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Abstract
In this paper, we give a sharp analysis1 for Stochastic Gradient Descent (SGD) and prove that SGD
is able to efficiently escape from saddle points and find an (ε,O(ε0.5))-approximate second-order
stationary point in Õ(ε−3.5) stochastic gradient computations for generic nonconvex optimization
problems, when the objective function satisfies gradient-Lipschitz, Hessian-Lipschitz, and disper-
sive noise assumptions. This result subverts the classical belief that SGD requires at least O(ε−4)
stochastic gradient computations for obtaining an (ε,O(ε0.5))-approximate second-order stationary
point. Such SGD rate matches, up to a polylogarithmic factor of problem-dependent parameters, the
rate of most accelerated nonconvex stochastic optimization algorithms that adopt additional tech-
niques, such as Nesterov’s momentum acceleration, negative curvature search, as well as quadratic
and cubic regularization tricks. Our novel analysis gives new insights into nonconvex SGD and can
be potentially generalized to a broad class of stochastic optimization algorithms.
Keywords: Stochastic Gradient Descent, Non-convex Optimization, Convergence Rate, Saddle
Escaping

1. Introduction

Nonconvex stochastic optimization is crucial in machine learning and have attracted tremendous
attentions and unprecedented popularity. Lots of modern tasks that include low-rank matrix fac-
torization/completion and principal component analysis (Candès and Recht, 2009; Jolliffe, 2011),
dictionary learning (Sun et al., 2017), Gaussian mixture models (Reynolds et al., 2000), as well
as notably deep neural networks (Hinton and Salakhutdinov, 2006) are formulated as nonconvex
stochastic optimization problems. In this paper, we concentrate on finding an approximate solution
to the following minimization problem:

minimize
x∈Rd

f(x) ≡ Eζ∼D [F (x; ζ)] . (1)

Here, F (x; ζ) denotes a family of stochastic functions indexed by some random variable ζ that
obeys some prescribed distribution D, and we consider the general case where f(x) and F (x; ζ)

∗ Corresponding author.
1. “Sharp analysis” does not mean that our result is the tightest. It means an improved analysis.
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Algorithm 1 SGD (Meta version)
1: for t = 1, 2, . . . do
2: Draw an independent ζt ∼ D and set xt ← xt−1 − η∇F (xt−1; ζt) � SGD step
3: if Stopping criteria is satisfied then
4: break

have Lipschitz-continuous gradients and Hessians and might be nonconvex. In empirical risk min-
imization tasks, ζ is an uniformly discrete distribution over the set of training sample indices, and
the stochastic function F (x; ζ) corresponds to the nonconvex loss associated with such a sample.

One of the classical algorithms for optimizing (1) is the Stochastic Gradient Descent (SGD)
method, which performs descent updates iteratively via the inexpensive stochastic gradient∇F (x; ζ)
that serves as an unbiased estimator of (the inaccessible) gradient ∇F (x) (Robbins and Monro,
1951; Bottou and Bousquet, 2008), i.e. Eζ∼D [∇f(x; ζ)] = ∇f(x). Let η denote the positive
stepsize, then at steps t = 1, 2, . . ., the iteration performs the following update:

xt = xt−1 − η∇F (xt−1; ζt), (2)

where ζt is randomly sampled at iteration t. SGD admits perhaps the simplest update rule among
stochastic first-order methods. See Algorithm 1 for a formal illustration of the meta algorithm. It has
gained tremendous popularity due to its exceptional practical performance. Taking the example of
training deep neural networks, the dominating algorithm at present time is SGD (Abadi et al., 2016),
where the stochastic gradient is computed via one backpropagation step. Superior characteristics of
SGD have been observed in many empirical studies, including but not limited to fast convergence,
desirable solutions of low training loss, as well as its generalization ability.

Turning to the theoretical side, relatively mature and concrete analysis in existing literatures
Rakhlin et al. (2012); Agarwal et al. (2009) show that SGD achieves an optimal rate of convergence
for convex objective function under some standard regime. Specifically, the convergence rate of
O(1/T ) in term of the function optimality gap match the algorithmic lower bound for an appropriate
class of strongly convex functions (Agarwal et al., 2009).

Despite the optimal convex optimization rates that SGD achieves, the provable nonconvex SGD
convergence rate result has long stayed upon on finding an ε-approximate first-order stationary point
x: with high probability SGD finds an x such that ‖∇f(x)‖ ≤ ε in O(ε−4) stochastic gradient
computational cost under the gradient Lipschitz condition of f(x) (Nesterov, 2004). In contrast,
our goal in this paper is to find an (ε,

√
ρε)-approximate second-order stationary point x such that

‖∇f(x)‖ ≤ ε and the least eigenvalue of the Hessian matrix ∇2f(x) is ≥ −√ρε, where ρ > 0
denotes the so-called Hessian-Lipschitz parameter to be specified later (Nesterov and Polyak, 2006;
Tripuraneni et al., 2018; Carmon et al., 2018; Agarwal et al., 2017). Putting it differently, we
need to escape from all first-order stationary points that admit a strong negative Hessian eigenvalue
(a.k.a. saddle points) (Dauphin et al., 2014) and lands at a point that quantitatively resembles a local
minimizer in terms of the gradient norm and least Hessian eigenvalue.

Results on the convergence rate of SGD for finding an (ε,
√
ρε)-approximate second-order sta-

tionary point have been scarce until very recently.2 To the best of our knowledge, Ge et al. (2015)
provided the first theoretical result that SGD with artificially injected spherical noise can escape

2. Some authors work with (ε, δ)-stationary point and we ignore such expression due to the natural choice δ =
√
ρε in

optimization literature (Nesterov and Polyak, 2006; Jin et al., 2017).
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from all saddle points in polynomial time. Moreover, Ge et al. (2015) showed that SGD finds an
(ε,
√
ρε)-approximate second-order stationary point at a stochastic gradient computational cost of

Õ(poly(d)ε−8). A recent follow-up work by Daneshmand et al. (2018) derived a convergence rate of
Õ(dε−10) stochastic gradient computations. These milestone works Ge et al. (2015); Daneshmand
et al. (2018) showed that SGD can always escape from saddle points and can find an approximate
local solution of (1) with a stochastic gradient computational cost that is polynomially dependent
on problem-specific parameters. Motivated by these recent works, the current paper tries to answer
the following questions:

(i) Is it possible to sharpen the analysis of SGD algorithm and obtain a reduced stochastic gradi-
ent computational cost for finding an (ε,O(ε0.5))-approximate second-order stationary point?

(ii) Is artificial noise injection absolutely necessary for SGD to find an approximate second-order
stationary point with an almost dimension-free stochastic gradient computational cost?

To answer aforementioned question (i), we provide a sharp analysis and prove that SGD with
variants only on stopping criteria finds an (ε,

√
ρε)-approximate stationary point at a remarkable

Õ(ε−3.5) stochastic gradient computational cost for solving (1). This is a unexpected result because
it has been conjectured by many (Xu et al., 2018; Allen-Zhu and Li, 2018; Tripuraneni et al., 2018)
that an Õ(ε−4) cost is required to find an (ε,

√
ρε)-approximate second-order stationary point. Our

result on SGD negates this conjecture and serves as the sharpest stochastic gradient computational
cost for SGD prior to this work. To answer question (ii) above, we propose a novel dispersive
noise assumption and prove that under such an assumption, SGD requires no artificial noise in-
jection in order to achieve the aforementioned sharp stochastic gradient computational cost. Such
noise assumption is satisfied in the case of infinite online samples and Gaussian sampling zeroth-
order optimization, and can be satisfied automatically by injecting artificial ball-shaped, spherical
uniform, or Gaussian noises.

We emphasize that the Õ(ε−3.5) stochastic gradient computational cost is, however, not the
lower bound complexity for finding an (ε,

√
ρε)-approximate second-order stationary point for prob-

lem (1). Recently, Fang et al. (2018) applied a novel variance reduction technique named SPIDER

tracking and proposed the SPIDER-SFO+ algorithm which achieves a stochastic gradient compu-
tational cost of Õ(ε−3) for finding an (ε,

√
ρε)-approximate second-order stationary point. It is

our belief that variance reduction techniques are necessary to achieve a stochastic gradient com-
putational cost that is strictly sharper than Õ(ε−3.5). We also note that the promising Õ(ε−3.5)
complexity relies on the Hessian-smooth assumption, whereas the standard O(ε−4) complexity for
searching an approximate first-order stationary point does not need this assumption.

1.1. Our Contributions

We study theoretically in this work the SGD algorithm for minimizing nonconvex function E[F (x; ζ)].
Specially, this work contributes the following:

(i) We propose a sharp convergence analysis for the classical and simple SGD and prove that
the total stochastic gradient computational cost to find a second-order stationary point is at
most Õ(ε−3.5) under both Lipschitz-continuous gradient and Hessian assumptions of objec-
tive function. Such convergence rate matches the most accelerated nonconvex stochastic op-
timization results that such as Nesterov’s momentum acceleration, negative curvature search,
and quadratic and cubic regularization tricks.
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(ii) We propose the dispersive noise assumption and prove that under such an assumption, SGD
ensures to escape all saddles that has a strongly negative Hessian eigenvalue. Such type of
noise generalizes the existing artificial ball-shaped noise and is widely applicable to many
tasks.

(iii) Our novel analytic tools for proving saddle escaping and fast convergence of SGD is of inde-
pendent interests, and they shed lights on developing and analyzing new stochastic optimiza-
tion algorithms.

Organization The rest of the paper is organized as follows. §2 provides the SGD algorithm and
the main convergence rate theorem for finding an (ε,

√
ρε)-approximate second-order stationary

point. Related Works are discussed in §3. We conclude our paper in §4 with proposed future
directions. In Appendix A, we sketch the proof of our convergence rate theorem by providing and
discussing three core propositions. And all the missing proofs are detailed in the Appendix rest
sections.

Notation Let ‖ · ‖ denote the Euclidean norm of a vector or spectral norm of a square matrix.
Denote pn = O(qn) for a sequence of vectors pn and positive scalars qn if there is a global constant
C such that |pn| ≤ Cqn, and pn = Õ(qn) such C̃ hides a poly-logarithmic factor of d and ε.
Denote pn = Ω̃(qn) if there is C̃ which hides a poly-logarithmic factor such that |pn| ≥ C̃qn. We
denote pn � qn if there is C̃ which hides a poly-logarithmic factor of d and ε such that pn = C̃qn.
Further, we denote linear transformation of set A ⊆ Rd as c1 + c2A := {c1 + c2a : a ∈ A}.
Let λmin(A) denote the least eigenvalue of a real symmetric matrix A. We denote B(x, R) as the
R-neighborhood of x0, i.e. the set {y ∈ Rd : ‖y − x0‖ ≤ R}.

2. Algorithm and Main Result

In this section, we formally state SGD and the corresponding convergence rate theorem. In §2.1, we
propose the key assumptions for the objective functions and noise distributions. In §2.2, we detail
SGD in Algorithm 2 and present the main convergence rate theorem.

2.1. Assumptions and Definitions

Assumption 1 (Smoothness) We assume that the objective function satisfies some smoothness3

conditions: for all x,x′ ∈ Rd, we have

‖∇F (x; ζ)−∇F (x′; ζ)‖ ≤ L‖x− x′‖, (3)

and
‖∇2f(x)−∇2f(x′)‖ ≤ ρ‖x− x′‖. (4)

With Hessian-Lipschitz parameter ρ prescribed in (4), we formally define the (ε,
√
ρε)-approximate

second-order stationary point. To best of our knowledge, such concept firstly appeared in Nesterov
and Polyak (2006):

3. The smoothness gradient condition for F (x; ζ) is only needed for searching an approximate second-order stationary
point. To find a first stationary point, we only can replace (3) with a relaxed one: ‖∇f(x)−∇f(x′)‖ ≤ L‖x−x′‖.
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Definition 1 (Second-order Stationary Point) Call x ∈ Rd an (ε,
√
ρε)-approximate second-

order stationary point if

‖∇f(x)‖ ≤ ε, λmin(∇2f(x)) ≥ −√ρε.

Let the starting point of our SGD algorithm be x̃ ∈ Rd. We assume the following boundedness
assumption:

Assumption 2 (Boundedness) The ∆ := f(x̃)− f∗ <∞ where f∗ = infx∈Rd f(x) is the global
infimum value of f(x).

Turning to the assumptions on noise, we first assume the following:

Assumption 3 (Bounded Noise) For any x ∈ Rd, the stochastic gradient∇F (x; ζ) satisfies:

‖∇F (x, ζ)−∇f(x)‖2 ≤ σ2, a.s. (5)

An alternative (slighter weaker) assumption that also works is to assume that the norm of noise
satisfies subgaussian distribution, i.e. for any x ∈ Rd,

Eζ
[
exp(‖∇F (x; ζ)−∇f(x)‖2 /σ2)

]
≤ 1. (6)

Assumptions 1, 2 and 3 are standard in nonconvex optimization literatures (Ge et al., 2015; Xu
et al., 2018; Allen-Zhu and Li, 2018; Fang et al., 2018). We treat the parameters L, ρ, ∆, and σ as
global constants, and focus on the dependency for stochastic gradient complexity on ε and d.

For the purpose of fast saddles escaping, we need an extra noise shape assumption. Let q∗ be a
positive real, and let v be a unit vector. We define a set property as follows:

Definition 2 ((q∗,v)-narrow property) We say that a Borel set A ⊆ Rd satisfies the (q∗,v)-
narrow property, if for any u ∈ A and q ≥ q∗, u + qv ∈ Ac holds, where Ac denotes the
complement set of A.

It is easy to verify that the first parameter in the narrow property is linearly scalable and transla-
tion invariant with sets, i.e. if A satisfies (q∗,v)-narrow property, then for any c1 ∈ Rd and c2 ∈ R,
c1 + c2A satisfies the (|c2|q∗,v)-narrow property. Next, we introduce the v-dispersive property as
follows:

Definition 3 (v-dispersive property) Let ξ̃ be a random vector satisfying Assumption 3. We say
that ξ̃ has the v-dispersive property, if for an arbitrary setA that satisfies the (σ/(4

√
d),v)-narrow

property (as in Definition 2) the following holds:

P
(
ξ̃ ∈ A

)
≤ 1

4
. (7)

Obviously, if ξ̃ satisfies v-dispersive property, for any fixed vector a, then ξ̃ + a also satisfies
v-dispersive property. We then present the dispersive noise assumption as follows:
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Assumption 4 (Dispersive Noise) For an arbitrary point x ∈ Rd,∇f(x; ζ) admits the v-dispersive
property (as in Definition 3) for any unit vector v.

Assumption 4 is motivated from the key lemma for escaping from saddle points in Jin et al.
(2017), which obtains a sharp rate for gradient descent escaping from saddle points. Such an as-
sumption enables SGD to move out of a stuck region with probability ≥ 3/4 in its first step and
enables escaping from saddle points (by repeating logarithmic rounds). We would like to empha-
size that the v-dispersive noises contain many canonical examples; see the following

Examples of Dispersive Noises Here we exemplify a few noise distributions that satisfy the
v-dispersive property, that is, for an arbitrary set A with (q∗,v)-narrow property, where q∗ =
σ/(4
√
d). We have the following proposition:

Proposition 4 For the following noise distributions, (7) in Definition 3 is satisfied:

(i) Gaussian noise: ξ̃ = σ/
√
d ∗ χ where χ is the standard Gaussian noise with covariance

matrix Id;

(ii) Uniform ball-shaped noise or spherical noise: ξ̃ = σ ∗ξb, where ξb is uniformly sampled from
the unit ball centered at 0;

(iii) Artificial noise injection: ξ̃ = ∇f(x; ζ)+ γ̃, where γ̃ is some independent artificial noise that
is v-dispersive for any v.

The proof of Proposition 4 is shown in Appendix F.

2.2. SGD and Main Theorem

Our SGD algorithm for analysis purposes is detailed in Algorithm 2. Our SGD algorithm only dif-
fers from classical SGD algorithms on stopping criteria. Distinct from the classical ones that simply
terminate in a certain number of steps and output the final iterate or a randomly drawn iterate, the
SGD we consider here introduces a ball-controlled mechanism as the stopping criteria: if xk exits
a small neighborhood in K0 iterations (Line 2 to 6), one starts over and do the next round of SGD;
if exiting does not occur in K0 iterations, then the algorithm simply outputs an arithmetic average
of xk of the last K0 iterates within the neighborhood, which in turns is an (ε,

√
ρε)-approximate

second-order stationary point with high probability. In contrast with the stopping criteria in the
deterministic setting that checks the descent in function values (Jin et al., 2017), the function value
in stochastic setting is reasonably costly to approximate (costs O(ε−2) stochastic gradient compu-
tations), and the error plateaus might be hard to observe theoretically.

6



NSGD

Algorithm 2 SGD (For finding an (ε,
√
ρε)-approximate second-order stationary point): Input x̃,

K0 � ε−2, η � ε1.5, and B � ε0.5.
1: Set t = 0, k = 0, x0 = x̃
2: while k < K0 do
3: Draw an independent ζk+1 ∼ D and set xk+1 ← xk − η∇F (xk; ζk+1) � SGD step
4: t← t+ 1, k ← k + 1 � Counter of SGD steps
5: if ‖xk − x0‖ > B then
6: x0 ← xk, k ← 0
7: end if
8: end while
9: x̄output ← (1/K0)

∑K0−1
k=0 xk � Reach this line in t ≤ T0 = Õ(ε−3.5) SGD steps w.h.p.

10: return x̄output � Return an (ε,
√
ρε)-approximate second-order stationary point

Parameter Setting We set the hyper-parameters4 for Algorithm 2 as follows:

C̃1 = 2

⌊
log(3 · p−1)

log(0.7)
+ 1

⌋
log

(
24
√
d

η

)
� 1, δ =

√
ρε � ε0.5,

δ2 = 16δ � ε0.5, B =
δ

ρC̃1

� ε0.5, K0 = C̃1η
−1δ−1

2 � ε−2,

η ≤ B2δ

64 max(σ2, 1)C̃1 log(48K0/p)
· 1

3 + log(K0)
� ε1.5. (8)

For brevity of analysis, we assume B ≤ min(1, σL ,
1
L) � O(1), and δ ≤ 1. In other words, we

assume the accuracy ε ≤ O(1).
Now we are ready to present our main result of SGD theorem.

Theorem 5 (SGD Rate) Let Assumptions 1, 2, 3, and 4 hold. Let the parameters K0, η and B
be set in (8) with p ∈ (0, 1) being the error probability, and set T1 =

⌈
7∆ηK0

B2

⌉
+ 1 � ε−1.5, then

running Algorithm 2 in T0 = T1·K0 � ∆ρ1/2

max(σ2,1)ε3.5
� ε−3.5, with probability at least 1−(T1+1)·p,

SGD outputs an x̄output satisfying

‖∇f(x̄output)‖ ≤ 18ρB2 � ε, λmin(∇2f(x̄output)) ≥ −17δ � −√ρε. (9)

Treating σ, L, and ρ as global constants, the stochastic gradient computational cost is Õ(ε−3.5).

Strikingly, Theorem 5 indicates that SGD in Algorithm 2 achieves a stochastic gradient compu-
tation cost of Õ(ε−3.5) to find an (ε,

√
ρε)-approximate second-order stationary point5. Compared

with existing algorithms that achieves an Õ(ε−3.5) convergence rate, SGD is comparatively simpler
to implement and does not invoke any additional techniques or iterations such as momentum accel-
eration (Jin et al., 2018b), cubic regularization (Tripuraneni et al., 2018), regularization (Allen-Zhu,
2018a), or NEON-type negative curvature search (Xu et al., 2018; Allen-Zhu and Li, 2018).

4. Set η̃ = B2δ

512 max(σ2,1) log(48p−1)

⌊
log(3·p−1)
log(0.7)

+1

⌋
log(d)

� ε1.5. Because η in (8) involves logarithmic factors on K0

and C̃1, a simple choice to set the step size is as η = η̃ log−3(η̃−1) � ε1.5.
5. For searching a more general (εg, εH)-approximate second-order stationary point, one can obtain an complexity of
Õ(ε−3.5

g + ε−7
H ) using the same technique.
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Algorithm 3 Noise-Scheduled SGD (For finding an (ε,
√
ρε)-approximate second-order stationary

point): Input x̃, Ko = 2 log
(

24
√
d

η

)
η−1δ−1

2 � ε−2, K0 � ε−2, η � ε1.5, and B � ε0.5.

1: Set t = 0, k = 0, x0 = x̃
2: while k < K0 do
3: if mod(k,Ko) = 0 then
4: Draw an independent ζk+1 ∼ D and Gaussian noise ξg ∼ N(0, (σ2/d)Id)

xk+1 ← xk+1 − η
(
∇F (xk; ζk+1) + ξg

)
� SGD step (with noise injection)

5: else
6: Draw an independent ζk+1 ∼ D and set xk+1 ← xk − η∇F (xk; ζk+1) � SGD step
7: end if
8: t← t+ 1, k ← k + 1 � Counter of SGD steps
9: if ‖xk − x0‖ > B then

10: x0 ← xk, k ← 0
11: end if
12: end while
13: x̄output ← (1/K0)

∑K0−1
k=0 xk � Reach this line in t ≤ T0 = Õ(ε−3.5) SGD steps, w.h.p.

14: return x̄output � Return an (ε,
√
ρε)-approximate second-order stationary point

Admittedly, the best-known SGD theoretical guarantee in Theorem 5 relies on a dispersive
noise assumption. To remove such an assumption, we argue that only Õ(1) steps of each round
does one need to run an SGD step of dispersive noise to enable efficient escaping. We propose a
variant of SGD called Noise-Scheduled SGD which requires artificial noise injection but does not
rely on a dispersive noise assumption. The algorithm is shown in Algorithm 3. One can obtain the
convergence property straightforwardly.

Remark 6 For the function class that admits the strict-saddle property (Carmon et al., 2018; Ge
et al., 2015; Jin et al., 2017), an approximate second-order stationary point is guaranteed to be an
approximate local minimizer. For example for optimizing a σ∗-strict-saddle function, one can first
find an (ε∗,

√
ρε∗)-approximate second-order stationary point with ε∗ ≤ σ2

∗/(2ρ) which is guaran-
teed to be an approximate local minimizer due to the strict-saddle property. Our SGD convergence
rateO(ε−3.5

∗ ) = O(σ−7
∗ ) is independent of the target accuracy ε, and one can run a standard convex

optimization theory to obtain an O(1/t) convergence rate in terms of the optimality gap. Limited
by space we omit the details.

3. Discussions on Related Works

Due to the recent heat of deep learning, many researchers have studied the nonconvex SGD method
from various perspectives in the machine learning community. We compare our results with concur-
rent theoretical works on nonconvex SGD in the following discussions. For clarity, we also compare
the convergence rates of some works most related to ours in Table 1.

(i) Pioneer SGD: The first work on SGD escaping from saddle points Ge et al. (2015) obtain
a stochastic gradient computational cost of Õ(poly(d)ε−8).6 Later, Jin et al. (2017, 2018b)

6. The analysis in (Ge et al., 2015) indicates a poly(d) factor of O(d8) at least.
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Algorithm SG Comp. Cost

SGD Variants

NEON+SGD (Xu et al., 2018)
ε−4

NEON2+SGD (Allen-Zhu and Li, 2018)
Stochastic Cubic (Tripuraneni et al., 2018)

ε−3.5

RSGD5 (Allen-Zhu, 2018a)
Natasha2∆ (Allen-Zhu, 2018b)

ε−3.5

NEON2+SNVRGΘ (Zhou et al., 2018a)
SPIDER (Fang et al., 2018) ε−3

Original SGD
SGD

(Ge et al., 2015) poly(d)ε−8

(Daneshmand et al., 2018) d4ε−5

(Jin et al., 2019) ε−4

(this work) ε−3.5

Table 1: Comparable results on the stochastic gradient computational cost for nonconvex optimiza-
tion algorithms in finding an (ε,

√
ρε)-approximate second-order stationary point for problem (1)

under standard assumptions. Note that each stochastic gradient computational cost may hide a
poly-logarithmic factors of d, n, ε.
Orange-boxed: SPIDER reported in orange-boxed is the only existing variant stochastic algorithm that achieves provable

faster rate by order than simple SGD.
∆: Allen-Zhu (2018b) also obtains a stochastic gradient computational cost of Õ(ε−3.25) for finding a relaxed

(ε,O(ε0.25))-approximate second-order stationary point.
Θ: With additional third-order smoothness assumptions, SNVRG (Zhou et al., 2018a) achieves complexity of Õ(ε−3).

noise-perturbed GD and AGD and achieve sharp gradient computational costs, which sug-
gests the possibility of sharper SGD rate for escaping saddles. Our analysis in this work is
partially motivated by Jin et al. (2017) for escaping from saddle points, but generalizes the
noise condition and needs no deliberate noise injections which is not the original GD/SGD
algorithm in a strict sense.

(ii) Concurrent SGD: A recent result by Daneshmand et al. (2018) obtains a stochastic compu-
tation cost of Õ(τ−2ε−10) to find an (ε,

√
ρε)-approximate second-order stationary point. The

highlight of their work is that they need no injection of artificial noises. Nevertheless in their
work, the Correlated Negative Curvature parameter τ−2 cannot be treated as anO(1)-constant.
Taking the case of injected spherical noise or Gaussian noise, it can be at most linearly de-
pendent on d [Assumption 4], so the result is not (almost) dimension-free, and worst-case
convergence rate shall be interpreted as Õ(d4ε−5). Concurrently with our work, Jin et al.
(2019) also extend the technique in Jin et al. (2017) to work on SGD and prove that SGD
with the injected noise can find an approximate second-order stationary point with stochastic
computation cost of Õ(ε−4). Besides, they further study the case when the individual function
F (x; ζ) does not satisfy gradient-smooth condition and obtain a complexity of Õ(dε−4).

(iii) NC search + SGD: The NEON+SGD (Xu et al., 2018; Allen-Zhu and Li, 2018) methods
achieve a dimension-free convergence rate of Õ(ε−4) for the general problem of form (1) to
reach an (ε,

√
ρε)-approximate second-order stationary point. Prior to this, classical noncon-

vex GD/SGD only achieves such a rate for finding an ε-approximate first-order stationary point
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(Nesterov, 2004), which, with the help of NEON method, successfully escapes from saddles
via a Negative Curvature (NC) search iteration (Xu et al., 2018; Allen-Zhu and Li, 2018).

(iv) Regularization + SGD: Very recently, Allen-Zhu (2018a) takes a quadratic regularization
approach and equips it with a negative-curvature search iteration NEON2 (Allen-Zhu and Li,
2018), which successfully improves the rate to Õ(ε−3.5). In comparison, our method achieves
essentially the same rate without using regularization methods. Tripuraneni et al. (2018) pro-
posed a stochastic variant of cubic regularization method (Nesterov and Polyak, 2006; Agar-
wal et al., 2017) and achieves the same Õ(ε−3.5) convergence rate, which is the first achieving
such rate without invoking variance reduced gradient techniques.7

(v) NC search + VR: Allen-Zhu (2018b) converted a NC search method to the online stochas-
tic setting (Carmon et al., 2018) and achieved a convergence rate of Õ(ε−3.5) for finding
an (ε,

√
ρε)-approximate second-order stationary point. For finding a relaxed (ε,O(ε0.25))-

approximate second-order stationary point, Allen-Zhu (2018b) obtains a lower stochastic gra-
dient computational cost of Õ(ε−3.25). With a recently proposed optimal variance reduced
gradient techniques applied, SPIDER achieves the state-of-the-art Õ(ε−3) stochastic gradient
computational cost (Fang et al., 2018).8 Very recently, Zhou and Gu (2019) and Shen et al.
(2019) have independently designed powerful cubic algorithms using SPIDER techinique and
also obtained a complexity of Õ(ε−3).

3.1. More Related Works

VR Methods In the recent two years, sharper convergence rates for nonconvex stochastic opti-
mization can be achieved using variance reduced gradient techniques (Schmidt et al., 2017; John-
son and Zhang, 2013; Xiao and Zhang, 2014; Defazio et al., 2014). The SVRG/SCSG (Lei et al.,
2017) adopts the technique from Johnson and Zhang (2013) and novelly introduces a random stop-
ping criteria for its inner loops and achieve a stochastic gradient costs of O(ε−3.333). Very recently,
two independent works, namely SPIDER (Fang et al., 2018) and SVRC (Zhou et al., 2018b), design
sharper variance reduced gradient methods and obtain a stochastic gradient computational costs of
O(n1/2ε−2 ∧ ε−3), which is state-of-the-art and near-optimal in the sense that they achieve the
algorithmic lower bound in the finite-sum setting.

Escaping Saddles in Single-Function Case Recently, many theoretical works care about con-
vergence to an approximate second-order stationary point or escaping from saddles for the case of
one single function (Carmon and Duchi, 2016; Jin et al., 2017; Carmon et al., 2018, 2017; Agarwal
et al., 2017; Jin et al., 2018b; Lee et al., 2017; Du et al., 2017). Among them, the work Jin et al.
(2017) proposed a ball-shaped-noise-perturbed variant of gradient descent which can efficiently es-
cape saddle points and achieves a sharp stochastic gradient computational cost of ε−2, which is also
achieved by NEON+GD (Xu et al., 2018; Allen-Zhu and Li, 2018). Another line of works apply
momentum acceleration techniques (Agarwal et al., 2017; Carmon et al., 2017; Jin et al., 2018b)
and achieve a rate of ε−1.75 for a general optimization problem.

7. Note in the convergence rate here, we also includes the number of stochastic Hessian-vector product evaluations,
each of which takes about the same magnitude of time as per stochastic gradient evaluation.

8. The independent work Zhou et al. (2018a) achieves a similar convergence rate for finding an ε-approximate second-
order stationary point by imposing a third-order smoothness conditions on the objective.
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Escaping Saddles in Finite-Sum Case For the finite-sum setting, many works have applied vari-
ance reduced gradient methods (Agarwal et al., 2017; Carmon et al., 2018; Fang et al., 2018;
Zhou et al., 2018a) and further reduce the stochastic gradient computational cost to Õ(nε−1.5 +
n3/4ε−1.75) (Agarwal et al., 2017; Allen-Zhu and Li, 2018). Reddi et al. (2018) proposed a sim-
pler algorithm that obtains a stochastic gradient cost of Õ

(
nε−1.5 + n3/4ε−1.75 + n2/3ε−2

)
. With

recursive gradient method applied (Fang et al., 2018; Zhou et al., 2018a), the stochastic gradient
cost further reduces to Õ

(
(nε−1.5 + n3/4ε−1.75) ∧ (n+ n1/2ε−2 + ε−2.5)

)
, which is the state-of-

the-art.

Miscellaneous It is well-known that for general nonconvex optimization problem in the form of
(1), finding an approximate global minimizer is in worst-case NP-hard (Hillar and Lim, 2013).
Seeing this, many works turn to study the convergence properties based on specific models. Faster
convergence rate to local or even global minimizers can be guaranteed for many statistical learning
tasks such as principal component analysis (Li et al., 2018a; Jain and Kar, 2017), matrix completion
(Jain et al., 2013; Ge et al., 2016; Sun and Luo, 2016), dictionary learning (Sun et al., 2015, 2017)
as well as linear and nonlinear neural networks (Zhong et al., 2017; Li and Yuan, 2017; Li et al.,
2018b).

In retrospect, our focus in this paper is on escaping from saddles, and we refer the readers to
recent inspiring works studying how to escape from local minimizers Zhang et al. (2017); Jin et al.
(2018a).

4. Conclusions and Future Direction

In this paper, we presented a sharp convergence analysis for the classical SGD algorithm. We
showed that equipped with a ball-controlled stopping criterion, SGD achieves a stochastic gradi-
ent computational cost of Õ(ε−3.5) for finding an (ε,O(ε0.5))-approximate second-order stationary
point, which improves over the best-known SGD convergence rate O

(
min(poly(d)ε−8, dε−10)

)
prior to our work. While this work focuses on sharpened convergence rate, there are still some
important questions left:

(i) It is still unknown whether SGD achieves a rate that is faster than Õ(ε−3.5) or Õ(ε−3.5) is
exactly the lower bound for SGD to solve the general problem in the form of (1). As we
mentioned in §1, it is our conjecture that variance reduction methods are necessary to achieve
an (ε,

√
ρε)-approximate second-order stationary point in fewer than Õ(ε−3.5) steps.

(ii) We have not considered several important extensions in this work, such as the convergence
rate of SGD in solving constrained optimization problems, and how one extends the analysis
in this paper to the proximal case.

(iii) It will be also interesting to study the stochastic version of Nesterov’s accelerated gradient
descent (AGD) (Jin et al., 2018b).
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a proof of SGD to escape saddle points in Õ(ε−4) computational costs and carefully revising our
paper. The authors also would like to thank Haishan Ye for very helpful discussions and Huan Li,
Zebang Shen, and Li Shen for very helpful comments.

Zhouchen Lin is supported by 973 Program of China (grant no. 2015CB352502), NSF of China
(grant nos. 61625301 and 61731018), Qualcomm, and Microsoft Research Asia.

11



NSGD

References

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 265–283, 2016.

Alekh Agarwal, Martin J Wainwright, Peter L Bartlett, and Pradeep K Ravikumar. Information-
theoretic lower bounds on the oracle complexity of convex optimization. In Advances in Neural
Information Processing Systems, pages 1–9, 2009.

Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding approxi-
mate local minima faster than gradient descent. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1195–1199. ACM, 2017.

Zeyuan Allen-Zhu. How to make the gradients small stochastically: Even faster convex and non-
convex sgd. In Advances in Neural Information Processing Systems, pages 1165–1175, 2018a.

Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd. In Advances in Neural
Information Processing Systems, pages 2676–2687, 2018b.

Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order oracles. In Ad-
vances in Neural Information Processing Systems, pages 3720–3730, 2018.

Peter L Bartlett, Varsha Dani, Thomas P Hayes, Sham M Kakade, Alexander Rakhlin, and Ambuj
Tewari. High-probability regret bounds for bandit online linear optimization. In Proceedings of
the 31st Conference On Learning Theory, 2008.
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Appendix A. Proof Sketches for Theorem 5

We briefly introduce our proof techniques to prove our main Theorem 5 in this section. The rigorous
proof is shown in Appendix C, D, and E. For convenience, when we study Algorithm 2 in each inner
loop from Line 2 to Line 8, we override the definition of x0 as its initial vector. Our poof basically
consists of two ingredients. The first is to prove that SGD can efficiently escape saddles: with high
probability, if λmin

(
∇2f(x0)

)
≤ −δ2 � −ε0.5, xk moves out of B(x0, B) in K0 iterations (Refer

to Appendix C). The second is to show that SGD converges with a faster rate of Õ(ε−3.5), rather
than Õ(ε−4). We further separate the second destination into two parts:

1. Throughout the execution of the algorithm, each time xk moves out of B(x0, B), with high
probability, the function value shall decrease with a magnitude at least Õ(ε1.5) (Refer to
Appendix D).

2. Once xk does not move out of B(x0, B) until K0 iteration, with high probability, we find a
desired approximate second-order stationary point (Refer to Appendix E).

Let Fk = σ{x0, ζ1, · · · , ζk} be the filtration involving the full information of all the previous
k times iterations, where σ{·} denotes the sigma field. And let K0 be the first time (mathematically,
a stopping time) that xk exits the B-neighborhood of x0, i.e.

K0 = inf
k
{k ≥ 0 : ‖xk − x0‖ > B}. (10)

Both xk and IK0>k is measurable on Fk, where I denotes the indicator function.

A.1. Part I: Escaping Saddles

Our goal is to prove the following proposition:

Proposition 7 Assume λmin

(
∇2f(x0)

)
≤ −δ2, and recall the parameter set in (8). Initialized at

x0 and running Line 2 to Line 8, with probability at least 1− p
3 we have

K0 ≤ K0 =

(⌊
log(3 · p−1)

log(0.7−1)

⌋
+ 1

)
Ko, (11)

where Ko = 2 log
(

24
√
d

η

)
η−1δ−1

2 .

Proposition 7 essentially says that assuming if the function has a negative Hessian eigenvalue
≤ −δ2 at x0, the iteration exits the B-neighborhood of x0 in K0 = Õ(η−1δ−1

2 ) steps with a high
probability.

To prove Proposition 7, we let wk(u), k ≥ 0 be the iteration by SGD starting from a fixed
u ∈ Rd using the same stochastic samples as iteration xk, i.e.

wk(u) = wk−1(u)− η∇F (wk−1(u); ζk). (12)

Obviously, we have xk = wk(x0). Let Kexit(u) be the first step number k (a stopping time) such
that wk(u) exits the B-neighborhood of x0. Formally,

Kexit(u) := inf{k ≥ 0 : ‖wk(u)− x0‖ > B}. (13)
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It is easy to see from (10) that K0 = Kexit(x0). Inspired from Jin et al. (2017), we cope with the
stochasticity of gradients and define the so-called bad initialization region as the point u initialized
from which iteration wk(u) exits the B-neighborhood of x0 with probability ≤ 0.4:

SBKo(x
0) :=

{
u ∈ Rd : P (Kexit(u) < Ko) ≤ 0.4

}
. (14)

We will show that the bad initialization region SBKo(x
0) enjoys the (q0, e1)-narrow property, where

q0 = σ
4
√
d

. Since the first step will provide a continuous noise as supposed by Assumption 3, with
the properly selected q0, it will move the iteration out of the bad initialization region in its first step
with probability ≥ 3/4. Repeating such an argument in a logarithmic number of rounds enables
escaping to occur with high probability.

The idea is to prove the following lemma:

Lemma 8 Let the assumptions of Proposition 7 hold, and assume WLOG e1 be an arbitrary eigen-
vector of ∇2f(x0) corresponding to its smallest eigenvalue −δm, which satisfies δm ≥ δ2 > 0.
Then we have for any fixed q ≥ q0 and pair of points u,u + qe1 ∈ B(x0, B) that

P (Kexit(u) ≥ Ko and Kexit(u + qe1) ≥ Ko) ≤ 0.1. (15)

Lemma 8 is inspired from Lemma 15 in Jin et al. (2017). Nevertheless due to the noise brought
in at each update step, the analysis of stochastic gradient differs from that of the gradient descent
in many aspects. For example, instead of showing the decrease of function value, we need to show
that with a positive probability, at least one of the two iterations, wk(u + qe1) or wk(u), exits
the B-neighborhood of x0. Our proof is also more intuitive compared with Lemma 15 in Jin et al.
(2017). The core idea is to focus on analyzing the difference trajectory for wk(u+qe1) and wk(u),
and to show that the rotation speed for the difference trajectory is the same as the expansion speed.
Detailed proof is provided in §C.1.

A.2. Part II: Faster Descent

The goal of Part II is to prove the following proposition:

Proposition 9 (Faster Descent) For Algorithm 2 with parameter set in (8). With probability at
least 1− 2

3p, if xk moves out of B(x0, B) in K0 iteration, we have

f
(
xK0

)
≤ f

(
x0
)
− B2

7ηK0
. (16)

Proposition 9 is the key for SGD to achieve the reduced Õ(ε−3.5) stochastic computation costs.
It shows that no matter what does the local surface of f(x) look like, once xk moves out of the ball
in K0 � ε−2 iterations, the function value shall decrease with a magnitude of at least Õ(ε1.5). To
put it differently, on average, the function value decreases at least Õ(ε3.5) per-iteration during the
execution of Algorithm 2. We will present the basic argument below.

We start with reviewing the more traditional approach for proving sufficient descent of SGD,
and then we will discuss how to improve it as done in this work. The previous approaches are all
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based on the idea of (Nesterov, 2004), which mainly takes advantage of the gradient-smoothness
condition of the objective. The proof can be briefly described below:

Eζf(xk+1) ≤ f(xk) + Eζ
〈
∇f(xk),xk+1 − xk

〉
+
L

2
Eζ‖xk+1 − xk‖2

(2)
= f(xk)−

(
η − Lη2

2

)
‖∇f(xk)‖2 +

η2L

2
Eζ‖∇F (xk; ζk+1)−∇f(xk)‖2

Assum.3
≤ f(xk)−

(
η − Lη2

2

)
‖∇f(xk)‖2 +

η2Lσ2

2
. (17)

From the above derivation, in order to guarantee the monotone descent of function value in expec-
tation, the step size η needs to be

η = O
(
‖∇f(xk)‖2

Lσ2

)
= O(ε2), (18)

where the last equality uses
∥∥∇f(xk)

∥∥ ≥ ε. Plugging (18) into (17), and using ‖∇f(xk)‖ ≥ ε,
we have that the function value per-iteration would descent with a magnitude of at least O(ε4).
Such result indicates that, in the worse case, SGD takes O(ε−4) stochastic oracles to find an ε-
approximate first-order stationary point. This simple argument is the reason why previous works
conjectured that the complexity of SGD is O(ε−4).

However, in this paper, we show that the above analysis can be further improved by using the
Hessian-smoothness condition of the objective, and by considering the decomposition of objective
function f(x) = f+(x) + f−(x), and treating component f+(x) and component f−(x) separately
as follows:

• (Case 1) The component f+(x) is near convex locally, in the sense that λmin

(
∇2f(x)

)
≥

−Ω(ε0.5) for all x ∈ B(x0, B). In this case, by using techniques for near convex problems, it
is possible for us to take a larger stepsize η = O(ε1.5) and prove a faster convergence rate.

• (Case 2) The component f−(x) is near concave locally, in the sense that λmax

(
∇2f(x)

)
≤

O(ε0.5) for all x ∈ B(x0, B) . In this case, It can be shown that the last term on the right
hand side of (17) can be reduced to O(η2ε0.5σ2). Therefore the step size can be chosen as
η = O(ε1.5), leading to a fast function value reduction.

To formalize the above observations into a rigorous proof, in this paper we introduce the quadratic
approximation of f(x) at point x0, defined as

g(x) :=
[
∇f(x0)

]> (
x− x0

)
+

1

2

[
x− x0

]>∇2f(x0)
[
x− x0

]
. (19)

We let S be the subspace spanned by all eigenvectors of ∇2f(x0) whose eigenvalue is greater than
0, and S⊥ denotes the complement space. Also let PS ∈ Rd×d and PS⊥ ∈ Rd×d as the projection
matrices onto the space of S and S⊥, respectively. Also let the full SVD decomposition of∇2f(x0)
be V

∑
VT . We introduce HS = V

∑
(λi>0) V

T and HS⊥ = V
∑

(λi≤0) V
T respectively, and

define the following two auxiliary functions gS : S → R and gS⊥ : S⊥ → R:

gS(u) :=
[
PS∇f

(
x0
)]>

u +
1

2
uTHSu, (20)
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and

gS⊥(v) :=
[
PS⊥∇f

(
x0
)]>

v +
1

2
vTHS⊥v. (21)

For the previously mentioned decomposition of f(x) = f+(x) + f−(x), one may simply take
f+(x) = f(PSx), and let f−(x) = f(x) − f+(x). It can be checked that f+(·) = f+(x0) +
gS(·) + Õ(ε1.5) and f−(·) = f−(x0) + gS⊥(·) + Õ(ε1.5). It follows that we only need to separately
analyze the two quadratic approximations gS(·) and gS⊥(·). We then bound the difference between
f(xK0) and gS(xK0 − x0) + gS⊥(xK0 − x0) + f(x0) as Õ(ε1.5).

The analysis for gS⊥(·) can be obtained via the standard analysis informally described above in
Case 2 (Refer to Lemma 18).

Our proof technique for dealing with gS(·) is to introduce an auxiliary trajectory with the fol-
lowing deterministic updates for k = 0, 1, 2, . . . , as:

yk+1 = yk − η∇gS
(
yk
)
, (22)

and y0 = 0. We then track and analyze the difference trajectory between PS
(
xK0 − x0

)
and yK0

(Refer to Lemma 17). In the sense that yk simply performs Gradient Descent, we can arrive our
final results for gS(·) (Refer to Lemma 16), which leads to a rigorous statement of Case 1.

Finally, via the fact that xk moves out of the ball in K0 iteration throughout the execution of
Algorithm 2, we prove that with high probability the sum for the norm of gradients can be lower
bounded as:

K0−1∑
k=0

∥∥∥∇gS⊥ (xk − x0
)∥∥∥2

+

K0−1∑
k=0

∥∥∥∇gS (yk)∥∥∥2
= Ω̃(1), (23)

which ensures sufficient descent of the function value. By putting the above arguments together, we
can obtain Proposition 9.

A.3. Part III: Finding SSP

Part III proves the following proposition:

Proposition 10 With probability of at least 1 − p, if xk has not moved out of the ball in K0

iterations, then let x̄ =
∑K0−1

k=0 xk, we have

‖∇f(x̄)‖ ≤ 18ρB2 � ε, λmin(∇2f(x̄)) ≥ −17δ � −√ρε. (24)

Proposition 10 can be obtained via the same idea of Part II. We first study the quadratic approxima-
tion function g(x̄) and then bound the difference between g(x̄) and f(x̄).

Finally, integrating Proposition 7, 9, and 10, and using the boundedness of the function value in
Assumption 2, we know with probability at least 1 − (T1 + 1)p, Algorithm 2 shall stop before T0

steps, and output an approximate second-order stationary point satisfying (9), which immediately
leads to Theorem 5.

Appendix B. Concentration Inequalities

In our proofs, concentration inequalities are fundamental to obtain the high-probability result. Be-
fore we prove our results, we introduce the following two (advanced) inequalities which will be
used in our proofs.
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B.1. Vector-Valued Concentration Inequality

Theorem 11 (Vector-Martingale AzumaHoeffding, Theorem 3.5 in Pinelis (1994)) Let ε1:K ∈
Rd be a vector-valued martingale difference sequence with respect to Fk, i.e. for each k =
1, . . . ,K, E[εk | Fk−1] = 0 and ‖εk‖2 ≤ B2

k . We have

P

(∥∥∥∥∥
K∑
k=1

εk

∥∥∥∥∥ ≥ λ
)
≤ 4 exp

(
− λ2

4
∑K

k=1B
2
k

)
, (25)

where λ is an arbitrary real positive number.

Theorem 11 is not a straightforward derivation of one-dimensional Azuma’s inequality. Because
the bound on the right hand of (25) is dimension-free. Such result might be first found by Pinelis
(1994). See also Kallenberg and Sztencel (1991), Lemma 4.4 in Zhang (2005) or Theorem 2.1 in
Zhang (2005) and the references therein.

B.2. Data-Dependent Concentration Inequality

Theorem 12 (Date-Dependent Concentration Inequality, Lemma 3 in Rakhlin et al. (2012)) Let
ε1:K ∈ R be a martingale difference sequence with respect to Fk, i.e. for each k = 1, . . . ,K,
E[εk | Fk−1] = 0, and

E[ε2k | Fk−1] ≤ σ2
k.

Furthermore, assume that P(‖εk‖ ≤ b | Fk−1) = 1. Let V 2
K =

∑K
k=1 σ

2
k, for any δ < 1/e and

K ≥ 4, we have

P

(
K∑
k=1

εk > 2 max
{

2
√
Vk, b

√
log(1/δ)

}√
log(1/δ)

)
≤ log(K)δ. (26)

Theorem 12 extends the standard Freedman’s Inequality (Freedman, 1975) by allowing σk being the
conditional variance. Similar results can be found in Bartlett et al. (2008) and Lemma 2 in Zhang
(2005) and the references therein.

Note that Theorem 11 and 12 only list the results for the bounded martingale difference. Similar
results can also be established when the martingale difference follows from a sub-gaussian distribu-
tion. In the rest of our proofs, we also only present the results for the bounded noise case, i.e. (5) in
Assumption 3. Analogous analysis can be applied for sub-gaussian noise, i.e. (6) in Assumption 3.

Appendix C. Deferred Proofs of Part I: Escaping Saddles

Let the deterministic time

Ko = 2 log

(
24
√
d

η

)
η−1δ−1

2 ≥
⌈

log(6/q0)

log(1 + η(δ2))

⌉
B≤1
≥
⌈

log(6B/q0)

log(1 + η(δ2))

⌉
, (27)

where q0 = ση

4
√
d

. We prove Proposition 7 that bound the iteration number to escape B(x0, B).
Proof [Proof of Proposition 7]
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(i) We prove in this item that SBKo(x
0) satisfies the (q0, e1)-narrow property, i.e. there cannot be

two points u,u + qe1 ∈ SBKo(x
0) such that q ≥ q0. Indeed if such two points do exist, from

(14) we have

P(Kexit(u) ≥ Ko) ≥ 0.6 and P(Kexit(u + qe1) ≥ Ko) ≥ 0.6,

and hence by inclusion-exclusion principle

P(Kexit(u) ≥ Ko and Kexit(u + qe1) ≥ Ko)

≥ P(Kexit(u) ≥ Ko) + P(Kexit(u + qe1) ≥ Ko)− 1 ≥ 2(0.6)− 1 = 0.2,

which contradicts (15) in Lemma 8.

(ii) Combining the fact that SBKo(x
0) satisfies the (q0, e1)-narrow property (as in Definition 2)

where q0 = ησ/4
√
d, and Assumption 3 which allows ∇F (u; ζ1) to satisfy the e1-disperse

property, we have for any u ∈ Rd the following holds:

P
(
w1(u) ∈ SBKo(x

0)
)

= P
(
u− η∇F (u; ζ1) ∈ SBKo(x

0)
)

= P
(
∇F (u; ζ1) ∈ η−1[−SBKo(x

0) + u]
)
≤ 1

4
,

(28)

where we applied (12) and that w0(u) = u. Thus

P (Kexit(u) ≤ Ko) ≥ E
(
P
(
Kexit(w1(u)) < Ko | F1

)
;w1(u) ∈ SBKo(x

0)
)

+ E
(
P
(
Kexit(w1(u)) < Ko | F1

)
;w1(u) ∈ [SBKo(x

0)]c
)

≥ E
(
P
(
Kexit(w1(u)) < Ko | F1

)
;w1(u) ∈ [SBKo(x

0)]c
)

≥ 0.4P
(
w1(u) ∈ [SBKo(x

0)]c
)
≥ 0.4

(
3

4

)
= 0.3,

i.e. supu′∈Rd P (Kexit(u′) > Ko) ≤ 0.7. Using (28) and Markov’s property we conclude for
any N ≥ 1

P (Kexit(u) > NKo) = E
(
P(Kexit(w(N−1)Ko(u)) > Ko | FK0);Kexit(u) > (N − 1)Ko

)
≤ sup

u′∈B(u,B)
P
(
Kexit(u′) > Ko

)
· P(Kexit(u) > (N − 1)Ko)

≤ 0.7 · P(Kexit(u) > (N − 1)Ko),

which further leads to P (Kexit(u) > NKo) ≤ 0.7N . LettingN = blog(3·p−1)/ log(0.7−1)c+
1 we obtain an exit probability of ≤ p/3 which completes the proof of Proposition 7.
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C.1. Proof of Lemma 8

This subsection denotes to the proof of Lemma 8 in the following steps:

(i) Denote for simplicity wk ≡ wk(u), and w̄k ≡ wk(u + qe1). Recall from the SGD update
rule we have w0 = u, and for all k = 1, 2, . . . for a random index ζk drawn from distribution
D,

wk = wk−1 − η∇F (wk−1; ζk),

and
w̄k = w̄k−1 − η∇F (w̄k−1; ζk).

Recall the definition of Kexit(u) in (13), we let

K1 := Kexit(u) ∧ Kexit(u + qe1). (29)

For our analysis, we define a coupled Fk-measurable iteration zk, as follows:

zk =

{
w̄k −wk on (k < K1)(
I− η∇2f(x0)

)
zk−1 on (k ≥ K1)

, (30)

i.e. we couple the difference iteration w̄k −wk on (k < K1), and keep moving the iteration
afterwards as if it is the difference iteration of SGD for pure quadratics (we eliminate both the
Taylor remainder term and noise term after exiting). Since w0 = u, w̄0 = u+qe1 and (K1 >
0) holds, we have y0 = qe1. We only want to show for any u such that u,u+ qe1 ∈ B(x̃, B),

P(K1 > Ko) = P (Kexit(u) ∧ Kexit(u + qe1) > Ko) ≤ p. (31)

(ii) Letting H = ∇2f(x0), and we first conclude the following lemma to express zk defined in
(30):

Lemma 13 We have for all k = 1, 2, . . .

zk = (I− ηH) zk−1 + ηDk−1zk−1 + ηξkd , (32)

where
‖Dk−1‖ ≤ ρmax

(
‖w̄k−1 − x0‖, ‖wk−1 − x0‖

)
≤ ρB, (33)

{ξkd} forms a martingale difference sequence satisfying

‖ξkd‖ ≤ 2L‖zk−1‖. (34)

Proof [Proof of Lemma 13] By setting Dk−1 = 0d×d and ξkd = 0, on event (k ≥ K1) we can
easily see from (30) that all (32), (33) and (34) hold, since their left hands are zero. For its
complement (k < K1), we have

zk = w̄k −wk = w̄k−1 −wk−1 − η
(
∇F (w̄k−1; ζk)−∇F (wk−1; ζk)

)
= zk−1 − η

(
∇f(w̄k−1)−∇f(wk−1)

)
+ η

[(
∇f(w̄k−1)−∇f(wk−1)

)
−
(
∇F (w̄k−1; ζk)−∇F (wk−1; ζk)

)]
= zk−1 − η

[∫ 1

0
∇2f

(
wk−1 + θ(w̄k−1 −wk−1)

)
dθ

]
zk−1 + ηξkd

≡ zk−1 − η
(
H−Dk−1

)
zk−1 + ηξkd ,

22



NSGD

where we set the following terms (35) and (36):

Dk−1 ≡ ∇2f(x0)−
∫ 1

0
∇2f

(
wk−1 + θ(w̄k−1 −wk−1)

)
dθ, (35)

and the noise term ξkd generated at each iteration

ξkd ≡
(
∇f(w̄k−1)−∇f(wk−1)

)
−
(
∇F (w̄k−1; ζk)−∇F (wk−1; ζk)

)
, (36)

proving (32).

It leaves us to prove (33) and (34). From (35), we have

‖Dk−1‖ ≤
∫ 1

0

∥∥∥∇2f(x0)−∇2f
(
wk−1 + θ(w̄k−1 −wk−1)

)∥∥∥ dθ
≤ ρ

∫ 1

0

∥∥∥θ(w̄k−1 − x0) + (1− θ)(wk−1 − x0)
∥∥∥ dθ

≤ ρmax
(
‖w̄k−1 − x0‖, ‖wk−1 − x0‖

)
,

which is bounded by ρB since max
(
‖w̄k−1 − x0‖, ‖wk−1 − x0‖

)
≤ B, proving (33).

The ξkd defined in (36) has E[ξkd | F
k−1] = 0 forming a Martingale Difference Sequence, and

from Lipschitz continuity of the objective function, we have

‖ξkd‖ ≤
∥∥∥∇f(w̄k−1)−∇f(wk−1)

∥∥∥+
∥∥∥∇F (w̄k−1; ζk)−∇F (wk−1; ζk)

∥∥∥
≤ L

∥∥∥w̄k−1 −wk−1
∥∥∥+ L

∥∥∥w̄k−1 −wk−1
∥∥∥ = 2L‖zk−1‖.

This completes the proof of (34), and hence the lemma.

(iii) We observe from (32) that if∇2f(z) does not rotate in the sense that each pair of Hessian ma-
trices ∇2f(w1) and ∇2f(w2) can be spectrally decomposed via the same orthogonal matrix,
one can analyze the iteration coordinate-wisely. Here, the rotation effect of Hessian matrix
cannot be ignored. Hence, we analyze the difference iteration zk in two aspects: (i) zk has a
rotation effect after standardization, and (ii) its norm ‖zk‖ has an expansion effect.

To decouple these two effect, we define a rescaled iteration as follows. Let δm denote the
negated least eigenvalue λmin(∇2f(x0)) of Hessian so δm ≥ δ2. Let for each k = 0, 1, . . .

ψk ≡ q−1(1 + ηδm)−kzk. (37)

We state the following lemma for the update rule of ψk.

Lemma 14 Let D̂k ≡ (1+ηδm)−1Dk, and ζkd ≡ q−1(1+ηδm)−kξkd . We haveψ0 = e1 and

ψk =
(I− ηH)

1 + ηδm
ψk−1 + ηD̂k−1ψk−1 + ηζkd , (38)
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where
‖D̂k−1‖ ≤ ρB, (39)

and the rescaled noise iteration ζkd has

‖ζkd‖ ≤ 2L‖ψk−1‖, k ≥ 1. (40)

Then with the step size set in (8)9, we have on the event Ho ((49) happens), the norm of ψk

satisfies
‖ψk‖2 ≤ 4, (41)

and for the projection of ψk onto the first coordinate,

e>1 ψ
k >

1

2
. (42)

Proof [Proof of Lemma 14] We have from the definition of ζkd

‖ζkd‖ ≤ q−1(1 + ηδm)−k‖ξkd‖

≤ 2Lq−1 (1 + ηδm)−(k−1)

1 + ηδm
‖zk−1‖ ≤ 2L‖ψk−1‖,

establishing (40), and hence

ψk = q−1(1 + ηδm)−kzk

=
(I− ηH)

1 + ηδm
q−1(1 + ηδm)−(k−1)zk−1

+ η
Dk−1

1 + ηδm
q−1(1 + ηδm)−(k−1)zk−1 + ηq−1(1 + ηδm)−kξkd

=
(I− ηH)

1 + ηδm
ψk−1 + ηD̂k−1ψk−1 + ηζkd ,

proving (38) and (39).

To handle the term involving the ζkd terms on the right hands of (42) and (41), we first set

ψ̂k−1 =
[I− ηH]

1 + ηδm
ψk−1. (43)

Since ηL ≤ 1 we simply have [I− ηH] is symmetric and has all eigenvalues in [0, 1 + ηδm],
so ‖I− ηH‖ ≤ 1 + ηδm. This implies ‖ψ̂k−1‖ ≤ ‖ψk−1‖.
On the other hand, for all k ≥ 1, we have

E
[
ψ̂k−1 >ζkd · I‖ψk−1‖≤2 | Fk−1

]
a
= I‖ψk−1‖≤2 · E[ψ̂k−1 >ζkd | Fk−1] = 0, (44)

and

E
[∣∣∣ψ̂k−1 >ζkd · I‖ψk−1‖≤2

∣∣∣2 | Fk−1

]
a & (40)

= I‖ψk−1‖≤2 · 2L‖ψk−1‖2 ≤ 8L, (45)

9. We actually only need η ≤ Õ(ε0.5) to obtain Lemma 14.
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where I denotes the indicator function, a= uses ψk−1 and ψ̂k−1 are measurable on Fk−1. By
the standard Azuma’s inequality, with probability 1− 0.1/(2K0), for any l from 1 to K0,∣∣∣∣∣

l∑
k=1

ψ̂k−1 >ζkd · I‖ψk−1‖≤2

∣∣∣∣∣ ≤ 4
√
Ll log(40K0) ≤ 4

√
LK0 log(40K0)

(8)
≤ 1

η
. (46)

Analogously, we also have

E
[
e>1 ζ

k
d · I‖ψk−1‖≤2 | Fk−1

]
= 0, E

[∣∣∣e>1 ζkd · I‖ψk−1‖≤2

∣∣∣2 | Fk−1

]
≤ 4L. (47)

Thus with standard Azuma’s inequality,∣∣∣∣∣
l∑

k=1

e>1 ζ
k
d · I‖ψk−1‖≤2

∣∣∣∣∣ ≤√8Ll log(40k0) ≤
√

8LK0 log(12K0/p)
(8)
≤ 1

4η
(48)

happens with probability at least 1− 0.1/(2K0).

So by union bound, there exists a high-probability event Ho happening with probability at
least 0.9 such that the following inequalities hold for each l = 1, 2, . . . ,K0,

∣∣∣∣∣
l∑

k=1

ψ̂k−1 >ζkd · I‖ψk−1‖≤2

∣∣∣∣∣ ≤ 1

η
,

∣∣∣∣∣
l∑

k=1

e>1 ζ
k
d · I‖ψk−1‖≤2

∣∣∣∣∣ ≤ 1

4η
. (49)

On the other hand, we have from (38) and (43) that for all k ≥ 1,

‖ψk‖2 =

∥∥∥∥ [I− ηH]

1 + ηδm
ψk−1 + ηD̂k−1ψk−1 + ηζkd

∥∥∥∥2

= ‖ψ̂k−1‖2 + 2ηψ̂k−1 >D̂k−1ψk−1 + η2
∥∥∥D̂k−1ψk−1 + ζkd

∥∥∥2
+ 2ηψ̂k−1 >ζkd

≤ ‖ψk−1‖2 +Q1,k +Q2,k +Q3,k

Hence from (39),

Q1,k = 2ηψ̂k−1 >D̂k−1ψk−1 ≤ 2η · ρB‖ψk−1‖2

and

Q2,k = η2
∥∥∥D̂k−1ψk−1 + ζk−1

d

∥∥∥2

≤ 2η2‖D̂k−1ψk−1‖2 + 2η2‖ζk−1
d ‖2

≤ 2η2 · ρ2B2‖ψk−1‖2 + 8η2L2‖ψk−1‖2

≤ 16η2 · L2‖ψk−1‖2,

and

Q3,k = 2ηψ̂k−1 >ζk−1
d .
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Under the event H0 happens, by induction, when k = 0, ‖ψ0‖ = ‖e1‖ ≤ 2, suppose ‖ψl‖ ≤
2 holds for all l = 0 to k − 1, we have for the step k,

‖ψk‖2 ≤ ‖ψ0‖2 +
k∑
s=1

Q1,s +
k∑
s=1

Q2,s +
k∑
s=1

Q3,s

≤ 1 + 2η
k∑
s=1

ρB‖ψs−1‖2 + 16η2 · L2
k∑
s=1

‖ψs‖2 + 2η
k∑
s=1

ψ̂s−1 >ζsd

≤1 + 2ρB · 4 · ηk + 16η2 · L2 · 4 · k + 2η

k∑
s=1

ψ̂s−1 >ζsd · I‖ψs−1‖≤2

a
≤ 1 + 16ρB · ηk + 2η

k∑
s=1

ψ̂s−1 >ζsd · I‖ψs−1‖≤2 ≤ 1 + 1 + 2 = 4,

where
a
≤ uses η ≤ ρB

8L2 (because (8) and B ≤ 1
L ). This conclude the proof of (41). For e>1 ψ

k,
we have

e>1 ψ
k = e>1 ψ

0 +
k−1∑
s=0

ηe>1 D̂sψ
1 +

k−1∑
s=0

ηe>1 ζ
s
d

≥ 1− η
k−1∑
s=0

2ρB · ‖ψs−1‖+ η

k∑
s=1

e>1 ζ
s
d · I‖ψs−1‖≤2

≥ 1− η · k · 2ρB · 2 + η
k−1∑
s=0

e>1 ζ
s
d · I‖ψs−1‖≤2 ≥ 1− 1

8
− 2

8
>

1

2
,

concluding (42), and hence the lemma.

(iv) Now, we have all the ingredients necessary to prove our final lemma.

Proof [Proof of Lemma 8] Recall that the deterministic time Ko was defined in (27), we have
on the event (K1 > Ko) that zKo = w̄Ko−wKo and hence ‖zKo‖ ≤ ‖w̄Ko‖+‖wKo‖ ≤ 2B,
which concludes

(K1 > Ko) ⊆ (‖zKo‖ ≤ 2B). (50)

In the mean time, from (30) we know that on the event (K1 > Ko), zk = w̄k − wk for all
k ≤ Ko, from (42)

e>1 ψ
Ko >

1

2
.

So on the event (K1 > Ko) ∩H0

‖zKo‖ = q (1 + ηδm)Ko ‖ψKo‖ ≥ q0 (1 + η(δ2))Ko |e>1 ψKo |

> q0 ·
6B

q0
· 1

2
= 3B,

so
(K1 > Ko) ∩H0 ⊆ (‖zKo‖ > 3B) (51)

26



NSGD

Combining (50), (51) and the fact that B > 0 gives

(K1 > Ko) ∩H0 ⊆ (‖zKo‖ ≤ 2B) ∩H0 ∩ (‖zKo‖ > 3B) = ∅,

and hence (K1 > Ko) ⊆Hc
0 which leads to

P(K1 > Ko) ≤ P(Hc
0) ≤ 0.1,

proving (31). Hence (15) and Lemma 8 hold.

Appendix D. Deferred Proofs of Part II: Faster Descent

D.1. Definition and Preliminary

In Part II, we still use H to denote∇2f(x0) and let

ξk+1 = ∇F (xk, ζk+1)−∇f(xk), k ≥ 0.

Recall the definition of S , PS , S⊥, and PS⊥ in Appendix A.2. Let uk = PS
(
xk − x0

)
, and

vk = PS⊥
(
xk − x0

)
. We can decompose the update equation of SGD as:

uk+1 = uk − ηPS∇f
(
xk
)
− ηPSξk+1. (52)

vk+1 = vk − ηPS⊥∇f
(
xk
)
− ηPS⊥ξk+1, (53)

with k ≥ 0. And u0 = 0, v0 = 0. From the definition of g(x) in Appendix A.2, we have

g(x) =
[
∇f(x0)

]> (
x− x0

)
+

1

2

[
x− x0

]>
H
[
x− x0

]
(54)

=
[
∇f(x0)

]> [PS (x− x0
)

+ PS⊥
(
x− x0

)]
+

1

2

[
PS

(
x− x0

)]>
H
[
PS

(
x− x0

)]
+

1

2

[
PS⊥

(
x− x0

)]>
H
[
PS⊥

(
x− x0

)]
=

[
PS∇f(x0)

]> [PS (x− x0
)]

+
[
PS⊥∇f(x0)

]> [PS⊥ (x− x0
)]

+
1

2

[
PS

(
x− x0

)]>
HS

[
PS

(
x− x0

)]
+

1

2

[
PS⊥

(
x− x0

)]>
HS⊥

[
PS⊥

(
x− x0

)]
,

where in the last equality we use P2
S = PS and P2

S⊥ = PS⊥, because PS and PS⊥ are projection
matrices. Thus if u = PS(x− x0) and v = PS⊥(x− x0), we have

g(x) = gS(u) + gS⊥(v). (55)

For clarify, we denote∇uf(xk) = PS∇f(xk), and∇vf(xk) = PS⊥∇f(xk), respectively. Simi-
larly, let ξku = PSξk, and ξkv = PS⊥ξk. In the following, we denote K = K0 ∧K0 which is also
a stopping time. The Lemma below is basic to obtain our result.
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Lemma 15 Given x0, for any x, if
∥∥x− x0

∥∥ ≤ B, then

‖∇f(x)−∇g(x)‖ ≤ ρB2/2. (56)

For any symmetric matrix A, with 0 < a ≤ 1
‖A‖2 , for any i = 0, 1, . . . , and j = 0, 1, . . . , we have

∥∥(I− aA)iA(I− aA)j
∥∥

2
≤ 1

a(i+ j + 1)
. (57)

Proof For (56), we have

‖∇f(x)−∇g(x)‖
=

∥∥∇f(x)−∇f(x0)−H(x− x0)
∥∥

=

∥∥∥∥(∫ 1

0
∇2f(x0 + θ(x− x0))dθ −H

)(
x− x0

)∥∥∥∥
a
≤

∥∥∥∥(∫ 1

0
ρθ
∥∥x− x0

∥∥ dθ)∥∥∥∥∥∥x− x0
∥∥

≤ ρB2/2 (58)

where in
a
≤, we use (4) that f(x) has ρ-Lipschitz continuous Hessian.

(57) is from Jin et al. (2017). To prove it, suppose the eigenvalue of {A} is {λl}, thus the
eigenvalue of (I− aA)iH(I− aA)j is {λl(1− aλl)i+j}. For the function of λ(1− aλ)i+j , we can
compute out its derivative as (1− aλ)i+j − (i+ j)aλ(1− aλ)i+j−1. Then with simple analysis, we
can find that the maximal point is obtained only at 1

(1+i+j)a . If i = 0 and j = 0, (57) clearly holds.
Otherwise, we have

∥∥(I− aA)iA(I− aA)j
∥∥

2
≤ 1

(1 + j + i)a

(
1− 1

1 + j + i

)j+i
≤ 1

(1 + j + i)a
. (59)

D.2. Analysis on Quadratic Approximation

As have been introduced before, our main technique to obtain a faster Õ(ε−3.5) convergence rate is
by separately analyzing the two quadratic approximations: gS(·) and gS⊥(·). We will show in this
section that the noise effect can be upper bounded by Õ(ε1.5) instead of O(ε) via our tool.

We first summarize our result for gS(·) in the following lemma:

Lemma 16 Set hyper-parameters in (8) for Algorithm 2. With probability at least 1−p/4, we have

gS(uK )− gS(u0) ≤ −
25η

∑K −1
k=0

∥∥∇gS (yk)∥∥2

32
+ 4ησ2 (log(K0) + 3) log(48K0/p) + ηρ2B4K0

= −
25η

∑K −1
k=0

∥∥∇gS (yk)∥∥2

32
+ Õ

(
ε1.5
)
. (60)
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Proofs of Lemma 16
Our novel technique to analyze gS(·) is by first considering an auxiliary Gradient Descent trajectory,
which performs update as:

yk+1 = yk − η∇gS
(
yk
)
, k ≥ 0. (61)

and y0 = u0. yk preforms Gradient Decent on gS(·), which is deterministic given x0. We study
the property of yK and obtain the following standard results:

• Because gS(·) has L-Lipschitz continuous gradient (‖HS‖2 ≤ L), we have

gS

(
yk+1

)
≤ gS

(
yk
)

+
〈
∇gS

(
yk
)
,yk+1 − yk

〉
+
L

2

∥∥∥yk+1 − yk
∥∥∥2

(61)
= gS

(
yk
)
− η

(
1− Lη

2

)∥∥∥∇gS (yk)∥∥∥2
. (62)

• By telescoping (62) from 0 to K − 1, we have

gS

(
yK
)

≤ gS
(
y0
)
− η

(
1− Lη

2

)K −1∑
k=0

∥∥∥∇gS (yk)∥∥∥2

Lη≤ 1
16

≤ gS
(
y0
)
− 31η

32

K −1∑
k=0

∥∥∥∇gS (yk)∥∥∥2
. (63)

To obtain Lemma 16, we bound the difference between uK and yK . Define

zk := uk − yk.

The remaining is to conclude the properties of zK , stated as follows:

Lemma 17 With probability at least 1− p/6, we have∥∥∥zK
∥∥∥ ≤ 3B

32
� ε0.5. (64)

and (
zK
)>

HS

(
zK
)
≤ 8σ2η (log(K0) + 1) log(48K0/p) + ηρ2B4K0 � ε1.5. (65)

Proof [Proofs of Lemma 17] With zk = uk − yk being the difference iteration, we have

zk+1 = zk − η
(
∇gS

(
uk
)
−∇gS

(
yk
))
− η

(
∇uf

(
xk
)
−∇gS

(
uk
))
− ηξk+1

u

= (I− ηHS)zk − η
(
∇uf

(
xk
)
−∇gS

(
uk
))
− ηξk+1

u , k ≥ 0. (66)
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And z0 = 0. Thus we can obtain the general solution of (66) as

zk = −
k∑
j=1

η(I− ηHS)k−jξju − η
k−1∑
j=0

(I− ηHS)k−1−j (∇uf
(
xj
)
−∇gS

(
uj
))
, k ≥ 0. (67)

Setting k = K , by triangle inequality, we have

∥∥∥zK
∥∥∥ ≤

∥∥∥∥∥∥
K∑
j=1

η(I− ηHS)K −jξju

∥∥∥∥∥∥+

∥∥∥∥∥∥η
K −1∑
j=0

(I− ηHS)K −1−j (∇uf
(
xj
)
−∇gS

(
uj
))∥∥∥∥∥∥ . (68)

We separately bound the two terms in the right hand sides of (68). For the first term, for any fixed l
from 1 to K0, and any j from 1 to l, we have

E
[
η(I− ηHS)l−jξju | F j−1

]
a
= 0,

∥∥∥η(I− ηHS)l−jξju

∥∥∥ b
≤ ησ, (69)

where a
= uses that ‖ξju‖ = ‖PSξj‖,

b
≤ further uses ‖ξju‖ ≤ ‖ξj‖ ≤ σ, because P is projection

matrix, and the the bounded noise assumption in (5) and ‖(I− ηHS)l−j‖2 ≤ 1 for all j from 1 to l.
Thus by the Vector-Martingale Concentration Inequality in Theorem 11, we have with probability
1− p/(12K0),∥∥∥∥∥∥

l∑
j=1

η(I− ηHS)l−jξju

∥∥∥∥∥∥ ≤ 2ησ
√

(l) log(48K0/p) ≤ 2ησ
√
K0 log(48K0/p)

(8)
≤ B

16
. (70)

By union bound, with probability at least 1 − p/12, (70) holds for all l from 1 to K0. Because
1 ≤ K ≤ K0, with probability at least 1− p/12,∥∥∥∥∥∥

K∑
j=1

η(I− ηHS)K −jξju

∥∥∥∥∥∥ ≤ B

16
. (71)

For the second term in the right hand side of (68), we have∥∥∥∥∥∥η
K −1∑
j=0

(I− ηHS)K −1−j (∇uf
(
xj
)
−∇gS

(
uj
))∥∥∥∥∥∥ a

≤ η
K −1∑
j=0

∥∥(∇uf
(
xj
)
−∇gS

(
uj
))∥∥

b
≤ η

K −1∑
j=0

∥∥∇f (xj)−∇g (xj)∥∥
(56)
≤ ρηB2K0

2

(8)
≤ B

32
, (72)

where in
a
≤, we use triangle inequality, and ‖I− ηHS‖K −1−j

2 ≤ 1 with j from 0 to K − 1;
b
≤ uses

‖PS(∇f(x) −∇g(x))‖ ≤ ‖∇f(x) −∇g(x)‖ becuase PS is projected matrix. Substituting (71)
and (72) into (68), we obtain (64).
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To prove (65), using the fact that (a + b)>A(a + b) ≤ 2a>Aa + 2b>Ab holds for any
symmetry positive definite matrix A, we have(

zK
)>

HS

(
zK
)

(73)

≤ 2η2

 K∑
j=1

(I− ηHS)K −jξju

>HS
 K∑
j=1

(I− ηHS)K −jξju


+2η2

K −1∑
j=0

(I− ηHS)K −1−j (∇uf
(
xj
)
−∇gS

(
uj
))>HS

K −1∑
j=0

(I− ηHS)K −1−j (∇uf
(
xj
)
−∇gS

(
uj
))

= 2

∥∥∥∥∥∥η
 K∑
j=1

H
1/2
S (I− ηHS)K −jξju

∥∥∥∥∥∥
2

+2η2
K −1∑
j=0

K −1∑
l=0

(
∇uf

(
xj
)
−∇gS

(
uj
))>

(I− ηHS)K −1−jHS(I− ηHS)K −1−l (∇uf
(
xj
)
−∇gS

(
uj
))

(56)
≤ 2

∥∥∥∥∥∥η
 K∑
j=1

H
1/2
S (I− ηHS)K −jξju

∥∥∥∥∥∥
2

+ 2η2 ρ
2B4

4

K −1∑
j=0

K −1∑
l=0

∥∥∥(I− ηHS)K −1−jHS(I− ηHS)K −1−l
∥∥∥

2
.

For the first term in the right hand side of (73), for any fixed l from 1 to K0, and any j from 1 to
l, we have

E
[
η
(
H

1/2
S (I− ηHS)l−jξju

)
| F j−1

]
= 0,

and ∥∥∥η (H1/2
S (I− ηHS)l−jξju

)∥∥∥2

≤ η2‖ξju‖
∥∥∥(I− ηHS)l−jHS(I− ηHS)l−j

∥∥∥
2
‖ξju‖

(57) & ‖ξju‖≤σ
≤ ησ2

1 + 2(l − j)
, (74)

by the Vector-Martingale Concentration Inequality in §11, we have with probability 1− p/(12K0)∥∥∥∥∥∥η
 l∑
j=1

H1/2(I− ηHS)l−jξju

∥∥∥∥∥∥
2

≤ 4ησ2 log(48K0/p)

l∑
j=1

1

1 + 2(l − j)

≤ 4σ2η log(48K0/p)

K0−1∑
j=0

1

1 + j
≤ 4σ2η (log(K0) + 1) log(48K0/p). (75)

By union bound, with probability at least 1 − p/12, (75) holds for all l from 1 to K0. Because
1 ≤ K ≤ K0, with probability at least 1− p/12,∥∥∥∥∥∥η

 K∑
j=1

H1/2(I− ηHS)K −jξju

∥∥∥∥∥∥
2

≤ 4σ2η (log(K0) + 1) log(48K0/p). (76)
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For the second term in the right hand side of (73), we have

η2 ρ
2B4

4

K −1∑
j=0

K −1∑
l=0

∥∥∥(I− ηHS)K −1−jH(I− ηHS)K −1−l
∥∥∥

2

(56)
≤ η

ρ2B4

4

K −1∑
j=0

K −1∑
l=0

1

1 + (K − 1− j) + (K − 1− l)
K ≤K0

≤ η
ρ2B4

4

K0−1∑
j=0

K0−1∑
l=0

1

1 + j + l

= η
ρ2B4

4

2(K0−1)∑
j=0

min(1 + j, 2K0 − 1− j)
1 + j

≤ ηρ2B4K0

2
. (77)

Substituting (76) and (77) into (73), we obtain (65).

Proof [Proofs of Lemma 16] Let y∗ = argminy gS(y). By the optimal condition of y∗, we have

∇Sf
(
x0
)

= −HSy∗.

Define ỹk = yk − y∗. From the update rule of yk in (61), we have

HS ỹ
k = ∇gS

(
yk
)
, (78)

ỹk+1 = ỹk − ηHS ỹk. (79)

We can bound the first-order difference between gS
(
uK
)

and gS
(
yK
)

as:〈
∇gS

(
yK
)
,uK − yK

〉
(78)
=
〈
ỹK , zK

〉
HS

(80)

(79) (66)
=

〈
(I− ηHS)ỹK −1, (I− ηHS)zK −1 − ηξK

u − η
(
∇uf

(
xK −1

)
−∇gS

(
uK −1

))〉
HS

a
=

〈
ỹK −1, zK −1

〉
HS(I−ηHS)2

− η
〈
ỹK −1, ξK

u

〉
HS(I−ηHS)

−η
〈
ỹK −1,∇uf

(
xK −1

)
−∇gS

(
uK −1

)〉
HS(I−ηHS)

b
=−η

K∑
k=1

〈
ỹk−1, ξku

〉
HS(I−ηHS)K −k+1

− η
K −1∑
k=0

〈
ỹk,∇uf

(
xk
)
−∇gS

(
uk
)〉

HS(I−ηHS)K −k
,

where in a
=, we use (I−HS)HS = HS(I−HS), and in b

=, we use z0 = 0.
We also bound the two terms in the right hand side of (80). For any fixed l from 1 to K0, and

any j from 1 to l, we have∣∣∣∣〈ỹj−1, ξlu

〉
HS(I−ηHS)l−j+1

∣∣∣∣2 =
∣∣∣〈HS ỹj−1, ξju

〉
(I−ηHS)l−j+1

∣∣∣2
(78)
=

∣∣∣〈∇gS (yj−1
)
, ξju
〉

(I−ηHS)l−j+1

∣∣∣2
a
≤ σ2

∥∥∇gS (yj−1
)∥∥2

∥∥∥(I− ηHS)l−j+1
∥∥∥2

2

b
≤ σ2

∥∥∇gS (yj−1
)∥∥2

, (81)
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where
a
≤ uses ‖ξju‖ ≤ ‖ξj‖ ≤ σ,

b
≤ uses ‖(I− ηHS)l−j+1‖2 ≤ 1 for all j from 1 to l. So for any l

from 1 ≤ k ≤ K0, by standard AzumaHoeffding inequality, using ∇gS
(
yk
)

is measurable on F0,
with probability at least 1− p/(12K0), we have∣∣∣∣∣η

l∑
k=1

〈
ỹk−1, ξku

〉
HS(I−ηHS)l−k+1

∣∣∣∣∣ ≤
√√√√2η2σ2 log(24K0/p)

l−1∑
k=0

‖∇gS (yk)‖2. (82)

By union bound, with probability at least 1− p/12, (82) holds for all l from 1 to K0. we have with
probability at least 1− p/12∣∣∣∣∣η

K∑
k=1

〈
ỹk−1, ξku

〉
HS(I−ηHS)K −k+1

∣∣∣∣∣ ≤
√√√√2η2σ2 log(24K0/p)

K −1∑
k=0

‖∇gS(yk)‖2 (83)

a
≤

η
∑K −1

k=0

∥∥∇gS(yk)
∥∥2

16
+ 8ησ2 log(48K0/p),

where in
a
≤, we use

√
ab ≤ a+b

2 with a ≥ 0 and b ≥ 0.
For the second term in the right hand side of (80), we have

η

K −1∑
k=0

〈
ỹk,∇uf

(
xk
)
−∇gS

(
uk
)〉

HS(I−ηHS)K −k

(78)
= η

K −1∑
k=0

〈
∇gS

(
yk
)
,∇uf

(
xk
)
−∇gS

(
uk
)〉

(I−ηHS)K −k

a
≤ η

K −1∑
k=0

∥∥∥∇gS (yk)∥∥∥ · ∥∥∥∇uf
(
xk
)
−∇gS

(
uk
)∥∥∥

b
≤

η
∑K −1

k=0

∥∥∇gS (yk)∥∥2

8
+ 2η

K −1∑
k=0

∥∥∥∇uf
(
xk
)
−∇gS

(
uk
)∥∥∥2

(56)
≤

η
∑K −1

k=0

∥∥∇gS (yk)∥∥2

8
+ ηρ2B4K0/2, (84)

where
a
≤ uses

∥∥(I− ηHS)K −k∥∥
2
≤ 1 with k < K ,

b
≤ uses ab ≤ a2+b2

2 .
Substituting (83) and (84) into (80), and using (65), we have

gS

(
uK
)

(85)

= gS

(
yK
)

+
〈
∇gS

(
yK
)
,uK − yK

〉
+

1

2

(
uK − yK

)>
H
(
uK − yK

)
(80) (65)
≤ gS

(
yK
)

+
3η
∑K −1

k=0

∥∥∇gS(yk)
∥∥2

16
+ 4ησ2(log(K0) + 3) log(48K0/p) + ρ2ηB4K0.

Then by adding (85) and (63), we have

gS

(
uK
)
− gS

(
u0
)

≤ −
25η

∑K −1
k=0

∥∥∇gS (yk)∥∥2

32
+ 4ησ2(3 + log(K0)) log(48K0/p) + ρ2ηB4K0, (86)
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implying Lemma 16.

We then investigate gS⊥(·) and summarize its property as follows:

Lemma 18 With hyper-parameters set in (8) for Algorithm 2, we have

gS⊥(vK ) ≤ gS⊥(v0)−
K∑
k=1

η
〈
∇gS⊥

(
vk−1

)
, ξkv

〉
− 7η

8

K −1∑
k=0

∥∥∥∇gS⊥ (xk)∥∥∥2
+
ρ2B4ηK0

2

= gS⊥(v0)−
K∑
k=1

η
〈
∇gS⊥

(
vk−1

)
, ξkv

〉
− 7η

8

K −1∑
k=0

∥∥∥∇gS⊥ (xk)∥∥∥2
+ Õ(ε1.5).(87)

Proof [Proofs of Lemma 18] Lemma 18 can be obtained via the standard analysis. Specifically,
from the definition of gS⊥(·), we have

gS⊥

(
vk+1

)
= gS⊥

(
vk
)

+
〈
∇gS⊥

(
vk
)
,vk+1 − vk

〉
+
[
vk+1 − vk

]> HS⊥
2

[
vk+1 − vk

]
HS⊥�0
≤ gS⊥

(
vk
)

+
〈
∇gS⊥

(
vk
)
,vk+1 − vk

〉
(53)
= gS⊥

(
vk
)
− η

〈
∇gS⊥

(
vk
)
,∇vf

(
xk
)

+ ξk+1
v

〉
. (88)

We can further bound the right hand side of (88) as follows:

−
〈
η∇gS⊥

(
vk
)
,∇vf

(
xk
)〉

= −η
∥∥∥∇gS⊥ (vk)∥∥∥2

−
〈
η∇gS⊥

(
vk
)
,∇vf(xk)−∇gS⊥

(
vk
)〉

≤ −7η

8

∥∥∥∇gS⊥ (vk)∥∥∥2
+ 2η

∥∥∥∇vf(xk)−∇gS⊥
(
vk
)∥∥∥2

, (89)

where in the last inequality, we apply:〈
η∇gS⊥

(
vk
)
,∇gS⊥

(
vk
)
−∇vf

(
xk
)〉
≤
η
∥∥∇gS⊥ (vk)∥∥2

8
+ 2η

∥∥∥∇gS⊥ (vk)−∇vf
(
xk
)∥∥∥2

. (90)

Substituting (89) into (88), and telescoping the results with k from 0 to K − 1, we have

gS⊥

(
vK
)

(91)

≤ gS⊥
(
v0
)
−

K∑
k=1

η
〈
∇gS⊥

(
vk−1

)
, ξkv

〉
− 7η

8

K −1∑
k=0

∥∥∥∇gS⊥ (xk)∥∥∥2
+ 2η

K −1∑
k=0

∥∥∥∇vf
(
xk
)
−∇gS⊥

(
vk
)∥∥∥2

a
≤ gS⊥

(
v0
)
−

K∑
k=1

η
〈
∇gS⊥

(
vk−1

)
, ξkv

〉
− 7η

8

K −1∑
k=0

∥∥∥∇gS⊥ (xk)∥∥∥2
+
ρ2B4ηK0

2
,

where in
a
≤, we use

‖∇vf
(
xk
)
−∇gS⊥

(
vk
)
‖ =

∥∥∥PS⊥ (∇f (xk)−∇g (xk))∥∥∥ ≤ ∥∥∥∇f (xk)−∇g (xk)∥∥∥ (56)
≤ ρB2/2,

holds for all k ≤ K − 1.
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D.3. Proofs of Proposition 9

With Lemma 16 and 18 in hand, the mainly rest to do is to prove

K0−1∑
k=0

∥∥∥∇gS⊥ (vk)∥∥∥2
+

K0−1∑
k=0

∥∥∥∇gS (yk)∥∥∥2
= Ω̃(1)

and bound the noise term −
∑K

k=1 η
〈
∇gS⊥

(
vk−1

)
, ξkv
〉
. We separately consider two cases:

1.
∥∥∇f (x0

)∥∥ > 5σ � 1,

2.
∥∥∇f (x0

)∥∥ ≤ 5σ � 1.

(i) Case 1: in the sense that the gradient is large, we show that function value is guaranteed to
decrease monotonously.

Proof [Proofs of Proposition 9 in Case 1] Because
∥∥∇f (x0

)∥∥ > 5σ, we have, for all 0 ≤
k ≤ K − 1,∥∥∥∇f (xk)∥∥∥ ≥ ∥∥∇f (x0

)∥∥− ∥∥∥∇f (xk)−∇f (x0
)∥∥∥ a
≥ 5σ − LB

LB≤σ
≥ 9

2
σ, (92)

where
a
≥ uses ‖xk − x0‖ ≤ B for all k ≤ K1, the L-Lipschitz continuous of the gradient.

Furthermore, we also have

f
(
xk+1

)
− f

(
xk
)

≤
〈
∇f

(
xk
)
,xk+1 − xk

〉
+
L

2
‖xk+1 − xk‖2

a
= −η

〈
∇f

(
xk
)
,∇f(xk) + ξk+1

〉
+
Lη2

2
‖∇f(xk) + ξk+1‖2

b
≤ −η

∥∥∥∇f (xk)∥∥∥2
− η

〈
∇f

(
xk
)
, ξk+1

〉
+ Lη2

∥∥∥∇f (xk)∥∥∥2
+ Lη2

∥∥∥ξk+1
∥∥∥2

c
≤ −15η

16

∥∥∥∇f (xk)∥∥∥2
+

5η

32

∥∥∥∇f (xk)∥∥∥2
+

8

5
ησ2 + Lη2σ2

≤ −25η

32

∥∥∥∇f (xk)∥∥∥2
+ 2ησ2

(92)
≤ −η

(
25

32
− 8

81

)∥∥∥∇f (xk)∥∥∥2
, (93)

where a
= uses the update rule of SGD: xk+1 = xk − η∇f

(
xk
)
− ηξk+1,

b
≤ uses ‖a + b‖2 ≤

2‖a‖2 + 2‖b‖2, in
c
≤, we use Lη ≤ 1

16 from (8), −
〈
∇f

(
xk
)
, ξk+1

〉
≤ 5

32

∥∥∇f (xk)∥∥2
+

8
5

∥∥ξk+1
∥∥2, and

∥∥ξk+1
∥∥ ≤ σ. By telescoping (93) with k from 0 to K − 1, we have

f
(
xK
)
− f

(
x0
)
≤ −η

(
25

32
− 8

81

)K −1∑
k=0

∥∥∥∇f (xk)∥∥∥2
. (94)
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On the other hand, again by the update rule of SGD, we have∥∥∥∥∥η
K −1∑
k=0

∇f
(
xk
)∥∥∥∥∥ =

∥∥∥∥∥−η
K −1∑
k=0

∇f
(
xk
)∥∥∥∥∥

=

∥∥∥∥∥xK − x0 + η
K∑
k=1

ξk

∥∥∥∥∥
≥

∥∥∥xK − x0
∥∥∥− ∥∥∥∥∥η

K∑
k=1

ξk

∥∥∥∥∥ . (95)

By the Vector-Martingale Concentration Inequality in Theorem 11, we have with probability
1− p/12, ∥∥∥∥∥

K∑
k=1

ξk

∥∥∥∥∥ ≤
∥∥∥∥∥
K0∑
k=1

ξk · IK ≥k

∥∥∥∥∥ a
≤ 2ησ

√
K0 log(48/p) ≤ B

16
, (96)

where
a
≤ uses Ik≤K is measurable on Fk−1 and ‖ξk‖ ≤ σ. So if (96) happens, and xk exits

B
(
x0, B

)
in K0 iterations, we have

η
K −1∑
k=0

∥∥∥∇f (xk)∥∥∥2

a
≥ 1

ηK

∥∥∥∥∥η
K −1∑
k=0

∇f
(
xk
)∥∥∥∥∥

2
(95)
≥ 1

ηK

(
B − 1

16
B

)2

≥ 152B2

162ηK

K ≤K0

≥ 152B2

162ηK0
, (97)

where in
a
≥, we use the inequality that∥∥∥∥∥

l∑
i=1

ai

∥∥∥∥∥
2

≤ l
l∑

i=1

‖ai‖2 ,

holds for all l ≥ 1. Plugging (97) into (94), with probability at least 1− p/12 ((96) happens),
we have

f
(
xK0

)
≤ f

(
x0
)
−
(

25

32
− 8

81

)
152B2

162ηK0
≤ f

(
x0
)
− B2

7ηK0
. (98)

Case 2: To obtain the result, we first prepare the following lemmas:

(ii) We fuse Lemma 16 and 18 and obtain the lemma shown below:
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Lemma 19 With the parameters set in (8), and if ‖∇f(x0)‖ ≤ 5σ, with probability 1− p/4
((70), (75) and (83) happen), we have

f
(
xK
)
≤ f

(
x0
)
− η

K∑
k=1

〈
∇gS⊥

(
vk−1

)
, ξkv

〉
+

(
3

256
+

1

80

)
B2

ηK0
(99)

−7η

8

K −1∑
k=0

∥∥∥∇gS⊥ (vk)∥∥∥2
− 25η

32

K −1∑
k=0

∥∥∥∇gS (yk)∥∥∥2
.

Proof [Proofs of Lemma 19] Because
∥∥∇gS⊥ (v0

)∥∥ =
∥∥∇vf

(
x0
)∥∥ ≤ ∥∥∇f (x0

)∥∥ ≤ 5σ,
for all 0 ≤ k ≤ K − 1, we have

∥∥∥∇gS⊥ (vk)∥∥∥ ≤ ∥∥∇gS⊥ (v0
)∥∥+

∥∥∥∇gS⊥ (vk)−∇gS⊥ (v0
)∥∥∥ a
≤ 5σ + LB

LB≤ 1
2

≤ 11

2
σ,(100)

where in
a
≤, we use

∥∥vk − v0
∥∥ =

∥∥PS⊥(xk − x0)
∥∥ ≤ B and L-Lipschitz continuous gradi-

ent for gS⊥(·). In the same way, for all 0 ≤ k ≤ K − 1, we have∥∥∥∇f (xk)∥∥∥ ≤ 11σ

2
, (101)

which indicates that∥∥∥xK − x0
∥∥∥ ≤ ∥∥∥x0 − xK −1

∥∥∥+
∥∥∥∇f (xK −1

)
+ ξK

∥∥∥ ≤ B +
13

2
ησ

(8)
≤ B +

B

100
. (102)

We then bound the difference between f(xK ) and g(xK ): using ρ-smoothness of Hessian,
we have

f
(
xK
)
− f

(
x0
)
− gS

(
uK
)
− gS⊥

(
vK
)
≤ ρ

6
‖xK − x0‖3

(102)
≤ ρB3

5
, (103)

Then by adding (86) and (91), using (103), and gS
(
u0
)

+ gS⊥
(
v0
)

= 0, we have, with
probability at least 1− p/4, ((70), (75) and (83) happen)

f
(
xK
)

(104)

≤ f
(
x0
)
− η

K∑
k=1

〈
∇gS⊥

(
vk−1

)
, ξkv

〉
+ 4ησ2 (1 + 3 log(K0)) log(48/p)

−7η

8

K −1∑
k=0

∥∥∥∇gS⊥ (vk)∥∥∥2
− 25η

32

K −1∑
k=0

∥∥∥∇gS (yk)∥∥∥2
+

3ρ2B4ηK0

2
+
ρB3

5
.

With the parameter set in (8),

4ησ2 (1 + 3 log(K0)) log(48/p) ≤ B2

256ηK0
, (105)
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3ρ2B4ηK0

2
≤ B2

128ηK0
, (106)

and

ρB3

5
≤ B2

80ηK0
, (107)

we obtain with probability at least 1− p/4, ((70), (75) and (83) happen)

f
(
xK
)
≤ f

(
x0
)
− η

K∑
k=1

〈
∇gS⊥

(
vk−1

)
, ξkv

〉
+

(
3

256
+

1

80

)
B2

ηK0

−7η

8

K −1∑
k=0

∥∥∥∇gS⊥ (vk)∥∥∥2
−

25η
∑K −1

k=0

∥∥∇gS (yk)∥∥2

32
,

implying (99).

(iii) Furthermore, the following lemma ensures the function value sufficient descent:

Lemma 20 With probability 1 − p
6 ((70) and (110) happen), if xk exits B

(
xK, B

)
in K0

iterations, we have

η
K −1∑
k=0

∥∥∥∇gS⊥ (vk)∥∥∥2
+ η

K −1∑
k=0

∥∥∥∇gS (yk)∥∥∥2
≥ 169B2

512ηK0
. (108)

Proof [Proofs of Lemma 20] From the update rule of SGD, we have∥∥∥∥∥η
K −1∑
k=0

(
∇gS⊥

(
vk
)

+∇gS
(
yk
))∥∥∥∥∥ =

∥∥∥∥∥−η
K −1∑
k=0

(
∇gS⊥

(
vk
)

+∇gS
(
yk
))∥∥∥∥∥

a
=

∥∥∥∥∥vK − v0 + η
K −1∑
k=0

(
ξk+1
v −∇gS⊥(vk) +∇vf(xk)

)
+ yK − y0

∥∥∥∥∥
b
≥

∥∥∥∥∥vK − v0 + η

K −1∑
k=0

ξk+1
v +

(
uK − u0

)
−
(
zK − z0

)∥∥∥∥∥
−

∥∥∥∥∥η
K −1∑
k=0

(
∇gS⊥

(
vk
)
−∇vf

(
xk
))∥∥∥∥∥

c
≥

∥∥∥xK − x0
∥∥∥− ∥∥∥zK − z0

∥∥∥− η ∥∥∥∥∥
K∑
k=1

ξkv

∥∥∥∥∥− ηK0ρB
2

2

(8)
≥

∥∥∥xK − x0
∥∥∥− ∥∥∥zK − z0

∥∥∥− B

32
− η

∥∥∥∥∥
K∑
k=1

ξkv

∥∥∥∥∥ ., (109)
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where a
= uses vk = vk−1 − ηξk+1

v − η∇vf(xk) and yk = yk−1 − η∇gS
(
yk
)
,
b
≥ uses

zK = uK − yK , z0 = u0 = y0 = 0, and triangle inequality,
c
≥ uses (56).

From (64), with probability at least 1 − 1
12p, we have

∥∥zK − z0
∥∥ ≤ 3B

32 . By the Vector-
Martingale Concentration Inequality in Theorem 11, we have with probability 1− p/12,∥∥∥∥∥η

K∑
k=1

ξkv

∥∥∥∥∥ =

∥∥∥∥∥η
K0∑
k=1

(
ξkv · Ik≤K

)∥∥∥∥∥ a
≤ 2ησ

√
K0 log(48/p)

(8)
≤ B

16
, (110)

where
a
≤ uses Ik≤K is measurable on Fk−1 and ‖ξkv‖ ≤ σ. We obtain∥∥∥∥∥η

K −1∑
k=0

(
∇gS⊥

(
vk
)

+∇gS
(
yk
))∥∥∥∥∥ ≥ ∥∥∥xK − x0

∥∥∥− 3B

16
. (111)

So with probability 1− p/6, if xk exits B
(
xK, B

)
in K0 iterations, we have

η
K −1∑
k=0

∥∥∥∇gS⊥ (vk)∥∥∥2
+ η

K −1∑
k=0

∥∥∥∇gS (yk)∥∥∥2

a
≥ 1

2ηK

∥∥∥∥∥η
K −1∑
k=0

(
∇gS⊥

(
vk
)

+∇gS
(
yk
))∥∥∥∥∥

2

(111)
≥ 169B2

512ηK

K ≤K0

≥ 169B2

512ηK0
, (112)

where
a
≥ uses ∥∥∥∥∥

l∑
i=1

ai

∥∥∥∥∥
2

≤ l
l∑

i=1

‖ai‖2 ,

holds for all l ≥ 1.

(iv) Now, we have all the ingredients necessary to prove Proposition 9:

Proof [Proofs of Proposition 9 in Case 2] We first bound the noise term
∑K

k=1

〈
∇gS⊥

(
vk−1

)
, ξkv
〉
.

We have for all k from 1 to K0

E
[
η
〈
∇gS⊥

(
vk−1

)
, ξkv

〉
· Ik≤K | Fk−1

]
= 0, (113)

From (100), and ‖ξkv‖ ≤ σ, we have∣∣∣−η 〈∇gS⊥ (vk−1
)
, ξkv

〉
· Ik≤K

∣∣∣ ≤ 11ησ2

2
, (114)

and

E
∣∣∣η 〈∇gS⊥ (vk−1

)
, ξkv

〉
· Ik≤K | Fk−1

∣∣∣2 ≤ η2σ2Ik≤K

∥∥∥gS⊥ (vk−1
)∥∥∥2

(115)
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by Data-Dependent Berinstein inequality in Theorem 12 with δ = p
3 log(K0) , we have with

probability at least 1− p
3 ,

K0∑
k=1

{
−η
〈
∇gS⊥

(
vk−1

)
, ξkv

〉
· Ik≤K

}
(116)

≤ max

11ησ2 · log

(
3 log(K0)

p

)
, 4

√√√√η2σ2

K −1∑
k=0

‖∇gS⊥ (vk)‖2 ·

√
log

(
3 log(K0)

p

) .

With the parameter set in (8), we have

11ησ2 · log

(
3 log(K0)

p

)
≤ B2

100ηK0
, (117)

and

4η

√√√√σ2

K −1∑
k=0

‖∇gS⊥ (vk−1)‖2 ·

√
log

(
3 log(K0)

p

)
a
≤ 32 log

(
3 log(K0)

p

)
ησ2 +

η

8

K −1∑
k=0

∥∥∥∇gS⊥ (vk)∥∥∥2

(8)
≤ B2

32ηK0
+
η

8

K −1∑
k=0

∥∥∥∇gS⊥ (vk)∥∥∥2
, (118)

where
a
≤ uses

√
ab ≤ a+b

2 for a ≥ 0. Substituting (117) and (118) into (116), with probability
at least 1− 3/p, we have

K∑
k=1

{
−η
〈
∇gS⊥

(
vk−1

)
, ξkv

〉}
≤ B2

32ηK0
+
η

8

K −1∑
k=0

∥∥∥∇gS⊥ (vk)∥∥∥2
. (119)

Fusing (119) with (99) in Lemma 19, using 7
8 −

1
8 ≤

25
32 , we have with probability at least

1− 7
12p ((70), (75), (83), and (116) happen),

f
(
xK
)
≤ f

(
x0
)
−
(

3

256
+

1

80
+

1

32

)
B2

ηK0
− 3η

4

K −1∑
k=0

∥∥∥∇gS⊥ (vk)∥∥∥2
− 3η

4

K −1∑
k=0

∥∥∥∇gS (yk)∥∥∥2
.

Finally, applying Lemma 20, if xk moves out of the ball in K0 iteration, with probability at
least 1− 2

3p ((70), (75), (83), (110), and (116) happen), we have

f
(
xK0

)
− f

(
x0
)
≤ −

(
3

4
· 169

512
− 3

256
− 1

80
− 1

32

)
B2

ηK0
≤ − B2

7ηK0
. (120)

Combining Case 1 and Case 2, we obtain Proposition 9.

40



NSGD

Appendix E. Deferred Proofs of Part III: Finding SSP

Proof [Proofs of Proposition 10] Clearly, under the random event H0 in Part I happens, we know
that if λmin∇f(x0) ≤ −δ2, xk must gone out of the ball. Thus with probability at least 1 − p/3
(the random events H0 in Part I happens), if xk does not move out the ball in K0 steps, we have
λmin

(
∇f(x0)

)
≥ −δ2. Using that f(x) has continuous Hessian, we have

λmin (∇f(x̄)) ≥ λmin

(
∇f(x0)

)
− ρ

∥∥x̄− x0
∥∥

2
≥ −δ2 −

ρ

K0

K0−1∑
k=0

∥∥x̄− x0
∥∥ ≥ −17

16
δ2 = −17δ.

(121)
To a give upper bound on the ‖∇f(x̄)‖2, we follow the idea by considering quadratic approxi-

mations in Part II. We have

‖∇g(x̄)‖ a
=

∥∥∥∥∥ 1

K0

K0−1∑
k=0

∇g(xk)

∥∥∥∥∥
≤

∥∥∥∥∥ 1

K0

K0−1∑
k=0

∇f(xk)

∥∥∥∥∥+
1

K0

K0−1∑
k=0

∥∥∥∇f(xk)−∇g(xk)
∥∥∥

=
1

K0η

∥∥∥∥∥xK0−1 − x0 − η
K0∑
k=1

ξk

∥∥∥∥∥+
1

K0

K0−1∑
k=0

∥∥∥∇f(xk)−∇g(xk)
∥∥∥

(56)
≤ 1

K0η

∥∥xK0−1 − x0
∥∥+

1

K0

∥∥∥∥∥
K0∑
k=1

ξk

∥∥∥∥∥+
ρ

2
B2

≤ B

K0η
+
ρB2

2
+

1

K0

∥∥∥∥∥
K0∑
k=1

ξk

∥∥∥∥∥
≤

(
16

C̃1

+
1

2

)
ρB2 +

1

K0

∥∥∥∥∥
K0∑
k=1

ξk

∥∥∥∥∥ , (122)

where in
a
≤, we use the gradient of the quadratic function g(·) is a linear mapping.

By the Vector-Martingale Concentration Inequality, we have with probability 1− 2p/3,

1

K0

∥∥∥∥∥
K0∑
k=1

ξk

∥∥∥∥∥ ≤ 2σ
√
K0 log(6/p)/K0 ≤ ρB2. (123)

Using ‖x̄− x0‖ ≤ B, we have ‖∇f(x̄)‖ ≤ ‖∇g(x̄)‖+ ρB2

2 ≤ 18ρB2.
In all, we have with probability at least 1− p, λmin (∇f(x̄)) ≥ −17δ, and ‖∇f(x̄)‖ ≤ 18ρB2.

Proof [Proofs of Theorem 5] By union bound, with probability at least 1 − T1 · p, if at step T0 =
T1 · K0, Algorithm 2 has not stopped, xk must have moved out of the ball at least T1 times, then
from Proposition 9, the function values shall decrease at least

T1 ·
B2

7ηK0
≥ ∆ +

B2

7ηK0
> ∆.
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Contradiction with Assumption 2. Thus with probability at least 1− T1 · p, Algorithm 2 shall stop
before T0 steps. Further, fusing with Proposition 10, we have with probability at least 1−(T1+1)·p,
Algorithm 2 outputs a second-order stationary point satisfying (9) in T0 steps.

Appendix F. Proof of Proposition 4

Proof [Proof of Proposition 4]

(i) Recall the multivariate gaussian noise ξ̃ = σ/
√
d ∗ χ where χ ∼ N(0, Id). We show that it

satisfies (7). Clearly, it satisfies (6).

Let v be an arbitrary unit vector, and due to symmetry in below we assume WLOG v = e1.
Recall we have set A satisfying the (q∗,v)-narrow property in Definition 2. Then

{u + qe1 : u ∈ A, q ∈ [q∗,∞)} ⊆ Ac.

If setA contains no points of u,u+qe1 for each q ≥ q∗, thenA[•,a\1] := {a1 : (a1,a\1)> ∈
A} is a subset of R and has Lebesgue measure ≤ 1.1q∗. This is because that for any given
a\1 = (a2, . . . , ad) there exists an a∗1 such that (a∗1,a\1)> ∈ A and we pick a∗1 to be the
infimum of such. Then it is easy to conclude that (a∗1 + q,a\1)> ∈ Ac for any q > 1.1q∗, and
that

A[•,a\1] ⊆ [a∗1, a
∗
1 + 1.1q∗].

Therefore we have for any A admitting (q∗,v)-narrow property where q∗ = (σ/4
√
d), that

for any given χ\1,

P(σ/
√
d ∗ χ1 ∈ A[•,χ\1] | χ\1) ≤ 1√

2π

∫
(4q∗)−1A[•,χ\1]

exp(−z2/2)dz

≤ 1.1q∗

4q∗
· 1√

2π
<

1

4
,

where A[•,χ\1] is of Lebesgue measure ≤ 1.1q∗. Taking expectation again gives

P(σ/
√
d ∗ χ ∈ A) = E

[
P(σ/

√
d ∗ χ1 ∈ A[•,χ\1] | χ\1)

]
≤ 1

4
,

and we complete the proof that ξ = σ/
√
d ∗ χ is v-disperse for any v.

(ii) For example, recall the uniform ball-shaped noise ξ̃ = σ ∗ ξb, where ξb is uniformly sampled
from Bd, the unit ball centered at 0. We prove that (7) holds in this case. Assume once again
that v = e1 because of symmetry. Using classical results in Multivariate Calculus (or see Jin
et al. (2017)) and (q∗,v)-narrow property property in Definition 2 of set A∗ we have

P(σ ∗ ξb ∈ A) =
V old((σ

−1A) ∩ Bd)
V old(Bd)

≤ q∗

σ
· V old−1(Bd−1)

V old(Bd)
. (124)
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It is well known that the d-dimensional unit ball Bd of Rd has volume being

V old(Bd) =
πd/2

Γ
(
d
2 + 1

) ,
and analogously for Bd−1. We have

V old−1(Bd−1)

V old(Bd)
=

π(d−1)/2

Γ
(
d−1

2 + 1
) · Γ

(
d
2 + 1

)
πd/2

=
Γ
(
d+1

2 + 1
2

)
π1/2Γ

(
d+1

2

) ≤√d+ 1

2π
≤
√
d,

where we applied a well-known fact that Γ(x + 1/2) ≤ Γ(x)
√
x for all x > 0. Plugging in

the definition q∗ := σ/4
√
d in (124), we have proved (7) that ξ̃ is v-disperse for any v.

(iii) For stochastic gradients injected by artificial, dispersive noise, we prove that the v-disperse
property still holds. Let γ̃ be some artificial noise that has the v-dispersive property, that is,
for an arbitrary setA with (q∗,v)-narrow property, where q∗ = σ/4

√
d. Then as in Definition

2 one has, by the linearly scalable property after Definition 2, that P (γ̃ ∈ A− g) ≤ 1/4 for
any fixed vector g ∈ Rd. Then we have by injecting such independent noise to the stochastic
gradient∇f(w; ζ) that

P (∇f(w; ζ) + γ̃ ∈ A | ∇f(w; ζ)) = P
(
γ̃ ∈ A−∇f(w; ζ)

∣∣∇f(w; ζ)
)
≤ 1

4
,

where in the last step we used the independence of γ̃ ∈ A and ∇f(w; ζ). Taking expectation
in the last line gives

P (∇f(w; ζ) + γ̃ ∈ A) ≤ 1

4
, (125)

so (7) is satisfied for this noise-injected stochastic gradient∇f(w; ζ) + γ̃.
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