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Abstract
We study distribution testing with communication and memory constraints in the following com-
putational models: (1) The one-pass streaming model where the goal is to minimize the sample
complexity of the protocol subject to a memory constraint, and (2) A distributed model where the
data samples reside at multiple machines and the goal is to minimize the communication cost of
the protocol. In both these models, we provide efficient algorithms for uniformity/identity testing
(goodness of fit) and closeness testing (two sample testing). Moreover, we show nearly-tight lower
bounds on (1) the sample complexity of any one-pass streaming tester for uniformity, subject to
the memory constraint, and (2) the communication cost of any uniformity testing protocol, in a
restricted “one-pass” model of communication.
Keywords: distribution testing, identity testing, closeness testing, communication complexity,
streaming

1. Introduction

1.1. Background

Classical statistics theory focuses on characterizing the inherent sample complexity of inference
tasks, typically formalized via minimax rates of convergence. Research in this field has primarily
focused on understanding the sample complexity of inference in the centralized setting, where all
the samples are available to a single machine that performs the computation. We now have a rich
theory (see, e.g., Devroye and Györfi (1985); Devroye and Lugosi (2001); Tsybakov (2008) for a
few books on the topic) that has led to characterizing the sample complexity of a wide range of
statistical tasks in this regime.

In modern data analysis, one may have additional constraints on data collection and storage.
Modern datasets are often too large to be stored on a single computer, and so it is natural to consider
methods that either impose upper bounds on the available memory or involve multiple machines,
each containing a small subset of the dataset. Typical examples include anomaly detection in var-
ious settings (e.g., inference based on distributed sensor measurements, fraud detection based on
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different transactions of a customer, deciding whether a region of the sky is interesting based on
astronomical data from multiple telescopes, etc.)

In this paper, we study distribution property testing Batu et al. (2000) in the following com-
putational models: (1) The one-pass streaming model where the goal is to minimize the sample
complexity of the protocol subject to a memory constraint, and (2) A distributed model where the
data samples reside at multiple machines, and the goal is to minimize the communication cost of
the protocol. In both these models, we provide efficient algorithms for uniformity/identity testing
(goodness of fit) and closeness testing (two sample testing). Moreover, we show lower bounds (in
some cases, nearly-tight) on (1) the sample complexity of any one-pass streaming tester, subject to
the memory constraint and (2) the communication cost of any protocol performing the testing task
(in a restricted “one-pass” model of communication, described below).

Computational Models In the one-pass streaming model, the data samples are revealed online in
a stream and the algorithm is allowed a single pass over the data. Moreover, there is an upper bound,
which we will typically denote by m, on the number of bits the algorithm can store at any point of
its execution. In our setting, the goal is to minimize the sample complexity of testing subject to the
memory constraint.

Our distributed communication model uses a blackboard (broadcast) model of communication
in the sense that each message sent by each machine (player) is visible to all machines. There is
an arbitrarily large number of machines, each holding ` independent samples from the unknown
distribution(s). Additionally, there is a referee (arbitrator) who holds no samples. In each round,
the referee either returns an answer or asks a one-bit question to one of the players about their
input and receives a response. The goal is for the referee to return the correct answer to our testing
problem (with at least 2/3 probability) in as few rounds of communication as possible. Notice
that this model only costs the communication needed to answer the referee’s questions and not the
information encoded by the questions themselves or by which player the referee chooses to ask. This
is natural in a broadcast communication model, as this information would be implicitly determined
by the communication transcript up to this point.

Unfortunately, we do not know how to prove lower bounds in the above general model, and
will instead work in the one-pass version of this model. In the one-pass version, the referee is not
allowed to go back to querying a player after they have moved on. In particular, the referee cannot
ask a question to player A, subsequently ask a question to player B 6= A, and then ask a question
to player A again. Our communication lower bounds hold in this one-pass model. We note that our
algorithms work in the one-pass model as well.

1.2. Our Contributions

We give algorithms and lower bounds for uniformity/identity testing1 and closeness testing in the
presence of communication and memory constraints. More specifically, we obtain the following
results:

1. A one-pass streaming algorithm for uniformity testing on [n] with memory upper bound of m
bits that has sample complexity O(n log(n)/(mε4)) for a broad range of parameters. More-

1. The reduction of identity to uniformity in Goldreich (2016) immediately translates our upper bounds from uniformity
to identity.
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over, we show that this sample upper bound is tight for a fairly wide range of m, and tight up
to a log(n) factor when ε is constant for all values of m.

2. A distributed uniformity tester for ` samples per machine with communication complexity
O(
√
n log(n)/`/ε2). (Note that when ` = 1, this beats the trivial algorithm by a

√
log(n)

factor.) We also give a matching lower bound when ` is not too big and ε is not too small.
The former of these constraints on the lower bound is necessary. Indeed, we give a different
algorithm with communication O(n log(n)/(`2ε4)), which beats the previous bound when `
is sufficiently large.

3. A one-pass streaming algorithm for closeness testing that uses O(n
√

log(n)/m/ε2) samples
for a wide range of values of m, and a distributed closeness tester with communication com-
plexity O(n2/3 log1/3(n)/(`2/3ε4/3)). (Note that for ` = 1, this improves by a log2/3(n)
factor over the naive algorithm.)

Our results are summarized in Tables 1 and 2.

Sample Complexity Bounds with Memory Constraints
Property Upper Bound Lower Bound 1 Lower Bound 2

Uniformity O
(
n logn
mε4

)
Ω
(
n logn
mε4

)
Ω
(
n
mε2

)
Conditions n0.9 � m� log(n)/ε2 m = Ω̃(n

0.34

ε8/3
+ n0.1

ε4 ) Unconditional

Closeness O(n
√

log(n)/(
√
mε2)) – –

Conditions Θ̃(min(n, n2/3/ε4/3))� m� log(n) – –

Table 1: Summary of our Streaming Upper and Lower Bounds.

Communication Complexity Bounds
Property UB 1 UB 2 LB 1 LB 2 LB 3

Uniformity O

(√
n log(n)/`

ε2

)
O
(
n log(n)
`2ε4

)
Ω

(√
n log(n)/`

ε2

)
Ω(

√
n/`

ε ) Ω( n
`2ε2 logn )

Conditions ε8n
logn � `� ε−4

n0.9 `�
√
n
ε2 ε4/3n0.3 � ` ` = Õ

(
n1/3

ε4/3

)
` = Ω̃

(
n1/3

ε4/3

)
Closeness O

(
n2/3 log1/3(n)
`2/3ε4/3

)
- - - -

Conditions nε4/ log(n)� ` - - - -

Table 2: Summary of our Distributed Upper and Lower Bounds.

1.3. Overview of our Approach

In this section, we provide a detailed sketch of our algorithms and lower bounds.

Uniformity Testing Algorithms We start by describing the main ideas underlying our efficient
uniformity testing protocols. We note that in both the distributed and the streaming settings, our
uniformity testers rely on a unified idea that we term bipartite collision testing. We remind the
reader that testing uniformity based on the number of pairwise collisions is the oldest algorithm in
distribution testing Goldreich and Ron (2000), which is now known to be sample-optimal in the
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centralized setting Diakonikolas et al. (2016). (In fact, it turns out that all known efficient unifor-
mity testers rely to some extent on counting pairwise collisions.) Recall that the collisions-based
uniformity tester Goldreich and Ron (2000) takes N samples from the unknown distribution p on
[n] and counts the total number of pairwise collisions among them. If p is the uniform distribution,
the expected number of collisions will be (1/n) ·

(
N
2

)
. On the other hand, if p is ε-far from the

uniform distribution, the expected number of collisions will be at least (1/n) ·
(
N
2

)
(1 + Θ(ε2)).

A now standard analysis — involving carefully bounding the variance of this estimator followed
by an application of Chebyshev’s inequality — shows that for N = Ω(

√
n/ε2) we can distinguish

between the two cases with high constant probability.
Unfortunately, the standard collisions-based tester described above involves computing the total

number of collisions among all pairs of samples, and it is unclear if it can be implemented with
non-trivial communication or memory. 2 To improve on these naive bounds, we propose a modified
uniformity tester (in the collocated/centralized setting) that we can implement in the memory and
communication restricted settings we study. In particular, we consider a bipartite collision tester
that works as follows: We draw two independent sets of samples S1 and S2 from the unknown
distribution p and count the number of pairs of an element of S1 and an element of S2 that collide.
Importantly, we will use this scheme in such a way so that the first set of samples S1 will be
substantially smaller than the second set of samples S2. Roughly speaking, our algorithm will store
the set S1 exactly, while for each element of the set S2, it will only need to know the number of
collisions with elements of S1. This last step will allow us to save on space or communication. An
important technical condition that is required for our bipartite tester to succeed is that |S1| · |S2| �
n/ε4.

We now provide an overview of the analysis. As is standard, we need to show that the number
of collisions is much larger in the non-uniform case than in the uniform case. To achieve that, we
consider for fixed S1 the sum p(S1) =

∑
s∈S1

ps. We note that the expected number of collisions is
just p(S1)·|S2|, and by standard concentration bounds one can show that it will likely be close to this
value. However, the average size of p(S1) is |S1| · ‖p‖22, which is somewhat larger for non-uniform
p than for p uniform. The detailed analysis is given in Section 3.1.

We note that our bipartite collision tester can be easily implemented in the memory and com-
munication bounded settings. In the former setting (Section A.1), it leads to a uniformity tester
with sample complexity O(n log n/(mε4)), where m is the bits of memory used. In the distributed
setting (Section A.2), when each machine stores ` samples, it leads to a tester with sample complex-
ity O(

√
n` log n/ε2) and communication cost O(

√
(n log n)/`/ε2) bits. (It should be noted that

the above memory and communication upper bounds match our lower bounds in some regimes of
parameters. We show that the tradeoff between sample complexity and memory/communication is
inherent. See Theorem 23 and Corollary 31.)

It should be noted that when ` is sufficiently large, we can design a uniformity tester whose com-
munication beats the above (Section A.3). This fact should not be surprising since if `�

√
n/ε2, a

single machine could run a uniformity tester and simply return the answer. If ` is somewhat smaller
than this value, we can still take advantage of the large number of samples per machine. The basic
idea is for each player to communicate the number of pairwise collisions among their own samples.
As there are O(`2) pairs of samples per machine, this will require roughly n/`2 machines before

2. We note that the trivial protocol based on a total of N samples uses N · logn bits of memory and N · logn bits of
communication.
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we start seeing any collisions, and this will give our approximate complexity for large ε, which can
be seen to be better than our aforementioned bound, when ` is sufficiently large.

Information-Theoretic Lower Bounds. We start by describing our memory lower bounds fol-
lowed by our communication lower bounds.

Memory Lower Bound. We define a family of distributions on [n] × [2], i.e., supported on 2n el-
ements that will make uniformity testing difficult. In particular, we think of these distributions as
consisting of n pairs of bins where the probability of landing in each pair is exactly 1/n. Equiv-
alently, a distribution from this family can be thought of as having n (possibly biased) coins. The
distribution picks a uniform random coin, flips it, and returns the pair of the coin and the result. If
all coins are fair, we have the uniform distribution over [n] × [2]. On the other hand, if each coin
is ε-biased in a randomly chosen direction, we have a distribution that is ε-far from uniform. We
show that these two cases are hard to distinguish from each other without expending a substantial
amount of our computational resources. Note that the standard sample complexity lower bounds for
uniformity testing Paninski (2008) rely on essentially the same hard instances.

We consider running a testing algorithm on a distribution that is randomly either uniform or a
random ε-biased distribution as described above. Let X be the bit that describes whether or not
the distribution is uniform or not. We consider the shared information between X and the memory
of our algorithm after seeing k samples. We will attempt to show that this increases by at most
O(ε2m/n) per step, where m is the upper bound on the memory, which implies that it will take
� n/(mε2) steps in order to reliably determine X . The idea of the proof is fairly simple: The
choice of which of the n coins is flipped is uniform no matter what, and so this choice does not tell
us anything about X . What might tell us something is the result of flipping this coin, but two things
make this difficult for us. On the one hand, the coin is at most ε-biased, so knowing the result of
the flip can only provide O(ε2) information about this bias. More critically, a biased coin is equally
likely to be biased in either direction, so knowing the result by itself still tells us nothing unless we
have some prior information about the direction of the possible bias. However, since our streaming
algorithm can store only m bits of memory, on average it has at most O(m/n) bits of information
about the bias of the (randomly chosen) coin of the next flip. This argument can be formalized to
show that the next flip can only contribute O(m/n) bits to the shared information between X and
our memory. See Section B.2.

It may seem that the above argument is tight. With m bits of information, one could know the
biases (if they exist) of m of the coins, and then each flip will (with probability m/n) give us ε2

information to accept or reject our hypothesis that these biases are real. However, we would need
to be extraordinarily lucky to have this information. The only way that we could know the biases
of these m coins is if in our previous set of samples we had seen each of these coins m times. This
will prove difficult for two reasons: First, unless the number of samples is quite large, we would
not expect to see any coin show up in more than, say, 10 samples. This will limit the amount of
information we could expect to know about the bias of any given coin to O(ε2). Additionally, we
will have information about the biases of all of these particular m coins only if all of them have
shown up in our set of samples. But if our total number of samples is substantially sub-linear, this
will only happen with probability n−Ω(m). On the other hand, since there are only 2m possible
memory states, with high probability, we must be in one that occurs with probability only as small
as 2−Ω(m), so we should only hope to have this information aboutm/ log(n) coins (which we could
get by, say, recording the coins and the results of the first m/ log(n) samples). To formalize this
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intuition, we let r be the vector whose ith entry is the expected number of times we have seen the
ith coin based on the transcript, and note that the information gained is proportional to ‖r‖22. This
can only be large if there is some unit vector w with w · r large. But this would in turn mean that,
conditioned on our (reasonably high probability) transcript, the average of wC over our samples C
is big. We show that this cannot happen with high probability by a Chernoff bound. The details are
deferred to Section B.2.

Communication Complexity Lower Bound. To make this argument work for our communication
complexity setting (Section B.3), we will need to restrict the model, in particular requiring that the
referee sees the players in sequence, never returning to one after it has moved onto the next. In
order to get our lower bounds for many samples per player, we can proceed by immediate reduction
to the streaming model. Our algorithm stores the transcript of the communication thus far. When
the referee talks to a new player, we record the samples that this player has, and then we compress
this down to the extended transcript involving the answers to the questions asked of this new player.
Note that at any time the amount of memory used is at most O(|T |+ s log(n)), where T is the final
communication transcript.

Closeness Testing Algorithms We now describe our algorithms for closeness testing (Section C).
In the communication model, a reasonable approach would be to follow the methodology of Di-
akonikolas and Kane (2016), by first using a few samples to flatten and then applying some collision-
based tester similar to that used for our uniformity testers. We instead give an algorithm that turns
out to be slightly more communication efficient. The essential idea is to pick a random subset W
of the domain, and test whether or not p conditioned on W is close to q conditioned on W . If we
take |W | to be about n/(s log(n)), we note that each machine can send either one bit (encoding that
they have no samples in W ) or log(n) bits giving one such sample. The former outcome happens
about log(n) times more often, and so in total we need to send about log(n) bits per element of S
received. However, for constant ε, we should need only about |W |2/3 such samples to run a standard
closeness tester.

There is one substantial issue with this plan however. We need it to be the case that Pr[W ] is
approximately |W |/n and that dTV (p|W, q|W ) ≈ dTV (p, q). We note that both of these happen
with high probability so long as none of p, q or p − q are dominated by a small number of bins. In
particular, for ε large, it would be sufficient to know that ‖p‖22, ‖q‖22 � 1/(s log(n)). Although this
might not be the case for the given p and q we can obtain it by flattening. The details of the analysis
are given in Section C.2.

For the streaming algorithm for closeness (Section C.1), we take a somewhat different approach.
We select a random hash function h : [n] → [m] and instead compare the distributions h(p) and
h(q). It is not hard to show that if p = q then h(p) = h(q), and that if p and q are far in variation
distance that h(p) and h(q) are likely somewhat far in variation distance. The algorithm can record
the counts of the number of samples from each distribution in each bin in O(m log(n)) samples and
these counts are enough to run standard closeness testing algorithms.

1.4. Related work

Distribution Testing. The field of distribution property testing Batu et al. (2000) has been exten-
sively investigated in the past couple of decades, see, e.g., the surveys Rubinfeld (2012); Canonne
(2015); Goldreich (2017). A large body of the literature has focused on characterizing the sample
size needed to test properties of arbitrary discrete distributions in the centralized setting. This broad
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inference task originates from the field of statistics and has been extensively studied in hypothesis
testing Neyman and Pearson (1933); Lehmann and Romano (2005) with somewhat different formal-
ism. The centralized regime is fairly well understood in a variety of settings: for many properties of
interest there exist sample-efficient testers Paninski (2008); Chan et al. (2014); Valiant and Valiant
(2014); Diakonikolas et al. (2015a); Acharya et al. (2015); Canonne et al. (2016); Diakonikolas and
Kane (2016); Diakonikolas et al. (2016); Canonne et al. (2018); Goldreich (2017); Diakonikolas
et al. (2017a); Batu and Canonne (2017); Diakonikolas et al. (2018); Canonne et al. (2017b). More
recently, an emerging body of work has focused on leveraging a priori structure of the underlying
distributions to obtain significantly improved sample complexities Batu et al. (2004); Daskalakis
et al. (2013); Diakonikolas et al. (2015a,b); Canonne et al. (2017a); Daskalakis and Pan (2017);
Daskalakis et al. (2018); Diakonikolas et al. (2017c).

Distributed Statistical Inference. There has been substantial recent interest in distributed esti-
mation with communication constraints. A series of works Zhang et al. (2013); Garg et al. (2014);
Braverman et al. (2016); Jordan et al. (2016); Diakonikolas et al. (2017b); Han et al. (2018b,a) stud-
ied distributed learning in both parametric and nonparametric settings obtaining (nearly-) matching
upper and lower bounds. Other learning tasks has been studied as well in the distributed setting,
including regression Zhu and Lafferty (2018) and PCA Kannan et al. (2014); Liang et al. (2014).

Classical work in information theory Cover (1969); Ahlswede and Csiszar (1986) studies simple
hypothesis testing problems with communication constraints (as opposed to the composite testing
problems studied in our work). Their results and techniques appear to be orthogonal to ours. Two
recent works Acharya et al. (2018a,b) give algorithms and lower bounds for distribution testing
in a distributed model where each machine holds a single sample and is allowed to communicate
� log n bits of information. We note that this communication model is very different from ours:
First, our focus is on the multiple samples per machine setting, where significant savings over the
naive protocols is attainable. Moreover, we do not impose any restrictions on the amount of informa-
tion communicated by any individual machine, and our goal is to minimize the total communication
complexity of the protocol. Another recent work Andoni et al. (2018) studies distributed closeness
testing in a two party setting where each party has access to samples from one of the two distri-
butions. This model is different than ours for two reasons: First, we consider a large number of
machines (parties). Second, we do not make the assumption that each machine holds samples from
different distributions. Finally, recent work Fischer et al. (2018) studied uniformity testing in the
standard LOCAL and CONGEST models when each machine holds a single sample. We note that
their results and techniques seem incomparable to ours, and in particular have no implications on
the communication complexity of uniformity testing in our broadcast model. In the aforementioned
models, there is an underlying graph whose nodes are the machines (players). In each round, every
player can send information to all its neighbors. The objective is to minimize the number of rounds
of the protocol, as opposed to the number of bits communicated. In particular, for the special case
that the underlying graph is a clique, their algorithm does not achieve non-trivial communication
complexity.

The work of Chien et al. (2010) studied distribution testing with limited memory focusing on
streaming algorithms in the framework of the canonical tester Valiant (2011). In particular, they
show that for testing problems in this framework with sample complexity f , there are streaming
algorithms with memory m and sample complexity f2 · 2O(

√
log(n))/m. We note that this is com-

petitive with our uniformity tester up to the 2O(
√

log(n)) factor, but does substantially worse than
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our closeness tester for small m. They also consider another class of streaming algorithms, when
the number of samples is large enough to learn the distribution in question, and when the prob-
lem of computing empirical distances has an efficient streaming algorithm. This does not compare
favorably to our algorithms, which always use sub-learning sample complexity.

1.5. Organization

The structure of this paper is as follows: After some preliminaries in Section 2, in Section 3 we
present our bipartite collision tester and its implications to memory efficient uniformity testing. Due
to space limitations, our distributed uniformity testers (Section A), our memory and communication
lower bounds (Section B), our upper bounds for closeness testing (Section C), and a set of open
problems for future work (Section D) are deferred to an Appendix.

2. Preliminaries

In this section, we introduce the mathematical notation and background necessary to state and prove
our results in the following sections.

Notation We write [n] to denote the set {1, . . . , n}. We consider discrete distributions over [n],
which are functions p : [n] → [0, 1] such that

∑n
i=1 pi = 1. We use the notation pi to de-

note the probability of element i in distribution p. The `1 (resp. `2) norm of a distribution is
identified with the `1 (resp. `2) norm of the corresponding vector, i.e., ‖p‖1 =

∑n
i=1 |pi| and

‖p‖2 =
√∑n

i=1 p
2
i . The `1 (resp. `2) distance between (pseudo-)distributions p and q is defined

as the the `1 (resp. `2) norm of the vector of their difference, i.e., ‖p − q‖1 =
∑n

i=1 |pi − qi| and
‖p− q‖2 =

√∑n
i=1(pi − qi)2.

For a random variable X , we denote by E[X] its expectation, Var[X] its variance, and Pr[E ]
will denote the probability of event E . Sometimes we will use the notation ED[·],PrD[·] to make
the underlying distribution explicit.

Distribution Testing Distribution property testing studies the following family of problems: given
sample access to one or more unknown distributions, determine whether they satisfy some global
property or are “far” from satisfying the property. In this work, we study the properties of identity
testing (goodness of fit) and closeness testing (two-sample testing) between two distributions.

Definition 1 (Identity Testing/Uniformity Testing) The identity testing problem is the following:
Given samples from an unknown distribution p on [n], a known distribution q on [n], and a param-
eter 0 < ε < 1, we want to distinguish, with probability at least 2/3, between the cases that p = q
versus ‖p− q‖1 ≥ ε. The special case corresponding to q = Un, the uniform distribution on [n], is
the problem of uniformity testing.

Definition 2 (Closeness Testing) The closeness testing problem is the following: Given samples
from two unknown distributions p, q on [n], and a parameter 0 < ε < 1, we want to distinguish,
with probability at least 2/3, between the cases that p = q versus ‖p− q‖1 ≥ ε.
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3. Communication and Memory Efficient Uniformity Testing

In this section, we design our protocols for uniformity testing. In Section 3.1, we start with our
bipartite uniformity tester. Its implications to streaming and communication upper bounds are given
in the appendix.

3.1. Testing Uniformity via Bipartite Collisions

Our bipartite collision-based tester is described in pseudo-code below:

Algorithm BIPARTITE-COLLISION-UNIFORMITY(p, n, ε)
Input: Sample access to distribution p over [n] and ε > 0.
Output: “YES” if p = Un; “NO” if ‖p− Un‖1 ≥ ε.

1. Draw a multiset S1 of N1 i.i.d. samples from p.

2. For all j ∈ [n] compute aj = |{s ∈ S1 : s = j}|, i.e., the multiplicity of j ∈ [n] in S1.

3. If maxj∈[n] aj > 10, return “NO”. Otherwise, continue with next step.

4. Draw a multiset S2 of N2 i.i.d. samples from p. For k ∈ [N2], let bk be the number of
times that the k-th sample in S2 appears in S1.

5. Let Z = (1/N2)
∑N2

k=1 bk and T def
= N1

n (1 + ε2

50).

6. If Z ≥ T return “NO”; otherwise, return “YES”.

The main result of this section is the following theorem:

Theorem 3 Suppose that N1, N2 satisfy the following conditions: (i) Ω(ε−6) = N1 ≤ n9/10

and N1 · N2 = Ω(n/ε4), where the implied constants in the Ω(·) are sufficiently large. Then
the algorithm BIPARTITE-COLLISION-UNIFORMITY distinguishes between the cases that p = Un
versus ‖p− Un‖1 ≥ ε with probability at least 2/3.

This section is devoted to the proof of Theorem 3. We start with the following definition:

Definition 4 (Probability Mass of Multiset) Let p be a discrete distribution over [n] and S be a

multiset of elements in [n]. We define the probability mass of the multiset S as follows: p(S)
def
=∑n

j=1 ajpj , where aj is the number of occurrences of j ∈ [n] in S.

It should be noted that we will use the above quantity for S being a multiset of i.i.d. samples
from the distribution p. In this case, p(S) is a random variable satisfying the following:

Claim 5 Let S be a multiset of m i.i.d. samples from the distribution p on [n]. Then, we have that
(i) ES [p(S)] = m · ‖p‖22 and (ii) VarS [p(S)] = m · (‖p‖33 − ‖p‖42).

Proof By definition, p(S)
def
=
∑n

j=1 ajpj , where aj ∼ Binomial(m, pj), j ∈ [n]. For the expected
value, we can write: ES [p(S)] =

∑n
j=1 ES [aj ]pj =

∑n
j=1(mpj)pj = m ·

∑n
j=1 p

2
j = m · ‖p‖22.

To calculate the variance, we note that p(S) can be equivalently expressed as p(S) =
∑m

i=1 ri,
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where for i ∈ [m] we have that ri = pj with probability pj , for j ∈ [n]. Note that the ri’s
are i.i.d. random variables and that ES [ri] = ‖p‖22, ES [r2

i ] = ‖p‖33. Therefore, we obtain that
VarS [p(S)] =

∑m
i=1 VarS [ri] = m · (‖p‖33 − ‖p‖42) . This completes the proof of Claim 5.

We now proceed to establish the completeness and soundness of our tester.

Completeness Analysis We will show that if p = Un, then the tester outputs “YES” with proba-
bility at least 2/3. We start by noting that it is very unlikely that the tester rejects in Step 3.

Claim 6 Let E def
= {S1 : maxj∈[n] aj ≤ 10}. For N1 ≤ n9/10, we have that PrS1 [E ] ≥ 19/20.

Proof The probability that there exists some domain element in [n] that appears at least k times in

S1, where |S1| = N1, is at most n ·
(
N1

k

)
n−k ≤ n · N

k
1

k!nk
. By our assumption that N1 ≤ n9/10, for

k = 10 the above probability is at most 1/k!, which gives the claim.

We proceed to analyze the behavior of the random variable Z defining our test statistic in Step 5.
Note that Z is the empirical estimate of p(S1) based on the multiset of samples S2. Indeed, denoting
by (p̂j)

S2 the empirical probability of j ∈ [n] based on S2, then we have that Z = (1/N2) ·∑N2
k=1 bk =

∑n
j=1 aj · (p̂j)S2 . We have the following simple claim:

Claim 7 Let p be any distribution over [n]. Then we have that: (i) ES2 [Z] = p(S1) and (ii)

VarS2 [Z] = (1/N2) ·
(∑n

j=1 a
2
jpj − p2(S1)

)
.

Proof Since Z =
∑n

j=1 aj · (p̂j)S2 and ES2 [(p̂j)
S2 ] = pj , we get that ES2 [Z] =

∑n
j=1 aj · pj =

p(S1). To calculate the variance, we use the equivalent definition of Z = (1/N2) ·
∑N2

k=1 bk, where
for each k ∈ [N2] the i.i.d. random variables bk are defined as follows: bk = aj with probability pj ,
for j ∈ [n]. It follows that ES2 [bk] =

∑n
j=1 ajpj = p(S1) and ES2 [b2k] =

∑n
j=1 a

2
jpj . Therefore,

we get that VarS2 [Z] = (1/N2
2)·N2 ·VarS2 [b1] = (1/N2)·(

∑n
j=1 a

2
jpj−p2(S1)). This completes

the proof.

We note that Claim 7 will be useful both in the completeness and the soundness cases.
To establish the correctness of the tester in the completeness case, it suffices to show that

PrS1,S2 [Z > T ] ≤ 1/3. Since the event E occurs with high constant probability over S1, by a
union bound, it suffices to show that PrS1,S2 [Z > T | E ] ≤ 1/10. An application of Chebyshev’s
inequality yields that

PrS1,S2 [|Z −ES1,S2 [Z | E ]| > γ | E ] ≤ VarS1,S2 [Z | E ]/γ2 . (1)

Note that in the completeness case (p = Un) we have that p(S1) = N1/n deterministically over S1.
Therefore, by Claim 7 (i), we get that ES1,S2 [Z | E ] = ES2 [Z] = p(S1) = N1/n. Similarly, we
obtain that

VarS1,S2 [Z | E ] = ES1|E [VarS2 [Z|S1]] + VarS1|E [ES2 [Z]]

≤ (1/N2) ·max
S1∈E

n∑
j=1

a2
jpj + 0

≤ (10/N2) · p(S1) + 0 = 10N1/(N2 · n) ,

10
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where the second line uses Claim 7 (ii) and the fact that VarS1|E [ES2 [Z]] = 0, and the third line

follows from the definition of E . By setting γ def
= (ε2/100)ES1,S2 [Z | E ] = (ε2/100)p(S1), the

RHS of (1) is at most O
(
n/(ε4 ·N1 ·N2)

)
. Recalling our assumption that N1 · N2 = Ω(n/ε4)

for a sufficiently large constant in the Ω(), we get that with probability at least 9/10 we have that
Z < (1 + ε2/100)(N1/n) < T . This proves the completeness of our tester.

Soundness Analysis We will show that if ‖p−Un‖1 ≥ ε for ε satisfyingN1 = Ω(1/ε6), where the
constant in Ω() is sufficiently large, then the tester outputs “NO” with probability at least 2/3. The
technical part of the soundness proof involves showing that ES2 [Z] = p(S1) will be significantly
larger than its value of m/n in the completenesss case. Specifically, we show the following:

Lemma 8 Let F def
= {S1 : p(S1) ≥ (1 + ε2/40) · (N1/n)}. If ‖p− Un‖1 ≥ ε and N1 = Ω(1/ε6),

then PrS1 [F ] ≥ 9/10.

Proof The proof proceeds by case analysis. First, we consider the case that the distribution p
assigns sufficient probability on heavy elements. This case turns out to be fairly easy to handle. The
complementary case that p has a small amount of mass on heavy elements requires a more elaborate
argument. Let θ def

= 104/(ε2n) and let H = H(p)
def
= {i ∈ [n] | pi ≥ θ} be the set of heavy bins.

We consider the following cases:

[Case I: p(H) =
∑

i∈H pi ≥ ε2/1000.] Let W = |S1 ∩ H|. Note that ES1 [W ] = N1 · p(H) ≥
N1ε

2/1000. By a multiplicative Chernoff bound, for δ = 1/3, we get that

PrS1

[
W ≤ (1− δ) ·N1ε

2/1000
]
≤ e−N1ε2δ2/200 < 1/10

where we used the fact that N1 = ω(1/ε2). That is, with probability at least 9/10, the multiset S1

will contain at least N1ε
2/150 samples from the set H . If this happens, then we have that

p(S1) > (N1ε
2/1500) · θ > (6N1)/n > (1 + ε2/40) · (N1/n)

which proves Case I.

[Case II: p(H) =
∑

i∈H pi ≤ ε2/100.] Let H def
= [n] \H and S′1 = S1 ∩H , i.e., S′1 contains the

samples in S1 that correspond to light elements of p. Clearly, we have that p(S1) ≥ p(S′1). We will
show that PrS1 [p(S′1) ≥ (1 + ε2/40) · (N1/n)] ≥ 9/10.

Since p(H) ≤ ε2/1000, with probability at least 1− ε2/1000, a given sample in S1 will also be
in S′1. So, if N ′1 = |S′1| we have that ES1 [N ′1] ≥ N1(1− ε2/1000). By Markov’s inequality applied
to N1 − N ′1, with probability at least 19/20 over S1, we have that N ′1 ≥ N1(1 − ε2/50). We will
henceforth condition on this event.

To bound p(S′1) from below, we consider the normalized distribution, p′, over [n] obtained from
p after removing its heavy elements. That is, for i ∈ H , p′i = pi/(1 − p(H)); and for i ∈ H ,
p′i = 0. Note that S′1 consists of N ′1 elements drawn i.i.d. from p′. By definition, we have that
p(S′1) = (1− p(H))p′(S′1). We will bound p′(S′1) by applying Chebyshev’s inequality.

We start by noting that p′ is also far from being uniform:

Claim 9 We have that ‖p′ − Un‖1 ≥ ε/3.

11
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Proof Since ‖p−Un‖1 ≥ ε, we have that
∑

j∈[n]:pj>1/n |pj − 1/n| > ε/2. Since p(H) < ε2/100,
it follows that

∑
j:1/n<pi<θ

|pj − 1/n| > ε/2 − ε2/100 > ε/3. Noting that if 1/n < pj < θ, then
|pj − 1/n| < |p′j − 1/n| gives the claim.

By Chebyshev’s inequality, we can write:

PrS′1

[
|p′(S′1)−ES′1 [p′(S′1)]| > γ

]
≤ VarS′1 [p′(S′1)]/γ2 , (2)

where we will set γ def
= (ε2/20) ·ES′1 [p′(S′1)]. By Claim 5, we have that ES′1 [p′(S′1)] = N ′1 · ‖p′‖22,

and VarS′1 [p′(S′1)] = N ′1 · (‖p′‖33 − ‖p′‖42). In the following claim, we bound the variance from
above:

Claim 10 We have that VarS′1 [p′(S′1)] <
2000N ′1·‖p′‖22

ε2n
.

Proof We have that VarS′1 [p′(S′1)] < N ′1·‖p′‖33 ≤ N ′1·‖p′‖∞·‖p′‖22. We will show that ‖p′‖∞ ≤ 2θ
from which the claim follows. Indeed, note that the non-zero probability values of p′ are p′i =
pi/(1− p(H)), for i /∈ H . Since pi ≤ θ and p(H) ≤ ε2/1000 < 1/2, we get the desired bound on
‖p′‖∞ and the claim follows.

The RHS of (2) can be bounded by O(VarS′1 [p′(S′1)]/(ε4ES′1 [p′(S′1)]2)) = O(1/(N ′1 · ε6)), where
we used our bounds on the first two moments and the fact that ‖p′‖22 ≥ 1/n. Using the condition
that N1 = Ω(1/ε6) and the fact that N ′1 ≥ N1 · (1−O(ε2)), the above probability is at most 1/20.

We now show that if |p′(S′1)− ES′1 [p′(S′1)]| ≤ γ the event F holds. By the definition of γ and
the fact ES′1 [p′(S′1)] = N ′1 · ‖p′‖22, this is equivalent to p′(S′1) > (1− ε2/20) ·N ′1 · ‖p′‖22. Claim 9
implies that ‖p′‖22 ≥ (1/n) · (1 + ε2/9), and therefore we get that

p′(S′1) > (1− ε2/20) · (1− ε2/50) · (N1/n) · (1 + ε2/9) > (N1/n) · (1 + ε2/35) ,

where we used our lower bound on N ′1. Finally, we have that

p(S1) ≥ p(S′1) = (1−p(H))p′(S′1) ≥ (1−ε2/1000)·(N1/n)·(1+ε2/35) > (N1/n)·(1+ε2/40) ,

and the proof of Lemma 8 is complete.

To establish correctness in the soundness case, it suffices to show that PrS1,S2 [Z ≤ T ] ≤ 1/3.
To show this, we condition on any S1 such that the events E and F hold. Note that if E does not
occur, then our tester correctly rejects. By Lemma 8 above, F holds with probability at least 9/10
over S1. Hence, by a union bound, it suffices to show that PrS1,S2 [Z ≤ T | E ,F ] ≤ 1/10.

An application of Chebyshev’s inequality for γ = (ε2/100)ES1,S2 [Z | E ,F ] yields that

PrS1,S2 [|Z −ES2 [Z]| > γ | E ,F ] ≤ VarS1,S2 [Z | E ,F ]/γ2 . (3)

By Claim 7, we have that ES2 [Z] = p(S1) and VarS2 [Z] = (1/N2) ·
(∑n

j=1 a
2
jpj − p2(S1)

)
. The

same argument as in the completeness case gives that VarS1,S2 [Z | E ,F ] < (10/N2)·p(S1).By our
choice of γ and our bound on the variance the right-hand side of (3) is at most O

(
1/(N2ε

4p(S1))
)
.

Recalling our assumption that N1 · N2 = Ω(n/ε4) and the fact that p(S1) ≥ N1/n (by Lemma 8,
since F occurs), it follows that this probability is at most 1/10. By Lemma 8 we have that p(S1) >
(N1/n) · (1 + ε2/40). Therefore, with probability at least 8/10 (by a union bound on the two error
events), we have that Z > (N1/n) · (1 + ε2/50). This establishes the soundness case and completes
the proof of Theorem 3.
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APPENDIX

The structure of this Appendix is as follows: In Section A, we give our streaming and distributed
uniformity testers. In Section B, we give our nearly matching information-theoretic memory and
communication lower bounds. Section C gives our communication and memory efficient closeness
testing algorithms. Finally, in Section D we conclude and provide a few open problems for future
work.

Appendix A. Streaming and Communication Efficient Uniformity Testing

In this section, we give our streaming uniformity tester (Section A.1) and our communication effi-
cient uniformity testers in the distributed setting. For the latter, we have two algorithms: Our first
algorithm (Section A.2) is an instantiation of our bipartite collision tester and performs well when
the number of samples per machine ` is not very large. For the complementary setting that ` is large,
we design a different protocol (Section A.3), where each machine communicates its total number of
internal collisions and the test statistic relies on their sum. (When the number of samples per player,
` = Õ(n1/3/ε4/3), we use the first tester. If there are more samples per player than that, we use the
second tester.)
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A.1. Memory Efficient Uniformity Testing

In this section, we show how our bipartite collision tester can be used to obtain a memory efficient
single pass streaming algorithm. Our memory efficient tester is described in pseudo-code below:

Algorithm STREAMING-UNIFORMITY(p, n,m, ε)
Input: Sample access to distribution p over [n], memory bound m, and ε > 0.
Output: “YES” if p = Un; “NO” if ‖p− Un‖1 ≥ ε.

1. Draw a multiset S1 of N1
def
= m/(2 log n) i.i.d. samples from p. Store S1 in memory.

2. For all j ∈ [n] compute aj = |{s ∈ S1 : s = j}|, i.e., the multiplicity of j ∈ [n] in S1.

3. If maxj∈[n] aj > 10, return “NO”. Otherwise, continue with next step.

4. Draw a multiset S2 of N2
def
= Θ

(
n log n/(mε4)

)
i.i.d. samples from p, for an appropri-

ately large constant in Θ(·). For k ∈ [N2], let bk be the number of times that the k-th
sample in S2 appears in S1. Store the partial sum

∑
k bk in a single pass.

5. Let Z = (1/N2)
∑N2

k=1 bk and T def
= N1

n (1 + ε2

50).

6. If Z ≥ T return “NO”; otherwise, return “YES”.

The following theorem is essentially a corollary of Theorem 3 and characterizes the performance
of the above algorithm:

Theorem 11 Suppose that m ≥ Ω(log n/ε6) and m ≤ Õ(n9/10). Algorithm STREAMING-
UNIFORMITY is a single pass streaming algorithm using at most m bits of memory, and distin-
guishes between the cases that p = Un versus ‖p− Un‖1 ≥ ε with probability at least 2/3.

Proof The correctness of STREAMING-UNIFORMITY as a uniformity testing algorithm follows
from Theorem 3 and our choice of parameters. It is straightforward to check that the assumptions
of the latter theorem are satisfied for our choice of N1 and N2.

It is also easy to argue that the algorithm is implementable in the single pass streaming model
with at most m bits of memory. Step 1 of the algorithm uses N1 log n ≤ m/2 bits of memory.
We claim that Step 4 can be implemented in a single pass with at most logN2 + 4 bits of memory.
Indeed, since no element of [n] appears in S1 more than 10 times (since the algorithm did not reject
in Step 3), each bk is at most 10. Therefore,

∑N2
k=1 bk ≤ 10N2, and thus the sum

∑N2
k=1 bk can be

stored with logN2 + 4 bits of memory. In summary, the total memory used by our algorithm is at
most m/2 + logN2 + 4. By our assumption that m ≥ Ω(log n/ε6), it follows that N2 ≤ ε2n or
logN2 < log n. Therefore, logN2 � m which completes the proof of Theorem 11.

A.2. Distributed Uniformity Testing for Small Number of Samples per Machine

Let ` denote the total number of samples from p possessed by each machine. When ` = Õ(n1/3/ε4/3),
we use the following tester, which can be viewed as an instantiation of our bipartite collision tester.
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Algorithm I DISTRIBUTED-BIPARTITE-UNIFORMITY(p, n, `, ε)
Input: Unbounded number of machines, each with ` i.i.d. samples from p and ε > 0.
Output: “YES” if p = Un; “NO” if ‖p− Un‖1 ≥ ε.

1. The referee asks m1 = Θ
(

(1/(ε2`3/2))
√
n/ log n

)
machines to reveal all their samples.

Let S1 be the resulting multiset of samples from p.

2. For all j ∈ [n] the referee computes aj = |{s ∈ S1 : s = j}|, i.e., the multiplicity of
j ∈ [n] in S1.

3. If maxj∈[n] aj > 10, the referee returns “NO”. Otherwise, we continue with next step.

4. The referee queries a new set of m2 = Θ( n
ε4`2m1

) machines, indexed by k ∈ [m2], in

increasing order of k, to report the value bk =
∑`

i=1 aski
corresponding to their sample set

Sk2 = {ski }`i=1. Note that bk is the number of collisions of Sk2 with S1.

5. For t ∈ [m2], define Bt =
∑t

k=1 bk. Let Z = Bm2/(` ·m2) and T def
= m1·`

n (1 + ε2/50).

6. The referee computes Bt in increasing order of t ∈ [m2]. If for some t ∈ [m2], Bt ≥
` ·m2 · T , we terminate and returns “NO”. Otherwise, we have that Z < T and we return
“YES”.

The following theorem characterizes the performance of the above algorithm:

Theorem 12 Suppose that Ω(1/ε6) ≤ m1 · ` ≤ O(n9/10). Algorithm DISTRIBUTED-BIPARTITE-
UNIFORMITY draws a total ofO

(
(1/ε2)

√
n · ` · log n

)
samples from p, usesO

(
(1/ε2)

√
(n/`) · log n

)
bits of communication, and distinguishes between the cases that p = Un versus ‖p−Un‖1 ≥ ε with
probability at least 2/3.

Proof The correctness of DISTRIBUTED-BIPARTITE-UNIFORMITY follows from Theorem 3 and
our choice of parameters. It is straightforward to check that the assumptions of the latter theorem
are satisfied for our choice of N1 = m1 · ` and N2 = m2 · `.

It is also clear that the sample complexity of our algorithm is

(m1+m2)·` = O
(

(1/ε2)
√
n/(`3 log n) + (1/ε2)

√
(n log n)/`

)
·` = O

(
(1/ε2)

√
n · ` · log n

)
.

We now proceed to bound the communication complexity. Note that Step 1 uses m1 · ` · log n bits
of communication. We claim that Step 6 can be implemented with O(m2) bits of communication.
To achieve this, we transmit each bk in unary by sending bk many 1’s followed by a 0 and terminate
the algorithm rejecting if the partial sum Bt =

∑t
k=1 bk, for some t ∈ [m2], exceeds the rescaled

threshold ` ·m2 ·T . Since we use bk+1 bits to encode each bk, the number of bits of communication
is bounded by maxt(Bt+t), which is at most ` ·m2 ·T+m2. We now show that ` ·m2 ·T = O(m2),
which proves the desired communication upper bound. Note that by our choice of m1,m2, we have
that ` ·m2 · T = O(1/ε4) and moreover m2 > m1 · ` = Ω(1/ε6). Therefore, ` ·m2 · T ≤ m2, as
desired. This completes the proof of Theorem 12.
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A.3. Distributed Uniformity Testing for Large Number of Samples per Machine

In this section, we give our alternate distributed uniformity tester with improved communication
complexity when the number of samples per machine is large.

When the number of samples per machine ` satisfies ` = Ω̃(n1/3/ε4/3), we will use the follow-
ing algorithm:

Algorithm II DISTRIBUTED-AGGREGATE-UNIFORMITY(p, n, `, ε)
Input: Each machine has ` samples from a distribution p over [n] and ε > 0.
Output: “YES” if p = Un; “NO” if ‖p− Un‖1 ≥ ε.

1. The referee asks the first m = 12800·n
`2ε4

machines to reveal the number of collisions ck,
k ∈ [m], each of them see in their ` samples.

2. Compute the statistic Z = (1/m)
∑m

k=1 ck and the Threshold T =
(
`
2

)1+ε2/2
n .

3. If Z ≥ T return “NO”; otherwise, return “YES”.

The following theorem characterizes the performance of the above algorithm:

Theorem 13 The algorithm DISTRIBUTED-AGGREGATE-UNIFORMITY draws a total ofO
(
n/(`ε4)

)
samples from p, uses O(n logn

`2ε4
) bits of communication, and distinguishes between the cases that

p = Un versus ‖p− Un‖1 ≥ ε with probability at least 2/3.

In this rest of this section, we prove Theorem 13.
First note that the sample complexity of our algorithm ism ·` = O( n

`ε4
). Moreover, the commu-

nication complexity of our tester is O( n
`2ε4

log(`2)) = O(n logn
`2ε4

), since each of the Θ( n
`2ε4

) players
sends the number of their internal collisions, which can be at most

(
`
2

)
.

We will compute the mean and variance of the statistic Z and show that the uniform and non-
uniform cases are well-separated. We have the following from Lemma 2.3 in Diakonikolas et al.
(2016):

E[Z] =
1

m

m∑
i=1

E[ci] = E[ci] =

(
`

2

)
‖p‖22

and

Var[Z] =
1

m2

t∑
i=1

Var[ci] =
`2ε4

12800n

[(`
2

)
(‖p‖22 − ‖p‖42) + `(`− 1)(`− 2)(‖p‖33 − ‖p‖42)

]
≤ `2ε4

12800n

[
`2‖p‖22 + `3(‖p‖33 − ‖p‖42)

]
.

The following lemma, which is an adaptation of an analogous lemma in Diakonikolas et al.
(2016)), will give us the minimum number of samples per player required for the tester to work
given our choice of parameters:
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Lemma 14 Let α satisfy ‖p‖22 = 1+α
n and σ be the standard deviation ofZ. The number of samples

required by DISTRIBUTED-AGGREGATE-UNIFORMITY is at most

` ≤

√
5σn

|α− ε2/2|
,

in order to get error probability at most 1/4.

Proof By Chebyshev’s inequality, we have that

Pr [ |Z −E[Z]| ≥ kσ] = Pr

[ ∣∣∣∣Z − (`2
)
‖p‖22

∣∣∣∣ ≥ kσ] ≤ 1

k2
,

where σ ,
√
Var[Z].

We want Z to be closer to its expected value than the threshold is to that expected value because
when this occurs, the tester outputs the right answer. Furthermore, to achieve our desired probability
of error of at most 1/4, we want this to happen with probability at least 3/4. So, we want

kσ ≤ |E[Z]− T | =
∣∣∣∣(`2
)(
‖p‖22 −

1 + ε2/2

n

)∣∣∣∣ =

(
`

2

)
|α− ε2/2|/n .

For ` larger than some small constant and k = 2, the following slightly stronger condition for `
suffices:

σ ≤ `2 · |α− ε
2/2|

5n
.

So, it suffices to have

` ≥

√
5σn

|α− ε2/2|
. (4)

We might as well take the smallest number of samples per player ` for which the tester works, which
implies the desired inequality.

To complete the proof, we need to show that given enough samples there is a clear separation
between the completeness and soundness cases regarding the value of our statistic.

By Lemma 14, it suffices to bound from above the variance σ2. We proceed by case analysis
based on whether the term `2‖p‖22 or `3(‖p‖33 − ‖p‖42) contributes more to the variance.

Case when `2‖p‖22 is Larger We have the following lemma:

Lemma 15 Let ‖p‖22 = (1+α)/n. Consider the completeness case when α = 0 and the soundness
case when α ≥ ε2. If `2‖p‖22 contributes more to the variance, i.e., if

`2‖p‖22 ≥ `3(‖p‖33 − ‖p‖42) ,

then DISTRIBUTED-AGGREGATE-UNIFORMITY has error probability at most 1/4 for any value of
`.
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Proof Suppose that `2‖p‖22 ≥ `3(‖p‖33 − ‖p‖42). Then σ2 ≤ 2 `4ε4

12800n‖p‖
2
2 = `4ε4

6400n(1 + α)/n.
Substituting this into (4) gives: √

5σn

|α− ε2/2|
≤ `ε(1 + α)1/4

4
√
|α− ε2/2|

.

One can show the latter inequality, using calculus to maximize the ratio: `ε(1+α)1/4

4
√
|α−ε2/2|

by varying α.

One gets that α = ε2 maximizes the expression for α ∈ {0} ∪ [ε2, n − 1], since it is decreasing in
the interval [ε2, n− 1] and also α = ε2 gives a slightly larger value than α = 0. Thus, we get that:√

5σn

|α− ε2/2|
≤ ` · ε(1 + ε2)1/4

4
√
ε2/2

≤ `(1 + ε2)1/4

2
≤ `

for any ε < 1. Therefore, this completes the proof since the requirements of Lemma 14 are satisfied.

Case when `3(‖p‖33 − ‖p‖42) is Larger In this case, we show the following:

Lemma 16 Let ‖p‖22 = (1+α)/n. Consider the completeness case when α = 0 and the soundness
case when α ≥ ε2. If `3(‖p‖33 − ‖p‖42) contributes more to the variance, i.e., if

`3(‖p‖33 − ‖p‖42) ≥ `2‖p‖22 ,

then for any ` ≤ 16
√
n

3ε2
in the completeness case and any ` ≤ 16

√
n

3α in the soundness case, our tester
DISTRIBUTED-AGGREGATE-UNIFORMITY achieves error probability at most 1/4.

Proof Suppose that `3(‖p‖33 − ‖p‖42) ≥ `2‖p‖22. Then σ2 ≤ 2 `5ε4

12800n(‖p‖33 − ‖p‖42). Substituting
this into (4) gives:

` ≥

√
5σn

|α− ε2/2|
≥ `5/4εn1/4(‖p‖33 − ‖p‖42)1/4

4
√
|α− ε2/2|

⇔

` ≤ 256|α− ε2/2|2

ε4n(‖p‖33 − ‖p‖42)

Let us parameterize p as pi = 1/n + ai for some vector a = (a1, . . . , an). Then we have
‖a‖22 = α/n.
In the completeness case, the above sufficient condition always holds since the right hand side is
infinite (i.e., ‖p‖33 = ‖p‖42). In the soundness case, we get the following sufficient condition:

` ≤ 256(α/2)2

ε4n(‖p‖33 − ‖p‖42)
(since ε2 ≤ α) .
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We also have that:

‖p‖33 − ‖p‖42 ≤ ‖p‖33 −
1

n2
=

[
n∑
i=1

(1/n+ ai)
3

]
− 1

n2

=

[
1

n2
+

3

n2

n∑
i=1

ai +
3

n

n∑
i=1

a2
i +

n∑
i=1

a3
i

]
− 1

n2

=
3

n2

n∑
i=1

ai +
3

n

n∑
i=1

a2
i +

n∑
i=1

a3
i

=
3

n

n∑
i=1

a2
i +

n∑
i=1

a3
i

≤ 3

n
‖a‖22 + ‖a‖33 ≤

3

n
‖a‖22 + ‖a‖32 =

3

n
(α/n) + (α/n)3/2 .

We thus get:

256(α/2)2

ε4n(‖p‖33 − ‖p‖42)
≥ 256(α/2)2

α2n( 3
n(α/n) + (α/n)3/2)

≥ 64

n( 3
n(α/n) + (α/n)3/2)

≥ 64
3α
n + α3/2√

n

≥ 64n

3α+ α3/2
√
n

≥ min

{
64n

3α
,
64
√
n

α3/2

}
≥ 64

√
n

3α
.

Therefore, any ` ≤ 64
√
n

3α satisfies the conditions of Lemma 14. Combining the above, we can see
that our tester works for any value of ` that is less than the sample complexity of the problem in the
classical (non-distributed) model.

The correctness and error probability of the algorithm is established by Lemmas 15 and 16. This
completes the proof of Theorem 13.

Appendix B. Communication and Memory Lower Bounds for Uniformity Testing

In this section, we prove our memory and communication lower bounds.

B.1. Background from Information Theory

For completeness, we start by presenting useful definitions from information theory. We will first
define the entropy of a random variable as follows:
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Definition 17 Let X be a discrete random variable supported on {x1, . . . , xn} that has a proba-
bility mass function p = (p1, . . . , pn) such that pi = Pr[X = xi]. Then we define the entropy of X
to be H(X) =

∑n
i=1 pi log(1/pi). For the special case of n = 2, which corresponds to a Bernoulli

random variable with parameter p ∈ [0, 1], we define the binary entropy to be the following func-
tion: H2(p) = −p log p− (1− p) log(1− p).

The entropy is a measure of randomness for a random variable. In other words, it is the number
of bits of information that we get on average by observing the outcome of the random variable.

In some cases, we would like to know how much excess information we get by observing the
outcome of a random variable Y given that we know the outcome of another random variable X .
This is usually called conditional entropy of Y given X , and is defined as follows:

Definition 18 LetX,Y be a discrete random variables supported on the sets X and Y respectively.
Also let p(x, y) be the joint probability mass function of X,Y such that p(x, y) = Pr[X = x, Y =
y]. Then we define the conditional entropy of Y given X to be:

H(Y |X) = H(X,Y )−H(X) = −
∑

x∈X ,y∈Y
p(x, y) log

p(x, y)

p(x)
.

Furthermore, the amount of information that is shared between two random variables is called
mutual information and defined as follows:

Definition 19 Let X,Y be a discrete random variables. The mutual information between X and Y
is:

I(X;Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y ) .

Note that this quantity is symmetric, i.e. I(X;Y ) = I(Y ;X). We also define the conditional shared
information as

I(X;Y |Z) = H(X|Z)−H(X|Y,Z) .

The following well known lemma in information theory, intuitively implies that the mutual
information between two random variables X and Y cannot be increased by transforming Y into
a new variable Z either deterministically or by using randomness that is independent of X (i.e.,
without using any additional knowledge for X).

Lemma 20 (Data Processing Inequality) Let X,Y, Z be random variables, such that X ⊥ Z|Y .
Then

I(X;Z) ≤ I(X;Y ) .

We also make use of another standard lemma known as the chain rule.

Lemma 21 (Chain Rule) For variables X,Y and Z we have that

I(X;Y,Z) = I(X;Z) + I(X;Y |Z) .

Finally, we use the following well known Taylor series for binary entropy:

Fact 22

1−H2

(1

2
+a
)

=
1

2 ln 2

∞∑
l=1

(2a)2l

l(2l−1)
= O(a2).
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B.2. Memory Lower Bounds for Uniformity Testing

In this section, we prove our memory lower bounds as described by the following theorem:

Theorem 23 Let A be an algorithm which tests if a distribution p is uniform versus ε-far from
uniform with error probability 1/3, can access the samples in a single-pass streaming fashion using
m bits of memory and k samples, then k ·m = Ω( n

ε2
). Furthermore, if k < n9/10 andm ≥ k2/n0.9,

then k ·m = Ω(n logn
ε4

).

Remark 24 This result should hold (with worse constants) if the bounds on m and k are replaced
by any of the form m ≥ k2/n1−c and k ≤ n1−c for any positive constant c.

In this rest of this section, we prove Theorem 23. To do so, we use the adversary method. Let
X be a uniformly random bit. Based on X , the adversary chooses the distribution p on [2n] bins as
follows:

• X = 0: Pick p = U2n.

• X = 1: Pair the bins as {1, 2}, {3, 4}, . . . , {2n−1, 2n}. Now on each pair {2i−1, 2i} pick a
random Yi ∈ {±1} to pick:

(p2i−1, p2i) =

{
(1+ε

2n ,
1−ε
2n ), Yi = 1

(1−ε
2n ,

1+ε
2n ), Yi = −1

In either case, we can think of the output of p as being a pair (C, V ), where C is an element of [n]
is chosen uniformly, and V ∈ {0, 1} is a fair coin if X = 0 and has bias ε · YC if X = 1.

Let s1, . . . , sk be the observed samples from p. Let Mt denote the bits stored in the memory
after the algorithm sees the t-th sample st.

Since the algorithm learns X with probability 2/3 after viewing k samples, we know that
I(X;Mk) > Ω(1). On the other hand, Mt is computed from (Mt−1, st) without using any in-
formation about X 3. More formally, X ⊥ Mt|(Mt−1, st) and therefore we can use the data
processing inequality (Lemma 20) to get:

I(X;Mt) ≤ I(X;Mt−1, st) = I(X;Mt−1) + I(X; st|Mt−1).

Our basic technique will be to bound I(X; st|Mt−1). This will give us an upper bound on I(X;Mk)
via telescoping.

The sample s corresponds to which pair of bins was picked and within that pair which one of
two bins was picked, that is s = (C, V ). V is a random variable taking values in {0, 1}.

Since irrespective of X , C is uniform over the pairs of bins, we note that C is independent of
X even when conditioned on the memory M .

Thus,
I(X; st|Mt−1) = I(X;CtVt|Mt−1) = I(X;Vt|Mt−1Ct) .

Let αt−1 = Pr[X=1|Mt−1Ct] and thus Pr[X=0|Mt−1Ct] = 1−αt−1.

3. Note that we can use deterministic operations and possibly random bits, which however cannot be correlated with the
random variable X since st is by definition the only sample from the distribution that is drawn between the memory
states Mt−1 and Mt.
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We have that

Pr[Vt = 0|X = 0,Mt−1, Ct] =
1

2

Pr[Vt = 0|X = 1,Mt−1, Ct] =
1+εE[YCt |Mt−1]

2

Pr[Vt = 0|Mt−1, Ct] = (1−αt−1)
1

2
+αt−1

1+εE[YCt |Mt−1]

2
=

1

2
+
αt−1εE[YCt |Mt−1]

2
.

We can calculate

I(X;Vt|Mt−1Ct) = H(Vt|Mt−1Ct)−H(Vt|Mt−1CtX)

= H2(Pr[Vt = 0|Mt−1, Ct])− {Pr[X=1|Mt−1Ct]H2(Pr[Vt = 0|X = 1,Mt−1, Ct])

+Pr[X=0|Mt−1Ct]H2(Pr[Vt = 0|X = 0,Mt−1, Ct])}

= H2

(1

2
+
αt−1εE[YCt |Mt−1]

2

)
− αt−1H2

(1

2
+
εE[YCt |Mt−1]

2

)
− (1−αt−1)H2

(1

2

)
= αt−1

[
1−H2

(1

2
+
εE[YCt |Mt−1]

2

)]
−
[
1−H2

(1

2
+
αt−1εE[YCt |Mt−1]

2

)]
.

Thus, using Fact 22 we have,

I(X;Vt|Mt−1Ct) = Θ(1)αt−1(1−αt−1)ε2E[YCt |Mt−1]2

≤ O(1)ε2E[YCt |Mt−1]2.

Since Ct is uniformly random, we have that

I(X;Vt|Mt−1Ct) =
1

n
·
n∑
j=1

O(1)ε2E[Yj |Mt−1]2. (5)

We begin by proving a relatively straightforward unconditional bound on this sum using the fact
that Mt−1 has only m bits of information.

Lemma 25
n∑
j=1

E[Yj |Mt−1]2 = O(m).

Proof First we notice that since H(Mt−1) ≤ m that I(Y1 . . . Yn;Mt−1) ≤ m, and thus that
H(Y1 . . . Yn|Mt−1) = H(Y1 . . . Yn) − I(Y1 . . . Yn;Mt−1) ≥ n −m. On the other hand, we have
that

n∑
i=1

H(Yi|Mt−1) ≥ H(Y1 . . . Yn|Mt−1) ≥ n−m.

Thus,

m ≥
n∑
i=1

[1−H(Yi|Mt−1)] = Θ

(
n∑
i=1

E[Yi|Mt−1]2

)
.

where the equality comes from Fact 22 and the fact that if Pr[Yi = 1|Mt−1] = 1
2 + α, then

E[Yi|Mt−1] = Pr[Yi = 1|Mt−1](+1) + Pr[Yi = −1|Mt−1](−1) = (1
2 + α) − (1

2 − α) = 2α.
This completes our proof.
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Lemma 25 will be enough to prove our weaker lower bound. To get the stronger one we will
need a more in depth analysis. In particular, we let rj = E[#{1 ≤ i ≤ t − 1 : Ci = j}|Mt−1].
We first show that E[Yj |Mt−1] = O(εrj) (see Claim 26 below). This leaves us with the task of
bounding ‖r‖2. For this, we note that if w = r/‖r‖2, then r is only going to be large if, conditioned
on Mt−1, many of the Ci will lie on components where w is large. However the sum of wCi is a
sum of independent random variables, so by an appropriate Chernoff bound, we can show that it is
likely not too much larger than its mean. However, since Mt−1 only encodes m bits of information,
it can only correspond to an event whose likelihood is exponentially small in m, and this will give
us our bound on ‖r‖2.

We will now show the following claim:

Claim 26 |E[Yj |Mt−1]| = O(ε · rj).

Proof It suffices to show that

|E[Yj |s1, . . . , st−1, X]| = O (ε#{1 ≤ i ≤ t− 1 : Ci = j}) ,

as our final result will follow by averaging over the si and X conditioned on Mt−1.
IfX = 0, this is trivial since in this case the si convey no information about Yj so the expectation

of Yj is 0.
If X = 1, it is not hard to see by Bayes’ Theorem that if n1 is the number of times when

si = (j, 0) and n2 the number of times si = (j, 1), then the expectation of Yj conditioned on X and
the si is

(1 + ε)n1(1− ε)n2 − (1− ε)n1(1 + ε)n2

(1 + ε)n1(1− ε)n2 + (1− ε)n1(1 + ε)n2
= O(ε(n1 + n2)).

And our result follows.

Since Ct is uniform independent of Mt−1 we have E[YCt |Mt−1]2 = O(ε2 1
n

∑n
j=1 r

2
j ) =

O(
ε2‖r‖22
n ).

Therefore, we get that:

I(X;Vt|Mt−1Ct) ≤ O(1)
ε4‖r‖22
n

(6)

Typical Memory States Consider a fixed algorithm A. Call a memory state M typical for time
step t if

• Pr(Mt = M) > e−m

• The corresponding vector r has ‖r‖∞ ≤ 30.

We will need the first condition to ensure that Mt does not encode events that are too unlikely, and
we will need the second to bound the maximum size of individual contributions for our Chernoff
bound. Fortunately, both of these events happen with high probability as we see below:

Claim 27 Assuming t ≤ n9/10 and m is bigger than a sufficiently large multiple of log(n), we
have that Mt is typical for time t with probability at least 1− 1/n.
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Proof First, we deal with the probability that Mt violates the first condition, in particular that it is
a transcript that shows up with probability at most e−m. For this, we note that there are at most 2m

such transcripts, each occurring with probability at most e−m, and so the total probability that any
of them occur is at most (2/e)m < 1/(2n).

Next, we deal with the probability that Mt violates the second condition. In particular, we
bound the probability that there exists a j so that the expected number of Ci equal to j for 1 ≤ i ≤ t
conditioned on Mt is at least 30. For this we, note that for any particular j, the expectation of
max(0,#{1 ≤ i ≤ t : Ci = j} − 20) over sets of samples is at most n−2. Therefore, the
expectation over transcripts of max(0, rj−20) is at most n−2. Our result now follows by a Markov
inequality and union bound over j.

We are now ready to prove an upper bound on N = ‖r‖22 in the following lemma:

Lemma 28 For the fixed transcript A typical for time t, with m ≥ t2/n0.9, we have

N = ‖r‖2 = O

(√
m

log n

)
.

Proof Let w = r/N . Note that ‖r‖2 = r · w, and that ‖w‖2 = 1.
Let X` = wC` 1 ≤ ` ≤ t. These are i.i.d random variables taking values in [0, 30

N ] with mean

E[X`] = 1
n

n∑
i=1

wi ≤ 1√
n

since ‖w‖2 = 1.

Define X :=
t∑̀
=1

wC` and note that µ = E[X] ≤ t√
n

.

We have that

N = E
[ t∑
`=1

wC` |Mt = A
]

=
1

Pr(Mt=A)

∞∫
a=0

Pr[X > a,Mt=A]da

=
1

Pr[Mt=A]

N/2∫
a=0

Pr[X > a,Mt=A]da+
1

Pr[Mt=A]

∞∫
a=N/2

Pr[X > a,Mt=A]da

≤ 1

Pr[Mt=A]

N/2∫
a=0

Pr[Mt=A]da+
1

Pr[Mt=A]

∞∫
a=N/2

Pr[X > a]da

=
N

2
+

1

Pr[Mt=A]

∞∫
a=N/2

Pr[X > a]da .

Thus, we have

N

2
≤ em

∞∫
a=N/2

Pr[X > a]da .

Now let us bound the tail Pr[X > a]. We have Pr[X > a] = Pr[Nx > Na]. We would like to
show that N ≤

√
m

logn . Thus, we can assume that N > 4 t
n0.49 else we already have N ≤

√
m

logn .
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Hence, we can assume that a > 2 t
n0.49 in the above integral. We write a = (1 + δ)µ and apply

the Chernoff bound on the random variable N
30 ·X (note that this is a sum of i.i.d random variables

supported in [0, 1]) to get:

Pr[X > a] = Pr[
N

30
X >

N

30
(1 + δ)µ] <

e
δNµ
30

(1 + δ)(1+δ)Nµ/30
≤ e−

1
40
Na log(1+δ) .

We have 1 + δ = a
µ >

N
√
n

30t > n1/200. Thus, for a ≥ N
2 we have

Pr(X > a) ≤ e−αNa logn ,

for some constant α > 0. Substituting in the above integral gives:

N

2
≤ em

∞∫
a=N/2

Pr[X > a]da ≤ em
∞∫

a=N/2

e−αNa lognda =
1

αN log n
em−αN

2 logn/2 .

Thus, we have for some constant α:

αN2 log n

2
≤ em−αN2 logn/2 .

Since m ≥ 1, the equation θ ≤ em−θ can have a solution only when θ ≤ m. That is αN2 logn
2 ≤ m,

this gives us the required bound ‖r‖2 = N ≤
√

2/α
√

m
logn = O(

√
m

logn).

Proof [Proof of Theorem 23] Using equation (5) and Lemma 25, we get that

I(X;Vt|Mt−1Ct) ≤ O(1)
ε2m

n

However, we know that:

Ω(1) ≤ I(Mk;X) =

k−1∑
t=0

I(Mt+1;X)− I(Mt;X)

=

k−1∑
t=0

I(Mt, St+1;X)− I(Mt;X)

=

k−1∑
t=0

I(St+1;X|Mt)

=
k−1∑
t=0

I(Vt+1;X|Mt, Ct+1)

= O(1)
kε2m

n
.

This implies that k ·m = Ω( n
ε2

).
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Under our stronger assumptions, we can instead use Lemma 28 to similarly obtain:

Ω(1) ≤ I(Mk;X) =

k−1∑
t=0

I(Vt+1;X|Mt, Ct+1)

= O(1)
kε4m

n log n
+O(k/n).

The last line here comes from the fact that I(Vt+1;X|Mt, Ct+1) = O(ε4m/n log(n)) for typical
transcripts Mt and the fact that Mt is typical except with probability 1/n.

Thus, equivalently, we have k ·m = Ω(n logn
ε4

).

B.3. Communication Lower Bounds for Uniformity Testing

In this section, we will show a communication lower bound for distributed uniformity testing al-
gorithms in our one-pass communication model, via a reduction to the streaming/limited memory
setting. In particular, we show the following theorem:

Theorem 29 Suppose that there exists a communication protocol with a transcript of length |T |
bits, for the setting where each machine holds ` samples, that can distinguish between a uniform
distribution and one that is ε-far from uniform in total variation distance. Then there exists a
streaming algorithm that uses at mostm = |T |+` · log n bits of memory and has access to a stream
of at most s = |T | · ` samples.

Proof We will simulate the protocol by storing in memory the entire communication transcript
up to any given point in the simulated protocol, while having some additional space in order to
temporarily store the samples of a single player (machine) at a time.

In particular, we consider the stream of t · ` samples, where t is the number of players that par-
ticipate, that is created by taking the ` samples of the first player to speak and iteratively appending
the ` samples of the next player to speak until there are no more players. We also use the memory
to remember the communication transcript so far at any given point and the samples of the player
speaking in that round so that the algorithm is able to compute the bits that the players send.

Therefore, during any given round i of the communication protocol, the partial transcript Ti−1

of the communication in the first i − 1 rounds is stored in memory along with the ` samples of the
player that is about to speak in round i. Note that, since the referee is not going to ask any questions
again to that particular player, the exact samples of that player are no longer useful to the algorithm
after the current round ends. Therefore, those ` log n bits of additional memory can be reused while
simulating the next round. However, the algorithm will use the bits transmitted by that player along
with the current partial transcript Ti−1, to create the new partial transcript Ti.

Observe that every player has to send at least 1 bit, since otherwise we can assume that they did
not participate in the protocol. Therefore, we have that t ≤ |T | and consequently our stream will
have at most s = |T | · ` samples.

Furthermore, the transcript that is created after the last player speaks is the one that contains the
most information among the partial transcripts which are all optimally compressed. Thus, we have
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that ∀i : |Ti| ≤ |T |, where T = Tt is the transcript of the entire communication. This means that no
more than m = |T |+ ` · log n bits of memory are needed at any given point of the execution.

Using the above theorem, we can prove the following two corollaries:

Corollary 30 Let π be a distributed communication protocol, for the setting where each machine
holds ` samples, which tests if a distribution p is uniform versus ε-far from uniform with error
probability 1/3, and the referee asks questions to each player only once. Then, π must involve

Ω

(√
n/`

ε

)
bits of communication for any ` = O

(
n1/3

ε4/3(logn)1/3

)
. Furthermore, π must involve

Ω

(√
n/`

ε2

√
log n

)
bits of communication for any ` = O

(
ε4/3n0.3

)
.

Proof Suppose, for the sake of contradiction, that there exists such a protocol that uses t =

Θ

(√
n/`

ε2

√
log n

)
bits of communication with a sufficiently small implied constant. Then, us-

ing theorem 29, we conclude that there also exists an streaming algorithm that uses a stream of size
s ≤ t` samples and a memory of size m = Θ(t+ ` log(n)) = Θ(t) bits. Furthermore, we have that

s2/(mn0.99) = Θ(t`2/n0.99)� (`3/2/(n0.45ε2))� 1.

Therefore, Theorem 23 applies and we must have ms = Ω(n log(n)/ε4), but ms = O(t2`), which
is a sufficiently small multiple of n log(n)/ε4, that it yields a contradiction.

Note that for any ` = O
(

n1/3

ε4/3(logn)1/3

)
, it still holds that m = Θ(t + ` log(n)) = Θ(t). We

will combine now Theorem 29 with the weaker version of Theorem 23, and assume that there exists

such a protocol that uses t′ = Θ

(√
n/`

ε

)
bits of communication with a sufficiently small implied

constant. In this case, we must have ms = Ω(n/ε2), but ms = O((t′)2`), which is a sufficiently
small multiple of n/ε2, that it yields a contradiction.

Furthermore, if we have a restricted number of samples, we can get better communication lower
bounds:

Corollary 31 Let π be a distributed communication protocol, for the setting where each machine
holds ` samples with a total of tmachines, which tests if a distribution p is uniform versus ε-far from
uniform with error probability 1/3, and the referee asks questions to each player only once. Then, if

t = O

(√
n/`

ε2

√
log n

)
and t` = O(n0.6/ε4/3), π must involve Ω(n log(n)

ε4t`
) bits of communication.

Proof Again we use Theorem 29. We now have a streaming algorithm using k = t` samples and
m = |π| + ` log(n) memory. We claim that this is impossible even if |π| = p = Θ(n log(n)

ε4t`
) with

the implied constant sufficiently small. In fact, this in case we have that m = O(p). We have
that mn0.9k = Θ(n1.9 log(n)/ε4) > k3, and so the strong version of Theorem 23 applies. This
means that mk = Ω(n log(n)/ε4), when in reality it is too small a constant times this, yielding a
contradiction.
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A case of particular interest for the above is when t` = O(
√
n/ε2) is the information-theoretically

optimal number of samples. In this case (so long as ` = O(log(n))) our communication must be at
least Ω(

√
n log(n)/ε2), which is not much better than sending all of the samples directly.

Finally, the following corollary gives a communication complexity lower bound for all values
of
Ω
(

n1/3

ε4/3(logn)1/3

)
≤ ` ≤ O

(√
n
ε2

)
using the weaker version of Theorem 23.

Corollary 32 Let π be a distributed communication protocol, for the setting where each machine
holds ` samples, which tests if a distribution p is uniform versus ε-far from uniform with error
probability 1/3, and the referee asks questions to each player only once. Then, π must involve
Ω( n

`2ε2 logn
) bits of communication for any Ω

(
n1/3

ε4/3(logn)1/3

)
≤ ` ≤ O

(√
n
ε2

)
.

Proof Suppose, for the sake of contradiction, that there exists such a protocol that uses t =

Θ
(

n
`2ε2 logn

)
bits of communication with a sufficiently small implied constant. Then, using Theo-

rem 29, we conclude that there also exists an streaming algorithm that uses a stream of size s samples
and a memory of size m bits, such that m · k = Θ(t`2 log n), since k = t` and m = Θ(` log n) for
this range of values for `.

This means that mk = Ω(t`2 log n) = Ω( n
ε2

), when in reality it is too small a constant times
this, yielding a contradiction due to Theorem 23.

Appendix C. Communication and Memory Efficient Closeness Testing

In this section, we design our protocols for closeness testing. We start with the setting of memory
and then give our communication efficient protocols.

C.1. Memory Efficient Closeness Testing

In this section, we provide an algorithm for closeness testing in the streaming model that uses
O
(

n√
mε2

)
samples and O(m log(n)) bits of memory where m is a parameter such that

min(n, n2/3/ε4/3)� m� 1 .

By reparametrizing, this implies an algorithm with min(n log(n), n2/3 log(n)/ε4/3) � m �

log(n) bits of memory and O

(
n
√

log(n)√
mε2

)
samples. However, we are going to use the former

parametrization assuming an upper bound of O(m) words of memory (each of length O(log n)
bits), as it will be more convenient for us, so we will use that.

The performance of the algorithm is described in the following theorem:

Theorem 33 Let p, q be two discrete distributions on [n]. Suppose that min(n, n2/3/ε4/3)� m�
1. Then there exists a single pass streaming algorithm that uses at most m log n bits of memory and
O( n√

mε2
) samples from p and q, and distinguishes between the cases that p = q versus ‖p−q‖1 ≥ ε

with probability at least 2/3.
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The algorithm is given in pseudo-code below:

Algorithm TEST-CLOSENESS-MEMORY(p, q, n,m, ε)
Input: Sample access to distributions p, q over [n], memory bound m, and ε > 0.
Output: “YES” if p = q; “NO” if ‖p− q‖1 ≥ ε.

1. Draw O(m) samples from p and q to flatten them to p′, q′ such that ‖p′‖2, ‖q′‖2 ≤
O
(

1√
m

)
. Let [n′] be the new domain.

2. Apply a hash map h to p′, q′. This hash map h : [n] → [m] approximately preserves
‖p′ − q′‖2 and ‖p′‖2 with constant probability.

3. Use a standard `2 tester to distinguish between h(p′)=h(q′) and ‖h(p′)−h(q′)‖2 � ε√
n

.

This section is devoted to the proof of Theorem 33.

Flatten p, and q Our algorithm begins by taking (and storing) m samples from each of p and q.
We use these samples to produce the split distributions p′ and q′ whereby the ith bin is split into ai
equal sub-bins where ai is one more than the number of copies of i in this set of samples. We note
the following important facts from Diakonikolas and Kane (2016):

• Given the list of samples, one can simulate a sample from p′ (resp. q′) from a single sample
of p (resp. q) and some additional randomness.

• ‖p− q‖1 = ‖p′ − q′‖1.

• ‖p′‖2, ‖q′‖2 = O(1/
√
m) with at least 9/10 probability.

Our analysis from here on out will be under the assumption that the last property holds.

Hash p′ and q′ Our next step is to pick a hash map h : [n′] → [m] (where n′ is the size of the
domain of p′ and q′) from a 4-wise independent family (note that for an appropriate family we can
store h usingO(m log(n)) bits). We claim that with at least 9/10 probability that ‖h(p′)‖2, ‖h(q′)‖2
are not too big and that ‖h(p′)− h(q′)‖2 ≈ ‖h(p)− h(q)‖2.

In particular, we have the following:

Lemma 34

Eh[‖h(p′)−h(q′)‖22] =
(

1− 1

m

)
‖p′−q′‖22

Varh

[
‖h(p′)−h(q′)‖22

]
=

1

m

(
1− 1

m

)[
‖p′−q′‖42 − ‖p′−q′‖44

]
Eh[‖h(p′)‖22] =

1

m
+
(

1− 1

m

)
‖p′‖22

Varh

[
‖h(p′)‖22

]
=

1

m

(
1− 1

m

)[
‖p′‖42 − ‖p′‖44

]
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Proof

‖h(p′)−h(q′)‖22 =
∑
i∈[m]

[ ∑
j∈[n′]

(p′j − q′j)I{h(j) = i}
]2

=
∑
i∈[m]

∑
j1,j2∈[n′]

(p′j1 − q
′
j1)(p′j2 − q

′
j2)I{h(j1) = h(j2) = i}

=
∑

j1,j2∈[n′]

(p′j1 − q
′
j1)(p′j2 − q

′
j2)I{h(j1) = h(j2)}

= ‖p′ − q′‖22 +
∑

j1 6=j2∈[n′]

(p′j1 − q
′
j1)(p′j2 − q

′
j2)I{h(j1) = h(j2)}

Eh[‖h(p′)−h(q′)‖22] = ‖p′ − q′‖22 +
1

m

∑
j1 6=j2∈[n′]

(p′j1 − q
′
j1)(p′j2 − q

′
j2)

= ‖p′ − q′‖22 +
1

m

∑
j1∈[n′]

[
(p′j1 − q

′
j1)

∑
j2 6=j1∈[n′]

(p′j2 − q
′
j2)
]

= ‖p′ − q′‖22 −
1

m

∑
j∈[n′]

(p′j − q′j)2 =
(

1− 1

m

)
‖p′−q′‖22

Varh[‖h(p′)−h(q′)‖22] =
∑

j1 6=j2∈[n′]

Varh

[
(p′j1 − q

′
j1)(p′j2 − q

′
j2)I{h(j1) = h(j2)}

]
=

∑
j1 6=j2∈[n′]

(p′j1 − q
′
j1)2(p′j2 − q

′
j2)2 1

m

(
1− 1

m

)
=

1

m

(
1− 1

m

) ∑
j1∈[n′]

(p′j1 − q
′
j1)2
[ ∑
j2 6=j1∈[n′]

(p′j2 − q
′
j2)2
]

=
1

m

(
1− 1

m

) ∑
j1∈[n′]

(p′j1 − q
′
j1)2
[
‖p′ − q′‖22 − (p′j1 − q

′
j1)2
]

=
1

m

(
1− 1

m

)[
‖p′−q′‖42 − ‖p′−q′‖44

]
The other two identities could be computed similarly.

Now using Chebyshev’s inequality we have the following statements hold true with 90% prob-
ability.

‖h(p′)− h(q′)‖22 ≥
1

2
‖p′−q′‖22

‖h(p′)‖22 ≤
1

m
+

3

2
‖p′‖22 = O(1/m).

We now have to distinguish between a completeness case where p = q and thus h(p′) = h(q′)
and a soundness case where ‖p′ − q′‖1 = ‖p − q‖1 ≥ ε, and therefore ‖h(p′) − h(q′)‖2 �
‖p′ − q′‖2 � ε√

n
.

We will also need the following lemma from Chan et al. (2014):
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Lemma 35 Let p, q be distributions such that max(‖p‖2, ‖q‖2) ≤ b, then there is an estimator that
takes O( b

ε2
) samples from p, q and estimates ‖p−q‖2 up to an error of ε.

Proof [Proof of Theorem 33] Using the tester from Lemma 35 for ε′ = ε√
n

and given that b =

1/
√
m, we can distinguish between h(p′) = h(q′) and ‖h(p′) − h(q′)‖2 � ε√

n
in O

(
n√
mε2

)
samples from h(p′) and h(q′) (which can be simulated given samples from p and q). We note also
that this tester only needs to know the number of samples from each of h(p′) and h(q′) that landed in
each bin, and can thus be simulated in a streaming algorithm withO(m log(n)) memory by keeping
a running total of the number of samples from each bin.

This establishes the correctness of our algorithm.
As far as memory usage is concerned, the algorithm uses a total ofO(m log(n)) bits of memory

for each of its steps. In particular, these steps are: recording a set of samples for flattening, storing
the seed of the hash function h, and storing the counts of the number of samples from h(p′), h(q′)
from each bin. Thus, the total memory usage is O(m log(n)) bits.

C.2. Communication Efficient Algorithm for Distributed Closeness Testing

We use a somewhat different algorithm for the communication version of this problem. The basic
idea is that while our memory algorithm compared h(p) to h(q) for some hash function h, our
algorithm here will compare the conditional distribution (p|W ) to (q|W ), for some randomly chosen
subset W of our domain. After applying some flattening, we can ensure that with high probability
the difference between p and q on W approximates the difference of p and q on the whole domain.
Since W is small, we will need fewer samples to test closeness on W . Of course, we cannot make
W too small, as then we will need to query too many machines before even finding a sample from
W . This is balanced our when |W | ≈ n/(` log(n)), so that one out of every log(n) machines should
have a sample (which it communicates in log(n) bits), while the other log(n) machines need one
sample each to tell us that they have no samples from W .

Theorem 36 Suppose that ` = O(nε4/ log(n)). Then there exists an algorithm that given dis-
tributed sample access to two distributions p and q over [n] distinguishes with probability 2/3

between the cases p = q and ‖p− q‖1 > ε using O
(
n2/3 log1/3(n)

`2/3ε4/3

)
bits of communication.

The algorithm is given in pseudo-code below:
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Algorithm TEST-CLOSENESS-DISTRIBUTED(p, q, n, ε)
Input: Each player has ` samples from each of p and q over [n], ε > 0.
Output: “YES” if p = q; “NO” if ‖p− q‖1 ≥ ε.

1. Let C be a sufficiently large constant. Abort the following algorithm if more than
C2(n logn)2/3

`2/3ε4/3
bits of communication are ever used.

2. Draw N = C`(logn)
ε samples from p and q to flatten them to p′ and q′. Let [n′] be the new

domain.

3. The referee picks a random subset W of [n′] by selecting each element with probability
r = 1

` logn and broadcasts this set W to all the machines.

4. The referee asks M = C log(n)|W |2/3/ε4/3 machines first if they have any samples from
W , and if so for the list of these samples along with which distribution they are from.

5. Let m1 of the above samples be from p and m2 be from q. Unless |m1 −m2| < C
√
m1

and |m1| > |W |C2/3/ε4/3 return “NO”.

6. Use the above samples to test ε/C1/2-closeness of two distributions on W and return the
result.

This section is devoted to the proof of Theorem 36.
Using the same analysis for flattening as in Diakonikolas and Kane (2016) (see also Section C.1)

gives us that p′, q′ satisfy ‖p′‖2, ‖q′‖2 ≤ 1√
N

and that ‖p′ − q′‖1 = ‖p − q‖1 with probability at
least 99%. Note that p′|W , q

′
|W are non-normalized pseudo-distributions given by restrictions of p′, q′

to W , and (p′|W ) and (q′|W ) (the corresponding conditional distributions) are their normalized
distributions.

We also note that

E[‖p′ − q′‖22] =
∑
i

|pi − qi|2E[1/(ai + 1)]

= O

(∑
i

|pi − qi|2/(N(pi + qi))

)
= O(1/N)

∑
i

|pi − qi| = O(‖p− q‖1/N).

Therefore, ‖p′ − q′‖22 = O(‖p − q‖1/N) with 99% probability. We assume this and the above
bounds on ‖p′‖2 and ‖q′‖2 throughout the rest.

Next, we analyze the sizes of W,p(W ), q(W ) and ‖p|W − q|W ‖1. In particular, we note
that since W selects each element independently with probability 1/(` log(n)), |W | has mean
n′/(` log(n)) with a similar variance, and so |W | = Θ(n/(` log(n))) with 99% probability (note
that n′ = n + N = Θ(n)). The mean of p′(W ) = 1/(` log(n)) and the variance is ‖p′‖22r,
therefore with 99% probability p′(W ) = Θ(nr), and similarly for q′(W ). Finally, we have that
‖p′|W − q|W ‖1 has mean ‖p′ − q′‖1r = ‖p− q‖1r and variance ‖p′ − q′‖22r = O(‖p− q‖1r/N).
So by Chebyshev’s inequality, with 99% probability we have that if either p = q or ‖p − q‖1 ≥ ε,
then ‖p′|W − q′|W ‖1 = Θ(‖p− q‖1r).

We next consider the completeness and soundness cases, ignoring the possibility of the early
abort.
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Completeness If p = q, then p′(W ) = q′(W ) and (p|W ) = (q|W ). We note that m1 and
m2 each have average values p′(W )M` = Θ(r`M) = Θ(M/ log(n)) and variances less than
their means. This implies that with at least 99% probability it holds |m1 − m2| < C

√
m1 and

|m1| > |W |C2/3/ε4/3. Additionally, since (p′|W ) = (q′|W ), we will pass the closeness test for
these distributions.

Soundness If ‖p− q‖1 > ε, we have that ‖p′|W − q′|W ‖1 = Ω(εr). We note that this implies that
either |p′(W )− q′(W )| > εr/C1/3 or ‖(p′|W )− (q′|W )‖1 > ε/C1/2. This is because

‖p′|W − q′|W ‖1 = ‖(p′|W )p(W )− (q′|W )q(W )‖1
≤ ‖(p′|W )p(W )− (q′|W )p(W )‖1 + ‖(q′|W )p(W )− (q′|W )q(W )‖1
= p(W )‖(p′|W )− (q′|W )‖1 + |p′(W )− q′(W )| .

First, consider what happens if |p′(W )−q′(W )| > εr/C1/3. We notice thatm1 andm2 have means
of M`p′(W ) = Θ(M/ log(n)) and M`q′(W ) = Θ(M/ log(n)), respectively, with variances on
the order of their means. Now if |p′(W )− q′(W )| > εr/C1/3, the means of m1 and m2 will differ
by Ω(Mε/ log(n)C1/3) = Ω(C2/3n2/3/(`2/3ε1/3)), while the variance is O(Cn2/3/(`2/3ε4/3)).
Since the difference of the means is much bigger than both the square root of the mean of m1 and
the square root of the variance, |m1 −m2| will be bigger than C

√
m1 with 99% probability.

On the other hand. if ‖(p′|W ) − (q′|W )‖1 > ε/C1/2, our closeness tester in the last step will
fail.

Communication Complexity Here we show that the communication complexity of the algo-
rithm is within the desired bounds, and that we have enough samples to perform the test in the
last step. Firstly, we note that the N samples in the first step requires only N log(n) communi-
cation, which is well within our bounds. The other major step requires asking M machines. It
takes only O(M) communication for each machine to report whether or not they have a sample,
and we have an average of M`(p′(W ) + q′(W )) samples that take O(log(n)) bits each. This is
at most O(M` log(n)r) = O(C|W |2/3/ε4/3) = O(Cn2/3/(`2/3 log2/3(n)ε4/3)) samples, for an
appropriate number of bits.

Finally, we note that for the last step since |W | = n/(` log(n))� ε−4, our tester only requires
O(|W |2/3/ε4/3) samples, which are available. This completes the proof of Theorem 36.

Appendix D. Conclusions and Future Directions

This work gave algorithms and lower bounds, in some cases matching, for distribution testing with
communication and memory constraints. Our work is a first step in these directions and suggests a
host of interesting open problems. More concretely:

Communication Lower Bounds without One-pass Assumption Our current techniques for prov-
ing communication lower bounds seem to depend fairly strongly on the one-pass assumption. In
particular, when bounding the information learned by the tth sample, it is critical for us to know that
the information that we have from the current transcript is independent of that sample. Unfortu-
nately, it is not clear how to get around that obstacle, and without it we have only the trivial lower
bound of Ω(

√
n/(ε2`)).
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Communication Lower Bounds for Closeness Testing We would like to show communication
lower bounds for closeness testing that are not implied by our uniformity testing lower bounds and
the general sample complexity lower bounds. Our current adversary method is not sufficient for this
task, as the testers that we have can distinguish our adversarial distributions from uniform in a small
number of samples. In order to prove good closeness lower bounds, amore complicated adversary is
necessary, and it is unclear how to combine this adversary with our information-theoretic arguments.
It would even be interesting to make progress in this question for the case of constant ε.

Extending Ranges of Validity An immediate open question is to extend the range of validity
of many of our bounds. Both our algorithms and lower bounds only work for constrained ranges
of parameters in ways that do not allow us to adequately cover the whole space of parameters. It
would be interesting to see if this dependence could be removed. Another interesting parameter
range would be to see if there are any streaming algorithms at all with o(log(n)) memory.

Multi-pass Streaming Models Another interesting open problem would be to consider multiple
pass streaming models. For the reasons outlined above, it seems like our lower bounds would be
difficult to generalize to even a two-pass streaming model. This leads to the interesting question
of whether or not there are better algorithms in this model. At the very least, it is easy to see that
the standard uniformity and closeness testers can be implemented with optimal sample complexity,
O(log(n/ε)) memory, and n passes over the data. What can be done with an intermediate number
of passes?

Instance-Optimal/Adaptive Testing Valiant and Valiant (2014) showed that testing identity to
distributions other than the uniform distribution can often be done with better sample complexity
in the centralized setting. It would be interesting to see what sort of analogue of this result can
be obtained in our models. An analogous question can be asked for the adaptive closeness tester
of Diakonikolas and Kane (2016).
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