇fi(xt)−∇fi(x′t)‖+ ‖∇fi(xs(t))−∇fi(x′s(t))‖

+ ‖(∇f(xt)−∇f(x′t)‖+ ‖∇f(xs(t))−∇f(x′s(t))‖

≤2L(‖wt‖+ ‖ws(t)‖).

The summation of variance of each term can be bounded as

σ2 ≤ L2(‖wt‖+ ‖ws(t)‖)2.

Again, using Bernstein inequality, we know with probability at least 1− ζ

‖ξt − ξ′t‖ ≤ O
( log(d/ζ)√

b

)
L(‖wt‖+ ‖ws(t)‖).

By union bound, we know with probability at least 1− 2ζ,

‖ξt − ξ′t‖ ≤ O
( log(d/ζ)√

b

)
min

(
L‖wt − ws(t)‖+ ρ′Pt(‖wt‖+ ‖ws(t)‖), L(‖wt‖+ ‖ws(t)‖)

)
.

�
Suppose the initial point x̃ of the super epoch has a large negative curvature (λmin(H) = −γ <

0). Also assume initially the two sequences has a reasonable distance along e1 direction, which is
the most negative eigendirection of H. Then, using the above bound for the variance of wt, we are
able to prove that the distance between two sequences increases exponentially, and becomes large
after Õ( 1

ηγ ) steps, which means at least one sequence must escape the initial point x̃.

Lemma 16 Let {xt} and {x′t} be two SVRG sequences running on f that use the same choice
of mini-batches. Assume w0 = x0 − x′0 aligns with e1 direction and |〈e1, w0〉| ≥ δ

4
√
d
. Let the

threshold distance L := γ
C3 max(ρ,ρ′/m) . Assume for every 0 ≤ t ≤

2 log( dγ
ρδ

)

ηγ − 1, ‖ξt − ξ′t‖ ≤
C′1√
b

min
(
L‖wt − ws(t)‖+ ρ′Pt(‖wt‖+ ‖ws(t)‖), L(‖wt‖+ ‖ws(t)‖)

)
,whereC ′1 comes from Lem-

ma 7. Then there exists large enough constant c such that as long as

η ≤ 1

c log(dγρδ )C ′1 · L
, C3 ≥

1

ηL
.

we have

max(‖xT − x̃‖, ‖x′T − x̃‖) ≥ L ,

for some T ≤
2 log( dγ

ρδ
)

ηγ .
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The proof of this lemma is similar to the analysis in Jin et al. (2017a). However, we make
crucial use of Lemma 7. Throughout the proof, the intuition is that at every iteration, wt is close to
a multiple of e1. Therefore, the next wt+1 is close to (I − ηH)wt = (1 + ηγ)wt. The difference
betweenwt+1 andwt is therefore only ηγwt whose norm is much smaller than eitherwt orwt+1. As
a result, Lemma 7 gives a much tighter bound on the variance, and allows the proof to go through.

Proof of Lemma 16. For the sake of contradiction, assume for any t ≤
2 log( dγ

ρδ
)

ηγ , max(‖xt −
x̃‖, ‖x′t − x̃‖) < L . Basically, we will show that the distance between two sequences grows expo-

nentially and will become larger than 2L after
2 log( dγ

ρδ
)

ηγ steps, which by triangle inequality implies

that at least one sequence escapes after
2 log( dγ

ρδ
)

ηγ steps.

For any 0 ≤ t ≤
2 log( dγ

ρδ
)

ηγ , we will inductively prove that

1. 4
5(1 + ηγ)t‖w0‖ ≤ ‖wt‖ ≤ 6

5(1 + ηγ)t‖w0‖;

2. ‖ξt − ξ′t‖ ≤ µ · ηγC ′1L(1 + ηγ)t‖w0‖, where µ = Õ(1).

The base case trivially holds because 4
5‖w0‖ ≤ ‖w0‖ ≤ 6

5‖w0‖ and ξ0 = ξ′0 = 0. Fix any

t ≤
2 log( dγ

ρδ
)

ηγ , assume for every τ ≤ t − 1, the two induction hypotheses hold, we prove they still
hold for t.

Proving Hypothesis 1. Let’s first prove 4
5(1 + ηγ)t‖w0‖ ≤ ‖wt‖ ≤ 6

5(1 + ηγ)t‖w0‖. We can
expand wt as follows,

wt = wt−1 − η(vt−1 − v′t−1)

= (I − ηH)wt−1 − η(∆t−1wt−1 + ξt−1 − ξ′t−1)

= (I − ηH)tw0 − η
t−1∑
τ=0

(I − ηH)t−τ−1(∆τwτ + ξτ − ξ′τ )

where ∆τ =
∫ 1

0 (∇2f(x′τ + θ(xτ −x′τ ))−H)dθ. It’s clear that the first term aligns with e direction
and has norm (1 + ηγ)t‖w0‖. Thus, we only need to show ‖η

∑t−1
τ=0(I − ηH)t−τ−1(∆τwτ + ξτ −

ξ′τ )‖ ≤ 1
5(1 + ηγ)t‖w0‖.
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We first look at the Hessian changing term. According to the assumptions, we know ‖xτ −

x̃‖, ‖x′τ − x̃‖ ≤ L for any τ ≤
2 log( dγ

ρδ
)

ηγ . Thus,∥∥∥∥∥η
t−1∑
τ=0

(I − ηH)t−τ−1∆τwτ

∥∥∥∥∥ ≤ η
t−1∑
τ=0

(1 + ηγ)t−τ−1‖∆τ‖‖wτ‖

≤ η
t−1∑
τ=0

ρmax(‖xτ − x̃‖, ‖x′τ − x̃‖)
6

5
(1 + ηγ)t‖w0‖

≤ η
t−1∑
τ=0

6

5
ρ

γ

C3 max(ρ, ρ′/m)
(1 + ηγ)t‖w0‖

≤ 1

γ
· 12

5
log(

dγ

ρδ
)
γ

C3
(1 + ηγ)t‖w0‖

≤ 1

10
(1 + ηγ)t‖w0‖,

where the second last inequality uses the assumption that t ≤
2 log( dγ

ρδ
)

ηγ and the last inequality holds

as long as C3 ≥ 24 log(dγρδ ).
For the variance term, we have∥∥∥∥∥η

t−1∑
τ=0

(I − ηH)t−τ−1(ξτ − ξ′τ )

∥∥∥∥∥ ≤ η
t−1∑
τ=0

(1 + ηγ)t−τ−1‖ξτ − ξ′τ‖

≤ η
t−1∑
τ=0

(1 + ηγ)t−τ−1µηγC ′1L(1 + ηγ)τ‖w0‖

≤ η
2 log(dγρδ )

ηγ
µηγC ′1L(1 + ηγ)t‖w0‖

≤ 1

10
(1 + ηγ)t‖w0‖,

where the last inequality holds as long as η ≤ 1

20 log( dγ
ρδ

)µC′1·L
.

Overall, we have ‖η
∑t−1

τ=0(I−ηH)t−τ−1(∆τwτ +ξτ−ξ′τ )‖ ≤ 1
5(1+ηγ)t‖w0‖, which implies

4
5(1 + ηγ)t‖w0‖ ≤ ‖wt‖ ≤ 6

5(1 + ηγ)t‖w0‖.

Proving Hypothesis 2. Next, we show the second hypothesis also holds, ‖ξt−ξ′t‖ ≤ µ·ηγC ′1L(1+
ηγ)t‖w0‖. We separately consider two cases when 1

ηγ ≤ m and 1
ηγ > m.

If 1
ηγ ≤ m, we have

‖ξt − ξ′t‖ ≤
C ′1√
b

(
L(‖wt‖+ ‖ws(t)‖)

)
≤C

′
1√
b
2L · 6

5
(1 + ηγ)t‖w0‖

≤µC
′
1L√
b

(1 + ηγ)t‖w0‖

≤µ · ηγC ′1L(1 + ηγ)t‖w0‖,
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where the third inequality holds as long as µ ≥ 3 and the last inequality holds because 1√
b
≤ 1

m ≤
ηγ.

If 1
ηγ > m, we need to bound ‖wt −ws(t)‖ more carefully. We can write wt −ws(t) as follows,

wt − ws(t) =
(

(I − ηH)t−s(t) − I
)
ws(t) − η

t−1∑
τ=s(t)

(I − ηH)t−τ−1(∆τwτ + ξτ − ξ′τ ).

For the first term, we have∥∥∥((I − ηH)t−s(t) − I
)
ws(t)

∥∥∥ ≤‖(I − ηH)t−s(t) − I‖‖ws(t)‖

≤ ((1 + ηγ)m − 1)
6

5
(1 + ηγ)t‖w0‖

≤3mηγ · (1 + ηγ)t‖w0‖,

where the last inequality holds since (1 + ηγ)m ≤ 1 + 2mηγ if mηγ < 1.
For the hessian changing term, we have

‖η
t−1∑
τ=s(t)

(I − ηH)t−τ−1∆τwτ‖ ≤ η
t−1∑
τ=s(t)

2
γ

C3
(1 + ηγ)t‖w0‖

≤ ηm · 2 γ

C3
(1 + ηγ)t‖w0‖

≤ mηγ(1 + ηγ)t‖w0‖,

assuming C3 ≥ 2.
For the variance term, we have

‖η
t−1∑
τ=s(t)

(I − ηH)t−τ−1(ξτ − ξ′τ )‖ ≤η
t−1∑
τ=s(t)

(1 + ηγ)t−τ−1‖ξτ − ξ′τ‖

≤η
t−1∑
τ=s(t)

(1 + ηγ)t−τ−1µηγC ′1L(1 + ηγ)τ‖w0‖

≤µC ′1ηL ·mηγ(1 + ηγ)t‖w0‖
≤mηγ(1 + ηγ)t‖w0‖,

where the second inequality uses induction hypothesis and the last inequality assumes η ≤ 1
C′1µ·L

.

Overall, we have ‖wt − ws(t)‖ ≤ 5mηγ(1 + ηγ)t‖w0‖. Thus, when 1
ηγ > m, we can bound

‖ξt − ξs(t)‖ as follows,

‖ξt − ξ′t‖ ≤
C ′1√
b

(
L‖wt − ws(t)‖+ ρ′Pt(‖wt‖+ ‖ws(t)‖)

)
≤C

′
1√
b

(
L · 5mηγ + ρ′

12γ

5C3 max(ρ, ρ′/m)

)
(1 + ηγ)t‖w0‖

≤C
′
1√
b

(
L · 5mηγ +

12

5
L ·mηγ

)
(1 + ηγ)t‖w0‖

≤µ · ηγC ′1L(1 + ηγ)t‖w0‖,
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where the second last inequality assumes C3 ≥ 1
ηL and the last inequality holds as long as µ ≥ 8.

Here, we use the fact that Pt ≤ max(‖xs(t) − x̃‖, ‖x′s(t) − x̃‖, ‖xt − x̃‖, ‖x
′
t − x̃‖) ≤ L .

Overall, we know there exists large enough constant c such that the induction holds as long as

η ≤ 1

c log(dγρδ )C ′1 · L

C3 ≥
1

ηL
.

Thus, we know ‖wt‖ ≥ 4
5(1 + ηγ)t‖w0‖ for any t ≤

2 log( dγ
ρδ

)

ηγ . Specifically, when t =
2 log( dγ

ρδ
)

ηγ ,
we have

‖wt‖ ≥
4

5
(1 + ηγ)t‖w0‖

≥ 4

5
(1 + ηγ)

2 log(
dγ
ρδ

)

ηγ
δ

4
√
d

≥ γ

5ρ
,

which implies max(‖xt− x̃‖, ‖x′t− x̃‖) ≥
γ

10ρ . Assuming C3 ≥ 10, this contradicts the assumption

that max(‖xt − x̃‖, ‖x′t − x̃‖) <
γ

C3 max(ρ,ρ′/m) =: L , for any t ≤
2 log( dγ

ρδ
)

ηγ . Thus, we know there

exists T ≤
2 log( dγ

ρδ
)

ηγ such that,

max(‖xT − x̃‖, ‖x′T − x̃‖) ≥ L .

�
In the next lemma, we show that the function value decrease can be lower bounded by the

distance to the snapshot point. Combined with the above lemma, this shows that the function value
decreases significantly in the super epoch. The proof of this lemma is almost the same as the proof
of Lemma 5.

Lemma 9 Let x0 be the initial point, which is also the snapshot point of the current epoch. Let
{xt} be the iterates of SVRG running on f starting from x0. Fix any t ≥ 1, suppose for every
0 ≤ τ ≤ t−1, ‖ξτ‖ ≤ C1L√

b
‖xτ−xs(τ)‖, whereC1 comes from Lemma 4. Given η ≤ 1

3C1L
, b ≥ m2,

we have
‖xt − x0‖2 ≤

4t

C1L
(f(x0)− f(xt)).

Proof of Lemma 9. From Equation (7) in the proof of Lemma 5, we know for any t′ ≤ t,

‖xt′ − xs(t′)‖2 ≤
2(t′ − s(t′))

C1L
(f(xs(t′))− f(xt′)),

where xs(t′) is the snapshot point of xt′ .
If t ≤ m, we know there is only one epoch from x0 to xt and

‖xt − x0‖2 ≤
2t

C1L
(f(x0)− f(xt)).
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If t > m, we need to divide xt − x0 into multiple epochs and bound them separately. We have

‖xt − x0‖2 = ‖xm − x0 + x2m − xm + · · ·xt − xs(t)‖2

≤ d t
m
e

bt/mc∑
τ=1

‖xτm − x(τ−1)m‖2 + ‖xt − xs(t)‖2


≤ 2t

m
· 2m

C1L
(f(x0)− f(xt))

≤ 4t

C1L
(f(x0)− f(xt))

Combining two cases, we have

‖xt − x0‖2 ≤
4t

C1L
(f(x0)− f(xt)).

�
Next, we show that starting from a randomly perturbed point, with constant probability the

function value decreases a lot within a super epoch.

Lemma 17 Let x̃ be the initial point with gradient ‖∇f(x̃)‖ ≤ G and λmin(H) = −γ < 0. Let
{xt} be the iterates of SVRG running on f starting from x0, which is a uniformly perturbed point
from x̃. There exist η = Õ(1/L), b = Õ(n2/3), δ = Õ(min( ργ

max(ρ2,(ρ′/m)2)
, γ1.5

max(ρ,ρ′/m)
√
L

)),G =

Õ(γ
2

ρ ),L = Õ( γ
max(ρ,ρ′/m)), Tmax = Õ( 1

ηγ ) such that with probability at least 1/8,

f(xT )− f(x̃) ≤ −C5 ·
γ3

max(ρ2, (ρ′/m)2)
;

and with high probability,

f(xT )− f(x̃) ≤ C5

20
· γ3

max(ρ2, (ρ′/m)2)
;

where C5 = Θ̃(1) and T is the length of the current super epoch and T ≤ Tmax.

This lemma is basically a combination of Lemma 16 and Lemma 17. Lemma 16 shows that
with reasonable probability, one of two random starting points is going to travel a large distance,
while Lemma 17 shows such a point would decrease the function value. The only additional thing
is to prove is that the function value does not increase by too much when the point does not escape.
Intuitively this is true because with high probability the function value can only increase during the
initial perturbation.

Proof of Lemma 17. With the help of Lemma 16, we first prove that {xt} escapes the saddle
point with a constant probability. Let {xt} and {x′t} be two SVRG sequences starting from x0 and
x′0 respectively, where x0 and x′0 are two perturbed points satisfying ‖x0 − x̃‖, ‖x′0 − x̃‖ ≤ δ.
According to Lemma 16, we know at least one sequence escapes the saddle point if x0 − x′0 aligns
with e1 direction and has norm as least δ

4
√
d
.
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We first show that, for two coupled random points x0 and x′0, their distance is at least δ
4
√
d

with
a reasonable probability. Marginally, x0 and x′0 are both uniformly sampled from the ball centered
at x̃ with radius δ. They are coupled in the sense that they have the same projections onto the
orthogonal subspace of e1. Then, similar as the analysis in Jin et al. (2017a),

Pr

[
‖x0 − x′0‖ <

δ

4
√
d

]
≤ 1

2

δ√
d
× Vol(B(d−1)

0 (δ))

Vol(B(d)
0 (δ))

=
1

2

1√
πd

Γ(d/2 + 1)

Γ(d/2 + 1/2)
≤ 1

2
.

Thus, we know with at least half probability, we have |〈x0 − x′0, e1〉| ≥ δ
4
√
d

. In order to apply

Lemma 16, we still need to make sure ‖ξt − ξ′t‖ is well bounded for every 0 ≤ t ≤
2 log( dγ

ρδ
)

ηγ − 1,
which happens with high probability due to Lemma 7. Thus, by the union bound and Lemma 16,
we know with probability no less than 1/3, at least one sequence between {xt} and {x′t} must
escape the saddle point. Marginally, we know from a randomly perturbed point x0, sequence {xt}
escapes the saddle point within a super epoch with probability at least 1/6. Precisely, there exists
η = 1

C6·L ,L = γ
C3 max(ρ,ρ′/m) , T ≤

C7
ηγ such that

‖xT − x̃‖ ≥ L

holds with probability at least 1/6. Here, we have C3, C6, C7 = Õ(1).
Combing Lemma 4 and Lemma 9, we also know with high probability

‖xT − x0‖2 ≤
T

C4L
(f(x0)− f(xT ))

where C4 = Õ(1).
By a union bound, we know with probability at least 1/8, we have

f(x0)− f(xT ) ≥C4L

T
‖xT − x0‖2

≥C4L

T
(‖xT − x̃‖ − ‖x0 − x̃‖)2

≥C4L

T

(
γ

C3 max(ρ, ρ′/m)
− δ
)2

≥C4Lηγ

C7

γ2

4C2
3 max(ρ2, (ρ′/m)2)

=
C4

4C7C2
3C6

γ3

max(ρ2, (ρ′/m)2)
,

where the last inequality holds as long as δ ≤ γ
2C3 max(ρ,ρ′/m) .

Let the threshold gradient G := γ2

C8ρ
. Since f is L-smooth, we have

f(x0)− f(x̃) ≤‖∇f(x̃)‖ · ‖x0 − x̃‖+
L

2
‖x̃− x0‖2

≤ γ2

C8ρ
δ +

L

2
δ2.
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Thus, with probability at least 1/8, we know

f(xT )− f(x̃) =f(xT )− f(x0) + f(x0)− f(x̃)

≤− C4

4C7C2
3C6

γ3

max(ρ2, (ρ′/m)2)
+

γ2

C8ρ
δ +

L

2
δ2.

If Lemma 16 fails, the function value is not guaranteed to decrease. On the other hand, we know
that with high probability the function value does not increase, f(xT )−f(x0) ≤ 0. Thus, with high
probability, we know

f(xT )− f(x̃) ≤ γ2

C8ρ
δ +

L

2
δ2.

Assuming δ ≤ min( C4C8

168C7C2
3C6

ργ
max(ρ2,(ρ′/m)2)

,
√

C4

84C7C2
3C6

γ1.5

max(ρ,ρ′/m)
√
L

),we know with prob-

ability at least 1/8,

f(xT )− f(x̃) ≤ −20

21
· C4

4C7C2
3C6

γ3

max(ρ2, (ρ′/m)2)
;

and with high probability,

f(xT )− f(x̃) ≤ 1

21
· C4

4C7C2
3C6

γ3

max(ρ2, (ρ′/m)2)
.

We finish the proof by choosing C5 := 20
21

C4

4C7C2
3C6

. �

Appendix D. Proofs of Exploiting Negative Curvature - Stabilized SVRG

In this section, we analyze the behavior of Stabilized SVRG when the initial gradient is small. The
proofs will depend on Lemma 4, Lemma 7 and Lemma 9, which were proved for f but clearly also
holds for shifted function f̂ .

Let the initial point of the super epoch be x̃, whose hessian is denoted byH. Assume the initial
point has large negative curvature, λmin(H) = −γ < 0. Let x0 be the perturbed point and let {xt}
be the SVRG iterates running on f̂ starting from x̃. As we discussed in Section 4.3, there are two
phases in the analysis. In the first phase, the distance between the current iterate xt and the starting
point x̃ remains small (comparable to the random perturbation), while at the end the direction of
xt− x̃ aligns with the negative eigendirections. In the second phase, the distance to the initial point
x̃ blows up exponentially and the algorithm escapes from saddle points.

To analyze the two phases of the algorithm, we make use of the following expansion for the
one-step movement of the algorithm:

Lemma 18 Let x̃ be the initial point with HessianH, and x0 be its perturbed point. Let {xt} be the
iterates of SVRG running on f̂ starting from x0. For any t ≥ 1, we have the following expansion,

xt − xt−1 =− η(I − ηH)t−1∇f̂(x0) + η2H
t−2∑
τ=0

(I − ηH)t−2−τξτ

− η
t−2∑
τ=0

(I − ηH)t−2−τ∆τ (xτ+1 − xτ )− ηξt−1,
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where variance term ξτ = vτ −∇f̂(xτ ) and hessian changing term ∆τ =
∫ 1

0 (∇2f̂(xτ + θ(xτ+1−
xτ ))−H)dθ.

Intuitively, the first term −η(I − ηH)t−1∇f̂(x0) corresponds to what happens to the algorithm
if the function is quadratic (with Hessian equal toH at x̃). The second and the fourth term measures
the difference introduced by the error in the gradient updates. The third term measures the difference
introduced by the fact that the Hessian is not a constant. Our analysis will bound the last three terms
to show that the behavior of the algorithm is very similar to what happens if we only have the first
term.

Proof of Lemma 18. According to the algorithm, we know

xt − xt−1 = −ηvt−1

= −η(∇f̂(xt−1) + ξt−1),

where ξt−1 = vt−1 −∇f̂(xt−1). We can further expand∇f̂(xt) as follows.

∇f̂(xt) = ∇f̂(xt−1) +

∫ 1

0

(
∇2f̂

(
xt−1 + θ(xt − xt−1)

))
dθ(xt − xt−1)

= ∇f̂(xt−1) +H(xt − xt−1) + ∆t−1(xt − xt−1)

= ∇f̂(xt−1)− ηH(∇f̂(xt−1) + ξt−1) + ∆t−1(xt − xt−1)

= (I − ηH)∇f̂(xt−1)− ηHξt−1 + ∆t−1(xt − xt−1)

= (I − ηH)t∇f̂(x0)− ηH
t−1∑
τ=0

(I − ηH)t−1−τξτ +

t−1∑
τ=0

(I − ηH)t−1−τ∆τ (xτ+1 − xτ ),

where ∆τ =
∫ 1

0 (∇2f̂(xτ + θ(xτ+1 − xτ ))−H)dθ. Thus, we know

xt − xt−1 =− η(∇f̂(xt−1) + ξt−1)

=− η(I − ηH)t−1∇f̂(x0) + η2H
t−2∑
τ=0

(I − ηH)t−2−τξτ

− η
t−2∑
τ=0

(I − ηH)t−2−τ∆τ (xτ+1 − xτ )− ηξt−1

�

D.1. Proofs of Phase 1

In Phase 1, the goal of the algorithm is to stay close to the original point x̃, while making xt − x̃
aligned with the negative eigendirections ofH (Hessian at x̃).

Recall the definition of the length of Phase 1 as follows,

T1 = sup

{
t|∀t′ ≤ t− 1,

(
t′ ≤ 1

ηγ

)
∨
(
‖ProjS(xt′ − x̃)‖ ≤ δ

10

)}
.
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We will first show that xt − xt−1 is bounded by Õ(1/t)δ for every 1 ≤ t ≤ min(T1,
log(d)
ηγ ). This

lemma is very technical, and the main idea is to use the expansion in Lemma 18 and bound the terms
by considering their projections in different subspaces. Intuitively, the behavior can be separated
into several cases based on the eigenvalues ofH in the corresponding subspace:

1. eigenvalue smaller than −γ/ log d. These directions will grow exponentially, and we will
stop the first phase when the projection in this subspace is large.

2. eigenvalue between −γ/ log d and 0. These directions will also grow, but they do not grow
by more than a constant factor.

3. small positive eigenvalue (smaller than +γ). These directions don’t move much throughout
the iterates.

4. large positive eigenvalue (much larger than γ). These directions move very fast at the begin-
ning, but converges very quickly and will not move much later on.

In the proof we will consider the behavior of these separate subspaces (where cases 3 and 4 will
be combined). The detailed proof is deferred to Section D.2.

Lemma 19 Let T1 be the length of Phase 1. Assume for any 0 ≤ t ≤ min(T1,
log(d)
ηγ ) − 1,

‖ξt‖ ≤ C1L√
b
‖xt − xs(t)‖, where C1 comes from Lemma 4. Then, there exists large enough constant

c such that as long as

η ≤ 1

cC1 log(nd) log(n log(d)
ηγ ) · L

, µ ≥ c log(d) log2(
log(d)

ηγ
), δ ≤ γ

ρµ2
,

we have for every 1 ≤ t ≤ min(T1,
log(d)
ηγ ),

‖xt − xt−1‖ ≤
µ

t
δ.

Now we want to prove that Phase 1 is successful with a reasonable probability. That is, at the
end of Phase 1, with reasonable probability the distance xT1− x̃ is order Õ(δ), while ProjS(xT1− x̃)
is at least δ/10, where δ is the perturbation radius. By the above lemma, actually we only need to
show that the length of Phase 1 is bounded by log(d)

ηγ . In the following proof, we show that between

a pair of coupled sequences, at least one of them must end the Phase 1 within log(d)
ηγ steps. Similar

as in Lemma 16, we use two point analysis to show the difference between two sequences along e1

direction increases exponentially and will become very large after log(d)
ηγ steps, which implies that

at least one sequence must have a large projection on S subspace.

Lemma 20 Let {xt} and {x′t} be two SVRG sequences running on f̂ that use the same choice
of mini-batches. Assume w0 = x0 − x′0 aligns with e1 direction and |〈e1, w0〉| ≥ δ

4
√
d
. Let

T1, T
′
1 be the length of Phase 1 for {xt} and {x′t} respectively. Assume for every 1 ≤ t ≤

min(T1,
log(d)
ηγ ), ‖xt − xt−1‖ ≤ C2

t δ and for every 1 ≤ t ≤ min(T ′1,
log(d)
ηγ ), ‖x′t − x′t−1‖ ≤

C2
t δ, where C2 comes from Lemma 19. Assume for every 0 ≤ t ≤ log(d)

ηγ − 1, ‖ξt − ξ′t‖ ≤
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C′1√
b

min
(
L‖wt − ws(t)‖+ ρ′Pt(‖wt‖+ ‖ws(t)‖), L(‖wt‖+ ‖ws(t)‖)

)
,whereC ′1 comes from Lem-

ma 7. Then there exists large enough constant c such that as long as

δ ≤ min

 γ

c log(d) log( log(d)
ηγ )C2ρ

,
mηLγ

ρ′

 , η ≤ 1

c log(d) log( log(d)
ηγ )C ′1C2 · L

,

we have min(T1, T
′
1) ≤ log(d)

ηγ . W.l.o.g., suppose T1 ≤ log(d)
ηγ and we further have

∀0 ≤ t ≤ T1, ‖xt − x̃‖ ≤ 3 log(
log(d)

ηγ
)C2δ,

‖ProjS(xT1 − x̃)‖ ≥ 1

10
δ.

Proof of Lemma 20. For the sake of contradiction, assume the length of Phase 1 for both sequences
are larger than log(d)

ηγ . Basically, we will show that the distance between two sequences along e1

direction grows exponentially and will become very large after log(d)
ηγ steps, which implies that at

least one sequence has a large projection along e1 direction after log(d)
ηγ steps.

For any 0 ≤ t ≤ log(d)
ηγ , we will inductively prove that

1. ‖Proje1wt‖ ≥
4
5(1 + ηγ)t‖w0‖ and ‖wt‖ ≤ 6

5(1 + ηγ)t‖w0‖;

2. ‖ξt − ξ′t‖ ≤ µ · ηγC ′1L(1 + ηγ)t‖w0‖, where µ = Õ(1).

The base case trivially holds. Fix any t ≤ log(d)
ηγ , assume for every τ ≤ t− 1, the two induction

hypotheses hold, we prove they still hold for t.

Proving Hypothesis 1. Let’s first prove ‖Proje1wt‖ ≥
4
5(1 + ηγ)t‖w0‖ and ‖wt‖ ≤ 6

5(1 +
ηγ)t‖w0‖. We can expand wt as follows,

wt = wt−1 − η(vt−1 − v′t−1)

= (I − ηH)wt−1 − η(∆t−1wt−1 + ξt−1 − ξ′t−1)

= (I − ηH)tw0 − η
t−1∑
τ=0

(I − ηH)t−τ−1(∆τwτ + ξτ − ξ′τ )

where ∆τ =
∫ 1

0 (∇2f̂(x′τ + θ(xτ −x′τ ))−H)dθ. It’s clear that the first term aligns with e direction
and has norm (1 + ηγ)t‖w0‖. Thus, we only need to show ‖η

∑t−1
τ=0(I − ηH)t−τ−1(∆τwτ + ξτ −

ξ′τ )‖ ≤ 1
5(1 + ηγ)t‖w0‖.
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We first look at the Hessian changing term. According to the assumptions, we know ‖xτ −
x̃‖, ‖x′τ − x̃‖ ≤ 3 log( log(d)

ηγ )C2δ for any τ ≤ log(d)
ηγ . Thus,∥∥∥∥∥η

t−1∑
τ=0

(I − ηH)t−τ−1∆τwτ

∥∥∥∥∥ ≤ η
t−1∑
τ=0

(1 + ηγ)t−τ−1‖∆τ‖‖wτ‖

≤ η
t−1∑
τ=0

ρmax(‖xτ − x̃‖, ‖x′τ − x̃‖)
6

5
(1 + ηγ)t‖w0‖

≤ η
t−1∑
τ=0

18

5
log(

log(d)

ηγ
)C2ρδ(1 + ηγ)t‖w0‖

≤ 1

γ
· 4 log(d) log(

log(d)

ηγ
)C2ρδ(1 + ηγ)t‖w0‖

≤ 1

10
(1 + ηγ)t‖w0‖,

where the last inequality holds as long as δ ≤ γ

40 log(d) log(
log(d)
ηγ

)C2ρ
.

By the analysis in Lemma 16, we can bound the variance term as follows,∥∥∥∥∥η
t−1∑
τ=0

(I − ηH)t−τ−1(ξτ − ξ′τ )

∥∥∥∥∥ ≤ 1

10
(1 + ηγ)t‖w0‖,

assuming η ≤ 1
10 log(d)µC′1·L

.

Overall, we have ‖η
∑t−1

τ=0(I−ηH)t−τ−1(∆τwτ +ξτ−ξ′τ )‖ ≤ 1
5(1+ηγ)t‖w0‖, which implies

‖Projewt‖ ≥ 4
5(1 + ηγ)t‖w0‖ and ‖wt‖ ≤ 6

5(1 + ηγ)t‖w0‖.

Proving Hypothesis 2. Next, we show the second hypothesis also holds, ‖ξt−ξ′t‖ ≤ µ·ηγC ′1L(1+
ηγ)t‖w0‖. We separately consider two cases when 1

ηγ ≤ m and 1
ηγ > m. If 1

ηγ ≤ m, the analysis
is same as in Lemma 16. We have ‖ξt − ξ′t‖ ≤ µ · ηγC ′1L(1 + ηγ)t‖w0‖, as long as µ ≥ 3.

If 1
ηγ > m, we need to bound ‖wt −ws(t)‖ more carefully. We can write wt −ws(t) as follows,

wt − ws(t) =
(

(I − ηH)t−s(t) − I
)
ws(t) − η

t−1∑
τ=s(t)

(I − ηH)t−τ−1(∆τwτ + ξτ − ξ′τ ).

The analysis for the first term and the variance term is again same as in Lemma 16. We have

∥∥∥((I − ηH)t−s(t) − I
)
ws(t)

∥∥∥+

∥∥∥∥∥∥η
t−1∑
τ=s(t)

(I − ηH)t−τ−1(ξτ − ξ′τ )

∥∥∥∥∥∥ ≤ 4mηγ · (1 + ηγ)t‖w0‖,

assuming η ≤ 1
C′1µ·L

.
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For the Hessian changing term, we have∥∥∥∥∥∥η
t−1∑
τ=s(t)

(I − ηH)t−τ−1∆τwτ

∥∥∥∥∥∥ ≤ η
t−1∑
τ=s(t)

3 log(
log(d)

ηγ
)C2ρδ

6

5
(1 + ηγ)t‖w0‖

≤ ηm · 4 log(
log(d)

ηγ
)C2ρδ(1 + ηγ)t‖w0‖

≤ mηγ(1 + ηγ)t‖w0‖,

assuming δ ≤ γ

4 log(
log(d)
ηγ

)C2ρ
.

Overall, we have ‖wt − ws(t)‖ ≤ 5mηγ(1 + ηγ)t‖w0‖. Thus, when 1
ηγ > m, we can bound

‖ξt − ξ′t‖ as follows,

‖ξt − ξ′t‖ ≤
C ′1√
b

(
L‖wt − ws(t)‖+ ρ′Pt(‖wt‖+ ‖ws(t)‖)

)
≤C

′
1√
b

(
L · 5mηγ + 8 log(

log(d)

ηγ
)C2ρ

′δ

)
(1 + ηγ)t‖w0‖

≤C
′
1√
b

(
L · 5mηγ + L · 8 log(

log(d)

ηγ
)C2mηγ

)
(1 + ηγ)t‖w0‖

≤µ · ηγC ′1L(1 + ηγ)t‖w0‖,

where the second last inequality assumes δ ≤ mηLγ
ρ′ and the last inequality holds as long as µ ≥

5 + 8 log( log(d)
ηγ )C2. Here, we also use the fact that Pt ≤ max(‖xs(t) − x̃‖, ‖x′s(t) − x̃‖, ‖xt −

x̃‖, ‖x′t − x̃‖) ≤ 3 log( log(d)
ηγ )C2δ.

Overall, we know there exists large enough constant c such that the induction holds given

δ ≤ min

 γ

c log(d) log( log(d)
ηγ )C2ρ

,
mηLγ

ρ′


η ≤ 1

c log(d) log( log(d)
ηγ )C ′1C2 · L

.

Thus, we know ‖Proje1wt‖ ≥
4
5(1+ηγ)t‖w0‖ for any t ≤ log(d)

ηγ . Specifically, when t = log(d)
ηγ ,

we have

‖Proje1wt‖ ≥
4

5
(1 + ηγ)t‖w0‖

≥ 4

5
(1 + ηγ)

log(d)
ηγ

δ

4
√
d

>
δ

5
,

which implies max(‖Proje1xt − x̃‖, ‖Proje1x
′
t − x̃‖) > δ

10 . This contradicts the assumption that
neither sequence stops within log(d)

ηγ steps. Thus, we know min(T1, T
′
1) ≤ log(d)

ηγ . Without loss of
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generality, suppose T1 ≤ log(d)
ηγ , we have

∀0 ≤ t ≤ T1, ‖xt − x̃‖ ≤ 3 log(
log(d)

ηγ
)C2δ,

‖ProjS(xT1 − x̃)‖ ≥ 1

10
δ.

�

D.2. Proof of Lemma 19

In this section, we show that in Phase 1 the total movement is bounded by Õ(δ) within log(d)
ηγ steps.

We recall Lemma 19 as follows.

Lemma 19 Let T1 be the length of Phase 1. Assume for any 0 ≤ t ≤ min(T1,
log(d)
ηγ ) − 1, ‖ξt‖ ≤

C1L√
b
‖xt − xs(t)‖, where C1 comes from Lemma 4. Then, there exists large enough constant c such

that as long as

η ≤ 1

cC1 log(nd) log(n log(d)
ηγ ) · L

, µ ≥ c log(d) log2(
log(d)

ηγ
), δ ≤ γ

ρµ2
,

we have for every 1 ≤ t ≤ min(T1,
log(d)
ηγ ),

‖xt − xt−1‖ ≤
µ

t
δ.

Proof of Lemma 19.
We prove for every 1 ≤ t ≤ min(T1,

log(d)
ηγ ), ‖xt − xt−1‖ ≤ µ

t δ by induction. For the base

case, we have x1 − x0 = −η∇f̂(x0). Since the gradient at x̃ is zero, we have

‖∇f̂(x0)‖ = ‖∇f̂(x0)−∇f̂(x̃)‖
≤ L‖x0 − x̃‖
≤ Lδ,

where the first inequality holds since f (f̂ ) is L-smooth. As long as µ ≥ ηL, we have ‖x1 − x0‖ ≤
µδ.

Fix any t ≤ min(T1,
log(d)
ηγ ), suppose for any t′ ≤ t − 1, ‖xt′ − xt′−1‖ ≤ µ

t′ δ, we will prove
‖xt − xt−1‖ ≤ µ

t δ. In order to prove ‖xt − xt−1‖ ≤ µ
t δ, we will separately bound its projections

onto three orthogonal subspaces. Specifically, we consider the following three subspaces:

• S: subspace spanned by the eigenvectors ofH with eigenvalues within [−γ,− γ
log(d) ].

• S⊥− : subspace spanned by the eigenvectors ofH with eigenvalues within (− γ
log(d) , 0].

• S⊥+ : subspace spanned by the eigenvectors ofH with eigenvalues within (0, L].
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Regarding the projections onto S⊥− and S⊥+ , we will use the following expansion of xt − xt−1,

xt − xt−1

=− η(I − ηH)t−1∇f̂(x0) + η2H
t−2∑
τ=0

(I − ηH)t−2−τξτ

− η
t−2∑
τ=0

(I − ηH)t−2−τ∆τ (xτ+1 − xτ )− ηξt−1 (8)

and bound its four terms one by one. In the expansion, we denote ∆τ :=
∫ 1

0 (∇2f̂(xτ + θ(xτ+1 −
xτ ))−H)dθ.

For the projection in subspace S, after 1
ηγ steps, we cannot bound it using the above expansion

since the exponential factor can be very large. Instead, we bound the projection in subspace S by
the stopping condition ‖ProjS(xt−1 − x̃)‖ ≤ δ

10 using an alternative expansion,

xt − xt−1 =− η(∇f̂(xt−1) + ξt−1)

=− ηH(xt−1 − x̃)− η∆′t−1(xt−1 − x̃)− ηξt−1,

where ∆′t−1 =
∫ 1

0 (∇2f̂(x̃+ θ(xt−1 − x̃))−H)dθ.
We will first bound the projections of xt − xt−1 on S⊥+ and S⊥− by considering the four terms

in Eqn. 8. For the first term, the projection in subspace S⊥− can increase but will not increase by
more than a constant factor; the projection in S⊥+ might start large but will decrease as the number
of iterations increases.

Bounding ‖ProjS⊥−η(I − ηH)t−1∇f̂(x0)‖ : For this term we will show that its projection on S⊥−
is small to begin with and cannot be amplified by more than a constant. Recall that ∇f̂(x0) =
H(x0 − x̃) + ∆(x0 − x̃), where ∆ =

∫ 1
0 (∇2f̂(x̃ + θ(x0 − x̃)) − H)dθ. Due to the Hessian

lipschitzness of f , we have ‖∆‖ ≤ ρδ. Then, we can bound η‖ProjS⊥− (I − ηH)t−1∇f̂(x0)‖ as
follows.

η‖ProjS⊥− (I − ηH)t−1∇f̂(x0)‖ =η
∥∥∥ProjS⊥− (I − ηH)t−1 (H(x0 − x̃) + ∆(x0 − x̃))

∥∥∥
≤η‖ProjS⊥− (I − ηH)t−1H(x0 − x̃)‖

+ η‖ProjS⊥− (I − ηH)t−1∆(x0 − x̃)‖

≤η(1 +
ηγ

log(d)
)
log(d)
ηγ

γ

log(d)
δ + η(1 +

ηγ

log(d)
)
log(d)
ηγ ρδ2

≤ e

log(d)
ηγδ + eηρδ2

≤2eηγδ,

where the last inequality holds as long as δ ≤ γ
ρ . Since t ≤ log(d)

ηγ , we have

η‖ProjS⊥− (I − ηH)t−1∇f̂(x0)‖ ≤ 2e log(d)

t
δ.
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Bounding ‖ProjS⊥+η(I − ηH)t−1∇f̂(x0)‖ : The key observation here is that ∇f̂(x0) can only
be large along an eigendirection if the corresponding eigenvalue λ is large; however in this case the
(I − ηH) term will also be significantly smaller than 1 in such a direction so the contribution from
this direction decreases quickly. More precisely, we have

η‖ProjS⊥+ (I − ηH)t−1∇f̂(x0)‖ =η‖ProjS⊥+ (I − ηH)t−1(H(x0 − x̃) + ∆(x0 − x̃))‖

≤η‖ProjS⊥+ (I − ηH)t−1H(x0 − x̃)‖

+ η‖ProjS⊥+ (I − ηH)t−1∆(x0 − x̃)‖

≤‖ProjS⊥+ (I − ηH)t−1ηH‖δ + ηρδ2

≤1

t
δ + ηρδ2,

where the last inequality holds since (1 − λ)t−1λ ≤ 1/t for 0 < λ ≤ 1. Assuming δ ≤ γ
ρ , we can

further show

ηρδ2 ≤ ηγδ ≤ log(d)

t
δ.

Thus, we have

η‖ProjS⊥+ (I − ηH)t−1∇f̂(x0)‖ ≤ 2 log(d)

t
δ.

Next we will bound the norm of the variance term. The main observation here is that based on
induction hypothesis, we can have a good upperbound on ‖ξτ‖. Now, for subspaces S⊥+ and S⊥− , we
will show that the additional matrices in front of ξτ will not amplify its norm by too much.

Bounding ‖ProjS⊥+η
2H
∑t−2

τ=0(I − ηH)t−2−τξτ‖ : For each τ ≤ t− 2, we bound variance term
‖ξτ‖ as follows,

‖ξτ‖ = ‖vτ −∇f̂(xτ )‖

≤ C1L√
b
‖xτ − xs(τ)‖

≤ C1L

m
‖xτ − xs(τ)‖

≤ C1L

m

τ∑
τ ′=s(τ)+1

‖xτ ′ − xτ ′−1‖

≤ C1L

m

τ∑
τ ′=s(τ)+1

µ

τ ′
δ,
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where the second inequality assumes b ≥ m2 and the last inequality is due to the induction hypoth-
esis. If t ≤ 2m, we bound ‖ProjS⊥+η

2H
∑t−2

τ=0(I − ηH)t−2−τξτ‖ as follows.∥∥∥∥∥ProjS⊥+η
2H

t−2∑
τ=0

(I − ηH)t−2−τξτ

∥∥∥∥∥ ≤ η
t−2∑
τ=0

‖ProjS⊥+ηH(I − ηH)t−2−τ‖‖ξτ‖

≤ η
t−2∑
τ=0

1

t− 1− τ

C1L

m

τ∑
τ ′=s(τ)+1

µ

τ ′
δ


≤ η

t−2∑
τ=0

1

t− 1− τ

(
2C1 log(2m)L

m
µδ

)
≤ 4C1 log2(2m)

m
ηLµδ

≤ 8C1 log2(2m)

t
ηLµδ,

where the third inequality holds since
∑τ

τ ′=s(τ)+1
1
τ ′ ≤ log(τ) + 1 ≤ log(2m) + 1 ≤ 2 log(2m).

If t > 2m, we bound ‖ProjS⊥+η
2H
∑t−2

τ=0(I − ηH)t−2−τξτ‖ as follows.∥∥∥∥∥ProjS⊥+η
2H

t−2∑
τ=0

(I − ηH)t−2−τξτ

∥∥∥∥∥ ≤ η
t−2∑
τ=0

‖ProjS⊥+ηH(I − ηH)t−2−τ‖‖ξτ‖

≤ η

(
m−1∑
τ=0

1

t− 1− τ
‖ξτ‖+ η

t−2∑
τ=m

1

t− 1− τ
‖ξτ‖

)
.

We bound these two terms in slightly different ways. For the first term, we have,

η
m−1∑
τ=0

1

t− 1− τ
‖ξτ‖ ≤ η

m−1∑
τ=0

1

t− 1− τ

(
2C1 log(m)L

m
µδ

)

≤ η
m−1∑
τ=0

2

t

(
2C1 log(m)L

m
µδ

)
≤ 4C1 log(m)

t
ηLµδ,
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where the second inequality holds since t−m > t/2. For the second term, we bound it as follows.

η
t−2∑
τ=m

1

t− 1− τ
‖ξτ‖ ≤ η

t−2∑
τ=m

1

t− 1− τ

C1L

m

τ∑
τ ′=s(τ)+1

µ

τ ′
δ


≤ η

t−2∑
τ=m

1

t− 1− τ

(
C1L

µ

s(τ) + 1
δ

)

≤ C1ηLµδ

t−2∑
τ=m

1

t− 1− τ
· 1

τ −m+ 1

= C1ηLµδ

t−2∑
τ=m

(
1

t− 1− τ
+

1

τ −m+ 1

)
1

t−m

≤
8C1 log( log(d)

ηγ )

t
ηLµδ

where the third inequality holds because τ − s(τ) ≤ m. Thus, if t > 2m, we have∥∥∥∥∥ProjS⊥+η
2H

t−2∑
τ=0

(I − ηH)t−2−τξτ

∥∥∥∥∥ ≤ 8C1 log(m log(d)
ηγ )

t
ηLµδ.

Thus, combining two cases when t ≤ 2m and t > 2m, we know∥∥∥∥∥ProjS⊥+η
2H

t−2∑
τ=0

(I − ηH)t−2−τξτ

∥∥∥∥∥ ≤ max

(
8C1 log2(2m), 8C1 log(m

log(d)

ηγ
)

)
1

t
ηLµδ.

Bounding ‖ProjS⊥−η
2H
∑t−2

τ=0(I − ηH)t−2−τξτ‖ : Let’s now consider the projection on the S⊥−
subspace. ∥∥∥∥∥ProjS⊥−η

2H
t−2∑
τ=0

(I − ηH)t−2−τξτ

∥∥∥∥∥
≤η2

t−2∑
τ=0

‖ProjS⊥−H‖‖ProjS⊥− (I − ηH)t−2−τ‖‖ξτ‖

≤η2 γ

log(d)
(1 +

ηγ

log(d)
)
log(d)
ηγ

t−2∑
τ=0

‖ξτ‖

≤η2 eγ

log(d)

(
m−1∑
τ=0

2C1 log(m)L

m
µδ +

t−2∑
τ=m

C1L
1

τ −m+ 1
µδ

)

≤2 log(m
log(d)

ηγ
)eC1ηLµδ

ηγ

log(d)

≤2 log(m
log(d)

ηγ
)eC1ηLµδ

log(d)

t log(d)

=
2eC1 log(m log(d)

ηγ )

t
ηLµδ.
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Next we bound the Hessian changing term. This is easy because this term is actually of order
δ2 where δ is the radius of the initial perturbation. Therefore we can bound it as long as we make δ
small.

Bounding ‖ProjS⊥+∩S⊥−η
∑t−2

τ=0(I − ηH)t−2−τ∆τ (xτ+1 − xτ )‖ : First, we bound ‖∆τ‖ for each
τ ≤ t− 2.

‖∆τ‖ ≤ρmax(‖xτ+1 − x̃‖, ‖xτ − x̃‖)

≤ρ(
τ+1∑
τ ′=1

‖xτ ′ − xτ ′−1‖+ ‖x0 − x̃‖)

≤ρ(
τ+1∑
τ ′=1

1

τ ′
µδ + δ)

≤3 log(
log(d)

ηγ
)ρµδ,

where the third inequality uses the induction hypothesis. Then, for the Hessian changing term, we
have ∥∥∥∥∥ProjS⊥+∩S⊥−η

t−2∑
τ=0

(I − ηH)t−2−τ∆τ (xτ+1 − xτ )

∥∥∥∥∥
≤η

t−2∑
τ=0

‖ProjS⊥+∩S⊥− (I − ηH)t−2−τ‖‖∆τ‖‖(xτ+1 − xτ )‖

≤η
t−2∑
τ=0

(1 +
ηγ

log(d)
)
log(d)
ηγ · 3 log(

log(d)

ηγ
)ρµδ

1

τ + 1
µδ

≤η
t−2∑
τ=0

e · 3 log(
log(d)

ηγ
)ρµδ

1

τ + 1
µδ

≤6e log2(
log(d)

ηγ
)ηρµ2δ2

≤6e log2(
log(d)

ηγ
)ηγδ

≤6e log2(
log(d)

ηγ
) log(d)

1

t
δ,

where the second last inequality holds as long as δ ≤ γ
ρµ2

.
Next, we bound the norm of the error in the last gradient estimate. This follows immediately

from induction hypothesis.

Bounding ‖ηξt−1‖: For the last term ηξt−1. If t ≤ 2m, we have

‖ηξt−1‖ ≤ η
2C1 log(2m)L

m
µδ

≤ 4C1 log(2m)
1

t
ηLµδ.
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If t > 2m, we have

‖ηξt−1‖ ≤ η
C1L

s(t− 1) + 1
µδ

≤ η C1L

t−m
µδ

≤ 2

t
ηC1Lµδ.

Overall, we have

‖ηξt−1‖ ≤ 4C1 log(2m)
1

t
ηLµδ.

Until now, we have already bounded the projection of xt−xt−1 in subspace S⊥+ and S⊥− . Finally,
we bound the projection of xt − xt−1 on the S subspace. If t − 1 ≤ 1

ηγ , we bound it using the
expansion in Eqn. 8 similar as above. If t − 1 > 1

ηγ , we use the stopping condition to bound the
projection on S.

Bounding ‖ProjS(xt−xt−1)‖ If t−1 ≤ 1
ηγ , the exponential factor (1+ηγ)t−1 is still a constant.

Similar as the analysis for the projection on subspace S⊥− , we have the following bound,∥∥∥ProjSη(I − ηH)t−1∇f̂(x0)
∥∥∥ ≤ 2e log(d)

t
δ,∥∥∥∥∥ProjSη

2H
t−2∑
τ=0

(I − ηH)t−2−τξτ

∥∥∥∥∥ ≤ 2eC1 log(m log(d)
ηγ ) log(d)

t
ηLµδ,∥∥∥∥∥ProjSη

t−2∑
τ=0

(I − ηH)t−2−τ∆τ (xτ+1 − xτ )

∥∥∥∥∥ ≤ 6e log2(
log(d)

ηγ
) log(d)

1

t
δ.

If t−1 > 1
ηγ , according to the stopping condition of Phase 1, we know ‖ProjS(xt−1−x̃)‖ ≤ δ

10 .
In order to better exploit this property, we express xt − xt−1 in the following way,

xt − xt−1 =− η(∇f̂(xt−1) + ξt−1)

=− ηH(xt−1 − x̃)− η∆t−1(xt−1 − x̃)− ηξt−1,

where ∆t−1 =
∫ 1

0 (∇2f̂(x̃+ θ(xt−1 − x̃))−H)dθ. For the first term, we have

‖ProjSηH(xt−1 − x̃)‖ ≤ ηγ‖ProjS(xt−1 − x̃)‖ ≤ ηγ δ
10
≤ log(d)

10t
δ.

For the hessian changing term, we have

‖ProjSη∆t−1(xt−1 − x̃)‖ ≤ ‖η∆t−1(xt−1 − x̃)‖
≤ ηρ‖xt−1 − x̃‖2

≤ ηρ(3 log(
log(d)

ηγ
)µδ)2

≤ 9 log2(
log(d)

ηγ
)ηγδ

≤ 9 log2(
log(d)

ηγ
) log(d)

1

t
δ
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where the second last inequality assumes δ ≤ γ
ρµ2

.
Combining the bound for the projections onto all three subspaces, we know there exists absolute

constant c, such that

‖xt − xt−1‖ ≤
c

2
log(d) log2(

log(d)

ηγ
)
1

t
δ +

c

2
C1 log(nd) log(n

log(d)

ηγ
)
1

t
ηLµδ,

assuming δ ≤ min(γρ ,
γ
ρµ2

). Now, we know ‖xt − xt−1‖ ≤ 1
tµδ, as long as

η ≤ 1

cC1 log(nd) log(n log(d)
ηγ ) · L

,

µ ≥ c log(d) log2(
log(d)

ηγ
),

δ ≤ γ

ρµ2
.

�

D.3. Proofs of Phase 2

We have shown that at the end of Phase 1, xT1 − x̃ becomes aligned with the negative directions.
Based on this property, we show the projection of xt − x̃ on S subspace grows exponentially and
exceeds the threshold distance within Õ( 1

ηγ ) steps. We use the following expansion,

xt − x̃ = (I − ηH)(xt−1 − x̃)− η∆t−1(xt−1 − x̃)− ηξt−1,

where ∆t−1 =
∫ 1

0 (∇2f̂(x̃ + θ(xt−1 − x̃)) − H)dθ. Intuitively, if we only have the first term, it’s
clear that ‖ProjS(xt − x̃)‖ ≥ (1 + ηγ

log(d))‖ProjS(xt−1 − x̃)‖. We show that the Hessian chang-
ing term and the variance term are negligible in the sense that ‖η∆t−1(xt−1 − x̃) − ηξt−1‖ ≤
ηγ

2 log(d)‖ProjS(xt−1− x̃)‖. The Hessian changing term can be easily bounded because the threshold

distance L = Õ(γρ ).We will bound the variance by showing that ‖xt−xt−1‖ ≤ Õ(1/t)‖xt−1−x̃‖.
We also need xt−1−x̃ to be roughly aligned with the negative directions in order to bound ‖xt−1−x̃‖
by Õ(1)‖ProjS(xt−1 − x̃)‖.

There are several key differences between Phase 1 and Phase 2 . First, we use Lemma 7 to
bound the variance (this is effective because the point does not move far in Phase 1), but we use
Lemma 4 to bound variance in Phase 2 (this is effective because in Phase 2 the projection in the
most negative eigenvalue is already large). Second, in Phase 1 we need to analyze the difference
between two points, and the direction e1 is dominating. In Phase 2 we can analyze the dynamics of
a single point, and focus on the entire subspace with eigenvalues less than −γ/ log d instead of a
single e1 direction.

Lemma 21 Let the threshold distance L := γ
C3ρ

. Let T be the length of the super epoch, which
means T := inf{t| ‖xt − x̃‖ ≥ L }. Assume for any 0 ≤ t ≤ T − 1, ‖ξt‖ ≤ C1L√

b
‖xt − xs(t)‖,

where C1 comes from Lemma 4. Assume Phase 1 is successful in the sense that

1

ηγ
≤ T1 ≤

log(d)

ηγ
, ∀ 1 ≤ t ≤ T1, ‖xt − xt−1‖ ≤

C2

t
δ,

‖ProjS(xT1 − x̃)‖ ≥ δ

10
, ∀ 0 ≤ t ≤ T1, ‖xt − x̃‖ ≤ C

δ

10
,
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where C2 comes from Lemma 19 and C comes from Lemma 20. There exists large enough absolute
constant c such that as long as

η ≤ 1

L · cCC1

(
log2(n) + log(n

log(d) log( γ
ρδ

)

ηγ )

) ,
C3 ≥ c

(
C2 + C log(

log(d) log( γρδ )

ηγ
) log(d) log(

γ

ρδ
)

)
,

b ≥ n2/3 · c

(
C log(d) log(

γ

ρδ
)

(
C2 + C log(

log(d) log( γρδ )

ηγ
) log(d) log(

γ

ρδ
)

))2/3

,

we have

T ≤ T1 +
4 log(d) log(10γ

ρδ )

ηγ
≤

log(d) + 4 log(d) log(10γ
ρδ )

ηγ
.

Proof of Lemma 21. Let Tmax = T1 +
4 log(d) log( 10γ

ρδ
)

ηγ . If there exists t ≤ Tmax−1, ‖xt− x̃‖ ≥ L ,
we are done. Otherwise, we show ‖xt − x̃‖ increases exponentially and will become larger than L
after Tmax steps.

Formally, we show the following four hypotheses hold for any T1 ≤ t ≤ Tmax by induction,

1.
‖ProjS(xt − x̃)‖ ≥ (1 +

ηγ

2 log(d)
)t−T1‖ProjS(xT1 − x̃)‖;

2.
‖ProjS⊥(xt − x̃)‖
‖ProjS(xt − x̃)‖

≤ C(1 +
ηγ

4 log(d) log(10γ
ρδ )

)t−T1 ,

where S⊥ denotes the orthogonal subspace of S;

3. For any 0 ≤ τ ≤ t− 1, we have

‖xt − x̃‖ ≥ ‖ProjS(xt − x̃)‖ ≥ 1

eC + 1
‖xτ − x̃‖;

4. For any 1 ≤ τ ≤ t, we have

‖xτ − xτ−1‖ ≤
µ

τ
max(‖xτ−1 − x̃‖,

δ

10
),

where µ = Õ(1).

Hypothesis 1 is our goal, which is showing the distance to the initial point increases exponen-
tially in Phase 2. We use hypothesis 4 to bound the variance term. We also need Hypothesis 2
and 3 for some technical reason, which will only be clear in the later proof. Basically, hypothesis 2
guarantees that xt− x̃ roughly aligns with the S subspace. Hypothesis 3 guarantees that the distance
to the initial point cannot shrink by too much.
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Let’s first check the initial case first. If t = T1, the first hypothesis clearly holds. For the second
hypothesis, we have

‖ProjS⊥(xT1 − x̃)‖
‖ProjS(xT1 − x̃)‖

≤ ‖xT1 − x̃‖
‖ProjS(xT1 − x̃)‖

≤ C.

The third hypothesis holds because ‖xT1 − x̃‖ ≥ ‖ProjS(xT1 − x̃)‖ ≥ δ/10 and ‖xt− x̃‖ ≤ Cδ/10
for any t ≤ T1. Since ‖xt − xt−1‖ ≤ C2

t δ for any 1 ≤ t ≤ T1, the fourth hypothesis holds as long
as µ ≥ 10C2.

Now, fix T1 < t ≤ Tmax, assume all four hypotheses hold for every T1 ≤ t′ ≤ t− 1, we prove
they still hold for t.

Proving Hypothesis 4: In order to prove Hypothesis 4, we only need to show ‖xt − xt−1‖ ≤
µ
t max(‖xt−1 − x̃‖, δ/10). Let S+ be the subspace spanned by all the eigenvectors of H with
positive eigenvalues. Let S− be the subspace spanned by all the eigenvectors ofH with non-positive
eigenvalues. We project xt − xt−1 into these two subspaces and bound them separately.

Bounding ‖ProjS−(xt − xt−1)‖: Consider the following expansion of xt − xt−1 :

xt − xt−1 =− η(∇f̂(xt−1) + ξt−1)

=− ηH(xt−1 − x̃)− η∆t−1(xt−1 − x̃)− ηξt−1,

where ∆t−1 =
∫ 1

0 (∇2f̂(x̃ + θ(xt−1 − x̃)) − H)dθ. We bound ProjS−(xt − xt−1) by separately
considering these three terms.

The first term can be bounded because within subspace S−, the largest singular value of H is
just γ. Precisely, we have

‖ProjS−ηH(xt−1 − x̃)‖ ≤ηγ‖xt−1 − x̃‖

≤

(
log(d) + 4 log(d) log(10γ

ρδ )
)

t
‖xt−1 − x̃‖,

where the second inequality holds because t ≤ Tmax ≤
(

log(d)+4 log(d) log( 10γ
ρδ

)
)

ηγ .

Since f is Hessian lipschitz and the total distance is upper bounded by γ
C3ρ

, the second term can
also be well bounded. We have,

‖ProjS−η∆t−1(xt−1 − x̃)‖ ≤‖η∆t−1(xt−1 − x̃)‖
≤ηρ‖xt−1 − x̃‖‖xt−1 − x̃‖
≤ηρL ‖xt−1 − x̃‖

≤η γ
C3
‖xt−1 − x̃‖

≤
log(d) + 4 log(d) log(10γ

ρδ )

C3t
‖xt−1 − x̃‖,

where the second inequality holds due to the Hessian-lipshcitzness of f .
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We can bound the variance term using Hypothesis 3 and 4. Precisely, we have

‖ηξt−1‖ ≤η
m√
b

C1L

m

t−1∑
τ=s(t−1)+1

‖xτ − xτ−1‖

≤η m√
b

C1L

m

t−1∑
τ=s(t−1)+1

µ

τ
max(‖xτ−1 − x̃‖,

δ

10
)

≤η m√
b

C1L

m

t−1∑
τ=s(t−1)+1

µ

τ
(eC + 1)‖xt−1 − x̃‖,

where the last inequality holds requires ‖xt−1−x̃‖ ≥ 1
eC+1 max(‖xτ−1−x̃‖, δ10) for any τ ≤ t−1.

According to induction hypothesis 3, we have ‖xt−1− x̃‖ ≥ 1
eC+1‖xτ−1− x̃‖ for any τ ≤ t−1. By

induction hypothesis 1, we have ‖xt−1− x̃‖ ≥ ‖ProjS(xt−1− x̃)‖ ≥ (1 + ηγ
2 )t−1−T1‖ProjS(xT1 −

x̃)‖ ≥ δ
10 . Using the same analysis in Lemma 19, we further have

‖ηξt−1‖ ≤
m√
b
4(eC + 1)C1 log(2m)

1

t
ηLµ‖xt−1 − x̃‖.

Bounding ‖ProjS+(xt − xt−1)‖ : For the projection onto S+, we use the following expansion:

xt − xt−1 =− η(I − ηH)t−1∇f̂(x0) + η2H
t−2∑
τ=0

(I − ηH)t−2−τξτ

− η
t−2∑
τ=0

(I − ηH)t−2−τ∆τ (xτ+1 − xτ )− ηξt−1,

Similar as the analysis in Lemma 19, we can bound the first term as follows,

‖ProjS+η(I − ηH)t−1∇f̂(x0)‖ ≤ 2 log(d)

t
δ ≤ 20 log(d)

t
‖xt−1 − x̃‖,

where the second inequality holds because ‖xt−1 − x̃‖ ≥ δ/10.
Using a similar analysis as in Lemma 19, we have the following bound for the second term,∥∥∥∥∥ProjS+η2H

t−2∑
τ=0

(I − ηH)t−2−τξτ

∥∥∥∥∥
≤ m√

b
(eC + 1) max(8C1 log2(2m), 8C1 log(mTmax))

1

t
ηLµ‖xt−1 − x̃‖.
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For the hessian changing term, we have∥∥∥∥∥ProjS+η
t−2∑
τ=0

(I − ηH)t−2−τ∆τ (xτ+1 − xτ )

∥∥∥∥∥
≤η

t−2∑
τ=0

‖∆τ‖‖xτ+1 − xτ‖

≤η
t−2∑
τ=0

γ

C3
(eC + 1)

µ

τ + 1
‖xt−1 − x̃‖

≤2 log(Tmax)ηγ(eC + 1)
µ

C3
‖xt−1 − x̃‖

≤2(eC + 1) log(Tmax)
µ

C3

log(d) + 4 log(d) log(10γ
ρδ )

t
‖xt−1 − x̃‖

≤2(eC + 1) log(Tmax)
log(d) + 4 log(d) log(10γ

ρδ )

t
‖xt−1 − x̃‖,

where the last inequality holds as long as C3 ≥ µ.
Overall, we can upper bound ‖xt − xt−1‖ as follows,

‖xt − xt−1‖

≤
(

20 log(d) + (
1

C3
+ 1 + 2(eC + 1) log(Tmax))

(
log(d) + 4 log(d) log(

10γ

ρδ
)
))1

t
‖xt−1 − x̃‖

+
(
4(eC + 1)C1 log(2m) + (eC + 1) max(8C1 log2(2m), 8C1 log(mTmax))

) 1

t
ηLµ‖xt−1 − x̃‖

≤
(

20 log(d) + (2 + 2(eC + 1) log(Tmax))
(

log(d) + 4 log(d) log(
10γ

ρδ
)
))1

t
‖xt−1 − x̃‖

+
(
4(eC + 1)C1 log(2n) + (eC + 1) max(8C1 log2(2n), 8C1 log(nTmax))

) 1

t
ηLµ‖xt−1 − x̃‖,

assuming C3 ≥ 1. As long as

η ≤ 1

2L ·
(
4(eC + 1)C1 log(2n) + (eC + 1) max(8C1 log2(2n), 8C1 log(nTmax))

)
and

µ ≥ 2

(
20 log(d) + (2 + 2(eC + 1) log(Tmax))

(
log(d) + 4 log(d) log(

10γ

ρδ
)

))
,

we have ‖xt − xt−1‖ ≤ µ
t ‖xt−1 − x̃‖.

Proving Hypothesis 2: In order to prove condition 2 holds for time t, we only need to show

‖ProjS⊥(xt − x̃)‖
‖ProjS(xt − x̃)‖

≤ (1 +
ηγ

4 log(d) log(10γ
ρδ )

)Pt−1,

where Pt−1 := C(1 + ηγ

4 log(d) log( 10γ
ρδ

)
)t−1−T1 .
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We can express xt − x̃ as follows,

xt − x̃ = (I − ηH)(xt−1 − x̃)− η∆t−1(xt−1 − x̃)− ηξt−1.

Assuming ‖η∆t−1(xt−1 − x̃)‖+ ‖ηξt−1‖ ≤ C̃ηγ‖xt−1 − x̃‖, C̃ = Õ(1), we have

‖ProjS⊥(xt − x̃)‖ ≤ (1 +
ηγ

log(d)
)‖ProjS⊥(xt−1 − x̃)‖+ C̃ηγ‖xt−1 − x̃‖

and
‖ProjS(xt − x̃)‖ ≥ (1 +

ηγ

log(d)
)‖ProjS(xt−1 − x̃)‖ − C̃ηγ‖xt−1 − x̃‖.

Then, we have

‖ProjS⊥(xt − x̃)‖
‖ProjS(xt − x̃)‖

≤
Pt−1(1 + ηγ

log(d)) + (Pt−1 + 1)C̃ηγ

1 + ηγ
log(d) − (Pt−1 + 1)C̃ηγ

=Pt−1

(
1 + ηγ

log(d) + (1 + 1
Pt−1

)C̃ηγ

1 + ηγ
log(d) − (Pt−1 + 1)C̃ηγ

)

=Pt−1

(
1 +

(1 + 1
Pt−1

)C̃ηγ + (Pt−1 + 1)C̃ηγ

1 + ηγ
log(d) − (Pt−1 + 1)C̃ηγ

)

≤Pt−1

(
1 + (1 +

1

Pt−1
+ Pt−1 + 1)C̃ηγ

)
≤Pt−1

(
1 + (3 + eC)C̃ηγ

)
,

where the second last inequality holds as long as (Pt−1 + 1)C̃ ≤ (eC + 1)C̃ ≤ 1/ log(d) and the
last inequality holds because 1 ≤ Pt−1 ≤ eC. Now, as long as C̃ ≤ 1

(3+eC)4 log(d) log( 10γ
ρδ

)
, we have

‖ProjS⊥(xt − x̃)‖
‖ProjS(xt − x̃)‖

≤(1 +
ηγ

4 log(d) log(10γ
ρδ )

)Pt−1

≤C(1 +
ηγ

4 log(d) log(10γ
ρδ )

)t−T1 .

For the hessian changing term, we have ‖η∆t−1(xt−1 − x̃)‖ ≤ 1
C3
ηγ‖xt−1 − x̃‖. For the

variance term, according to the previous analysis and the choosing of η, we have

‖ηξt−1‖ ≤
m

2
√
b
µ

1

t
‖xt−1 − x̃‖ ≤

m

2
√
b
µηγ‖xt−1 − x̃‖

where the second inequality holds because t ≥ T1 ≥ 1
ηγ . As long as C3 ≥ 2

C̃
and b ≥ ( µ

C̃
)2/3n2/3,

we have ‖η∆t−1(xt−1 − x̃)‖+ ‖ηξt−1‖ ≤ C̃ηγ‖xt−1 − x̃‖.
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Proving Hypothesis 1. In order to prove hypothesis 1, we only need to show ‖ProjS(xt − x̃)‖ ≥
(1 + ηγ

2 log(d))‖ProjS(xt−1 − x̃)‖. We know,

‖ProjS(xt − x̃)‖ ≥(1 +
ηγ

log(d)
)‖ProjS(xt−1 − x̃)‖ − C̃ηγ‖xt−1 − x̃‖

≥(1 +
ηγ

log(d)
)‖ProjS(xt−1 − x̃)‖ − (eC + 1)C̃ηγ‖ProjS(xt−1 − x̃)‖

≥(1 +
ηγ

2 log(d)
)‖ProjS(xt−1 − x̃)‖,

where the last inequality holds as long as C̃ ≤ 1
2(eC+1) log(d) .

Proving Hypothesis 3. For τ ≤ t− 2, we have

‖xt − x̃‖ ≥‖ProjS(xt − x̃)‖
≥‖ProjS(xt−1 − x̃)‖

≥ 1

eC + 1
‖xτ − x̃‖,

where the second inequality holds because ‖ProjS(xt− x̃)‖ ≥ (1 + ηγ
2 log(d))‖ProjS(xt−1− x̃)‖ and

the last inequality holds due to the induction hypothesis 3.
Since ‖ProjS(xt−1 − x̃)‖ ≥ 1

eC+1‖xt−1 − x̃‖, we also have

‖xt − x̃‖ ≥‖ProjS(xt − x̃)‖
≥‖ProjS(xt−1 − x̃)‖

≥ 1

eC + 1
‖xt−1 − x̃‖.

Thus, there exists large enough absolute constant c such that the induction holds as long as

η ≤ 1

L · cCC1

(
log2(n) + log(n

log(d) log( γ
ρδ

)

ηγ )

) ,
C3 ≥ c

(
C2 + C log(

log(d) log( γρδ )

ηγ
) log(d) log(

γ

ρδ
)

)

b ≥ cn2/3

(
C log(d) log(

γ

ρδ
)

(
C2 + C log(

log(d) log( γρδ )

ηγ
) log(d) log(

γ

ρδ
)

))2/3

.

Finally, we have

‖xTmax − x̃‖ ≥‖ProjS(xTmax − x̃)‖

≥(1 +
ηγ

2 log(d)
)Tmax−T1‖ProjS(xT1 − x̃)‖

≥(1 +
ηγ

2 log(d)
)
4 log(d) log(

10γ
ρδ

)

ηγ
δ

10

≥γ
ρ
≥ γ

C3ρ
:= L .

�
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D.4. Proof of Lemma 22

Finally, we combine the analysis for Phase 1 and Phase 2 to show that starting from a randomly
perturbed point, with at least constant probability the function value decreases significantly after a
super epoch.

Lemma 22 Let x̃ be the initial point with gradient ‖∇f(x̃)‖ ≤ G and λmin(H) = −γ < 0.
Define stabilized function f̂ such that f̂(x) := f(x) − 〈∇f(x̃), x − x̃〉. Let {xt} be the iterates of
SVRG running on f̂ starting from x0, which is the perturbed point of x̃. Let T be the length of the
current super epoch. There exists η = Õ(1/L), b = Õ(n2/3),m = n/b, δ = Õ(min(γρ ,

mγ
ρ′ )),G =

Õ(γ
2

ρ ),L = Õ(γρ ), Tmax = Õ( 1
ηγ ) such that with probability at least 1/8,

f(xT )− f(x̃) ≤ −C5 ·
γ3

ρ2
;

and with high probability,

f(xT )− f(x̃) ≤ C5

20
· γ

3

ρ2
;

where C5 = Θ̃(1) and T ≤ Tmax.

Proof of Lemma 22. Combining Lemma 20 and the coupling probabilistic argument in Lemma 17,
we know from a randomly perturbed point x0, sequence {xt} succeeds in Phase 1 with probability
at least 1/6. By Lemma 4, we know with high probability, there exists C1 = Õ(1), such that
‖ξt‖ ≤ C1L√

b
‖xt − xs(t)‖ for any 0 ≤ t ≤ T − 1, where T is the super epoch length. Then, combing

with Lemma 21 and Lemma 9, with probability at least 1/8 we know there exists η = 1
C6L

, b =

Õ(n2/3), δ = Õ(min(γρ ,
mγ
ρ′ )), T ≤ Tmax := C7

ηγ such that,

‖xT − x̃‖ ≥ L :=
γ

C3ρ
, ‖xT − x0‖2 ≤

T

C4L
(f̂(x0)− f̂(xT ))

where C3, C4, C6, C7 = Õ(1).
Since ‖xT − x0‖2 ≤ T

C4L
(f̂(x0)− f̂(xT )), we have

f̂(x0)− f̂(xT ) ≥C4L

T
‖xT − x0‖2

≥C4L

T
(‖xT − x̃‖ − ‖x0 − x̃‖)2

≥C4L

T

(
γ

C3ρ
− δ
)2

≥C4L

T

γ2

4C2
3ρ

2

=
C4

4C7C2
3C6

γ3

ρ2
,

where the last inequality holds as long as δ ≤ γ
2C3ρ

.
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Since f̂ is L-smooth and∇f̂(x̃) = 0, we have

f̂(x0)− f̂(x̃) ≤ L

2
‖x̃− x0‖2 ≤

L

2
δ2.

Let the threshold gradient G := γ2

C8ρ
. For the function value difference between two sequence, we

have

f(xT )− f̂(xT ) ≤‖∇f(x̃)‖ · ‖xT − x̃‖

Since T is the length of the current super epoch, we know ‖xT−1 − x̃‖ < L . According to the
analysis in Lemma 21, we also know ‖xT − x̃‖ ≤ 3‖xT−1 − x̃‖ ≤ 3L . Thus, we have

f(xT )− f̂(xT ) ≤G · 3L

≤ γ2

C8ρ

3γ

C3ρ

=
3

C8C3

γ3

ρ2
.

Thus, with probability at least 1/8, we know

f(xT )− f(x̃) =f(xT )− f̂(x̃)

=f̂(xT )− f̂(x0) + f̂(x0)− f̂(x̃) + f(xT )− f̂(xT )

≤− C4

4C7C2
3C6

γ3

ρ2
+
L

2
δ2 +

3

C8C3

γ3

ρ2
.

If Phase 1 is not successful, the function value may not decrease. On the other hand, we know
f̂(xT )− f̂(x0) ≤ 0 with high probability. Thus, with high probability, we know

f(xT )− f(x̃) ≤ L

2
δ2 +

3

C8C3

γ3

ρ2
.

Assuming δ ≤
√

C4

84C7C2
3C6

γ3

ρ2
and C8 ≥ 504C7C3C6

C4
, we know with probability at least 1/8,

f(xT )− f(x̃) ≤ −20

21
· C4

4C7C2
3C6

γ3

ρ2
;

and with high probability,

f(xT )− f(x̃) ≤ 1

21
· C4

4C7C2
3C6

γ3

ρ2
.

We finish the proof by choosing C5 := 20
21

C4

4C7C2
3C6

. �
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Appendix E. Proof of Theorem 3

In the previous analysis, we already showed that Algorithm 5 can decrease the function value either
when the current point has a large gradient or has a large negative curvature. In this section, we
combine these two cases to show Stabilized SVRG will at least once get to an ε-second-order sta-
tionary point within Õ(n

2/3L∆f
ε2

+
n
√
ρ∆f

ε1.5
) time. We omit the proof for Theorem 2 since it’s almost

the same as the proof for Theorem 3 except for using different guarantees for negative curvature
exploitation super-epoch.

Recall Theorem 3 as follows.

Theorem 3 Assume the function f(x) is ρ-Hessian Lipschitz, and each individual function fi(x)
is L-smooth and ρ′-Hessian Lipschitz. Let ∆f := f(x0) − f∗, where x0 is the initial point and
f∗ is the optimal value of f . There exists mini-batch size b = Õ(n2/3), epoch length m = n/b,
step size η = Õ(1/L), perturbation radius δ = Õ(min(

√
ε√
ρ ,

m
√
ρε

ρ′ )), super epoch length Tmax =

Õ( L√
ρε), threshold gradient G = Õ(ε), threshold distance L = Õ(

√
ε√
ρ), such that Stabilized SVRG

(Algorithm 5) will at least once get to an ε-second-order stationary point with high probability using

Õ(
n2/3L∆f

ε2
+
n
√
ρ∆f

ε1.5
)

stochastic gradients.

Proof of Theorem 3. Recall that we call the steps between the beginning of perturbation and the
end of perturbation a super epoch. Outside of the super epoch, we use random stopping, which is
equivalent to finish the epoch first and then uniformly sample a point from this epoch. In light of
Lemma 6, we divide epochs 1 into two types: if at least half of points from {xτ}t+mτ=t+1 have gradient
norm at least G , we call it a useful epoch; otherwise, we call it a wasted epoch. For simplicity of
analysis, we further define extended epoch, which constitutes of a useful epoch or a super epoch and
all its preceding wasted epochs. With this definition, we can view the iterates of Algorithm 5 as a
concatenation of extended epochs.

First, we show that within each extended epoch, the number of wasted epochs before a useful
epoch or a super epoch is well bounded with high probability. Suppose {xτ}t+mτ=t+1 is a wasted
epoch, we know at least half of points from {xτ}t+mτ=t+1 have gradient norm at most G . Thus, uni-
formly sampled from {xτ}t+mτ=t+1, point xt′ has gradient norm ‖∇f(xt′)‖ ≤ G with probability at
least half. Note for different wasted epochs, returned points are independently sampled. Thus, with
high probability, the number of wasted epochs in an extended epoch is Õ(1). As long as the number
of “extended” epochs is polynomially many through the algorithm, by union bound the number of
“wasted” epochs for every “extended” epoch is Õ(1) with high probability.

We divide the extended epochs into the following three types.

• Type-1: the extended epoch ends with a useful epoch.

• Type-2: the extended epoch ends with a super epoch whose starting point has Hessian with
minimum eigenvalue less that −√ρε.

• Type-3: the extended epoch ends with a super epoch whose starting point is an ε-second-order
stationary point.

1. Here, we only mean the epochs outside of super epochs.
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For the type-1 extended epoch, according to Lemma 6, we know with probability at least 1/5,
the function value decrease by at least Ω̃(n1/3ε2/L); and with high probability, the function value
does not increase. By standard concentration bound, we know after logarithmic number of type-1
extended epochs, with high probability, at least 1/6 fraction of them decrease the function value by
Õ(n1/3ε2/L).

For the type-2 extended epoch, according to Lemma 22, we know with probability at least 1/8,
the function value decreases by at least C5ε

1.5/
√
ρ; and with high probability, the function value

cannot increase by more than C5
20 ε

1.5/
√
ρ, where C5 = Θ̃(1). Again, by standard concentration

bound, we know after logarithmic number of type-2 extended epochs, with high probability, at least
1/10 fraction of them decreases the function value by at least C5ε

1.5/
√
ρ. Let the total number of

type-2 extended epochs be N2, we know with high probability the overall function value decrease
within these type-2 extended epochs is at least N2C5

20 ε1.5/
√
ρ.

Thus, after Õ( L∆f
n1/3ε2

) number of type-1 extended epochs or Õ(
√
ρ∆f

ε1.5
) number of type-2 extend-

ed epochs, with high probability the function value decrease will be more than ∆f . We also know
that the time consumed within a type-1 extended epoch is Õ(n) with high probability; and that for
a type-2 extended epoch is Õ(n+ n2/3L/

√
ρε). Therefore, after

Õ

(
L∆f

n1/3ε2
· n+

√
ρ∆f

ε1.5
(n+

n2/3L
√
ρε

)

)

stochastic gradients, we will at least once get to an ε-second-order stationary point with high prob-
ability. �

Appendix F. Hessian Lipschitz Parameters for Matrix Sensing

In this section we consider a simple example for non-convex optimization and show that in natural
conditions the Hessian Lipschitz parameter for the average function f can be much smaller than the
Hessian Lipschitz parameter for the individual functions.

The problem we consider is the symmetric matrix sensing problem. In this problem, there is
an unknown low rank matrix M∗ ∈ Rd×d = U∗(U∗)> where U∗ ∈ Rd×r. In order to find M∗,
one can make observations bi = 〈Ai,M∗〉, where Ai’s are random matrices with i.i.d. standard
Gaussian entries. A typical non-convex formulation of this problem is as follows:

min
U∈Rd×r

f(U) =
1

2n

n∑
i=1

(〈Ai,M〉 − bi)2, (9)

where M := UU>, U ∈ Rd×r. It was shown in (Bhojanapalli et al., 2016; Ge et al., 2017a) that all
local minima of this objective satisfies UU> = M∗ when n = Cd for a large enough constant C.
We can easily view this objective as a finite sum objective by defining fi(U) = 1

2(〈Ai,M〉 − bi)2.
Without loss of generality, we will assume ‖U∗‖ = 1 (otherwise everything just scales with

‖U∗‖). A slight complication for the objective (9) is that the function is not Hessian Lipschitz in the
entire Rd×r. However, it is easy to check that if the initial U0 satisfies ‖U0‖ ≤ 4 then all the iterates
Ut for gradient descent (and SVRG) will satisfy ‖Ut‖ ≤ 4 (with high probability for SVRG). So we
will constrain our interest in the set of matrices B = {U ∈ Rd×r : ‖U‖ ≤ 4}.
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Theorem 23 Assume sensing matrices Ai’s are random matrices with i.i.d. standard Gaussian
entries.. When n ≥ Cdr for some large enough universal constant C, for any U, V in B = {U ∈
Rd×r : ‖U‖ ≤ 4}, for objective f in Equation (9), with high probability

‖∇2f(U)−∇2f(V )‖ ≤ O(1)‖U − V ‖F .

On the other hand, for the individual function fi(U) = 1
2(〈Ai,M〉 − bi)2 with high probability,

there exists U, V in B such that

‖∇2fi(U)−∇2fi(V )‖ = Ω(d)‖U − V ‖F .

Before we prove the theorem, let us first see what this implies. In a natural case when r is
a constant, n = Crd for large enough C, for the matrix sensing we have ρ = O(1), but ρ′ =
Ω(d) = Ω(n). Therefore, the guarantee for Perturbed SVRG (Theorem 2) is going to be much
worse compared to the guarantee of Stabilized SVRG (Theorem 3).

Let us first adapt the notation from Ge et al. (2017a) and write out the Hessian of the objective.

Definition 24 For matrices B,B′, let B : H : B′ , 1
n

∑n
i=1〈Ai, B〉〈Ai, B′〉.

Lemma 25 (Ge et al. (2017a)) The Hessian of the objective f(U) in direction Z ∈ Rd×r can be
computed as

∇2f(U)(Z,Z) = (UZ> + ZU>) : H : (UZ> + ZU>) + 2(UU> −M∗) : H : ZZ>.

Similarly, the Hessian of an individual function fi(U) satisfies

∇2fi(U)(Z,Z) = 〈UZ>, Ai +A>i 〉2 + 1/2〈UU> −M∗, Ai +A>i 〉〈ZZ>, Ai +A>i 〉.

Another key property we will need is the Restrict Isometry Property (RIP) (Recht et al., 2010).

Definition 26 (Matrix RIP) The set of sensing matrix is (r, δ)-RIP if for any matrix B of rank at
most r we always have

(1− δ)‖B‖2F ≤ B : H : B ≤ (1 + δ)‖B‖2F .

Candes and Plan (2011) showed that random Gaussian sensing matrices satisfy RIP with high
probability as long as n is sufficiently large

Theorem 27 (Candes and Plan (2011)) Suppose n ≥ Cdr/δ2, then random Gaussian sensing
matrices satisfy the (r, δ)-RIP with high probability.

Now we are ready to prove Theorem 23.

Proof of Theorem 23. We will first prove the upperbound for the average function.
For the upperbound, assume that the sensing matrices are (2r, δ)-RIP for δ = 1/10. By Theo-

rem 27 we know this happens with high probability when n ≥ 200Crd where C was the constant
in Theorem 27.
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For any ‖U‖, ‖V ‖ ≤ 4 and Z ∈ Rd×r, we use Lemma 25 to compute the Hessian and take the
difference in the direction of Z

|∇2f(U)(Z,Z)−∇2f(V )(Z,Z)|
= (UZ> + ZU>) : H : (UZ> + ZU>)− (V Z> + ZV >) : H : (V Z> + ZV >)

+ 2(UU> −M∗) : H : ZZ> − 2(V V > −M∗) : H : V V >

= (UZ> + ZU>) : H :
(
(U − V )Z> + Z(U − V )>

)
+
(
(U − V )Z> + Z(U − V )>

)
: H : (V Z> + ZV >)

+ 2(UU> − V V >) : H : ZZ>

≤ (1 + δ)‖UZ> + ZU>‖F ‖(U − V )Z> + Z(U − V )>‖F
+ (1 + δ)‖(U − V )Z> + Z(U − V )>‖F ‖V Z> + ZV >‖F
+ 2(1 + δ)‖UU> − V V >‖F ‖ZZ>‖F

≤ 32(1 + δ)‖Z‖2F ‖U − V ‖F + 16(1 + δ)‖U − V ‖F ‖Z‖2F
= 48(1 + δ)‖U − V ‖F ‖Z‖2F ,

where the first inequality uses the definition of RIP and Cauchy-Schwartz inequality, and the second
inequality uses ‖U‖, ‖V ‖ ≤ 4 and the fact that ‖AB‖F ≤ ‖A‖‖B‖F . Thus, for any U, V ∈ B, and
any direction Z, we have

|∇2f(U)(Z,Z)−∇2f(V )(Z,Z)|
‖Z‖2F

≤ 48(1 + δ)‖U − V ‖F .

This implies that ρ ≤ 48(1 + δ) = 264
5 .

Next we prove the lowerbound for individual functions. We will consider V = U + ε∆ and
let ε go to 0. This allows us to ignore some higher order terms in ε. Following Lemma 25, let
A = Ai +A>i , we have

∇2fi(V )(Z,Z)−∇2fi(U)(Z,Z) = 2ε〈∆Z>, A〉〈UZ>, A〉+ ε〈∆U>, A〉〈ZZ>, A〉+O(ε2).

It is easy to check that the matrix A/
√

2 has the same distribution as the Gaussian Orthogonal
Ensemble. By standard results in random matrix theory (Bai and Yin, 1988; Tao, 2012) we know
with high probability λmax(A) ≥

√
d. Let λ = λmax(A) and v be a corresponding eigenvector. We

will take U = ∆ = Z = ve>1 where e1 is the first basis vector. In this case, we have

∇2fi(V )(Z,Z)−∇2fi(U)(Z,Z) = 2ε〈∆Z>, A〉〈UZ>, A〉+ ε〈∆U>, A〉〈ZZ>, A〉+O(ε2)

= 2ε〈vv>, A〉2 + ε〈vv>, A〉2 +O(ε2)

= 3ελ2 +O(ε2)

= 3λ2‖U − V ‖F + o(‖U − V ‖F ).

Note that Z satisfies ‖Z‖F = 1, so the calculation above implies ρ′ ≥ 3λ2 ≥ 3d.
�
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Appendix G. Tools

Matrix concentration bounds tell us that with enough number of independent samples, the empirical
mean of a random matrix can converge to the mean of this matrix.

Lemma 28 (Matrix Bernstein; Theorem 1.6 in Tropp (2012)) Consider a finite sequence {Zk}
of independent, random matrices with dimension d1×d2. Assume that each random matrix satisfies

E[Zk] = 0 and ‖Zk‖ ≤ R almost surely.

Define
σ2 := max

{∥∥∑
k

E[ZkZ
∗
k ]
∥∥,∥∥∑

k

E[Z∗kZk]
∥∥}.

Then, for all t ≥ 0,

Pr
{∥∥∑

k

Zk
∥∥ ≥ t} ≤ (d1 + d2) exp

( −t2/2
σ2 +Rt/3

)
.

As a corollary, we have:

Lemma 29 (Bernstein Inequality: Vector Case) Consider a finite sequence {vk} of independent,
random vectors with dimension d. Assume that each random vector satisfies

‖vk − E[vk]‖ ≤ R almost surely.

Define
σ2 :=

∑
k

E
[
‖vk − E[vk]‖2

]
.

Then, for all t ≥ 0,

Pr
{
‖
∑
k

(vk − E[vk])‖ ≥ t
}
≤ (d+ 1) · exp

( −t2/2
σ2 +Rt/3

)
.
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