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Abstract
We develop lower bounds for estimation under local privacy constraints—including differential
privacy and its relaxations to approximate or Rényi differential privacy—by showing an equivalence
between private estimation and communication-restricted estimation problems. Our results apply
to arbitrarily interactive privacy mechanisms, and they also give sharp lower bounds for all levels
of differential privacy protections, that is, privacy mechanisms with privacy levels ε ∈ [0,∞). As a
particular consequence of our results, we show that the minimax mean-squared error for estimating
the mean of a bounded or Gaussian random vector in d dimensions scales as d

n ·
d

min{ε,ε2} .

1. Introduction

Estimation problems in which users keep their personal data private even from data collectors are of
increasing interest in large-scale machine learning applications in both industrial (Erlingsson et al.,
2014; Apple Differential Privacy Team, 2017; Bhowmick et al., 2018) and academic (e.g. Warner,
1965; Beimel et al., 2008; Kasiviswanathan et al., 2011; Duchi et al., 2018) settings. These notions
of privacy are satisfying because a user or data provider can be confident that his or her data will
remain private irrespective of what data collectors do, and they mitigate risks for data collectors,
limiting challenges of hacking or other interference. Because of their importance, a parallel litera-
ture on optimality results in local privacy is developing. Yet this theory fails to address a number
of important issues. Most saliently, many of these results only apply to non-adaptive privatization
schemes, that is, the scheme remains static for all data contributors, except in 1-dimensional prob-
lems (Duchi et al., 2018; Ye and Barg, 2018; Gaboardi et al., 2018). A second issue is that these
results provide meaningful bounds only for certain types of privacy. Typically, the results are sharp
only for high levels of privacy (in the language of differential privacy, privacy parameters ε ≤ 1), as
in the papers of Duchi et al. (2018), Rohde and Steinberger (2018), and Duchi and Ruan (2018), or
at most logarithmic in dimension (Ye and Barg, 2018); given the promise of privacy amplification in
local settings (Erlingsson et al., 2019) and challenges of high-dimensional problems (Duchi et al.,
2018; Duchi and Ruan, 2018), it is important to address limits in the case that ε � 1. With the
exception of Duchi and Ruan, they also fail to apply to weakenings of differential privacy.

We remove many of these restrictions by framing the problem of estimation and learning under
local privacy constraints as a problem in the communication complexity of statistical estimation.
By doing so, we can build off of a line of sophisticated results due to Zhang et al. (2013), Garg et al.
(2014), and Braverman et al. (2016), who develop minimax lower bounds on distributed estimation
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problems. To set the stage for our results and give intuition for what follows, we recall the intuitive
consequences of these results. Each applies in a setting in which n machines each receive a sample
Xi from an underlying (unknown) population distribution P . These machines then interactively
communicate with a central server, or a public blackboard, sending n · I bits of (Shannon) informa-
tion in total, so that each sends an average of I bits. For d-dimensional mean estimation problems,
whereXi ∈ Rd and the goal is to estimate EP [X], the main consequences of these papers is that the
mean-squared error for estimation must scale as d

n ·max{dI , 1}, where d/n is the optimal (commu-
nication unlimited) mean-squared error based on a sample of size n. Such scaling is intuitive, as to
estimate a d-dimensional quantity, we expect each machine must send roughly d bits to achieve op-
timal complexity, and otherwise we receive information about only d/I coordinates. The strength
of these results is that, in the most general case (Braverman et al., 2016), they allow essentially
arbitrary interaction between the machines, so long as it is mitigated by the information constraints.

We leverage these results on information-limited estimation to establish lower bounds for locally
private estimation. By providing bounds on the information released by locally private protocols—
even when data release schemes are adaptive and arbitrarily interactive—we can nearly immediately
provide minimax lower bounds on rates of convergence in estimation and learning problems under
privacy. By using this information-based-complexity framework, we can simultaneously address
each of the challenges we identify in previous work on estimation under privacy constraints, in that
our results apply to differential privacy and its weakenings, including approximate, concentrated,
and Rényi differential privacy (Dwork et al., 2006b,a; Dwork and Rothblum, 2016; Bun and Steinke,
2016; Mironov, 2017). They also apply to arbitrarily interactive data release scenarios. Roughly,
what we show is that so long as we wish to estimate quantities for d-dimensional parameters that are
“independent” of one another—which we define subsequently—the effective sample size available
to a private procedure reduces from n to n ·min{ε, ε2, d}/d for all ε-private procedures.

The use of information and communication complexity in determining fundamental limits in
differential privacy is not uniquely ours. McGregor et al. (2010) show strong relationships between
approximating functions by low-error differentially private protocols and low communication pro-
tocols. In their case, however, they study low error approximation of sample quantities, where
one wishes to estimate f(X1, . . . , Xn) for a function f . Here, as in most work in statistics and
learning (Wainwright, 2019; Yu, 1997; Duchi et al., 2018), we provide limits on the estimation
functions of the population from which the sample comes. In recent work, Joseph et al. (2018,
Sec. 5) give communication-based bounds for locally-private estimation of a 1-dimensional Gaus-
sian mean; their bound requires a single pass through the data and privacy parameter ε = O(1).

As a consequence of our lower bounds, we identify several open questions. Work in information-
limited estimation (Zhang et al., 2013; Garg et al., 2014; Braverman et al., 2016) typically strongly
relies on independence among estimands, which allows decoupling them. Our results similarly suf-
fer these restrictions, which is essential: when correlations exist among different coordinates of the
sample vectors X , it is possible to achieve faster convergence. Thus, we argue that we should have
renewed focus on local (non-minimax) notions of complexity (Le Cam and Yang, 2000; van der
Vaart, 1998; Duchi and Ruan, 2018), which address the difficulty of the particular problem at hand.

Notation We index several quantities. We always indicate coordinates of a vector by j, and (in-
dependent) vectors we index by i. We consider private protocols communicating in rounds indexed
by time t. We let Z≤i := (Z1, . . . , Zi) and Z<i := (Z1, . . . , Zi−1), and similarly for superscripts.
For distributions P and Q, Dα(P ||Q) := 1

α−1 log
∫

(dP/dQ)αdQ is the Rényi α-divergence.
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Figure 1. Two rounds of com-
munication of variables, writing to
public blackboards B(1) and B(2).

2. Problem setting and main results

We first describe our problem setting in detail, providing graphical representations of our privacy
(or communication) settings. We present corollaries of our main lower bounds to highlight their
application, then (in Section 4) give the main techniques, which extend Assouad’s method.

2.1. Local privacy and interactivity

In our local privacy setting, we consider n individuals, each with private data Xi, i = 1, . . . , n,
and each individual i communicates privatized views Zi of Xi. This private communication may
depend on other data providers’ private data. We consider communication of privatized data in
rounds t = 1, 2, . . . , T , where T may be infinite, and in round t, individual i communicates pri-
vate datum Z

(t)
i , which may depend on all previous private communications. This is the standard

blackboard communication model; at round t the Z(t)
i and previous blackboards B(t−1) join into

B(t) = (Z
(t)
≤n, B

(t−1)). Thus, at round t, individual i generates the private variable Z(t)
i according

to the channel
Qi,t

(
· | Xi, Z

(t)
<i , B

(t−1)).
Figure 1 illustrates this communication scheme over two rounds of communication. We require that
the channels be regular conditional probabilities (Billingsley, 1986).

Our main assumptions are that the channels satisfy quantitative privacy definitions.

Definition 1 Let ε ≥ 0. A random variable Z is (ε, δ)-differentially private (Dwork et al., 2006b,a)
forX ∈ X if conditional onX = x, Z has distributionQ(· | x) and for all measurable S and x, x′,

Q(Z ∈ S | x) ≤ eεQ(Z ∈ S | x′) + δ.

When δ = 0, we say Q is ε-differentially private. For α ≥ 1, the channel is (ε, α)-Rényi differen-
tially private (Mironov, 2017) if for all x, x′ ∈ X ,

Dα

(
Q(· | x)||Q(· | x′)

)
≤ ε.

By taking α = 1 in Definition 1, we obtain ε-KL-privacy. If the channelQ is ε-differentially private,
then for any α ≥ 1, it also satisfies (Mironov, 2017, Lemma 1)

Dα

(
Q(· | x)||Q(· | x′)

)
≤ min

{
2(α− 1)ε2 + min{2, (eε − 1)}ε, ε

}
. (1)
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Because Rényi-divergence is non-decreasing in α, any (ε, α)-Rényi differentially private channel is
also (ε, α′)-Rényi private for α′ ≤ α, making KL-privacy the weakest Rényi privacy.

We consider channel and disclosure scenarios where users and data providers obtain a given
amount of privacy, but multiple notions of privacy are possible. We separate these by allowing
either full interactivity or requiring a type of compositionality of the private data releases; for more
on this distinction and examples separating the classes, see Joseph et al. (2019).

2.1.1. FULLY INTERACTIVE PRIVACY MECHANISMS

The first and weakest assumptions on privacy we make are that the private ZZZ := {Z(t)
i }i,t, or the

entire communication transcript, is private. To define this locally private setting, we require an
appropriate definition of privacy, for which we use Feldman and Steinke (2018).

Definition 2 Let Q(ZZZ ∈ · | x≤n) denote the distribution of the collectionZZZ conditional onX≤n =

x≤n, and for i = 1, . . . , n, let the samples x≤n and x(i)≤n ∈ X n differ in only example i, otherwise
being arbitrary. The output ZZZ is εkl-KL-locally private on average if

1

n

n∑
i=1

Dkl

(
Q(ZZZ ∈ · | x≤n)||Q(ZZZ ∈ · | x(i)≤n)

)
≤ εkl.

Definition 2 is weaker than most versions of local privacy. The most general standard notion of
Rényi (ε, α)-privacy is that Dα

(
Q(ZZZ ∈ · | x≤n)||Q(ZZZ ∈ · | x′≤n

)
≤ ε for all samples x≤n and x′≤n

differing in a single entry; this immediately implies Definition 2. We thus make the following

Assumption A1 (Fully interactive local differential privacy) The entire output collection ZZZ is
εkl-KL-locally private on average (Definition 2).

Assumption A1 makes no assumptions on the local randomizers, requiring that the entire set of
communicated private views ZZZ is private for each individual i. There may be challenges in the
implementation of general protocols satisfying Assumption A1 if the privacy of user i depends on
the behavior of user i′—adversarial users—though for the purposes of lower bounds, this appears
to be the weakest model of local privacy. Assumption A1 is also weaker than the assumption that
the private variables ZZZ are ε-differentially private: inequality (1) shows that ε-differential privacy
implies εkl = min{ε, ε2/ log 2}-KL privacy. Thus, if each individual i is guaranteed (differential)
privacy loss εi, the KL-privacy loss satisfies

εkl ≤
1

n

n∑
i=1

min

{
εi,

ε2i
log 2

}
. (2)

We can also consider (fully interactive) local approximate differential privacy, though in the case
that δ > 0, our lower bounds require a slight technical modification of Assumption A1, requiring
that the domain X of the data Xi be finite and δ be appropriately small.

Assumption A1′ (Fully interactive local approximate differential privacy) The outputZZZ is (ε, δ)-
differentially private: for each S ⊂ ZnT and pair of samples x≤n, x′≤n ∈ X n differing in at most a
single element,

Q (ZZZ ∈ S | X≤n = x≤n) ≤ eεQ
(
ZZZ ∈ S | X≤n = x′≤n

)
+ δ.
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In addition, the parameters (ε, δ) satisfy

δ ≤ min{ε, 1}
256

, δmax{ε−1, 1} log
1

δmax{ε−1, 1}
≤ ε2, δ ≤ min{ε, ε2}

log2 |X |

and, if ε ≤ 1
6 , also δ ≤ ε5

64 log2 |X | and δ log2 εδ ≤ ε
5/16.

2.1.2. COMPOSITIONAL LOCAL PRIVACY MECHANISMS

A different modification of Assumption A1 is to require the individual randomizations be private
while imposing a summability (compositionality) condition. This limits the interaction between
private communications, and there are problems for which fully interactive mechanisms are more
powerful than compositional ones (Joseph et al., 2019). To be concrete, let Z(t)

→i := (Z
(t)
<i , B

(t−1))

be the “messages” coming into the channel generating Z(t)
i , so Z(t)

i ∼ Qi,t(· | Xi, Z
(t)
→i) as in

Fig. 1. The starting point is a 1-compositional privacy definition (Joseph et al., 2019), where in the
(weakest) KL-privacy case we assume that there exists a function εi,t such that

Dkl

(
Qi,t(· | Xi = x, Z

(t)
→i = z

(t)
→i)||Qi,t(· | Xi = x′, Z

(t)
→i = z

(t)
→i)
)
≤ εi,t(z(t)→i) (3)

and the εi,t satisfy n−1
∑n

i=1

∑T
t=1 E[εi,t(Z

(t)
→i) | x≤n] ≤ εkl. Condition (3) implies Assump-

tion A1 by the chain rule for KL-divergence; in the case that T = 1, this captures the familiar
sequentially interactive local privacy mechanisms (Duchi et al., 2018).

In some cases, we can provide stronger results for compositional (ε, δ)-private channels than
for the fully interactive case, leading us to consider the following assumption, which allows privacy
levels chosen conditionally on the past so long as the expected privacy levels remain non-trivial.

Assumption A2 (Compositional differential privacy bounds) For each i and t and all z(t)→i, the
channel mapping Xi to Z

(t)
i is (εi,t(z

(t)
→i), δi,t(z

(t)
→i))-approximately differentially private. There

exist δtotal ≤ 1
2 and εkl such that

n∑
i=1

T∑
t=1

E[δi,t(Z
(t)
→i)] ≤ δtotal and

n∑
i=1

T∑
t=1

E

[
min

{
ε2i,t(Z

(t)
→i)

log 2
, εi,t(Z

(t)
→i)

}]
≤ n · εkl,

where the expectations are taken over the randomness in the private variables ZZZ.

In Assumption A2, individual i compromises at most (
∑

t εi,t,
∑

t δi,t)-differential privacy.

2.2. Minimax lower bounds on private estimation

Given our definitions of (interactive) privacy and the interactive privacy bounds in Assumptions A1,
A1′, and A2, we may now describe the minimax framework in which we work. LetP be a collection
of distributions on a space X , and let θ(P ) ∈ Θ be a parameter of interest. In the classical (non-
information-limited) setting, we wish to estimate θ(P ) given observationsXi drawn i.i.d. according
to the distribution P . We focus on d-dimensional parameters θ, and the performance of an estimator
θ̂ : X n → Rd is its expected loss (or risk) for a loss L : Rd × Rd → R+,

EP
[
L(θ̂(X1, . . . , Xn), θ(P ))

]
.
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We elaborate this classical setting by an additional privacy layer. For a sample {X1, . . . , Xn},
any (interactive) channel Q produces a set of private observations, each from some set Z ,

ZZZ :=
(
Z

(1)
1 , Z

(1)
2 , . . . , Z(1)

n , Z
(2)
1 , . . . , Z(2)

n , . . . , Z(T )
n

)
∈ ZT×n,

and we consider estimators θ̂ that depend only on this private sample, which then suffer risk

EP,Q
[
L(θ̂(ZZZ), θ(P ))

]
,

where the expectation is taken over the n i.i.d. observations Xi ∼ P and the privatized views ZZZ.
For the channel Q, we define the channel minimax risk for the family P , parameter θ, and loss L by

Mn(θ(P), L,Q) := inf
θ̂

sup
P∈P

EP,Q
[
L
(
θ̂(ZZZ), θ(P )

)]
. (4)

We prove lower bounds on the quantity (4) for channels satisfying local privacy bounds.
Rather than stating and proving our main theorems, we present a number of corollaries of our

main results, all of whose proofs we defer to Appendix C, to illustrate the power of the information-
based framework we adopt. Our first corollary deals with estimating Bernoulli means.

Corollary 3 Let Pd be the collection of Bernoulli distributions on {0, 1}d and for a symmetric
loss ` : R → R+ minimized at 0, let L(θ, θ′) =

∑d
j=1 `(θj − θ′j). There are numerical constants

c1, c2, c3 > 0 such that for any channel Q satisfying any of Assumptions A1, A1′ with εkl :=
min{ε, ε2}, or Assumption A2 with privacy budget εkl,

Mn(θ(Pd), L,Q) ≥ c1 · d · `

(√
c2

d

nεkl
∧ c3

)
.

In particular, if `(t) = t2 and if the private data releases of each individual are ε-locally differentially
private (under any model of interaction), then inequality (1) and the corollary imply that for a
constant c > 0, for any estimator θ̂ there exists a Bernoulli distribution P with mean θ such that

EP,Q
[∥∥θ̂(ZZZ)− θ

∥∥2
2

]
≥ c

(
d2

nmin{ε, ε2}
∨ d
n

)
.

A counterpart to the lower bound of Corollary 3 is that ε-differentially-private channels achieve
this risk when 1 ≤ ε ≤ d, and they require no interactivity. To within numerical constant factors,
weakenings of local differential privacy—down to KL-privacy—provide no rate of convergence
improvement over differentially private mechanisms. Bhowmick et al. (2018, Sec. 4.1) exhibit a
mechanism (PrivUnit2), based on sampling from spherical caps, that given x satisfying ‖x‖2 ≤ r
samples ε-differentially private Z ∈ Rd satisfying E[Z | x] = x and ‖Z‖2 ≤ Cr

√
d/min{ε, ε2}

for a numerical constant C. Taking the radius r =
√
d the estimator θ̂n = 1

n

∑n
i=1 Zi satisfies

E[‖θ̂n − θ‖22] ≤
1

n
E[‖Z1‖22] ≤ C

d2

nmin{ε, ε2}
.

For the simpler case of KL-privacy, Gaussian noise addition suffices. We have thus characterized
the complexity of locally private d-dimensional estimation of bounded vectors.
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By a reduction, the lower bound of Corollary 3 applies to logistic regression. In this case, we
let Pd be the collection of logistic distributions on (X,Y ) ∈ {−1, 1}d × {±1}, where for θ ∈ Rd,
P (Y = y | X = x) = 1/(1 + exp(−y〈x, θ〉)). We take the loss L as the gap in prediction risk: for

`(θ; (x, y)) = log(1 + exp(−y〈x, θ〉)), we set RP (θ) := EP [`(θ; (X,Y ))]

and θ(P ) = argminθ RP (θ). We define the excess risk L(θ, θ(P )) = RP (θ)−RP (θ(P )).

Corollary 4 Let Pd be the family of logistic distributions and L be the excess logistic risk as above.
There exists a numerical constant c > 0 such that for any sequence Qn of channels satisfying any
of Assumption A1, or A1′ with εkl = min{ε, ε2}, or Assumption A2, for all suitably large n we have

Mn(θ(Pd), L,Qn) ≥ c · d
n
· d
εkl
.

It is also of interest to consider continuous distributions. For concreteness, we consider es-
timation of general and sparse Gaussian means, showing results that follow as corollaries of our
information bounds and Braverman et al. (2016). We prove the lower bounds for channels satisfy-
ing Assumption A1 or A2; proving them under Assumption A1′ remains a challenge.1

Corollary 5 Let P be the collection of Gaussian distributions N(θ, σ2I) where θ ∈ [−1, 1]d,
σ2 > 0 is known, and consider the squared `2 loss L(θ, θ′) = ‖θ − θ′‖22. There exist numerical
constants c, c0 > 0 such that if the channel Q satisfies Assumption A1 or A2 with δtotal ≤ c0,

Mn(θ(P), ‖·‖22 , Q) ≥ c ·min

{
d,max

{
d

εkl
· dσ

2

n
,
dσ2

n

}}
.

We demonstrate how to achieve this risk in Section 3.1, showing (as is the case for our other results)
that it is achievable by differentially private schemes.

We can also state lower bounds for the sparse case, using Braverman et al. (2016, Theorem 4.5).
Let N d

k,σ2 denote the collection of k-sparse Gaussian distributions N(θ, σ2I), θ ∈ [−1, 1]d.

Corollary 6 There exist numerical constants c, c0 > 0 such that for any channel Q satisfying
Assumptions A1 or A2 with δtotal ≤ c0, and d ≥ 2k,

Mn(θ(N d
k,σ2), ‖·‖22 , Q) ≥ cmin

{
k,max

{
d

εkl
· kσ

2

n
,
kσ2 log d

k

n

}}
.

3. Achievability, information complexity, independence, and correlation

The lower bounds in our corollaries are achievable—we demonstrate each of these here—but we
highlight a more subtle question regarding correlation. Each of our lower bounds relies on the
independence structure of the data: roughly, all the communication-based bounds we discuss require
the coordinates of X to follow a product distribution. The lower bounds in this case are intuitive:

1. We use mutual information-based bounds, and on the (negligible) δtotal-probability event of a privacy failure under
Assumption A1′, it is possible to release infinite information. For compositional channels satisfying Assumption A2,
we show (see Lemma 15 in Sec. 4.2.2) that each channel is within δi,t-variation distance to a differentially private
(δi,t = 0) channel, so lower bounds based on testing apply. The argument fails in the fully interactive setting,
because the interaction may break the independence structure of the communication upon which our results rely.
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we must estimate d-dimensional quantities using (on average) ε bits, so we expect penalties scaling
as d/ε because one coordinate carries no information about the others. In cases where there is
correlation, however, we might hope for more efficient estimation; we view this as a major open
question in privacy and, more broadly, information-constrained estimators. To that end, we briefly
show (Section 3.1) that each of our lower bounds in Corollaries 3–5 is achievable. After this, we
mention asymptotic results for sparse estimation (Sec. 3.2) and correlated data problems (Sec. 3.3).

3.1. Achievability by differentially-private estimators

We first demonstrate that the results in each of our corollaries are achievable by ε-differentially
private channels with limited interactivity. We have already done so for Corollary 3. For Corollary 4,
Corollary 3.2 of Bhowmick et al. (2018) gives the achievability result. We provide the Gaussian
results for the sake of completeness. (For the one dimensional case, see also Joseph et al. (2018).)

We begin by demonstrating a one-dimensional Gaussian estimator. Let Xi
iid∼ N(θ, σ2), where

σ2 is known and θ ∈ [−1, 1]. Consider ε-differentially private version of Xi defined by

Bi := sign(Xi) and Zi =
eε + 1

eε − 1
·

{
Bi w.p. eε

eε+1

−Bi otherwise.
(5)

Then E[Zi | Xi] = sign(Xi), and for Φ(t) = P(N(0, 1) ≤ t) the standard Gaussian CDF, we have
Eθ[Zi] = 1− 2Φ(−θ/σ). Letting Zn = 1

n

∑n
i=1 Zi be the average of the Zi, the estimator defined

by solving Zn = 1 − 2Φ(θ̂n/σ) is nearly unbiased. Projecting this quantity onto [−1, 1] gives the
estimator

θ̂n := Proj[−1,1]

(
σΦ−1

(
1− Zn

2

))
. (6)

This estimator satisfies the following, which we prove in Appendix D.3 via a Taylor expansion.

Lemma 7 Let θ̂n be the estimator (6) for the N(θ, σ2) location family, where σ2 > 0 is at least a
constant. Assume |Zi| ≤ b and E[Zi] = 1− 2Φ(−θ/σ). For numerical constants 0 < c ≤ C <∞,

|θ̂n − θ| ≤ C
√
b2σ2t

n
w.p. ≥ 1− e−t and E[|θ̂n − θ|2] ≤ C

b2σ2

n
+ Ce−cn/b

2
.

To achieve an upper bound matching Corollary 5, consider the following non-interactive esti-
mator, which provides ε of differential privacy. We consider the cases ε ≤ 1 and ε ≥ 1 separately.

i. In the case that ε ≥ 1, choose bεc∧d coordinates j ∈ [d] uniformly at random. On each chosen
coordinate j, release Zi,j via mechanism (5) using privacy level ε0 = 1, and use the estima-
tor (6) applied to each coordinate; this mechanism is ε-differentially private, each coordinate
(when sampled) takes values |Zi,j | ≤ e+1

e−1 , and so the resulting vector θ̂n ∈ Rd satisfies

E[‖θ̂n − θ‖22] ≤
Cdσ2

n((bεc ∧ d)/d)
≤ C min

{
d2

nε
,
d

n

}
.

ii. When ε < 1, we use the `∞-based mechanism of Duchi et al. (2018) applied to the vector
sgn(Xi) ∈ {−1, 1}d, which then releases a vector Zi ∈ C

√
d/ε2 · {−1, 1}d for a numerical

constant C chosen to guarantee E[Z | sgn(X)] = sgn(X). Thus each coordinate of Zi satisfies
the conditions of Lemma 7, and applying the inversion (6) to each coordinate independently
yields E[‖θ̂n − θ‖22] ≤ Cd2

nε2
. In this setting, the value εkl ≤ 2ε2 by inequality (1).
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3.2. Sparse Estimation

We now turn to settings in which the coordinates exhibit dependence, assuming individuals have
ε ≤ 1-differential privacy to make the discussion concrete. Consider the sparse Gaussian mean
problem, Xi

iid∼ N(θ, Id) for ‖θ‖0 = k. For simplicity, let us consider that k = 1 and is known;
Corollary 5 gives the minimax lower bound d/(nε2) under ε-differential privacy, which Duchi et al.
(2018, Sec. 4.2.2) achieve to within a logarithmic factor; the non-private minimax risk (Johnstone,
2013) is the exponentially smaller log d

n . In the case of a (very) large sample size n, however, we
observe a different phenomenon: the non-private and private rates coincide.

Let us assume that n � d, and that n → ∞ as d remains fixed. Let the sample be of size 2n,
which we split. On the first half, we further split the sample into d bins of size n/d; for each of these
d bins, we construct a 1-dimensional estimator of the mean of coordinate j via (6), which gives us
d preliminary estimates θ̂pre1 , . . . , θ̂pred , each of which is ε-locally differentially private. Lemma 7
shows that we can identify the non-zero coordinate of θ by ĵ := argmaxj |θ̂

pre
j | with exponen-

tially high probability. Then, on the second half of the sample, we apply the private estimator (6)
to estimate the mean of coordinate ĵ. In combination, this yields an estimator θ̂2n that achieves
E[‖θ̂2n − θ‖22] ≤ C/(nε2) for large n, while the non-private analogue in this case has risk 1/n.

We have moved from an exponential gap in the dimension to one that scales only as 1/ε2,
as soon as n is large enough. This example is certainly stylized and relies on a particular flavor
of asymptotics (n → ∞); we believe this transformation from “independent” structure, with risk
scaling as d/n, to an identified structure with risk scaling as 1/n, merits more investigation.

3.3. Correlated Data

We consider an additional stylized example of correlation. Let b ∈ {±1}d be a known bit vector and
assume the data Xi = b ·Bi whereBi ∈ {±1}, P (Bi = 1) = p for an unknown p. Without privacy,
p̂ = 1+Bn

2 achieves minimax optimal `22 risk d
n ; the error is d times that for the one-dimensional

quantity. In the private case, as b ∈ {±1}d is known, the private channel for user i may privatize
only the bit Bi using randomized response, setting Zi as in Eq. (5). Using the private estimate
p̂ε = 1+Zn

2 yields E[(p̂ε − p)2] ≤ C/(nmin{ε2, 1}), so θ̂n = b(2p̂ε − 1) has mean square error

E
[
‖θ̂n − b · (2p− 1)‖22

]
≤ Cd · E[(p̂ε − p)2] ≤ C

d

nmin{ε2, 1}
.

In contrast to the case with independent coordinates in Corollary 3, here the locally private estimator
achieves (to within a factor of ε−2) the same risk as the non-private estimator. This example is again
special, but it suggests that leveraging correlation structures may close some of the substantial gaps
between private and non-private estimation that prevent wider adoption of private estimators.

4. Lower bounds via information complexity

We turn to stating and proving our main minimax lower bounds, which build out of work by Zhang
et al. (2013), Garg et al. (2014), and Braverman et al. (2016) on communication limits in estimation.

We begin with an extension of Assouad’s method (Assouad, 1983; Yu, 1997), which transforms
a d-dimensional estimation problem into one of testing d binary hypotheses, to information-limited
settings. We consider a family of distributions {Pv}v∈V indexed by the hypercube V = {−1, 1}d,

9
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where nature chooses V ∈ V uniformly at random. Conditional on V = v, we draw {Xi}ni=1
iid∼ Pv,

from which we obtain the observed (privatized) ZZZ. Letting θv = θ(Pv), we follow Duchi et al.
(2018) and say that V induces a δ-Hamming separation if there exists v : Θ→ {−1, 1}d such that

L(θ, θv) ≥ δ
d∑
j=1

1 {vj(θ) 6= vj} . (7)

Example 1 (Location families) Let P be a family of distributions, each specified by a mean θ(P ),
and for each v ∈ {−1, 1}d set θ(Pv) = δ · v for some δ > 0. Then for any symmetric ` : R→ R+

and loss of the form L(θ, θ′) =
∑d

j=1 `(θj − θ′j), we have L(θ, θv) ≥ `(δ)
∑d

j=1 1 {sgn(θj) 6= vj}.

As our proof of Corollary 4 demonstrates, similar separations hold for convex risk minimization.
Letting P+j and P−j be the marginal distributions of the privatizedZZZ conditional on Vj = 1 and

Vj = −1, respectively, we have Assouad’s method (Duchi et al. (2018, Lemma 1) gives this form):

Lemma 8 (Assouad’s method) Let the conditions of the previous paragraph hold and let V induce
a δ-separation in Hamming metric. Then

Mn(θ(P), L,Q) ≥ δ
d∑
j=1

inf
V̂

P(V̂j(ZZZ) 6= Vj) =
δ

2

d∑
j=1

(
1− ‖P+j − P−j‖TV

)
.

Consequently, if we can show that the total variation distance ‖P+j − P−j‖TV is small while the
δ-separation (7) is large for our family, we have shown a strong lower bound.

4.1. Strong data processing and information contraction

To prove lower bounds via Lemma 8, we build off of ideas that originate from Zhang et al. (2013),
which Braverman et al. (2016) develop elegantly. Braverman et al. show how strong data process-
ing inequalities, which quantify the information loss in classical information processing inequali-
ties (Cover and Thomas, 2006), extend from one observation to multiple observations. They use
this to prove lower bounds on the information complexity of distributed estimators, and we show
how their results imply strong lower bounds on private estimation. We first provide a definition.

Definition 9 Let U → X → Z be a Markov chain, where U takes values {−1, 1}, and conditional
on U = u we draw X ∼ Pu, then draw Z conditional on X . The strong data processing constant
β(P−1, P1) is the smallest β ≤ 1 such that for all distributions X → Z,

I(U ;Z) ≤ βI(X;Z).

Many distributions satisfy strong data processing inequalities; Gaussians do (Braverman et al.,
2016), as do distributions with bounded likelihood ratio dP1/dP−1 (see Lemma 24 in Appendix C).

We consider families of distributions where the coordinates of X are independent, dovetailing
with Assouad’s method. For v ∈ {−1, 1}d, conditional on V = v we assume that

X ∼ Pv = Pv1 ⊗ Pv2 ⊗ · · · ⊗ Pvd , (8)

a d-dimensional product distribution. That is, conditional on Vj = vj , the coordinates Xi,j are i.i.d.
and independent of V\j = (V1, . . . , Vj−1, Vj+1, . . . , Vd). When we have the generation strategy (8),
we can use Garg et al. and Braverman et al.’s results to prove the following lower bound.

10
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Theorem 10 Let V ∈ {−1, 1}d and consider the Markov chain V → X≤n → ZZZ, where condi-
tional on V = v the Xi are i.i.d., follow the product distribution (8), and ZZZ follows the protocol of
Fig. 1. Assume that for each coordinate j, the chain Vj → Xi,j satisfies a strong data processing
inequality with β(P−1, P1) = β, and | log dP1

dP−1
| ≤ b for some b <∞. Then for any estimator V̂ ,

d∑
j=1

P(V̂j(ZZZ) 6= Vj) ≥
d

2

(
1−

√
7(eb + 1)

d
β · I(X≤n;ZZZ | V )

)
.

We defer the proof of Theorem 10 to Appendix A. Lemma 24 to come shows that if | log dP1
dP−1
| ≤ b,

then β(P−1, P1) ≤ 2(eb − 1)2, often allowing easier application of the theorem.
By combining Theorem 10 with Lemma 8, we can prove strong lower bounds on minimax rates

of convergence if we can both (i) provide a strong data processing constant for P−1 and P1 and
(ii) bound the mutual information I(X≤n;ZZZ | V ). We do both presently, but we note that Theo-
rem 10 relies strongly on the repeated communication structure in Figure 1 (as does Corollary 16,
Braverman et al.’s Theorem 3.1 in the sequel). Similar techniques appear challenging in centralized
settings. Key to our applications of the theorem, which rely on i.i.d. sampling of the vector X≤n to
provide bounds on mutual information via privacy, is that Braverman et al.’s results allow us to take
the information conditional on V ; without this our results fail.

4.2. Information bounds

To apply Theorem 10, the first step is to develop information bounds on private communication.
We present our three main lemmas that accomplish this, based on Assumptions A1, A1′, and A2
here. As in the development of our assumptions, we divide our information bounds into two cases,
depending on whether we work in the fully interactive or compositional privacy setting.

4.2.1. INFORMATION BOUNDS FOR FULLY INTERACTIVE MECHANISMS

In this section, we provide the two bounds on mutual information bounds that give our results.
Before stating them, however, we give the corollary to Theorem 10 that they immediately imply.

Corollary 11 Let the conditions of Theorem 10 hold and assume additionally that the channels Q
satisfy Assumption A1 or A1′, setting εkl = min{9ε, 75ε2} in this case. Then

d∑
j=1

P(V̂j(ZZZ) 6= Vj) ≥
d

2

(
1−

√
7(eb + 1)

d
βnεkl

)
.

The corollary is immediate from Lemmas 12 and 13 to come. We begin with the former, which
extends McGregor et al. (2010, Prop. 7 or 4.3) and simplifies Feldman and Steinke (2018, Prop. 3.4).

Lemma 12 Let the channel Q and transcript satisfy Assumption A1. Then for any Markov chain
V → X≤n → ZZZ, where the Xi are independent conditional on V , we have

I(ZZZ;X≤n | V ) ≤ n · εkl.

11
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See Section B.1 for the proof.
In the more complicated (ε, δ)-differential privacy cases, we require more care. Because of lack

of space, we must defer the argument to Appendix B.2, stating only the final conclusion here. The
lynchpin of our argument is based on the development of Rogers et al. (2016), who develop mutual
information bounds for discrete random variables under (ε, δ)-differential privacy.

Lemma 13 Let the private variables ZZZ satisfy Assumption A1′. Then

I(X≤n;ZZZ | V ) ≤ nmin
{

9ε, 75ε2
}
.

4.2.2. INFORMATION BOUNDS FOR COMPOSITIONAL MECHANISMS

The main result of the section, which follows by combining Theorem 10 with the lemmas to come,
gives the following corollary.

Corollary 14 Let the conditions of Theorem 10 hold and assume additionally that the channels Q
satisfy Assumption A2. Then

d∑
j=1

P(V̂j(ZZZ) 6= Vj) ≥
d

2

(
1−

√
7(eb + 1)

d
βnεkl − δtotal

)
.

The corollary follows from Lemma 12 once we subtract δtotal and use the following approxima-
tion guarantee, which shows that (ε, δ) channels are nearly differentially private.

Lemma 15 Let Assumption A2 hold on the channel Q. Let P−1 and P1 be the marginal dis-
tributions of ZZZ under the communication model of Fig. 1 with channel Q and base distributions
P−1 and P1 on X≤n, so that Pv(S) =

∫
Q(S | x≤n)dPv(x≤n). For each i, t there exist chan-

nels Q(Z
(t)
i ∈ · | xi, z(t)→i) from Xi to Z(t)

i , conditional on z(t)→i, where each channel is εi,t(z
(t)
→i)-

differentially private. The induced marginal distributions P−1,1 under the channels Q satisfy

‖P−1 − P1‖TV ≤
∥∥P−1 − P1

∥∥
TV + δtotal.

The most challenging part of Lemma 15 is to establish the existence of regular conditional proba-
bilities Q (i.e., veryifying measurability) that are close to Q; we do so in Appendix D.1.

5. Conclusion

By building off of the results in information-limited statistical estimation that Zhang et al. (2013),
Garg et al. (2014), and Braverman et al. (2016) establish, we have developed fundamental limits
for locally private estimation at all privacy levels and for all the acceptable and common models of
privacy. We do not believe this paper closes any doors, however: there is a substantial gap between
the worst-case minimax bounds and asymptotic results, highlighted by the challenges of correlated
data. Identifying structures we can leverage for more efficient private or information-constrained
estimation—an analogue of the geometric theory available in the case of classical statistics, where
Fisher information and related ideas play an essential role—presents a challenging direction that,
we hope, may allow more frequent practical use of private procedures.
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Appendix A. Proof of Theorem 10

Our proofs build essentially directly out of the work of Garg et al. (2014) and Braverman et al.
(2016). The starting point for all of these results is a due to Braverman et al. (2016), where we have
carefully controlled the constants.

Corollary 16 (Braverman et al. (2016), Theorem 3.1) Consider a Markov chain U → Y≤n →
Z, where U ∈ {±1} is uniform, and Yi

iid∼ Pu conditional on U = u. Assume that | log dP1
dP−1
| ≤ b

and that the strong data processing inequality constant of P1, P−1 is β(P−1, P1). Let M1 and M−1
denote the marginal distributions on Z conditional on U = 1 or −1, respectively. Then

d2hel(M−1,M1) ≤
7

2
(eb + 1)β(P−1, P1)

n∑
i=1

min{I(Yi;Z | U = −1), I(Yi;Z | U = 1)}.

The Yi are i.i.d. conditional on U in the corollary, so as an immediate consequence, we have

d2hel(M−1,M1) ≤
7

2
(eb + 1)β(P0, P1) min{I(Y≤n;Z | U = −1), I(Y≤n;Z | U = 1)} (9)

for any U → Y≤n → Z when the Yi are conditionally independent given U . To see this, note that

I(Y≤n;Z | U = u) =
n∑
i=1

H(Yi | Y<i, U = u)−H(Yi | Y<i, Z, U = u)

≥
n∑
i=1

H(Yi | U = u)−H(Yi | Z,U = u) =
n∑
i=1

I(Yi;Z | U = u),

where we use H(Yi | Y<i, U = u) = H(Yi | U = u) and that conditioning reduces entropy.
The key in Theorem 10, which uses the chain V → X≤n → ZZZ, is (as in the case of Garg et al.

(2014) and Braverman et al. (2016)) that each individual i draws coordinate j in Xi,j conditional
on only coordinate Vj of V ∈ {−1, 1}d, that is, independently of V\j . Now, let X≤n,j = (Xi,j)

n
i=1

be the jth coordinate of the data, and let X≤n,\j denote the remaining d − 1 coordinates across
all i = 1, . . . , n. By construction of our product sampling distribution (8), we thus have Markov
structure

Vj → X≤n,j → ZZZ ← X≤n,\j ← V\j ,

in turn implying (by marginalizing over X≤n,\j and V\j) the Markov structure

Vj → X≤n,j → ZZZ. (10)

Now, define M±j to be the marginal distributions over the total communicated private variables
ZZZ conditional on Vj = ±1. Then Le Cam’s inequalities and Cauchy-Schwarz imply that

2
d∑
j=1

P(V̂j(ZZZ) 6= Vj) ≥
d∑
j=1

(1− ‖M−j −M+j‖TV) ≥
d∑
j=1

(1−
√

2dhel(M−j ,M+j)) (11)

≥ d

1−

√√√√2

d

d∑
j=1

d2hel(M−j ,M+j)

 .
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It remains to bound the summed Hellinger distances. By inequality (9) and the particular
Markov structure (10), we have

d2hel(M−j ,M+j) ≤
7

2
(eb + 1)β(P0, P1)I(X≤n,j ;ZZZ | Vj). (12)

Using the fact that conditioning reduces entropy and that conditional on Vj , the values X≤n,j are
i.i.d. and independent of V\j , we have

I(X≤n,j ;ZZZ | Vj) = H(X≤n,j | Vj)−H(X≤n,j | Vj ,ZZZ)

≤ H(X≤n,j | Vj , V\j)−H(X≤n,j | Vj , V\j ,ZZZ)

= I(X≤n,j ;ZZZ | V ).

The following lemma relates the individual informations to the global information I(X≤n;ZZZ | V ).

Lemma 17 Let V,X≤n,ZZZ be as in Theorem 10. Then

d∑
j=1

I(X≤n,j ;ZZZ | V ) ≤ I(X≤n;ZZZ | V ).

Proof We have

d∑
j=1

I(X≤n,j ;ZZZ | V ) =
d∑
j=1

[H(X≤n,j | V )−H(X≤n,j | ZZZ, V )]

(i)
= H(X≤n | V )−

d∑
j=1

H(X≤n,j | ZZZ, V )

(ii)

≤ H(X≤n | V )−
d∑
j=1

H(X≤n,j | X≤n,<j ,ZZZ, V ) = I(X≤n;ZZZ | V ),

where the equality (i) follows because conditional on V , the coordinates X≤n,j are independent,
and inequality (ii) because conditioning reduces entropy.

Substituting the bound of Lemma 17 via the consequence (12) of the strong data processing
inequality (9) into inequality (11), we have

2

d∑
j=1

P(V̂j(ZZZ) 6= Vj) ≥ d
(

1−
√

7(eb + 1)βI(X≤n;ZZZ | V )/d

)
.

This is the desired result.
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Appendix B. Proofs of mutual information bounds

B.1. Proof of Lemma 12

We have

I(ZZZ;X≤n | V ) =
n∑
i=1

I(ZZZ;Xi | X<i, V )

=
n∑
i=1

E [E [Dkl (Q(ZZZ ∈ · | X≤i, V )||Q(ZZZ ∈ · | X<i, V )) | V ]] (13)

where the first equality is the chain rule and the second equality uses the equivalence of mutual infor-
mation and expected KL-divergence, where Q(ZZZ ∈ · | X≤i, V ) denotes the conditional distribution
of the full set of private variables ZZZ given X≤i. Now we note that

Q(ZZZ ∈ · | x≤i, v) =

∫
Q(ZZZ ∈ · | x≤n)dPv(xi+1) · · · dPv(xn)

because the Xi are independent conditional on V = v, and similarly for Q(ZZZ ∈ · | x<i, v). The
joint convexity of the KL-divergence then implies

Dkl (Q(ZZZ ∈ · | x≤i, v)||Q(ZZZ ∈ · | x<i, v))

≤
∫
Xn−i

∫
X
Dkl

(
Q(ZZZ ∈ · | x≤n)||Q(ZZZ ∈ · | x<i, x′i, x>i)

)︸ ︷︷ ︸
=:εi(x≤n,x

′
i)

dPv(xi+1) · · · dPv(xn)dPv(x
′
i)

where we let εi be as above. Assumption A1 gives that
∑n

i=1 εi(x≤n, x
′
i) ≤ nεkl, and substituting

in the chain rule (13) gives the result.

B.2. Proof of Lemma 13

The result actually follows from two more sophisticated lemmas, which we state here and proof
subsequently (see Section B.3).

Lemma 18 Let Xi be i.i.d. and Z be (ε, δ)-differentially private for X≤n, where each Xi takes
values in the finite set X . Let η > 0 and define pη = 2( δη + η e3ε

e3ε−1 + δeε

eε−1) and the binary entropy
h2(p) = −p log p− (1− p) log(1− p). If pη ≤ 1, then

I(X≤n;Z) ≤ n · [6ε+ pη log |X |+ h2(pη)]

Additionally, if η > 0 is small enough that η(2e6ε/(e3ε − 1) + 1) ≤ 1
2 , then

I(X≤n;Z) ≤ n ·
(

6ε(e6ε − 1) + 3η

[
e3ε + 3η

e12ε

(e3ε − 1)2

]
+ pη log |X |+ h2(pη)

)
.

Extending this lemma for particular δ allows us to provide more intepretable results.
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Lemma 19 In addition to the conditions of Lemma 18, assume that 16
√
δmax{ε−1, 1} ≤ 1,

δmax{ε−1, 1} log 1
δmax{ε−1,1} ≤ ε

2, and δmax{ε−1, 1} log2 |X | ≤ ε2. Then

I(X≤n;Z) ≤ 9nε.

If ε ≤ 1/6 and we additionally have δ ≤ ε5

64 log2 |X | and δ log2 εδ ≤ ε
5/16, then

I(X≤n;Z) ≤ 75nε2.

The proof is mostly algebraic manipulations; see Section B.4.
By recalling that in our packing of the hypercube, the Markov chain V → X≤n → ZZZ guarantees

that the Xi are i.i.d. conditional on V , Lemma 19 implies Lemma 13 immediately.

B.3. Proof of Lemma 18

In this section, we provide the proof of Lemma 18. We require a number of different claims. First,
we assume w.l.o.g. that all random variables of interest are discrete and finitely supported (as we
note earlier, the mutual information I(X;Y ) is arbitrarily approximated by finite partitions of the
ranges of X and Y Gray (1990)). We make a few definitions and give examples.

Definition 20 Let X,Y be arbitrary random variables. They are (ε, δ)-indistinguishable, which
we denote X ≈ε,δ Y , if the set E := {x : | log P (X=x)

P (Y=x) | ≤ δ} satisfies P (Y 6∈ E) ≥ 1 − δ and
P (X 6∈ E) ≤ δ.

With this definition, we introduce a few notational shorthands for ease of use later. Let Z be the
random variable distributed as QZ(· | X) (i.e. conditional on X), and we let X|Z=z be the random
variable X conditional on Z = z, that is, the posterior on X given Z = z. With this, we can follow
Rogers et al. (2016) and their development of mutual information bounds based on approximate
differential privacy. The key is to bound the sequence of privacy loss random variables,

`pri (x≤i, z) := log
P (Xi = x | Z = z,X<i = x<i)

P (Xi = x)
,

as the mutual information between discrete variables (X≤n, Z) where the Xi are i.i.d. is

I(X≤n;Z) =
n∑
i=1

I(Xi;Z | X<i) =
n∑
i=1

E
[
`pri (X≤i, Z)

]
. (14)

We begin with two of Rogers et al.’s claims, which in turn build off of Kasiviswanathan and
Smith (2014). For δ > 0 and i ∈ [n], define the sets

Ei(δ) :=
{

(x<i, z) ∈ X i−1 ×Z : Xi ≈3ε,δ Xi|Z=z,X<i=x<i
}

Fi :=
{

(x≤i, z) ∈ X × Z : |`pri (x≤i, z)| ≤ 6ε
}

Gi(δ) :=
{

(x≤i, z) ∈ X i ×Z : (x<i, z) ∈ Ei(δ), (x≤i, z) ∈ Fi
}
,

so that G is essentially the “good” set where the pair (X,Z) behaves as though Z is ε-differentially
private.

We then have
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Lemma 21 (Rogers et al. (2016), Claims 3.4–3.6) Let the channelQZ(· | X) be (ε, δ)-differentially
private. Then for any η > 0 and z ∈ E(η),

P ((X<i, Z) ∈ Ei(η) | X<i = x<i) ≥ 1− 2δ

η
− 2δeε

eε − 1
(15a)

P ((X≤i, Z) ∈ Fi | Z = z,X<i = x<i) ≥ 1− 2ηe3ε

e3ε − 1
(15b)

P ((X≤i, Z) ∈ Gi(η)) ≥ 1− 2δ

η
− 2δeε

eε − 1
− 2ηe3ε

e3ε − 1
. (15c)

With Lemma 21, we can bound the mutual information between X and Z. We begin by decom-
posing the mutual information into two sums, as for any η > 0,

I(Xi;Z | X<i)

= E[`pri (X≤i, Z)1 {(X≤i, Z) ∈ Gi(η)}] + E[`pri (X≤i, Z)1 {(X≤i, Z) 6∈ Gi(η)}]. (16)

We control each of the terms in turn.

Lemma 22 Let η > 0, and define the shorthands P (Gcη) = P ((X≤i, Z) 6∈ Gi(η)) and h2(p) =

p log 1
p + (1− p) log 1

1−p . Then

E[`pri (X≤i, Z)1 {(X≤i, Z) 6∈ Gi(η)}] ≤ P (Gcη) log |X |+ h2(P (Gcη)).

Proof For shorthand, let G ≡ Gi(η). Let X ′ = Xi|(X≤i,Z) 6∈G and Z ′ = Z|(X≤i,Z)6∈G. Then as X
is finite, we have

log |X | ≥ H(X ′i | X<i = x<i) ≥ I(X ′i;Z
′
i | X<i = x<i)

=
∑
x,z

P (Xi = x, Z = z,Gc | x<i)
P (Gc | x<i)

log
P (Xi = x, Z = z | x<i)P (Gc | x<i)

P (Xi = x,Gc | x<i)P (Z = z,Gc | x<i)

≥
∑
x,z

P (Xi = x, Z = z,Gc | x<i)
P (Gc | x<i)

log
P (Xi = x, Z = z | x<i)P (Gc | x<i)
P (Xi = x | x<i)P (Z = z | x<i)

=
∑
x,z

P (X = x, Z = z,Gc | x<i)
P (Gc | x<i)

[
`pri (x≤i, z) + logP (Gc | x<i)

]
Rearranging gives that

E
[
`pri (X≤i, Z)1 {(X≤i, Z) 6∈ G} | X<i = x<i

]
≤ P (Gc | x<i)

[
log |X |+ log

1

P (Gc | x<i)

]
≤ P (Gc | x<i) log |X |+H(1 {G} | X<i = x<i).

Integrating over the marginal ofX<i and noting that conditioning always reduces entropy, we obtain

E
[
`pri (X≤i, Z)1 {(X≤i, Z) 6∈ G}

]
≤ P (Gc | x<i) log |X |+H(1 {G})

as desired.
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We now turn to the first term in the expansion (16). We always have `pri (X,Z) ≤ 6ε on the
event G(η), so that Lemma 22, coupled with the chain rule (14) and probability bound (15c) gives

I(X≤n;Z) ≤
n∑
i=1

(6ε+ pη log |X |+ h2(pη))

for pη = 2δ
η + 2δeε

eε−1 + 2ηe3ε

e3ε−1 . This is evidently the first claim of Lemma 18.
To see the second claim requires a bit more work, though the next lemma suffices.

Lemma 23 Let η > 0 be small enough that η(2e6ε/(e3ε − 1) + 1) ≤ 1
2 . Then

E[`pri (X≤i, Z)1 {(X,Z) ∈ G(η)}] ≤ 6ε(e6ε − 1) + 3η

[
e3ε + 3η

e12ε

(e3ε − 1)2

]
.

Proof Let (x<i, z) ∈ E(η). Then

E[`pri (X≤i, Z)1 {(X,Z) ∈ G(η)} | Z = z,X<i = x<i]

=
∑

xi:(x≤i,z)∈Fi

`pri (x≤i, z)P (Xi = xi | Z = z, x<i)

=
∑

xi:(x≤i,z)∈Fi

`pri (x≤i, z)[P (Xi = xi | Z = z, x<i)− P (Xi = xi)] +
∑

xi:(x≤i,z)∈Fi

`pri (x≤i, z)P (Xi = xi)

≤ 6ε(e6ε − 1) +
∑

xi:(x≤i,z)∈Fi

`pri (x≤i, z)P (Xi = xi) (17)

where we have used that

|P (Xi = xi | Z = z, x<i)− P (Xi = xi)| ≤ e6ε − 1

by definition of the set Fi and that (x≤i, z) ∈ Fi, and that similarly |`pri (x≤i, z)| ≤ 6ε.
To bound the second term in the sum (17), we note that∑

xi:(x≤i,z)∈Fi

`pri (x≤i, z)P (Xi = xi)

= P ((X≤i, z) ∈ Fi | x<i)
∑

xi:(x≤i,z)∈Fi

`pri (x≤i, z)
P (X = x)

P ((X≤i, z) ∈ Fi | x<i)

≤ P ((X≤i, z) ∈ Fi | x<i) log
P ((X≤i, Z) ∈ Fi | x<i, Z = z)

P ((X≤i, z) ∈ Fi | x<i)

= P ((X≤i, z) ∈ Fi | x<i) log
1− P ((X≤i, Z) 6∈ Fi | x<i, Z = z)

1− P ((X≤i, z) 6∈ Fi | x<i)

by Jensen’s inequality. Let us bound the logarithmic terms. As (x<i, z) ∈ Ei(η) by assumption,
we have P ((X≤i, z) 6∈ Fi | x<i) ≤ e3εP ((X≤i, Z) 6∈ Fi | Z = z, x<i) + η. Letting q =

P ((X≤i, Z) 6∈ Fi | Z = z, x<i) for shorthand, Lemma 21 (Eq. (15b)) implies that q ≤ 2ηe3ε

e3ε−1 , and
thus

log
1− P ((X≤i, Z) 6∈ Fi | Z = z, x<i)

1− P ((X≤i, z) 6∈ Fi | x<i)
≤ log

1− q
1− e3εq − η

≤ (e3ε − 1)q + η + (e3εq + η)2,
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where we have used that − log(1 − t) ≤ t + t2 for t ≤ 1
2 and the assumption that e3εq + η < 1

2 .
Returning to our bounds on the sum (17), we see that

E[`pri (X≤i, Z)1 {(X,Z) ∈ G(η)} | z, x<i] ≤ 6ε(e6ε − 1) + η

[
2e3ε + 1 + η

(
2e6ε

e3ε − 1
+ 1

)2
]
.

Noting that e6ε/(e3ε − 1) > 5/4 gives the result.

B.4. Proof of Lemma 19

We begin by addressing the exponential in ε terms, which will allow easier derivation. For all ε ≥ 0,
we have

e3ε

e3ε − 1
≤ max

{
1

ε
,

e

e− 1

}
,

eε

eε − 1
≤ max

{
2

ε
,

e

e− 1

}
, (18a)

and for ε ≤ 1
6 ,

e6ε

e3ε − 1
≤ 3

4ε
,

e12ε

(e3ε − 1)2
≤ 1

2ε2
, 6ε(e6ε − 1) ≤ 62ε2. (18b)

Using the bounds (18), we can provide our desired mutual information bounds. In the case that
ε ≥ 0 is arbitrary, we use the first bound of Lemma 18. In this case, to apply the bound it is sufficient
that pη ≤ 2( δη + ηmax{ε−1, 2} + δmax{2ε−1, 2}) ≤ 1

2 , and taking η =
√
δmin{ε, 1/2} gives

that
pη ≤ 4

√
δmax{ε−1, 2}+ 2δmax{ε−1, 1} ≤ 8

√
δmax{ε−1, 1} ≤ 1

2

whenever
√
δmax{ε−1, 1} ≤ 1/16. Assuming additionally that

√
δmax{ε−1, 1} log 1

δmax{ε−1,1} ≤
ε and

√
δmax{ε−1, 1} log |X | ≤ ε gives the first claimed result as h2(p) ≤ −2p log p for p ≤ 1

2 .
For the second result, under the additional condition that ε ≤ 1/6, our chosen η =

√
δmin{ε, 1/2} =√

δε satisfies η( 3
2ε + 1) ≤ 1

2 (as δ ≤ 1/(64ε)). When δ ≤ ε3, we have

3η

[
e3ε + 3η

e12ε

(e3ε − 1)2

]
≤ 3
√
δε

(
2 +

3

2

√
δ

ε3

)
≤ 11ε2

by inequalities (18). Finally, in this case we again have pη ≤ 8
√
δ/ε, and so if

δ ≤ ε5

64 log2 |X |
and δ log2

ε

δ
≤ ε5

16

then pη log |X |+ h2(pη) ≤ 2ε2. These bounds and Lemma 18 give the second result.

Appendix C. Proofs of Corollaries

Before proving the corollaries from Section 2.2, we present one lemma that will be useful through-
out. It is similar to, but simpler than, a result of Zhang et al. (2013, Lemma 8).
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Lemma 24 Let V → X → Z, where X ∼ Pv conditional on V = v. If | log dPv
dPv′
| ≤ α for all

v, v′, then

I(V ;Z) ≤ 4(eα − 1)2EZ [‖PX(· | Z)− PX‖2TV] ≤ 2(eα − 1)2I(X;Z).

Proof By approximation, there is no loss of generality to assume that each random variable is
discrete (Gray, 1990), so that our variables may have probability mass functions, which we denote
by p. We first claim that

|p(v | z)− p(v)| ≤ 2(eα − 1)p(v) ‖PX(· | z)− PX(·)‖TV . (19)

Indeed, we have that p(v | x) = p(x | v)p(v)/p(x) ∈ [e−α, eα]p(v) by assumption on dPv/dPv′ .
Thus, the Markov structure V → X → Z implies

|p(v | z)− p(v)| =

∣∣∣∣∣∑
x

p(v | x)p(x | z)− p(v | x)p(x)

∣∣∣∣∣
=

∣∣∣∣∣∑
x

(p(v | x)− p(v))(p(x | z)− p(x))

∣∣∣∣∣
≤ |eα − 1|p(v)

∑
x

|p(x | z)− p(x)| = 2(eα − 1)p(v) ‖PX(· | z)− PX‖TV .

Then using the definition of mutual information and that χ2-divergence upper bounds the KL-
divergence (Tsybakov, 2009, Lemma 2.7),

I(V ;Z) = EZ [Dkl (PV (· | Z)||PV )]

≤ EZ

[∑
v

(
p(v | Z)− p(v)

p(v)

)2

p(v)

]
≤ 4(eα − 1)2EZ

[∑
v

p(v) ‖PX(· | Z)− PX‖2TV

]
,

where the second inequality used inequality (19). By Pinsker’s inequality, we have the bound
‖PX(· | Z)− PX‖2TV ≤

1
2Dkl (PX(· | Z)||PX), and using that I(Z;X) = EZ [Dkl (PX(· | Z)||PX)]

gives the lemma.

C.1. Proof of Corollary 3

By Corollaries 11 and 14, it will be sufficient to provide a good enough strong data processing
inequality for Bernoulli random variables. We give the proof under Assumption A2 (which relies
on Corollary 14), as the other cases are completely similar. Let P−1 = Bernoulli(12) and, for some
δ < 1, let P1 = Bernoulli(1+δ2 ). Then | log dP1/dP−1| ≤ − log(1 − δ), and consequently, for V
uniform on {−1, 1}, we obtain

I(V ;Z) ≤ 2

(
1

1− δ
− 1

)2

I(X;Z) =
2δ2

1− 2δ + δ2
I(X;Z).

In particular, we have β(P−1, P1) ≤ 2δ2

(1−δ)2 , and in the notation of Theorem 10, we have b =

− log (1− δ) as well. Thus, for any δ < 1, we have

d∑
j=1

P(V̂j(Z) 6= Vj) ≥
d

2

(
1−

√
7(2− δ)
(1− δ)

2δ2

(1− δ)2
nεkl

d
− δtotal

)
.
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Taking δ2 = cmin{1, d/(nεkl)}, using that δtotal ≤ 1
2 , and noting that the separation is at least δ/2

in Assouad’s Lemma 8 gives the corollary.

C.2. Proof of Corollary 4

We give a brief example before beginning the proof to show that similar ideas extend to other convex
risk minimization problems.

Example 2 (Convex risk minimization) Consider the problem of minimizing a convex risk func-
tional RP (θ) := EP [`(θ;X)], where ` is convex in its first argument and the expectation is over
X ∼ P . Now, define θ(P ) = argminθ E[`(θ;X)], and let L(θ, θ(P )) = RP (θ) − RP (θ(P )). If
RP is λ-strongly convex in a neighborhood of radius r of θ(P ), then a straightforward convexity
argument (Hiriart-Urruty and Lemaréchal, 1993) yields

RP (θ)−RP (θ(P )) ≥ min

{
λ

2
‖θ − θ(P )‖22 , λr ‖θ − θ(P )‖2

}
.

Thus, if as in the previous example we can construct distributions P such that θ(Pv) = δ · v ∈
{−δ, δ}d, where δ ≤ r, then L(θ, θ(P )) induces a λδ2/2-separation in Hamming metric.

Our proof proceeds in two steps. First, we argue that the gap in the logistic risk is lower bounded
by a quadratic (cf. Example 2); we then argue that this quadratic lower bound can be reduced to es-
timation in a model with independent Bernoulli coordinates. To avoid somewhat tedious constants,
we perform the analysis in an asymptotic sense.

We first describe the precise problem setting. Let δ > 0, to be chosen later, and let v ∈ V :=
{±1}d as is standard for our applications of Assouad’s method, and for each v ∈ V let θv = δv.
Now, for any θ ∈ {±δ}d, consider the class-conditional distributions with coordinates of X ∈ Rd
independent and distributed (conditional on Y ∈ {±1}) as

Xj | Y =

Y w.p. eθj/2

eθj/2+e−θj/2
= eθjXjY/2

eδ/2+e−δ/2

−Y w.p. e−θj/2

eθj/2+e−θj/2
= e−θjXjY/2

eδ/2+e−δ/2
.

Let the prior probabilities P (Y = y) = 1
2 for y ∈ {±1} Then conditional on X = x ∈ {±1}d, we

have

P (Y = y | X = x) =

∏d
j=1 e

θjxjy/2∏d
j=1 e

θjxjy/2 +
∏d
j=1 e

−θjxjy/2
=

eθ
T xy

1 + eθT xy
,

so that Y | X follows the logistic model.

Quadratic lower bounds on risk: Fixing v, let Rδv(θ) = Eδv[`(θ; (X,Y ))], where Eδv indicates
expectation under the logistic model above with θ = δv; note that θ? := argminθ Rδv(θ) = δv
here. We claim that for all ε > 0 there exists a γ > 0 such that

lim inf
δ↓0

inf
‖θ‖2≤γ

λmin(∇2Rδv(θ)) ≥
1− ε

4
. (20)

We return to prove inequality (20) at the end of the proof of the corollary, noting that by Example 2,
it immediately implies that if δ > 0 is small enough then

Rδv(θ)− inf
θ
Rδv(θ) ≥ min

{
1− ε

8
‖θ − δv‖22 ,

1− ε
4

γ ‖θ − δv‖2
}
.
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Projecting θ into the set [−δ, δ]d can only decrease the right hand side of the previous display, and
thus (again for small enough δ > 0 and using that γ > 0 is fixed relative to δ) we see that

Rδv(θ)− inf
θ
Rδv(θ) ≥ δ2

1− ε
8

d∑
j=1

1 {sgn(θj) 6= vj} . (21)

This is exactly the separation condition (7) necessary for application of Assouad’s method.

Reduction to Bernoulli estimation By construction, for each coordinate j, we have Y Xj ∼
Bernoulli(eθj/(1 + eθj )), independent of the others. As a consequence, we see for any estimator
V̂ of the signs of the parameters of the logistic model, there exists an estimator V̂ bern and channel
Qbern, which is equally private to Q (and both are independent of the true θ = δv), such that

d∑
j=1

P(V̂j(ZZZ) 6= vj) ≥
d∑
j=1

PQbern(V̂ bern
j (ZZZ) 6= vj), (22)

where the first expectation is taken over our logistic model with parameters θ and the second over
the distribution on X with independent Bernoulli(eθj/(1 + eθj )) coordinates.

We now apply an argument completely parallel to that in the proof of Corollary 3, again focusing
on Assumption A2 for simplicity—the parallel case under Assumptions A1 or A1′ is similarly
immediate from Corollary 11. Let P−1 = Bernoulli(e−δ/(1 + e−δ)) and P1 = Bernoulli(eδ/(1 +
eδ)). Then | log dP1/dP−1| ≤ 2δ, and Lemma 24 implies that the strong data processing constant
β(P1, P−1) ≤ 2(e2δ−1)2. Randomizing over V uniform in V , Lemma 15 and Theorem 10 (coupled
with Corollary 14) yield the lower bound

d∑
j=1

P(V̂j(ZZZ) 6= Vj) ≥
d

2

(
1−

√
14(e2δ + 1)

d
(e2δ − 1)2I(X≤n;ZZZ | V )− δtotal

)

≥ d

2

(
1−

√
14(e2δ + 1)

d
(e2δ − 1)2nεkl − δtotal

)
.

Setting δ2 = c d
nεkl

for small enough constant c > 0, inequality (21) coupled with inequality (22)
immediately yields

E
[
RδV (θ̂n(ZZZ))− inf

θ
RδV (θ)

]
≥ Cdδ2 = C ′d

d

nεkl

as desired, where C,C ′ > 0 are numerical constants.

Proof of inequality (20): As θ 7→ ∇2Rδv(θ) is C∞ in θ, as is δ 7→ Rδv(θ) by the logistic model,
we may swap the limit infimum and infimum over ‖θ‖2 ≤ γ. Now, fix any θ with ‖θ‖2 ≤ γ,
where we will choose γ momentarily. Then Lebesgue’s dominated convergence theorem and the
continuity of the minimum eigenvalue λmin gives

lim inf
δ↓0

λmin(∇2Eδv[`(θ; (X,Y ))]) = λmin(E[pθ(X)(1− pθ(X))XXT ])

where X ∼ Uni({±1}d) and pθ(X) = 1/(1 + eθ
TX). As θTX is ‖θ‖22-sub-Gaussian (Vershynin,

2012), meaning that E[eθ
TX ] ≤ exp(‖θ‖22 /2), standard sub-Gaussian concentration inequalities
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and that ‖θ‖2 ≤ γ imply that with probability over at least 1 − α over X , we have |〈θ,X〉| ≤√
2γ2 log(2/α). Setting t =

√
2γ2 log(2/α), if γ > 0 is small enough that et/(1 + et)2 ≥

(1− ε/2)/4 we have

λmin(E[pθ(X)(1−pθ(X))XXT ]) ≥ λmin

(
1− ε/2

4
E[XXT ]

)
−dα =

1− ε/2
4

λmin(Id×d)−dα.

Choosing α and γ small enough, we have λmin(E[pθ(X)(1− pθ(X))]) ≥ 1−ε
4 as desired.

C.3. Proof of Corollary 5

We provide a slightly different proof, beginning with the reduction to Assouad’s method. Let δ > 0
to be chosen presently. We first observe that if θ ∈ [−δ, δ]d, then it is no loss of generality to
assume the estimator θ̂ ∈ [−δ, δ]d, as otherwise, we may simply project to [−δ, δ]d. Then for any
distributions P and P and any coordinate j, we have

EP [(θ̂j − θj)2] = EP [(θ̂j − θj)2] +

∫
(θ̂j − θj)2(dP − dP ) ≥ EP [(θ̂j − θj)2]− 8δ2

∥∥P − P∥∥TV .

Now, let Pδ be the collection of normal distributions with means in [−δ, δ]. Using Lemma 15, we
then obtain that for any channel Q satisfying Assumption A2, there exist εi,t-differentially private
channels Q satisfying

∑
i,t min{εi,t, ε2i,t} ≤ nεkl such that

Mn(θ(P), ‖·‖22 , Q) ≥Mn(θ(Pδ), ‖·‖22 , Q) ≥M(θ(Pδ), ‖·‖22 , Q)− 8dδ2δtotal. (23)

In the lower bound (23), choosing

δ2 = cmin

{
d

εkl

dσ2

n
, 1

}
and using Theorem 4.5 of Braverman et al. (2016) (with the choice k = d/2 in their result, along
with the specified separation δ), coupled with Lemma 12, we obtain the lower bound cmin{ dεkl

dσ2

n , d}.
The dσ2/n term is the standard minimax bound for estimation of a Gaussian mean.

C.4. Proof of Corollary 6

The proof is nearly identical to that of Corollary 5, except that in the lower bound (23), we may
replace the 8dδ2δtotal term with 16kδ2δtotal, which follows by assuming w.l.o.g. that θ̂ is k-sparse, in
which case we estimate at most 2k entries of θ incorrectly. Then the lower bound of d

εkl

kσ2

n follows
by Theorem 4.5 of Braverman et al. (2016), coupled with Lemma 12. The minimum involving k
follows because ‖θ − θ′‖22 ≤ 4k for all θ, θ′ ∈ [−1, 1]d with ‖θ‖0 ≤ k. The kσ2 log( dk )/n term is
the standard minimax lower bound for sparse Gaussian sequence estimation (Johnstone, 2013).

Appendix D. Technical proofs

D.1. From approximate to pure differential privacy (proof of Lemma 15)

In this section, we prove Lemma 15. The idea in the lemma is simple (though measurability issues
preclude trivial proof): we can construct alternative channels Q that are close in variation distance
to Q, where Q satisfy pure differential privacy.
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We use Lemma 25 along with the fact that it is no loss of generality to assume that, by ap-
proximations and continuity of f -divergences, theZZZ are discrete (Liese and Vajda, 2006, Thm. 15).
Indeed, the variation distance ‖·‖TV is an f -divergence and P±1 are marginal distributions over
ZZZ = Z

(≤T )
≤n ∈ ZnT . Thus, letting A denote a finite rectangular partition of ZnT , meaning that the

sets in A ∈ A are of the form

A =
T∏
t=1

(A1,1 ⊗A2,1 ⊗ · · · ⊗An,1) , Ai,t ⊂ Z,

and recalling that rectangles generate the Borel σ-algebra on ZnT , we have the equality (cf. Liese
and Vajda, 2006, Theorem 15)

‖P1 − P−1‖TV = sup
A

∑
A∈A
|P1(ZZZ ∈ A)− P−1(ZZZ ∈ A)|, (24)

where the supremum is taken over all finite rectangular partitions of ZnT .
We use equality (24) to prove the result. Without loss of generality, we assume the supre-

mum (24) is attained (otherwise, we simply approximate). As the partition A is finite and consists
of rectangular sets, we can assume the communicated Z(t)

i are discrete. We then have the follow-
ing lemma, whose proof we defer to Section D.2. This is an extension of the result Dwork et al.
(2010) that (ε, δ)-private channels are close to (ε, 0)-private channels; naive application of earlier
constructions can yield in non-measurable objects and non-regular conditional probabilities.

Lemma 25 Assume that Z is countable and that for each i, t ∈ N, the channel Q(· | xi, z(t)→i) is a
regular conditional probability and that it is (ε, δ)-differentially private. Then there exists a regular
conditional probability Q(· | xi, z(t)→i) such that Q is ε-differentially private and

sup
xi∈X

∥∥∥Q(· | xi, z(t)→i)−Q(· | xi, z(t)→i)
∥∥∥

TV
≤ 1

2

[
δ

1 + eε
+

δ

1 + eε − δ

]
.

Let Q be the channels Lemma 25 guarantees, and let P±1 be the induced marginal distributions
on ZnT . Then

‖P1 − P−1‖TV ≤
∥∥P1 − P1

∥∥
TV +

∥∥P1 − P−1
∥∥

TV +
∥∥P−1 − P−1

∥∥
TV

by the triangle inequality. Letting q denote the p.m.f. of Q, we bound
∥∥Pv − Pv

∥∥
TV by expanding

∥∥Pv − Pv
∥∥

TV =
1

2

∑
zzz∈ZnT

∣∣∣∣∫ (q(zzz | x≤n)− q(zzz | x≤n)) dPv(x≤n)

∣∣∣∣
=

1

2

∑
zzz∈ZnT

∣∣∣∣∣∣
∫ ∏

i,t

q(z
(t)
i | x≤n, z

(t)
→i)−

∏
i,t

q(z
(t)
i | x≤n, z

(t)
→i)

 dPv(x≤n)

∣∣∣∣∣∣
=

1

2

∑
zzz∈ZnT

∣∣∣∣∣∣
∫ ∏

i,t

q(z
(t)
i | xi, z

(t)
→i)−

∏
i,t

q(z
(t)
i | xi, z

(t)
→i)

∏
i≤n

dPv(x≤n)

∣∣∣∣∣∣
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where we have used that Z(t)
i is conditionally independent of X\i given Xi and Z(t)

→i. Now, let
(j, τ) ≺ (i, t) indicate the ordering that either τ < t or j < i and τ = t (and similarly (j, τ) � (i, t)
means that τ > t or τ = t and j > i), and define the shorthand

q≺(i,t)(zzz | x≤n) :=
∏

(j,τ)≺(i,t)

q(z
(τ)
j | xj , z(τ)→j)

and similarly for q and q�(i,t). Using the telescoping identity that∏
i

ai −
∏
i

bi =
∑
i

(∏
j<i

aj

)
(ai − bi)

(∏
j>i

bj

)
and the triangle inequality, we have

2
∥∥Pv − Pv

∥∥
TV (25)

≤
∑
v:vj=1

i,t

∫
Xn

∑
zzz∈ZnT

q≺(i,t)(zzz | x≤n)
∣∣∣q(z(t)i | xi, z(t)→i)− q(z(t)i | xi, z(t)→i)∣∣∣ q�(i,t)(zzz | x≤n)︸ ︷︷ ︸

=:Tit

dPv(x≤n).

The term Tit satisfies

Tit =
∑

(j,τ)≺(i,t),

z
(τ)
j

q≺(i,t)(zzz | x≤n)
∑
z
(t)
i ∈Z

∣∣∣q(z(t)i | xi, z(t)→i)− q(z(t)i | xi, z(t)→i)∣∣∣ ∑
(j,τ)�(i,t),

z
(τ)
j

q�(i,t)(zzz | x≤n),

where the variation distance guarantee of Lemma 25 (coupled with the privacy Assumption A2)
guarantees that

∑
z
(t)
i ∈Z

∣∣∣q(z(t)i | xi, z(t)→i)− q(z(t)i | xi, z(t)→i)∣∣∣ ≤ 1

2

[
δi,t(z

(t)
→i)

1 + eεi,t(z
(t)
→i)

+
δi,t(z

(t)
→i)

1 + eεi,t(z
(t)
→i) − δi,t(z(t)→i)

]

≤ δi,t(z(t)→i)

as δi,t ∈ [0, 1]. We thus obtain

Tit ≤
∑

(j,τ)≺(i,t),

z
(τ)
j

q≺(i,t)(zzz | x≤n)δi,t(z
(t)
→i) max

z
(t)
i ∈Z

∑
(j,τ)�(i,t),

z
(τ)
j

q�(i,t)(zzz | x≤n)

=
∑

(j,τ)≺(i,t),

z
(τ)
j

q≺(i,t)(zzz | x≤n)δi,t(z
(t)
→i) = EQ

[
δi,t(Z

(t)
→i) | X≤n = x≤n

]
,

where the equality follows because p.m.f.s sum to 1. Substituting this into inequality (25) yields∥∥Pv − Pv
∥∥

TV ≤
1

2

∑
i,t

EPv [δi,t(Z
(t)
→i)] =

1

2

∑
i,t

EPv

[
δi,t(Z

(t)
→i)
]
≤ δtotal

2
,

the final inequality following again by Assumption A2. This gives Lemma 15.
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D.2. Proof of Lemma 25

If the space X is countable, then this result is essentially due to Dwork et al. (2010) (see Lemma 2.1
in the long version of their paper) once we apply the averaging technique in the end of this proof.
When the space X is not countable, we must be more careful to maintain measurability, so that
our construction actually yields a valid channel. Because Z is countable, however, it is possible to
achieve our desired result. Without loss of generality, because Z is countable, we may assume that
Q has a density (p.m.f.) q on Z , as each Q(· | xi, z(t)→i) is absolutely continuous w.r.t. the counting
measure on Z .

Let us take x, x′ ∈ X otherwise arbitrary, and let w = z
(t)
→i for shorthand, so that we have

densities q(z | x,w) and q(z | x′, w), both of which are measurable in their (three) arguments.
Then define the two sets

Sx := {z ∈ Z | q(z | x,w) > eεq(z | x′, w)} and Sx′ := {z ∈ Z | q(z | x′, w) > eεq(z | x,w)}

and the intermediate densities

q1(z | x;x′, w) :=
[
q(z | x,w) + q(z | x′, w)

]( eε

eε + 1
1 {z ∈ Sx}+

1

eε + 1
1 {z ∈ Sx′}

)
+ q(z | x,w)1 {z 6∈ Sx ∪ Sx′} ,

q1(z | x′;x,w) :=
[
q(z | x,w) + q(z | x′, w)

]( 1

eε + 1
1 {z ∈ Sx}+

eε

eε + 1
1 {z ∈ Sx′}

)
+ q(z | x,w)1 {z 6∈ Sx ∪ Sx′} .

Evidently these quantities satisfy

e−ε ≤ q1(z | x;x′, w)

q1(z | x′;x,w)
≤ eε

for all z ∈ X , and moreover, by inspection they are (z, x, x′, w)-measurable as they are the product
of measurable functions. Let Q1 denote the induced measure (not necessarily probabilities) on Z
by the constructed q1.

With this definition of Q1, we may define the two quantities

αx := Q(Sx | x,w)−Q1(Sx | x;x′, w) = Q(Sx | x,w)− eε

1 + eε
(Q(Sx | x,w) +Q(Sx | x′, w))

=
Q(Sx | x,w)− eεQ(Sx | x′, w)

1 + eε
∈
[
0,

δ

1 + eε

]
and similarly

αx′ := Q(Sx′ | x′, w)−Q1(Sx′ | x′;x,w) ∈
[
0,

δ

1 + eε

]
.

We also have Q(Sx | x,w) − Q1(Sx | x;x′, w) = Q1(Sx | x′;x,w) − Q(Sx | x′, w) and Q(Sx′ |
x′, w) − Q1(Sx′ | x′;x,w) = Q1(Sx′ | x;x′, w) − Q(Sx′ | x,w) by construction. With these
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definitions and equalities, we have the variation bound∥∥Q(· | x,w)−Q1(· | x′;x,w)
∥∥

TV

=
1

2

(
Q(Sx | x,w)−Q1(Sx | x;x′, w)

)
+

1

2

(
Q1(Sx′ | x;x′, w)−Q(Sx′ | x,w)

)
=

1

2
αx +

1

2
αx′ ≤

δ

1 + eε
.

The normalized densities

q0(z | x;x′, w) :=
q1(z | x;x′, w)∑
z q1(z | x;x′, w)

and q0(z | x′;x,w) :=
q1(z | x′;x,w)∑
z q1(z | x;x′, w)

are both (z, x, x′, w)-measurable, and they satisfy the ratio guarantee | log q0(z|x;x′,w)
q0(z|x′;x,w) | ≤ ε. More-

over, we have Q1(Z | x;x′, w) = 1 − αx + αx′ and Q1(Z | x′;x,w) = 1 − αx′ + αx. We then
have∥∥Q(· | x,w)−Q0(· | x;x′, w)

∥∥
TV

≤
∥∥Q(· | x,w)−Q1(· | x;x′, w)

∥∥
TV +

∥∥Q1(· | x;x′, w)−Q0(· | x;x′, w)
∥∥

TV

=
αx + αx′

2
+

1

2

∣∣∣∣ 1

Q1(Z | x;x′, w)
− 1

∣∣∣∣ =
αx + αx′

2
+
|αx − αx′ |/2
1− αx + αx′

≤ 1

2

[
δ

1 + eε
+

δ

1 + eε − δ

]
.

where we have taken αx = δ/(1 + eε) and αx′ = 0 to maximize the sum above. An identical bound
holds on ‖Q(· | x′, w)−Q0(· | x′;x,w)‖TV.

It remains to construct our desired regular conditional distributionQ. To that end, note that each
of q0(z | x;x′, w) and q0(z | x′;x,w) are measurable in (z, x, x′, w) by our construction. Choosing
an arbitrary probability measure λ on the space X , we may then define

q(z | x,w) :=

∫
q0(z | x;x′, w)dλ(x′)

for all z, x, w. Taking Q to be the associated probability measure, we evidently have that Q is a
regular conditional probability, that ‖Q(· | x,w)−Q(· | x,w)‖TV ≤ 1

2( δ
1+eε + δ

1+eε−δ ), and that
e−ε ≤ q(z | x,w)/q(z | x′, w) ≤ eε as desired.

D.3. Proof of Lemma 7

We allow c, C to be numerical constants whose value may change from line to line. We also assume
σ2 > 0 is at least a numerical constant. First, we have that |Zi| ≤ b. Thus

P(|Zn − E[Zn]| ≥ t) ≤ exp

(
−nt

2

2b2

)
for t ≥ 0

by Hoeffding’s inequality. Note that E[Zn] ∈ [1 − 2Φ(1/σ), 1 + 2Φ(−1/σ)] ⊂ [e−c/σ
2
, 1 −

e−c/σ
2
] = [e−C , 1 − e−C ] by our assumption that σ is at least a constant. Now, let E denote the
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event that Zn ∈ [e−c/σ
2
/2, 1−e−c/σ2

/2], which happens with probability at least 1−exp(−cn/b2).
On this event, a Taylor expansion of Φ−1 gives

σΦ−1
(

1− Zn
2

)
= σΦ−1

(
1− E[Zn]

2

)
+ σ

Zn − E[Zn]

φ(θ)
± Cσ(Zn − E[Zn])2

= θ + σ
Zn − E[Zn]

φ(θ)
± Cσ(Zn − E[Zn])2.

We have |Zn −E[Zn]| ≤
√

2b2t/n with probability at least 1− e−t by Hoeffding’s inequality, and
we also have

Eθ[‖θ̂n − θ‖22] ≤
2σ2

φ(θ)2
E[(Zn − E[Zn])2] + C2σ2E[(Zn − E[Zn])4] + CP(Ec)

≤ C b
2σ2

n
+ C

b4σ2

n2
+ Ce−cn/b

2
,

where the second inequality follows by the b-boundendess of the Zi and standard moment bounds
for sub-Gaussian random variables (Vershynin, 2012).
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