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Abstract
We provide excess risk guarantees for statistical learning in a setting where the population risk
with respect to which we evaluate the target model depends on an unknown model that must be
to be estimated from data (a “nuisance model”). We analyze a two-stage sample splitting meta-
algorithm that takes as input two arbitrary estimation algorithms: one for the target model and one
for the nuisance model. We show that if the population risk satisfies a condition called Neyman
orthogonality, the impact of the nuisance estimation error on the excess risk bound achieved by the
meta-algorithm is of second order. Our theorem is agnostic to the particular algorithms used for the
target and nuisance and only makes an assumption on their individual performance. This enables the
use of a plethora of existing results from statistical learning and machine learning literature to give
new guarantees for learning with a nuisance component. Moreover, by focusing on excess risk rather
than parameter estimation, we can give guarantees under weaker assumptions than in previous works
and accommodate the case where the target parameter belongs to a complex nonparametric class. We
characterize conditions on the metric entropy such that oracle rates—rates of the same order as if we
knew the nuisance model—are achieved. We also analyze the rates achieved by specific estimation
algorithms such as variance-penalized empirical risk minimization, neural network estimation and
sparse high-dimensional linear model estimation. We highlight the applicability of our results in
four settings of central importance in the literature: 1) heterogeneous treatment effect estimation, 2)
offline policy optimization, 3) domain adaptation, and 4) learning with missing data.1
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1. Introduction

Predictive models based on modern machine learning methods are becoming increasingly widespread
in policy making, with applications in health care, education, law enforcement, and business decision
making. Most problems that arise in policy making, such as attempting to predict counterfactual
outcomes for different interventions or optimizing policies over such interventions, are not pure
prediction problems, but rather are causal in nature. It is important to address the causal aspect of
these problems and build models that have a causal interpretation.

A common paradigm in the search of causality is that to estimate a model with a causal interpre-
tation from observational data—for example, data not collected via randomized trial or via a known
treatment policy—one typically needs to estimate many other quantities that are not of primary

1. This paper is an extended abstract. The full version appears as arXiv preprint 1901.09036 v3.

© 2019 D.J. Foster & V. Syrgkanis.



STATISTICAL LEARNING WITH A NUISANCE COMPONENT

interest, but that can be used to de-bias a purely predictive machine learning model by formulating
an appropriate loss. Examples of such nuisance parameters include the propensity for taking an
action under the current policy, which can be used to form unbiased estimates for the reward of new
policies, but is typically unknown in datasets that do not come from controlled experiments.

This motivation leads us to formulate the abstract problem of statistical learning with a nuisance
component: Given n i.i.d. examples from a distribution D, a learner is interested in finding a target
model θ̂n ∈ Θn so as to minimize a population risk function LD ∶ Θn × Gn → R. The population
risk depends not just on the target model, but also on a nuisance model whose true value g0 ∈ Gn is
unknown to the learner. The goal of the learner is to produce an estimate that has small excess risk
evaluated at the unknown true nuisance model:

LD(θ̂n, g0) − infθ∈Θn LD(θ, g0). (1)

Depending on the application, such an excess risk bound can take different interpretations. For
many settings, such as treatment effect estimation, it is closely related to mean squared error, while
in policy optimization problems it may correspond to regret. Following the tradition of statistical
learning theory (Vapnik, 1995), we make excess risk the primary focus of our work, independent of
the interpretation. We develop algorithms and analysis tools that generically address (1), then apply
these tools to a number of applications of interest.

Our approach is to reduce the problem of statistical learning with a nuisance component to the
standard formulation of statistical learning. Rather than directly analyzing particular algorithms and
models from machine learning (e.g., regularized regression, gradient boosting, or neural network
estimation), we assume access to 1) an arbitrary estimation algorithm for the target class with a
black-box guarantee for excess risk in the case where a nuisance value g ∈ Gn is given, and 2) an
arbitrary estimation algorithm for the nuisance model. We analyze a two-stage sample splitting
meta-algorithm that first estimates the nuisance model, then uses this estimator as a plug-in to
estimate the target model. We can now state the main question addressed in this paper: When is the
excess risk achieved by sample splitting robust to nuisance component estimation error?

Overview of results. We show that Neyman orthogonality, which has been used to prove oracle
rates for inference in semiparametric models (Neyman, 1959, 1979; Chernozhukov et al., 2018), is
key to providing oracle rates for statistical learning with a nuisance component. We prove that if the
population risk satisfies a functional analogue of Neyman orthogonality, then the estimation error of
ĝn has a second order impact on the overall excess risk (relative to g0) achieved by θ̂n.
We identify two regimes of excess risk behavior:

1. When the population risk is strongly convex with respect to the prediction of the target model
(e.g. the treatment effect estimation loss), then typically so-called fast rates (e.g. rates of
order of O(1/n) for parametric classes) are achievable had we known the true nuisance
model. LettingRGn denote the estimation error of the nuisance component (root-mean-squared
prediction error for most of our settings), then in the fast rate setting we show that orthogonality
implies that the first stage error has an impact on the excess risk of the order of R4

Gn (e.g. n−1/4

RMSE rates for the nuisance suffice when the target is parametric).

2. Absent any assumption on the convexity of the population risk (e.g. the treatment policy
optimization loss), then typically slow rates (e.g. rates of order O(1/

√
n) for parametric

classes) are achievable had we known the true nuisance model. In this case the impact of
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nuisance estimation error is of the orderR2
Gn so, once again, n−1/4 RMSE rates for the nuisance

suffice when the target is parametric.

We give conditions on the relative complexity of the target and nuisance classes—quantified via
metric entropy—under which the sample splitting meta-algorithm achieves oracle rates (assuming the
two black-box estimation algorithms are appropriately instantiated). This allows us to extend several
prior works beyond the parametric regime to complex nonparametric target classes. Our technical
results extend the work of Yang and Barron (1999); Rakhlin et al. (2017), which provide minimax
optimal rates without nuisance components and utilize the technique of aggregation in designing
optimal algorithms. We also provide bounds for plug-in empirical risk minimization that extend the
local Rademacher complexity analysis of generalization error (Bartlett et al., 2005) to account for the
impact of the nuisance error.
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