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Abstract
We investigate the problem of identity testing for multidimensional histogram distributions. A
distribution p : D → R+, where D ⊆ Rd, is called a k-histogram if there exists a partition of
the domain into k axis-aligned rectangles such that p is constant within each such rectangle. His-
tograms are one of the most fundamental nonparametric families of distributions and have been
extensively studied in computer science and statistics. We give the first identity tester for this prob-
lem with sub-learning sample complexity in any fixed dimension and a nearly-matching sample
complexity lower bound.

In more detail, let q be an unknown d-dimensional k-histogram distribution in fixed dimension
d, and p be an explicitly given d-dimensional k-histogram. We want to correctly distinguish, with
probability at least 2/3, between the case that p = q versus ‖p− q‖1 ≥ ε. We design an algorithm
for this hypothesis testing problem with sample complexityO((

√
k/ε2)2d/2 log2.5d(k/ε)) that runs

in sample-polynomial time. Our algorithm is robust to model misspecification, i.e., succeeds even
if q is only promised to be close to a k-histogram. Moreover, for k = 2Ω(d), we show a sample
complexity lower bound of (

√
k/ε2)·Ω(log(k)/d)d−1 when d ≥ 2. That is, for any fixed dimension

d, our upper and lower bounds are nearly matching. Prior to our work, the sample complexity of
the d = 1 case was well-understood, but no algorithm with sub-learning sample complexity was
known, even for d = 2. Our new upper and lower bounds have interesting conceptual implications
regarding the relation between learning and testing in this setting.
Keywords: distribution testing, hypothesis testing, goodness of fit, multivariate histograms

1. Introduction

1.1. Background

The task of verifying the identity of a statistical model — known as identity testing or goodness of fit
— is one of the fundamental questions in statistical hypothesis testing Pearson (1900); Neyman and
Pearson (1933). In the past two decades, this question has been extensively studied by the TCS and
information-theory communities in the framework of property testing Rubinfeld and Sudan (1996);
Goldreich et al. (1998): Given sample access to an unknown distribution q over a finite domain
[n] := {1, . . . , n}, an explicit distribution p over [n], and a parameter ε > 0, we want to distinguish
between the cases that q and p are identical versus ε-far from each other in `1-norm (statistical
distance). Initial work on this problem focused on characterizing the sample size needed to test
the identity of an arbitrary distribution of a given support size n. This regime is well-understood:
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there exists an efficient estimator with sample complexity O(
√
n/ε2) Valiant and Valiant (2014);

Diakonikolas et al. (2015b); Acharya et al. (2015a) that is worst-case optimal up to constant factors.
The aforementioned sample complexity characterizes worst-case instances and drastically better

upper bounds may be possible if we have some a priori qualitative information about the unknown
distribution. For example, if q is an arbitrary continuous distribution, no identity tester with finite
sample complexity exists. On the other hand, if q is known to have some nice structure, the domain
size may not be the right complexity measure for the identity testing problem and one might hope
that strong positive results can be obtained even for the continuous setting. This discussion motivates
the following natural question: To what extent can we exploit the underlying structure to perform
the desired statistical estimation task more efficiently?

A natural formalization of the aforementioned question involves assuming that the unknown
distribution belongs to (or is close to) a given family of distributions. Let D be a family of distri-
butions over Rd. The problem of identity testing for D is the following: Given sample access to an
unknown distribution q ∈ D, and an explicit distribution p ∈ D, we want to distinguish between
the case that q = p versus ‖q − p‖1 ≥ ε. (Throughout this paper, ‖p− q‖1 denotes the L1-distance
between the distributions p, q.) We note that the sample complexity of this testing problem depends
on the complexity of the underlying class D, and it is of fundamental interest to obtain efficient
algorithms that are sample optimal for D. A recent body of work in distribution testing has focused
on leveraging such a priori structure to obtain significantly improved sample complexities Batu et al.
(2004); Daskalakis et al. (2013); Diakonikolas et al. (2015b,c); Canonne et al. (2017a); Daskalakis
and Pan (2017); Daskalakis et al. (2018); Diakonikolas et al. (2017b).

One approach to solve the identity testing problem for a familyD is to learn q up to L1-distance
ε/3 and then check (without drawing any more samples) whether the hypothesis is ε/3-close to
p. Thus, the sample complexity of identity testing for D is bounded from above by the sample
complexity of learning (an arbitrary distribution in) D. It is natural to ask whether a better sample
size bound could be achieved for the identity testing problem, since this task is, in some sense, less
demanding than the task of learning. In this paper, we provide an affirmative answer to this question
for the family of multidimensional histogram distributions.

1.2. Our Results: Identity Testing for Multidimensional Histograms

In this work, we investigate the problem of identity testing for multidimensional histogram distri-
butions. A d-dimensional probability distribution with density p : D → R, where D ⊂ Rd is either
[m]d or [0, 1]d, is called a k-histogram if there exists a partition of the domain into k axis-aligned
rectangles R1, . . . , Rk such that p is constant on Ri, for all i = 1, . . . , k. We let Hdk(D) denote the
set of k-histograms over D. We will use the simplified notation Hdk when the underlying domain
is clear from the context. Histograms constitute one of the most basic nonparametric distribution
families and have been extensively studied in statistics and computer science.

Specifically, the problem of learning histogram distributions from samples has been extensively
studied in the statistics community and many methods have been proposed Scott (1979); Freedman
and Diaconis (1981); Scott (1992); Lugosi and Nobel (1996); Devroye and Lugosi (2004); Wil-
lett and Nowak (2007); Klemela (2009) that unfortunately have a strongly exponential dependence
on the dimension. In the database community, histograms Jagadish et al. (1998); Chaudhuri et al.
(1998); Thaper et al. (2002); Gilbert et al. (2002); Guha et al. (2006); Indyk et al. (2012); Acharya
et al. (2015b) constitute the most common tool for the succinct approximation of large datasets.
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Succinct multivariate histograms representations are well-motivated in several data analysis appli-
cations in databases, where randomness is used to subsample a large dataset Cormode et al. (2012).

In recent years, histogram distributions have attracted renewed interested from the TCS commu-
nity in the context of learning Daskalakis et al. (2012); Chan et al. (2013, 2014a,b); Diakonikolas
et al. (2015a); Acharya et al. (2016, 2017); Diakonikolas et al. (2016b, 2018b) and testing Indyk
et al. (2012); Daskalakis et al. (2013); Diakonikolas et al. (2015b,c); Canonne (2016); Canonne et al.
(2016); Diakonikolas et al. (2017b). The algorithmic difficulty in learning and testing such distri-
butions lies in the fact that the location and size of the rectangle partition is unknown. The majority
of the literature has focused on the univariate setting which is by now well-understood. Specifi-
cally, it is known that the sample complexity of learning H1

k is Θ(k/ε2) (and this sample bound is
achievable with computationally efficient algorithms Chan et al. (2014a,b); Acharya et al. (2017));
while the sample complexity of identity testing H1

k is Θ(
√
k/ε2) Diakonikolas et al. (2015b). That

is, in one dimension, the gap between learning and identity testing as a function of the complexity
parameter k is known to be quadratic.

A recent work Diakonikolas et al. (2018b) obtained a sample near-optimal and computation-
ally efficient algorithm for learning multidimensional k-histograms in any fixed dimension. The
sample complexity of the Diakonikolas et al. (2018b) algorithm is O((k/ε2) logO(d)(k/ε)) while
the optimal sample complexity of the learning problem (ignoring computational considerations) is
Θ̃(dk/ε2)1. On the other hand, the property testing question in two (or more) dimensions is poorly
understood. In particular, prior to this work, no testing algorithm with sub-learning sample com-
plexity was known, even for d = 2 (independent of computational considerations). In this paper, we
obtain an identity tester for multidimensional histograms in any fixed dimension with sub-learning
sample complexity and establish a nearly-matching sample complexity lower bound (that applies
even to the special case of uniformity testing). Our main result is the following:

Theorem 1 (Main Result) Let ε > 0 and k ∈ Z+. Let q ∈ Hdk(D) be an unknown k-histogram
distribution over D = [0, 1]d or D = [m]d, where d is fixed, and p ∈ Hdk(D) be explicitly given.
There is an algorithm which draws m = O((

√
k/ε2)2d/2 log2.5d(dk/ε)) samples from q, runs in

sample-polynomial time, and distinguishes, with probability at least 2/3, between the case that
p = q versus ‖p − q‖1 ≥ ε. Moreover, any algorithm for this hypothesis testing problem requires
(
√
k/ε2)Ω(log(k)/d)d−1 samples for k = 2Ω(d), even for uniformity testing.

A few remarks are in order: First, we emphasize that the focus of our work is on the case where
the parameter k is much larger than the dimension d. For example, this condition is automatically
satisfied when d is bounded from above by a fixed constant. We note that understanding the regime
of fixed dimension d is of fundamental importance, as it is the most commonly studied setting in
nonparametric inference. Moreover, in several of the classical database and streaming applications
of multidimensional histograms (see, e.g., Poosala and Ioannidis (1997); Gunopulos et al. (2000);
Bruno et al. (2001); Muthukrishnan (2005) and references therein) the dimension d is relatively
small (at most 10), while the number of rectangles is orders of magnitude larger . For such param-
eter regimes, our identity tester has sub-learning sample complexity that is near-optimal, up to the
precise power of the logarithm (as follows from our lower bound). Understanding the parameter
regime where k and d are comparable, e.g., k = poly(d), is left as an interesting open problem.

1. We note that the Θ̃() notation hides polylogarithmic factors in its argument.
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It is important to note that our identity testing algorithm is robust to model misspecification.
Specifically, the algorithm is guaranteed to succeed as long as the unknown distribution q is ε/10-
close, in L1-norm, to being a k-histogram. This robustness property is important in applications
and is conceptually interesting for the following reason: In high-dimensions, robust identity testing
with sub-learning sample complexity is provably impossible, even for the simplest high-dimensional
distributions, including spherical Gaussians Diakonikolas et al. (2016c).

A conceptual implication of Theorem 1 concerns the sample complexity gap between learning
and identity testing for histograms. It was known prior to this work that the gap between the sample
complexity of learning and identity testing for univariate k-histograms is quadratic as a function
of k. Perhaps surprisingly, our results imply that this gap decreases as the dimension d increases
(as long as the dimension remains fixed). This follows from our sample complexity lower bound
in Theorem 1 and the fact that the sample complexity of learning Hdk is Θ̃(dk/ε2) (as follows from
standard VC-dimension arguments, see, e.g., Diakonikolas et al. (2018b)). In particular, even for
d = 3, the gap between the sample complexities of learning and identity testing is already sub-
quadratic and continues to decrease as the dimension increases. (We remind the reader that our
lower bound applies for k > 2Ω(d).)

Finally, we note here a qualitative difference between the d = 1 and d ≥ 2 cases. Recall that for
d = 1 the sample complexity of identity testing k-histograms is Θ(

√
k/ε2). For d = 2, the sample

complexity of our algorithm is O((
√
k/ε2) log5(k/ε)). It would be tempting to conjecture that the

multiplicative logarithmic factor is an artifact of our algorithm and/or its analysis. Our lower bound
of Ω((

√
k/ε2) log(k)) shows that some constant power of a logarithm is in fact necessary.

1.3. Related Work

The field of distribution property testing Batu et al. (2000) has been extensively investigated in the
past couple of decades, see Rubinfeld (2012); Canonne (2015); Goldreich (2017). A large body of
the literature has focused on characterizing the sample size needed to test properties of arbitrary
discrete distributions. This regime is fairly well understood: for many properties of interest there
exist sample-efficient testers Paninski (2008); Chan et al. (2014c); Valiant and Valiant (2014);
Diakonikolas et al. (2015b); Acharya et al. (2015a); Canonne et al. (2016); Diakonikolas and Kane
(2016); Diakonikolas et al. (2016a); Canonne et al. (2017c); Goldreich (2017); Diakonikolas et al.
(2017a); Batu and Canonne (2017); Diakonikolas et al. (2018a); Canonne et al. (2017b). More
recently, an emerging body of work has focused on leveraging a priori structure of the underlying
distributions to obtain significantly improved sample complexities Batu et al. (2004); Daskalakis
et al. (2013); Diakonikolas et al. (2015b,c); Canonne et al. (2017a); Daskalakis and Pan (2017);
Daskalakis et al. (2018); Diakonikolas et al. (2017b).

The area of distribution inference under structural assumptions — that is, inference about a dis-
tribution under the constraint that its probability density function satisfies certain qualitative prop-
erties — is a classical topic in statistics starting with the pioneering work of Grenander Grenander
(1956) on monotone distributions. The reader is referred to Barlow et al. (1972) for a summary of
the early work and to Groeneboom and Jongbloed (2014) for a recent book on the subject. This topic
is well-motivated in its own right, and has seen a recent surge of research activity in the statistics
and econometrics communities, due to the ubiquity of structured distributions in the sciences. The
conventional wisdom is that, under such structural constraints, the quality of the resulting estimators
may dramatically improve, both in terms of sample size and in terms of computational efficiency.
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1.4. Basic Notation

We will use p, q to denote the probability density functions (or probability mass functions) of our
distributions. If p is discrete over support [n]

def
= {1, . . . , n}, we denote by pi the probability of

element i in the distribution. For discrete distributions p, q, their `1 and `2 distances are ‖p −
q‖1 =

∑n
i=1 |pi − qi| and ‖p − q‖2 =

√∑n
i=1(pi − qi)2. For D ⊆ Rd and density functions

p, q : D → R+, we have ‖p − q‖1 =
∫
D |p(x) − q(x)|dx. The total variation distance between

distributions p, q is defined to be dTV (p, q) = (1/2) · ‖p− q‖1.
Fix a partition of the domain D into disjoint sets S := (Si)

`
i=1. For such a partition S , the

reduced distribution pSr corresponding to p and S is the discrete distribution over [`] that assigns the
i-th “point” the mass that p assigns to the set Si; i.e., for i ∈ [`], pSr (i) = p(Si).

Our lower bound proofs will use the following metric, which can be seen as a generalization of
the chi-square distance: For probability distributions p, q and r let χp(q, r)

def
=
∫ dqdr

dp .

1.5. Overview of Techniques

In this section, we provide a high-level overview of our algorithmic and lower bounds techniques in
tandem with a comparison to prior related work.

Overview of Identity Testing Algorithm We start by describing our uniformity tester for d-
dimensional k-histograms. For the rest of this intuitive description, we focus on histograms over
[0, 1]d. A standard, yet important, tool we will use is the concept of a reduced distribution defined
above. Note that a random sample from the reduced distribution pSr can be obtained by taking a
random sample from p and returning the element of the partition that contains the sample.

The first observation is that if the unknown distribution q ∈ Hdk and the uniform distribution
p = U are ε-far in L1-distance, there exists a partition of the domain into k rectangles R1, . . . , Rk
such that the difference between q and p can be detected based on the reduced distributions on this
partition. If we knew the partition R1, . . . , Rk ahead of time, the testing problem would be easy:
Since the reduced distributions have support k, this would yield a uniformity tester with sample
complexity O(

√
k/ε2). The main difficulty is that the correct partition is unknown to the testing

algorithm (as it depends on the unknown histogram distribution q).
A natural approach, employed in Diakonikolas et al. (2015b) for d = 1, is to appropriately

“guess” the correct rectangle partition. For the univariate case, a single interval partition already
leads to a non-trivial uniformity tester. Indeed, consider partitioning the domain into Θ(k/ε) inter-
vals of equal length (hence, of equal mass under the uniform distribution). It is not hard to see that
the reduced distributions over these intervals can detect the discrepancy between q and p, leading
to a uniformity tester with sample complexity Θ((k/ε)1/2/ε2) = Θ(k1/2/ε5/2). This very simple
scheme gives an identity testing with sub-learning sample complexity when ε is constant — albeit
suboptimal for small ε. Unfortunately, such an approach can be seen to inherently fail even for
two dimensions: Any obliviously chosen partition in two dimensions requires Ω(k2/ε2) rectangles,
which leads to an identity tester with sample complexity Ω(k/ε3). Hence, a more sophisticated
approach is required in two dimensions to obtain any improvement over learning.

Instead of using a single oblivious interval decomposition of the domain, the sample-optimal
Θ(k1/2/ε2) uniformity tester of Diakonikolas et al. (2015b) for univariate k-histograms partitions
the domain into intervals in several different ways, and runs a known `2-tester on the reduced distri-
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butions (with respect to the intervals in the partition) as a black-box. At a high-level, we appropri-
ately generalize this idea to the multidimensional setting.

To achieve this, we proceed by partitioning the domain into approximately k identical rectan-
gles, distinguishing the different partitions based on the shapes of these rectangles. This requirement
to guess the shape is necessary, as for example partitioning the square into rows will not suffice when
the true partition is a partition into columns. We show that it suffices to consider a poly-logarithmic
sized set of partitions, where any desired shape of rectangle can be achieved to within a factor of
2. In particular, we show that for each of the k rectangles in the true partition that are sufficiently
large, at least one of our oblivious partitions will use rectangles of approximately the same size,
and thus at least one rectangle in this partition will approximately capture the discrepancy due to
this rectangle (note that only considering large rectangles suffices, since any rectangle on which the
uniform distribution assigns substantially more mass than q must be reasonably large). This means
that at least one partition will have an ε/polylog(k/ε) discrepancy between p and q, and by running
an identity tester on this partition, we can distinguish them.

One complication that arises here is that for small values of ε, the difference between p and
q might be due to rectangles with area much less than 1/k. In order to capture these rectangles,
we will need some of our oblivious partitions to be into rectangles with area smaller than 1/k, for
which there will necessarily be more than k rectangles in the partition (in fact, as many as k/εmany
rectangles). This would appear to cause problems for the following reason: the sample complexity
of `1-uniformity testing over a discrete domain of size n is Θ(n1/2/ε2). Hence, naively using such
a uniformity tester on the reduced distributions obtained by a decomposition into k/ε rectangles
would lead to the sub-optimal sample complexity of Θ((k/ε)1/2/ε2) = Θ(k1/2/ε5/2).

We can circumvent this difficulty by leveraging the following insight: Even though the total
number of rectangles in the partition might be large, it can be shown that for a well-chosen oblivious
partition, a reasonable fraction of this discrepancy is captured by only k of these rectangles. In such
a case, the sample complexity of uniformity testing can be notably reduced using an “`k1-identity
tester” — an identity tester under a modified metric that measures the discrepancy of the largest k
domain elements. By leveraging the flattening method of Diakonikolas and Kane (2016), we design
such a tester with the optimal sample complexity of O(

√
k/ε2) (Theorem 4) — independent of the

domain size. This completes the sketch of our uniformity tester for the multidimensional case.
To generalize our uniformity tester to an identity tester for multidimensional histograms, two

significant problems arise. The first is that it is no longer clear what the shape of rectangles in the
oblivious partition should be. This is because when the explicit distribution p is not the uniform
distribution, equally sized rectangles are not a natural option to consider. This problem can be fixed
by breaking the axes into pieces that assign equal mass to the marginals of the known distribution
(Lemma 9). The more substantial problem is that it is no longer clear that the discrepancy between
p and q can be captured by a partition of the square into k rectangles. This is because the two k
rectangle partitions corresponding to the k-histograms p and q when refined could lead to a partition
of the square into as many k2 rectangles.

To remedy this, we note that there is still a partition into k rectangles such that q is piecewise
constant on that partition. We show (Lemma 5) that if we refine this partition slightly — by dividing
each region into two regions, the half on which p is heaviest and the half on which p is lightest
— this new partition will capture a constant fraction of the difference between p and q. Given
this structural result, our identity testing algorithm becomes similar to our uniformity tester. We
obliviously partition our domain into rectangles poly-logarithmically many times, each time we
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now divide each rectangle further into two regions as described above, and then run identity testers
on these partitions. We show that if p and q differ by ε in L1-distance, then at least one such partition
will detect at least ε/polylog(k/ε) of this discrepancy.

Overview of Sample Complexity Lower Bound Note that Ω(
√
k/ε2) is a straightforward lower

bound on the sample complexity of identity testing k-histograms, even for d = 1. This follows from
the fact that a k-histogram can simulate any discrete distribution over k elements.

In order to prove lower bounds of the form ω(
√
k/ε2), we need to show that any tester must

consider many possible shapes of rectangles. This suggests a construction where we have a grid of
some unknown dimensions, where some squares in the grid are dense and the remainders are sparse
in a checkerboard-like pattern. It should be noted that if we have two such grids whose dimensions
differ by exactly a factor of 2, it can be arranged such that the distributions are exactly uncorrelated
with each other. Using this observation, we can construct log(k) such uncorrelated distributions
that the tester will need to check for individually. Unfortunately, this simple construction will not
suffice to prove our desired lower bound, as one could merely run log(k) different testers in parallel.
(We note, however, that this construction does yield a non-trivial lower bound, see Proposition 15.)
We will thus need a slightly more elaborate construction, which we now describe: First, we divide
the square domain into polylog(k) equal regions. Each of these regions is turned into one of these
randomly-sized checkerboards, but where different regions will have different scales. We claim that
this ensemble is hard to distinguish from the uniform distribution.

The formal proof of the above sketched lower bound is somewhat technical and involves bound-
ing the chi-squared distance of taking Poi(m) samples from a random distribution in our ensemble
with respect to the distribution obtained by taking Poi(m) samples from the uniform distribution.

Bounding the chi-square distance is simplified by noting that since the sets of samples from
each of the

√
k bins are independent of each other, we can consider each of them independently. For

each individual bin, we take s ∼ Poi(m/
√
k) samples and need to compute χU⊗s(X⊗s, Y ⊗s) =

χU (X,Y )s, where X and Y are random distributions from our ensemble and U is the uniform
distribution. It is not hard to see that if X and Y are checkerboards of different scales, then the
χ2-value is exactly 1. This saves us a factor of log(k), as there are log(k) many different scales to
consider, and leads to the desired sample lower bound (Theorem 16).

Organization In Section 2, we give our identity testing algorithm. Due to space constraints, our
sample complexity lower bound proof is given in Appendix B. Finally, Section 3 outlines some
directions for future work.

2. Sample Near-Optimal Identity Testing Algorithm

In Section 2.1, we describe and analyze our identity tester, assuming the existence of a good oblivi-
ous covering. In Section 2.2, we show the existence of such a covering.

2.1. Algorithm and its Analysis

Let q be the unknown histogram distribution and p be the explicitly known one. Our algorithm
considers several judiciously chosen oblivious decompositions of the domain that will be able to
approximate a set on which we can distinguish our distributions. We formalize the properties that
we need these decompositions to have with the notion of a good oblivious covering (Definition 2
below). The essential idea is that we cover the domain [0, 1]d with rectangles that do not overlap too

7



TESTING IDENTITY OF MULTIDIMENSIONAL HISTOGRAMS

much in such a way so that any partition of [0, 1]d into k rectangles can be approximated by some
union of rectangles in this family.

Definition 2 (good oblivious covering) Let p be a probability distribution on [0, 1]d. For k, j, ` ∈
Z+ and 0 < ε ≤ 1/2, a (k, j, `, ε)-oblivious covering of p is a family F of subsets of [0, 1]d

satisfying the following:

1. For any partition Π of [0, 1]d into k rectangles, there exists a subfamily S ⊆ F such that:

(a) We have that |S| ≤ k · j .

(b) The sets in S are mutually disjoint, i.e., S1
⋂
S2 = ∅ for all S1 6= S2 ∈ S.

(c) The sets in S together contain all except at most ε of the probability mass of [0, 1]d under
p, i.e., p(∪S∈SS) ≥ 1− ε.

(d) For each S ∈ S there is some histogram rectangle R ∈ Π such that S only contains
points from R, i.e., S ⊆ R.

2. For each point x in [0, 1]d, the number of sets in F containing x is exactly `.

In Section 2.2, Lemma 9, we establish the existence of a (k, 2d logd(4kd/ε), logd(4kd/ε), ε)-
oblivious covering of p for any distribution p on [0, 1]d and for all k, d, ε with ε ≤ 1/2.

Our basic plan will be that if p is a distribution with a (k, j, `, ε/2)-oblivious covering F , and q
is a k-histogram that differs from p by at least ε in L1-distance, then q defines a partition Π of [0, 1]d

into k rectangles. This partition gives rise to a subfamily S ⊆ F satisfying the constraints specified
in Definition 2. We would like to show that a constant fraction of the discrepancy between p and q
can be detected by considering their restrictions to S. There are a couple of obstacles to showing
this, the first of which is that we do not know what S is. Fortunately, we do have the guarantee that
|S| is relatively small. We can consider the restrictions of p and q over all sets in S and try to check
if there is a significant discrepancy between the two coming from any small subset. To achieve this,
we will make essential use of an identity tester under the `1k-metric, which we now define:

Definition 3 (`k1-distance) Let p and q be distributions on a finite size domain, that we denote by
[n] without loss od generality. For any positive integer k ≥ 1, we define ‖p − q‖1,k as the sum of
the largest k values of |p(i)− q(i)| over i ∈ [n].

Note that ‖p − q‖1,k ≥ ε means that there exists a set A of k or fewer domain elements such
that

∑
s∈A |p(s) − q(s)| ≥ ε. That is, these elements alone contribute at least ε to the `1-distance

between the distributions.
We start by proving the following theorem:

Theorem 4 (Sample-Optimal `k1 Identity Testing) Given a known discrete distribution p and sam-
ple access to an unknown discrete distribution q, each of any finite domain size, there exists an algo-
rithm that accepts with probability 2/3 if p = q and rejects with probability 2/3 if ‖p− q‖1,k ≥ ε.
The tester requires only knowledge of the known distribution p and O(

√
k/ε2) samples from q.
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Recall that if we wanted to distinguish between p = q and ‖p − q‖1 > ε, this would re-
quire Ω(

√
n/ε2) samples. However, the optimal `1-identity testers are essentially adaptations of `2-

testers. That is, roughly speaking, they actually distinguish between p = q and ‖p − q‖2 > ε/
√
n.

Hence, it should be intuitively clear why it would be easier to test for discrepancies in `k1-distance:
If ‖p − q‖1,k > ε, then ‖p − q‖2 > ε/

√
k, making it easier for an `2-type tester to detect the

difference. We apply the flattening technique of Diakonikolas and Kane (2016) combined with the
`2-tester of Chan et al. (2014c) to obtain our optimal `k1-identity tester. We note that an optimal `k1
closeness tester between discrete distributions was given in Diakonikolas et al. (2017b). The proof
of Theorem 4 follows along the same lines and is given in Appendix A.1.

The second obstacle is that although q will be constant within each S ∈ S, it will not necessarily
be the case that p(S) and q(S) will differ substantially even if the variation distance between p and
q on S is large. To fix this, we show that S can be split into two parts such that at least one of the
two parts will necessarily detect a large fraction of this difference:

Lemma 5 Let p, q : Rd → R+ and let S be a bounded open subset in Rd on which q is uniform.
Suppose S is partitioned into two subsets S1, S2 such that vol(S1) = vol(S2) = vol(S)/2 and
p(s1) ≥ p(s2) for all s1 ∈ S1, s2 ∈ S2, where vol() denotes Euclidean volume. Then,

max

{∣∣∣∣∫
S1

(p(x)− q(x))dx

∣∣∣∣ , ∣∣∣∣∫
S2

(p(x)− q(x))dx

∣∣∣∣} ≥ ∫
S
|p(x)− q(x)|dx/4.

Due to space limitations, the proof of Lemma 5 is deferred to Appendix A.2.
We can now state the main algorithmic result of this section:

Theorem 6 Let p be a known distribution on [0, 1]d with a (k, j, `, ε/2)-oblivious covering. There
exists a tester that given sample access to an unknown k-histogram q on [0, 1]d distinguishes be-
tween p = q and dTV (p, q) ≥ ε with probability at least 2/3 using O(

√
kj · `2/ε2) samples.

Plugging in the bounds on j and ` of 2d logd(kd/ε) and logd(kd/ε) from Lemma 9 (established
in Section 2.2) yields a sample complexity upper bound of O(

√
k2d/2 log2.5d(kd/ε)/ε2) for ε ≤

1/2. This gives the upper bound portion of Theorem 1.
The high-level idea of the algorithm establishing Theorem 6 is to take each element of the

oblivious cover and divide it in two, as in Lemma 5, and then use the tester from Theorem 4 on the
induced distributions of p and q on the resulting sets. The algorithm itself is quite simple and is
presented in pseudo-code below.
Proof [Proof of Theorem 6] We note that the sample complexity of the tester described in Algo-
rithm 1 is O(

√
kj`2/ε2), as desired. It remains to prove correctness.

The completeness case is straightforward. If p = q, then clearly p′ = q′ and our tester will
accept with probability at least 2/3.

We now proceed to prove soundness. If dTV (p, q) ≥ ε, we claim that our tester will reject with
probability at least 2/3. For this we note that the unknown distribution q defines some partition Π
of [0, 1]d into k rectangles such that q is constant on each part of the partition. By the definition of
an oblivious cover, there is a subfamily of disjoint sets S ⊆ F such that:

• q is constant on each element of S.

• |S| ≤ k · j.

9
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Algorithm 1 Identity Tester for d-dimensional k-histograms
Input: sample access to k-histogram distribution q : [0, 1]d → R+, ε > 0, and explicit distribution
p : [0, 1]d → R+ with (k, j, `, ε/2)-oblivious covering.
Output: “YES” if q = p; “NO” if ‖q − p‖1 ≥ ε.

1. Let F be a (k, j, `, ε/2)-oblivious covering of the known distribution p.

2. Obtain a new family of sets F ′ by taking each S ∈ F and replacing it with the two sets S1

and S2 as defined in Lemma 5.

3. Define discrete distributions p′, q′ over F ′ where a random sample, x, from p′ (resp. q′) is
obtained by taking a random sample from p (resp. q) and then returning a uniform random
element of F ′ containing x. (We note that the distribution p′ can be explicitly computed, and
we can take a sample from q′ at the cost of taking a sample from q.)

4. Use the algorithm from Theorem 4 to distinguish between p′ = q′ and the existence of a set
A of size at most 2k · j with

∑
S∈A |p′(S)− q′(S)| ≥ ε/(8`).

5. Output “YES” in the former case and “NO” in the latter case.

• Letting V =
⋃
S∈S S, we have that p (V ) ≥ 1− ε/2.

Since ε = dTV (p, q) =
∫

[0,1]d max(p−q, 0)dx,we have that
∫
V max(p−q, 0)dx ≥ ε−

∫
[0,1]d\V pdx ≥

ε/2. Therefore, since the elements of S are disjoint, we have that
∑

S∈S
∫
S |p− q|dx ≥ ε/2.

We now let A ⊆ F ′ be the collection of all S1 or S2 corresponding to an S ∈ S. We note that
|A| = 2|S| ≤ 2k · j. Furthermore, by Lemma 5, we have that

ε/8 ≤
∑
S∈S

∫
S
|p− q|dx/4 ≤

∑
S∈S

max {|p(S1)− q(S1)|, |p(S2)− q(S2)|} ≤
∑
A∈A
|p(A)− q(A)|.

On the other hand, for A ∈ A, we have that p′(A) = p(A)/` and q′(A) = q(A)/`, so we have that∑
A∈A
|p′(A)− q′(A)| ≥ ε/(8`).

Therefore, if dTV (p, q) ≥ ε, our tester will reject with probability at least 2/3.
This completes the proof of Theorem 6.

Remark 7 Algorithm 1 is robust in the sense that it still works even if q is only (say) ε/10-close
to some k-histogram distribution q̃ instead of actually being one. To show this, one can note that
the existing proof applied to p and q̃ gives an A such that

∑
A∈A |p(A)− q̃(A)| is at least ε/8. The

triangle inequality then implies
∑

A∈A |p(A)− q(A)| ≥ ε/40, which, by the same reasoning given
in the proof of the non-robust case, implies the algorithm is still correct.

Remark 8 Even though our testing algorithm was phrased for histograms over [0, 1]d, it can be
made to apply for discrete histograms on [m]d via a simple reduction. In particular, if each element
of [m]d is replaced by a box of side length 1/m on each side, a k-histogram on [m]d is transformed
into a k-histogram over [0, 1]d, in a way that preserves total variation distance. If our algorithm is
applied to the latter histogram, we can obtain correct results for the former.

10
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2.2. Construction of Good Oblivious Covering

In this section, we prove the existence of an oblivious covering:

Lemma 9 For any continuous distribution p on [0, 1]d, positive integer k and ε ≤ 1, there exists a(
k, 2d logd(4kd/ε), logd(4kd/ε), ε

)
-oblivious covering of p.

Proof The basic idea of our construction will be to let F be a union of grids where the number of
cells in each direction is a power of 2.

For each coordinate, j ∈ [d], and each non-negative integer i, define the ith partition of this
coordinate to be a partition of [0, 1] into 2i intervals such that jth marginal, pj , of p assigns each
interval in the partition equal mass, and such that the ith partition is a refinement of the (i− 1)st.

(a) A z-grid with
z = [1, 1].

(b) A z-grid with
z = [2, 3].

Figure 1: z-grids for different values of z partition [0, 1]2 into rectangles. In this figure, the axes
are scaled such that the marginal distributions of the vertical and horizontal coordinates,
respectively, of p are uniform.

For each vector z ∈ Nd, define the z-grid as the partition of [0, 1]d into rectangles by taking the
product of the zthj partition of the jth coordinate. We let F be the union of the cells in the z-grid for
all z ∈ Nd ∩ [0,m− 1] for m = log2(4kd/ε). An illustration is given in Figure 1.

We note that each x ∈ [0, 1]d is in exactly one cell in each z-grid, and therefore is contained in
exactly md elements of F , verifying Property 2.

For Property 1, consider a partition of [0, 1]d into rectangles R1, . . . , Rk. We claim that for
each Ri there is a subfamily Ti ⊆ F of disjoint subsets of Ri with |Ti| ≤ 2dmd, and such that
p
(
Ri\

⋃
S∈Ti S

)
≤ ε/k. It is then clear that taking S to be the union of the Ti will suffice. In fact,

we will show that for any rectangle Ri, there is a corresponding Ti with these properties. We let
Ri =

∏d
j=1 Ij for intervals Ij . We let I ′j be Ij minus the intervals of the (m− 1)st-partition of the

jth coordinate that contain the endpoints of Ij . We note that pj(Ij\I ′j) ≤ ε/(kd) and that I ′j is a
union of consecutive intervals in the (m−1)st partition of this coordinate. We claim that this means
that I ′j is the union of at most 2m intervals of one of the first m− 1 partitions of the jth coordinate.
This is easy to see by induction on m, as I ′j is a union of consecutive intervals in the (m − 2)nd

partition union at most one interval of the (m − 1)st on either end. The one-dimensional intervals
on the top and left of Figure 2 show an illustration of this.

In order to produce Ti, we write each I ′j as a union of at most 2m intervals from the relevant
partitions. We let Ti be the set of rectangles obtained by taking the product of one rectangle from

11
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R
i

I
1

T
i

’

I
2’

I
1

I
2

Figure 2: How our oblivious covering is used to cover a rectangle Ri in the proof of Lemma 9.
Each dimension of Ri is separately decomposed into non-overlapping one-dimensional
rectangles, with a small amount of area shaded in beige left over on the sides. Ti is
obtained by taking the family of all Cartesian products of the form I ′′1 × · · · × I ′′d where,
for each j, I ′′j is any subinterval in the decomposition of I ′j . In this figure, the axes
are scaled such that the marginal distributions of the vertical and horizontal coordinates,
respectively, of p are uniform.

each of these sets. It is then clear that Ti partitions
∏d
j=1 I

′
j into at most (2m)d pieces. Figure 2

shows an illustration of this. We now note that

p

R\ d∏
j=1

I ′j

 = p

 d∏
j=1

Ij\
d∏
j=1

I ′j

 ≤ d∑
j=1

pj(Ij\I ′j) ≤ ε/k .

Thus, T satisfies all of the desired properties, and taking the union of the Ti will yield an appropriate
S. This completes the proof of Lemma 9.

3. Conclusions and Future Directions

In this work, we gave a computationally efficient and sample near-optimal algorithm for the problem
of testing the identity of multidimensional histogram distributions in any fixed dimension. Our
nearly matching upper and lower bounds have interesting consequences regarding the relation of
learning and identity testing for this important nonparametric family of distributions.

A natural direction for future work is to generalize our results to the problem of testing equiv-
alence between two unknown multidimensional histograms. The one-dimensional version of this
problem was resolved in Diakonikolas et al. (2015c, 2017b). Additional ideas are required for this
setting, as the algorithm and analysis in this work exploit the a priori knowledge of the explicit
distribution.

Another direction for future work concerns characterizing the sample and computationally com-
plexity of identity testing d-dimensional k-histograms when the dimension d and the number of
rectangles k are comparable, e.g., k = poly(d) or even k < d. We believe that understanding these
parameter regimes requires different ideas.

12
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Appendix

Appendix A. Omitted Proofs from Section 2

A.1. Proof of Theorem 4

We use the flattening method developed in Diakonikolas and Kane (2016). We begin by giving the
definition of a split distribution from that work:

Definition 10 Given a distribution p on [n] and a multiset S of elements of [n], define the split
distribution pS on [n+ |S|] as follows: For 1 ≤ i ≤ n, let ai denote 1 plus the number of elements
of S that are equal to i. Thus,

∑n
i=1 ai = n + |S|. We can therefore associate the elements of

[n+ |S|] to elements of the set B = {(i, j) : i ∈ [n], 1 ≤ j ≤ ai}. We now define a distribution pS
with support B, by letting a random sample from pS be given by (i, j), where i is drawn randomly
from p and j is drawn randomly from [ai].

We recall a basic fact about split distributions:

Fact 11 (Fact 2.5, Diakonikolas and Kane (2016)) Let p and q be probability distributions on [n],
and S be a given multiset of [n]. Then: (i) We can simulate a sample from pS or qS by taking a
single sample from p or q, respectively. (ii) It holds ‖pS − qS‖1 = ‖p− q‖1.

We also recall an optimal `2-closeness tester under the promise that one of the distributions has
small `2-norm:

Lemma 12 (Chan et al. (2014c)) Let p and q be two unknown distributions on [n]. There exists an
algorithm that on input n, b ≥ min{‖p‖2, ‖q‖2} and 0 < ε <

√
2b, draws O(b/ε2) samples from

each of p and q and, with probability at least 2/3, distinguishes between the cases that p = q and
‖p− q‖2 > ε.

We now have all the necessary tools to describe and analyze our `k1-identity tester. The pseudo-
code of our algorithm follows:

We now provide the simple analysis. Note that |S| ≤ ∑n
i=1 kpi = k and that pS assigns

probability mass at most 1/k to each domain element. Therefore, we have that ‖pS‖2 ≤ 1/
√
k.

By Lemma 12 — applied for b = 1/
√
k and ε/

√
2k in place of ε — we obtain that the `2-tester in

Step 2 of the above pseudo-code requires O(b/ε2) = O(
√
k/ε2) samples from qS and pS . Since

p is explicitly given, so is pS and therefore we can straightforwardly generate samples from pS for
free. By Fact 11, we can generate a sample from qS given a sample from q. Hence, our algorithm
uses O(

√
k/ε2) samples from q. This completes the analysis of the sample complexity.
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Algorithm 2 `k1-Identity-Tester
Input: sample access to discrete distribution q : [n] → [0, 1], k ∈ Z+, and ε > 0, and explicit
distribution p : [n]→ [0, 1].
Output: “YES” if q = p; “NO” if ‖q − p‖1,k ≥ ε.

1. Let S be the multiset obtained by taking bkpic copies of i ∈ [n].

2. Use the `2-tester of Lemma 12 to distinguish between the cases that pS = qS and ‖pS −
qS‖22 ≥ ε2/(2k) and return the result.

We now prove correctness. If p = q, then by Fact 11 we have that pS = qS and the algorithm
will return “YES” with appropriate probability. On the other hand, if ‖q − p‖1,k ≥ ε, then by

definition of the `k1 metric it follows that ‖pS − qS‖1,k+m ≥ ε, for m def
= |S|. Since k+m elements

contribute to total `1-error at least ε, by the Cauchy-Schwarz inequality, we have that

‖pS − qS‖22 ≥ ε2/(k +m) ≥ ε2/(2k) ,

where we used the fact that m = |S| ≤ k. Therefore, in this case, the algorithm returns “NO” with
appropriate probability. This completes the proof of Theorem 4.

A.2. Proof of Lemma 5

Let W ⊆ S be the set of points x ∈ S for which p(x) ≥ q(x) and W ′ = S\W . Then we have that∫
S
|p(x)− q(x)|dx =

∫
W

(p(x)− q(x))dx+

∫
W ′

(q(x)− p(x))dx.

We will show that

max

{∣∣∣∣∫
S1

(p(x)− q(x))dx

∣∣∣∣ , ∣∣∣∣∫
S2

(p(x)− q(x))dx

∣∣∣∣} ≥ ∫
W

(p(x)− q(x))dx/2. (1)

By an argument analogous to the one we will give to prove Equation (1), one can also prove that

max

{∣∣∣∣∫
S1

(p(x)− q(x))dx

∣∣∣∣ , ∣∣∣∣∫
S2

(p(x)− q(x))dx

∣∣∣∣} ≥ ∫
W ′

(q(x)− p(x))dx/2.

Combining the above will give Lemma 5.
Note that if S1 = S ∩W , Equation (1) immediately holds. In fact, it holds even without the

factor of two on the right hand side. Similarly, if S1 ⊆ S ∩W , then it also holds (but this time with
the factor of two). To show this, note that∫

W
(p(x)− q(x))dx =

∫
S1∩W

(p(x)− q(x))dx+

∫
S2∩W

(p(x)− q(x))dx

=

∫
S1

(p(x)− q(x))dx+

∫
S2∩W

(p(x)− q(x))dx .

The RHS is a sum of two integrals where the second integral’s integrand is always smaller than the
smallest value of the first integral’s integrand. Furthermore, the second integral is over a region that
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is no larger than the first region of the first integral, because vol(S1) = vol(S)/2, while vol(S2 ∩
W ) ≤ vol(S2) = vol(S)/2. Thus, we have∫

W
(p(x)− q(x))dx ≤ 2

∫
S1

(p(x)− q(x))dx ,

which implies Equation (1).
The final case needed to prove Equation (1) holds is when S1 ∩W ( S1, which is equivalent to

saying that S1 contains points x for which p(x) < q(x). Let h = −
∫
S1∩W ′(p(x) − q(x))dx ≥ 0.

Then we have ∫
W

(p(x)− q(x))dx = h+

∫
S1

(p(x)− q(x))dx .

If h ≤
∫
W (p(x) − q(x))dx/2, then we can substitute this into the preceding equation and we are

done. Otherwise, h >
∫
W (p(x)− q(x))dx/2. Note that in this case, |

∫
S2

(p(x)− q(x))dx| ≥ h. 2

Putting these together gives∣∣∣∣∫
S2

(p(x)− q(x))dx

∣∣∣∣ > ∫
W

(p(x)− q(x))dx/2 ,

completing the proof.

Appendix B. Sample Complexity Lower Bound

In this section, we prove the sample complexity lower bound of Theorem 1. The structure of this
section is as follows: We begin (Proposition 14) by providing a new proof that Ω(

√
k/ε2) samples

are required to test uniformity of a k-histogram in one dimension. The purpose of reproving this
previously known result is so that we may later generalize it to higher dimensions. We then proceed
by describing a basic construction that yields a slightly improved lower bound (Proposition 15).
Finally, we present a more sophisticated construction that suffices to establish our final lower bound
in Theorem 16.

Basic Background. Recall the definition of the χ-metric. Notice that, for fixed q, χp(q, r) is an
inner product on distributions q, r. Furthermore, by the Cauchy-Schwarz inequality it follows that
if q and p are probability distributions then

χp(q, q) =

∫
dq2

dp
=

(∫
dq2

dp

)(∫
dp

)
≥
(∫

dq

)2

= 1 .

This metric is useful for determining whether or not distributions can be distinguished. In particular,
if q and p can be distinguished from a single sample, it must be the case that χp(q, q) is much bigger
than 1. Formally, we have:

Lemma 13 Suppose that q and p are probability distributions. Suppose furthermore that there is
an algorithm that given a random sample from q accepts with probability at least 2/3, and given a
random sample from p rejects with probability at least 2/3. Then, it holds that χp(q, q) ≥ 4/3.

2. This is because the integrand on the RHS is always more negative value of the integrand on the RHS and the region
the integral on the LHS is over is at least as large as that of the integral on the RHS. This is very similar to the
reasoning in the earlier case where S1 ∩W = S1 above.

19



TESTING IDENTITY OF MULTIDIMENSIONAL HISTOGRAMS

Proof Let A be the set on which the algorithm accepts. We then have that q(A) ≥ 2/3 and
p(A) ≤ 1/3. Therefore, we have that

χp(q, q) ≥
∫
A

dq2

dp
≥ 3

(∫
A

dq2

dp

)(∫
A
dp

)
≥ 3

(∫
A
dq

)2

≥ 4/3.

B.1. Lower Bound for Uniformity Testing of Univariate Histograms

We start by using Lemma 13 to prove a lower bound on the number of samples required to test
uniformity of univariate k-histograms. We build on this argument in the following subsections to
establish our final multidimensional lower bound.

The idea is to use a standard adversary argument, using Lemma 13 to show that it is impossible
to distinguish samples taken from a distribution from a particular ensemble, from those taken from
the uniform distribution.

Proposition 14 If there exists an algorithm that given s independent samples from an unknown
k-histogram, q, on [0, 1] and accepts with at least 2/3 probability if q = U and rejects with at least
2/3 probability if dTV (q, U) ≥ ε, then s = Ω(

√
k/ε2).

Proof
We assume that k is even. Divide [0, 1] into k/2 equally sized bins. Let P be a distribution

over k histograms where in each bin either dq = (1 + ε)dx on the first half and dq = (1 − ε)dx
on the second half of the bin, or visa versa independently for each bin. Note that a sample from P
is always a k-histogram q with dTV (q, U) = ε. Let P⊗s be the distribution on [0, 1]s obtained by
randomly picking a distribution q from P and then taking s independent samples from q.

Given that an algorithm to distinguish the uniform distribution from k-histograms far from it
exists, such a distribution can distinguish a single sample from P⊗s from a sample from U⊗s.
Therefore, by Lemma 13, we must have that χU⊗s(P⊗s,P⊗s) ≥ 4/3. We will now try to bound
this quantity.

Note that P⊗s is a mixture of the distributions q⊗s where q is drawn from P . Therefore, by
linearity of the χ-metric, we have that

χU⊗s(P⊗s,P⊗s) = Ep,q∼P [χU⊗s(p⊗s, q⊗s)] = Ep,q∼P [(χU (p, q))s] ,

where the last equality is by noting that the corresponding integral decomposes as a product.
We now need to think about the distribution of χU (p, q) when p and q are drawn independently

from P . We note that for each bin B the quantity
∫
B
dpdq
dU is either 1+ε2

k/2 or 1−ε2
k/2 with equal proba-

bility and independently for each bin. Therefore,

χU⊗s(p⊗s, q⊗s) ∼

1 +
ε2

k/2

k/2∑
i=1

Xi

s

,

where Xi are i.i.d. random variables Xi ∈u {±1}. Therefore,

χU⊗s(P⊗s,P⊗s) = E

1 +
ε2

k/2

k/2∑
i=1

Xi

s .
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To bound this quantity, we use the fact that, for each t, the tth moment of a Rademacher random
variable is less than or equal to the corresponding moment of the standard Gaussian. We thus have
that

χU⊗s(P⊗s,P⊗s) ≤ E

1 +
ε2

k/2

k/2∑
i=1

Gi

s ,

where the Gi are i.i.d. N(0, 1) random variables. We can bound this latter quantity as follows:

χU⊗s(P⊗s,P⊗s) ≤ E

[(
1 +

ε2√
k/2

N(0, 1)

)s]

≤ E

[
exp

((
sε2√
k/2

)
N(0, 1)

)]

= exp

( sε2√
k/2

)2

/2

 .

Hence, a testing algorithm can only exist when(
sε2√
k

)
≥
√

log(4/3) ,

or equivalently when s = Ω(
√
k/ε2). This completes the proof of Proposition 14.

B.2. First Attempt: Basic Multidimensional Lower Bound

In this subsection, we build on the univariate construction of the previous subsection to obtain
a slightly improved lower bound in d dimensions. We achieve this by modifying our ensemble
in order to force any testing algorithm to guess the dimensions of the rectangles involved in the
partition. Specifically, we prove the following:

Proposition 15 If there exists an algorithm that, given s independent samples from a k-histogram,
q, on [0, 1]d with k > 4d, accepts with at least 2/3 probability if p = U and rejects with at least 2/3
probability if dTV (p, U) ≥ ε, then s = Ω(ε−2

√
kd/2d log(log(k − d)/d)).

Proof We first assume that k is a power of 2, namely k = 2m+d. Since this can always be achieved
by decreasing k by a factor of at most 2, this should not affect the final bound. We define an
ensembleP similarly to how we did so in the proof of Proposition 14. To define a distribution q inP ,
first we randomly and uniformly pick a d-tuple (m1,m2, . . . ,md) of non-negative integers summing
to m. We call this the defining vector of q. We next divide [0, 1]d into k/2 bins by producing a∏d
j=1 2mj grid We cut each bin into 2d equal sub-bins by diving it in half along each dimension.

We divide these sub-bins into two classes based on their parity. We then let dq = (1 + ε)dV on
the sub-bins of a random parity and dq = (1 − ε)dV on the other sub-bins, where the choices are
independent for each bin. We note that a q drawn from P is always a k-histogram that is ε-far from
the uniform distribution U . An illustration is given in Figure 3.
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Figure 3: An example of a distribution from P . The dark cells have density 1 + ε, and the light
cells have density 1 − ε. The green lines separate the square into a 4 × 2 grid, and each
rectangle is filled with a random 2× 2 checkerboard.

We let P⊗s be the distribution on ([0, 1]d)s obtained by drawing a random q from P and taking
s independent samples from q. Once again, it suffices to bound from below χU⊗s(P⊗s,P⊗s). We
similarly have that

χU⊗s(P⊗s,P⊗s) = Ep,q∼P [(χU (p, q))s] .

We note that if p and q have the same defining vectors, then the contribution to χU (p, q) from each
bin is randomly and independently 2(1±ε2)/k. Therefore, by the arguments of the previous subsec-
tion, if we condition on p and q having the same defining vectors, the expectation of (χU (p, q))⊗s is

at most exp

((
sε2√
k/2d

)2
)

. On the other hand, if p and q have different defining vectors, we claim

that χU (p, q) = 1. In fact, we make the stronger claim that if A is the intersection of a defining bin
of p and a defining bin of q, then

∫
A
dpdq
dU = q(A). This is because without loss of generality we

may assume that p’s associated m1 is smaller than q’s associated m1. This in turn means that given
any point in A, the entire width of A along the first axis will be in the same sub-bin for q, but will
pass through two sub-bins of opposite parity for p. Thus, the average of dp/dU over this line will
be 1, and thus the integral over A of dpdp/dU is the same as the integral of dq.

Now since there are
(
m+d−1
d−1

)
different possible defining vectors, we have that

χU⊗s(P⊗s,P⊗s) ≤ 1 +

(
m+ d− 1

d− 1

)−1

exp

( sε2√
k/2d

)2
 .

In order for this to be at least 4/3, it must be the case that(
sε2√
k/2d

)
�
√

log

(
m+ d− 1

d− 1

)
,

or
s = Ω(ε−2

√
kd/2d log(log(k − d)/d)) .

This completes the proof of Proposition 15.
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Figure 4: An example of a probability distribution from ensemble Q. The square is divided into
n = 4 regions by the black lines. Each sub-square is divided into a randomly sized grid
of 2m = 8 equal rectangles by the green lines. To get the final distribution, each of those
rectangles should be filled with a random checkerboard as in Figure 3.

B.3. Second Attempt: Proof of Final Sample Lower Bound

Unfortunately, the lower bound of Proposition 15 only saves us a log log(k) factor. This is essen-
tially because a testing algorithm only needs to correctly guess one of poly-logarithmically many
defining vectors, and once it has guessed the correct one, it only needs to see a signal large enough
that the probability of error is only inverse poly-logarithmic. This can be done by increasing the
number of samples by only a doubly logarithmic factor. In order to do better, we will need a slightly
more complicated construction, where we chop our domain into pieces and fill each piece with
rectangles, but where different pieces might have rectangles of different sizes.

Theorem 16 If there exists an algorithm that, given s independent samples from a k-histogram, q,
on [0, 1]d with k > 2100d, accepts with at least 2/3 probability if q = U , and rejects with at least
2/3 probability if dTV (p, U) ≥ ε, then s = (

√
k/ε2) · Ω(log(k)/d)d−1.

Proof
We first assume that k can be written in the form k = n2m+d, where n ≤

(
m+d−1
d−1

)
/4. We note

that (perhaps decreasing k by a constant factor) we can achieve this with n = Ω(log(k)/d)d, and
therefore we can assume this throughout the rest of the argument.

We describe a new ensemble Q over k-histograms on [0, 1]d in the following way: First, divide
[0, 1]d into n equal volume boxes in some arbitrary way. For each boxBi, pick a member pi from P ,
the ensemble from the proof of Proposition 15, independently for different i. We let the restriction
of q toBi be pi rescaled such that it assignsBi total mass 1/n, and such that the domain of definition
is Bi, rather than [0, 1]d. An example element of Q is illustrated in Figure 4.

Similarly, it suffices to show that if s is below our desired sample lower bound then

χU⊗s(Q⊗s,Q⊗s) = Ep,q∼Q[(χU (p, q))s]

is less than 4/3.
We note that for p and q drawn from Q the quantity

∫
Bi

dpdq
dU is distributed as χU (p′, q′)/n with

p′ and q′ drawn from P . This is 1/n except with probability α :=
(
m+d−1
d−1

)−1
and otherwise is
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distributed as 1/n + ε2

n2m
∑2m

j=1Xij , where the Xij are i.i.d. {±1} random variables. Notice that
these are independent for different i and sum to χU (p, q). Therefore,

χU (p, q) ∼ 1 +

n∑
i=1

Yi

 ε2

n2m

2m∑
j=1

Xij

 ,

where the Yi are i.i.d., equal to 1 with probability α, and 0 otherwise. Therefore, we have that

χU⊗s(Q⊗s,Q⊗s) = E

1 +
n∑
i=1

Yi

 ε2

n2m

2m∑
j=1

Xij

s .

Once again, this expectation is only increased if the Xij are replaced by standard Gaussians, and so
χU⊗s(Q⊗s,Q⊗s) is at most

E

[(
1 +

n∑
i=1

Yi

(
ε2

n2m/2
Gi

))s]

with Gi i.i.d. standard normals. Noting that we still have a sum of
∑n

i=1 Yi ∼ Binomial(n, α)
many independent Gaussians, this simplifies to

χU⊗s(Q⊗s,Q⊗s) ≤ E

[(
1 +

(
ε2
√

Binomial(n, α)

n2m/2
N(0, 1)

))s]

≤ E

exp

(sε2√Binomial(n, α)

n2m/2

)2

/2


= E

[
exp

(
Binomial(n, α)

(
s2ε4

2n22m

))]
≤
(

1 + α exp

(
s2ε4

2n22m

))n
≤ exp

(
nα exp

(
s2ε4

2n22m

))
≤ exp

(
exp

(
s2ε4

2n22m

)
/4

)
.

In order for this to be at least 4/3, it must be the case that

s2ε4

2n22m
� 1 ,

or equivalently that

s = Ω(2m/2n/ε2) = Ω(
√
kn/2d/ε2) = Ω(log(k)/d)d

√
k/ε2 .

This completes the proof of Theorem 16.
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Remark 17 We note that our lower bounds for uniformity testing of histograms on [0, 1]d can
be made to work for histograms on [m]d, assuming that m � k. In particular, our lower bound
construction requires first dividing our domain into n equal boxes, and then subdividing each of
these boxes into k/n equal boxes in such a way that the number of subdivisions in each dimension
is a power of 2. For simplicity, let us assume that n is a power of d. In that case, we can first cut
each edge of our original box into n1/d equal pieces and then further subdivide each side into k/n
equal pieces. We note that all of the histograms in our adversarial family are consistent with this
partition of our cube into fewer than kd boxes. Therefore, by the inverse of the reduction above,
our lower bound can be made to work on [k]d rather than [0, 1]d. A more elaborate construction can
show that our lower bounds apply for domain [m]d for any m� k.

25


	Introduction
	Background
	Our Results: Identity Testing for Multidimensional Histograms
	Related Work
	Basic Notation
	Overview of Techniques

	Sample Near-Optimal Identity Testing Algorithm
	Algorithm and its Analysis
	Construction of Good Oblivious Covering

	Conclusions and Future Directions
	Omitted Proofs from Section 2
	Proof of Theorem 4
	Proof of Lemma 5

	Sample Complexity Lower Bound
	Lower Bound for Uniformity Testing of Univariate Histograms
	First Attempt: Basic Multidimensional Lower Bound
	Second Attempt: Proof of Final Sample Lower Bound


