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Open Problem: How fast can a multiclass test set be overfit?
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1. Background

Several machine learning benchmarks have shown surprising longevity, such as the ILSVRC 2012
image classification benchmark based on the ImageNet database (Russakovsky et al., 2015). Even
though it contains only 50,000 data points, hundreds of results have been reported on this test set.
Large-scale hyperparameter tuning and experimental trials across numerous studies likely add thou-
sands of queries to the test data. Despite this excessive data reuse, recent replication studies (Recht
et al., 2018, 2019; Yadav and Bottou, 2019) have shown that, while there are significant discrepan-
cies in test results, the best performing models transfer rather gracefully to a newly produced test
set collected from the same source according to the same protocol.

To maintain statistical validity, what matters is not only the number of times that a test (or
holdout) set has been accessed, but also how it is accessed. Modern machine learning practice is
adaptive in its nature. Prior information about a model’s performance on the test set inevitably
influences future modeling choices and hyperparameter settings. Adaptive behavior, in principle,
can have a radical effect on generalization.

Standard concentration bounds teach us to expect a maximum error of O(/log(k)/n) when es-
timating the means of k£ non-adaptively chosen bounded functions on a data set of size n. However,
this upper bound sharply deteriorates to O(y/k/n) for adaptively chosen functions, an exponential
loss in k. Moreover, there exists a sequence of adaptively chosen functions, what we will call an
attack, that causes an estimation error of Q(1/k/n) (Dwork et al., 2014).

This suggests that, in principle, an analyst can overfit substantially to a test set after issuing
relatively few queries to it. Powerful results in adaptive data analysis provide sophisticated holdout
mechanisms that guarantee better error bounds through noise addition (Dwork et al., 2015) and lim-
ited feedback mechanisms (Blum and Hardt, 2015). However, the standard holdout method remains
widely used in practice, ranging from machine learning benchmarks and data science competitions
to validating scientific research and testing products during development. If the pessimistic bound
were indicative of performance in practice, the holdout method would likely be much less useful
than it is.

It seems evident that additional factors prevent this worst-case overfitting from happening in
practice. In Feldman et al. (2019), the authors demonstrate (theoretically and empirically) that,
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in multiclass classification problems, the large number of classes makes it substantially harder to
overfit due to test set reuse. To state the known results more formally, we introduce some notation.
A classifier is a mapping f: X — Y, where Y = [m] = {1,...,m} is a discrete set consisting of m
classes and X is the data domain. A data set of size nisatuple S € (X xY')" consisting of n labeled
examples (24, Yi)ic|n], Where we assume each point is drawn independently from a fixed underlying
population. In our model, we assume that a data analyst can query the data set by specifying a
classifier f: X — Y and observing its accuracy accg(f) on the data set .S, which is simply the
fraction of points that are correctly labeled f(z;) = y;. We denote by acc(f) = Pr{f(x) = y} the
accuracy of f over the underlying population from which (x, y) are drawn. Proceeding in k rounds,
the analyst is allowed to specify a function in each round and observe its accuracy on the data set.
The function chosen at a round ¢ may depend on all previously revealed information. The analyst
builds up a sequence of adaptively chosen functions fi,. .., fx in this manner.

We are interested in the largest value that accg(f;) — acc(f;) can attain over all 1 < ¢ < k. Our
theoretical analysis focuses on the worst case setting where an analyst has no prior knowledge (or,
equivalently, has a uniform prior) over the correct label of each point in the test set. In this setting,
the highest expected accuracy achievable on the unknown distribution is 1/m. In effect, we analyze
the expected advantage of the analyst over random guesses.

In reality, an analyst typically has substantial prior knowledge about the labels and starts out
with a far stronger classifier than one that predicts at random. Using domain information, models,
and training data, there are many conceivable ways to label many points with high accuracy and
to pare down the set of labels for points the remaining points. Indeed, the experiments in Feldman
et al. (2019) explore a few techniques for reducing label uncertainty given a good baseline classifier.
After incorporating all prior information, there is usually still a large set of points for which there
remains high uncertainty over the correct label. Effectively, to translate the theoretical bounds to a
practical context, it is useful to think of the dataset size n as the number of point that are hard to
classify, and to think of the class count m as a number of (roughly equally likely) candidate labels
for those points.

Two bounds on the achievable bias in terms of the number of queries k, the number of data
points n, and the number of classes m are relevant to the open problem.

Theorem 1.1 (informal) There is a distribution P over examples labeled by m classes such that
any algorithm that makes at most k accuracy queries to a dataset S ~ P™ must satisfy with high

probability
1 klogn klogn
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This bound has two regimes that emerge from the concentration properties of the binomial distri-
bution. The more important regime for our discussion is when k = O(n /m) for which the bound
is O(y/k/(nm)). In other words, achieving a particular bias requires O(m) more queries than it
would in the binary case.

On the other hand, we describe a query strategy that achieves the following bound on the bias.

Theorem 1.2 (Point-wise attack) For sufficiently large n and n > k > ki, = O(mlogm) there
is an attack that uses k accuracy queries and, on any dataset S, outputs f such that

accs(f):;—i-Q( 7171{7:12) :
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Synthetic test set with uniform prior, 100000 points
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Figure 1: The number of queries at which a fixed advantage over 1/m is first attained, while the
number of class labels m varies, on a randomly generated test set of size 100,000. The
endpoints of the curves form slopes (under the log-log axis scaling) of roughly 1.2 (for
the 0.002 bias curve) and 1.3 (for the other curves).

The algorithm underlying Theorem 1.2 outputs a classifier that computes a weighted plurality of
the labels that comprise its queries, with weights determined by the per-query accuracies observed.
Such an attack is rather natural, in that it resembles boosting and other common techniques for
model aggregation. In addition, this attack is computationally efficient and we prove that it is
optimal within a broad class of attacks that we call point-wise. Roughly speaking, such an attack
predicts a label independently for each data point rather than reasoning jointly over the labels of
multiple points in the test set.

2. Open problem

As can be seen from the description of the bounds, there is a quadratic gap in the dependence of the
bias on the number of classes. Specifically, our upper bound suggests that the number of queries
needed to achieve certain bias grows linearly with the number of classes m. In contrast, our best
attack can only guarantee much worse growth: k needs to scale as m? to achieve the same bias. The
open problem is to close this gap or at least improve either of the bounds. More concretely,

Open Problem 2.1 Show whether there exists an algorithm that, for any distribution P over la-
beled examples with m classes, submits k accuracy queries to the test set S consisting of n examples
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sampled i.i.d. from P, and produces f such that

E [accs(f)] = 1 +Q ( k) )
Spn m nm

Naturally, this bound can only hold under additional restrictions on the range of parameters. It
would be sufficient to cover the regime where k£ < n/m since beyond that regime tight upper and
lower bounds are given in Feldman et al. (2019). From a more practical point of view, one should
also restrict the attention to efficient algorithms. Still, the answer is not known even without this
restriction. The answer is also not known for an even stronger class of attack algorithms that have
access to points (but not labels) in the dataset S. An attack of this type is described in Feldman et al.
(2019). For any S and k = Q(mlogm) it outputs f such that:

klog(k/m)) } |

nlogm

accs(f) = min{l,l +Q (
m

Figure 1 is based on a simulation of the attack underlying Theorem 1.2. It shows the number
of queries at which a fixed advantage over 1/m is first attained, while the number of class labels m
varies, on a randomly generated test set of size 100,000. The endpoints of the curves in the figure
form lines of slope greater than 1 on a log-log scale. This might suggest that, to attain a fixed bias
using the attack underlying Theorem 1.2, the number of queries k£ must indeed grow super-linearly
with m.
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