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Abstract
Given a fixed n× d matrix X, where n� d, we study the complexity of sampling from a distribu-
tion over all subsets of rows where the probability of a subset is proportional to the squared volume
of the parallelepiped spanned by the rows (a.k.a. a determinantal point process). In this task, it
is important to minimize the preprocessing cost of the procedure (performed once) as well as the
sampling cost (performed repeatedly). To that end, we propose a new determinantal point process
algorithm which has the following two properties, both of which are novel: (1) a preprocessing
step which runs in time O

(
number-of-non-zeros(X) · log n

)
+ poly(d), and (2) a sampling step

which runs in poly(d) time, independent of the number of rows n. We achieve this by introducing
a new regularized determinantal point process (R-DPP), which serves as an intermediate distribu-
tion in the sampling procedure by reducing the number of rows from n to poly(d). Crucially, this
intermediate distribution does not distort the probabilities of the target sample. Our key novelty
in defining the R-DPP is the use of a Poisson random variable for controlling the probabilities of
different subset sizes, leading to new determinantal formulas such as the normalization constant for
this distribution. Our algorithm has applications in many diverse areas where determinantal point
processes have been used, such as machine learning, stochastic optimization, data summarization
and low-rank matrix reconstruction.
Keywords: determinantal point processes, subset selection, low-rank approximation

1. Introduction

Determinantal point processes (DPP) form a family of distributions sampling diverse subsets of
points from a given domain, where the diversity is measured by the squared volume of the par-
allelepiped spanned by the points in some predefined space. DPPs have found applications in a
variety of fields such as physics (Macchi, 1975), statistics (Bardenet et al., 2017), machine learn-
ing (Kulesza and Taskar, 2012), computational geometry (Deshpande et al., 2006), graph theory
(Guenoche, 1983) and others. The applications include:

1. Data summarization and diverse recommendation (e.g., Gillenwater et al., 2012; Gong et al.,
2014; Lin and Bilmes, 2011): selecting a representative sample of items, e.g. documents in a
corpus, frames in a video or products in an online store.

2. Row-based low-rank matrix reconstruction (e.g., Deshpande et al., 2006; Guruswami and
Sinop, 2012): determinantal sampling is the optimal way of selecting few rows of a matrix
that preserve its low-rank approximation.

3. Stochastic optimization and Monte Carlo sampling (e.g., Zhang et al., 2017; Bardenet and
Hardy, 2016): DPP sampling has been used to reduce the variance inherent in i.i.d. sampling
and improve convergence.

c© 2019 M. Dereziński.



FAST DETERMINANTAL POINT PROCESSES

Let X ∈ Rn×d be a tall and thin matrix, i.e. n � d. Determinantal point process DPP(X) is
defined as a distribution over all 2n subsets S ⊆ {1..n} such that

Pr(S) =
det(XSX

>
S)

det(I + XX>)
, (1)

where XS ∈ R|S|×d denotes the submatrix of X containing rows indexed by S. DPP algorithms are
typically divided into a preprocessing step, which needs to be performed once per given matrix X,
and a sampling step, which happens each time we wish to sample set S ∼ DPP(X). In this paper,
we improve on the best known time complexity of both steps by demonstrating:

1. the first DPP algorithm with input sparsity time preprocessing: nnz(X) log n+ poly(d);

2. the first exact DPP algorithm s.t. sampling takes poly(d) time, independent of n.

Here, nnz(X) denotes the number of non-zero entries. Before this work, the best known DPP al-
gorithms (see Section 2 and references therein) had preprocessing times Θ(nd2), or Ω(nnz(X)k2)
if we allow conditioning on a fixed subset size |S| = k (which can be as large as d), and sam-
pling times at least Ω(n |S|). Our DPP algorithm is based on the following general recipe for
sampling from some “target” joint distribution: i) generate a larger sample of poly(d) rows
σ = (σ1, . . . , σk) ∈ {1..n}k from an “intermediate” distribution; ii) downsample to a smaller
subset using the “target” distribution. Crucially, the intermediate sampling is not allowed to distort
the target distribution:

Goal: σ
i)∼ intermediate

n×d︷︸︸︷
(X) and S

ii)∼ target

poly(d)×d︷ ︸︸ ︷
(Xσ) =⇒

σS︷ ︸︸ ︷
{σi}i∈S ∼

DPP(X)︷ ︸︸ ︷
target(X) .

A simplified version of this approach was recently suggested by Dereziński et al. (2018). They
sample from a different but related family of determinantal distributions called size k ≥ d volume
sampling, which has the unique property that it can play the role of both the “intermediate” and
the “target” distribution. DPPs on the other hand do not have that property and no candidate for
an intermediate distribution was previously known. To that end, we develop a new family of joint
distributions: regularized determinantal point processes (R-DPP). For a p.s.d. matrix A ∈ Rd×d and
a Poisson mean parameter r > 0 an R-DPPr(X,A) samples over all sequences σ ∈

⋃∞
k=0{1..n}k

so that

Pr(σ) ∝ det
(
A + X>σXσ

) rke−r

k!
, where k is the length of σ.

Rescaling with Poisson probabilities rke−r
k! is essential for the normalization constant of this dis-

tribution to have a closed form (a key part of our analysis). We obtain it via the following new
determinantal formula: if σ = (σ1, . . . , σK) is a sequence of K i.i.d. samples from {1..n}, then

for K ∼ Poisson(r), E
[

det
(
A + X>σXσ

)]
= det

(
A + E

[
X>σXσ

])
,

where the expectations are over the random variableK as well as the i.i.d. samples. Similar formulas
have been known for fixed lengthK but only in the unregularized case where A = 0 (see Dereziński
et al., 2019). Our result shows that regularization can be introduced by randomizing the sequence
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length with Poisson distribution. In Section 4 we use this formula to show a number of connections
between R-DPPs and DPPs. For example, the latter can be obtained from the former when the
Poisson mean parameter r converges to 0 along with regularization A set to r

n I:

R-DPPr
(
X,

r

n
I
)

r→0−→ DPP(X).

This means that the family of R-DPPs contains DPPs in its closure and can thus be viewed as an
extension. We also show that DPPs are preserved under subsampling with an R-DPP:

if σ ∼ R-DPPr(X, I) and S ∼ DPP(Xσ), then σS ∼ DPP
(√

r

n
X
)
.

This suggests that R-DPP is a good candidate for an “intermediate” distribution when sampling a
DPP. To make sampling from R-DPPs efficient, we further generalize them so that the marginal
row probabilities can be reweighted with an arbitrary i.i.d. distribution. On a very high level, our
strategy is to show that when the length of sequence σ is sufficiently large in expectation (but still
independent of n) and the R-DPP is reweighted by ridge leverage scores, then it becomes very close
to i.i.d. sampling, so we can use that as a proposal distribution for a rejection sampling scheme.

In the following section we give some background and related work on DPP algorithms, then in
Section 3 we present our main algorithm (Algorithm 2) and the associated result (Theorem 2), along
with an example application in low-rank matrix reconstruction. Section 4 introduces R-DPPs along
with their basic properties and the remaining Sections 5 and 6 are devoted to proving Theorem 2.

2. Background and related work

Several settings have been used in the literature for studying the complexity of DPP algorithms.
Below we review those which are slightly different than the one we presented in Section 1, but are
still relevant to our discussion (see Kulesza and Taskar, 2012, for details).

L-ensemble We defined a DPP in terms of a matrix X ∈ Rn×d, where each element i ∈ {1..n}
is described by a row vector x>i ∈ Rd (suggested by Deshpande et al., 2006; Kulesza and Taskar,
2010). An equivalent parameterization can be defined in terms of the so-called ensemble matrix
L = XX> ∈ Rn×n, where the (i, j)th entry represents the dot product x>i xj . In this case, the
probability (1) of a subset S ⊆ {1..n} can be written as Pr(S) =

det(LS,S)
det(I+L) , where LS,S ∈ R|S|×|S|

denotes the submatrix of L with both row and column entries indexed by S. Naturally, one represen-
tation can be converted to the other in preprocessing, so our results are still useful in the L-ensemble
case when rank(L) � n. However, since matrix L is much larger than X, the preprocessing cost
may increase.

k-DPP In some practical applications, when a subset of particular size is desired, a DPP can be
restricted only to subsets S such that |S| = k for some k ∈ {1..d}, and referred to as a k-DPP
(Kulesza and Taskar, 2011). This is equivalent to sampling a set S from a standard DPP, but ac-
cepting the sample only if |S| = k. This distribution is also sometimes called size k≤ d volume
sampling (Deshpande et al., 2006), not to be confused with size k≥ d volume sampling mentioned
in Section 1. The special case of k = d will be further discussed in Section 2.2. An alternative
way of controlling the subset size is by rescaling matrix X with some α so that the expected subset
size for S ∼ DPP(αX), i.e. E

[
|S|
]

matches a desired value (see Section 3 for more details). A

3



FAST DETERMINANTAL POINT PROCESSES

restriction to k-DPP can lead to faster sampling algorithms (when k is small), as discussed in the
following sections.

A classical DPP algorithm introduced by Hough et al. (2006) uses the singular value decom-
position (SVD) of either L or X to produce an exact sample S from the DPP in time O(n |S|2).
However, this runtime does not include the cost of SVD, considered as a preprocessing step, which
takesO(n3) andO(nd2) for L and X, respectively. Since then, a number of methods were proposed
to improve on this basic approach. We survey these techniques in the following two sections, and
present a runtime comparison in Tables 1 and 2 (we omit the big-O notation in the tables).

preprocessing
SVD nd2

sketching nnz(X)k2 + nk4

MCMC nd · poly(k)

this paper nnz(X) + d3k2

Table 1: Preprocessing costs for approximate
k-DPPs from X (omitting log terms), com-
pared to our DPP algorithm.

sampling
bottom-up nk2

i.i.d.+top-down nk + k4

MCMC n · poly(k)

this paper d3k

Table 2: Sampling cost (after preprocessing)
for DPP/k-DPP methods, compared to our
DPP algorithm (k = |S| ≤ d ≤ n).

2.1. Previous approximate preprocessing techniques

Approximate preprocessing methods were studied primarily for k-DPPs (i.e. |S| = k) rather than
for standard DPPs, because bounding the subset size makes volume approximations easier to con-
trol. Deshpande and Rademacher (2010) and Gillenwater et al. (2012) suggested to use volume-
preserving sketching of Magen and Zouzias (2008) to reduce the dimension d of matrix X to
r = Õ(k2), which allows approximate sampling from a k-DPP. Here, the cost of sketching is
Õ(nnz(X)k2), and it is followed by computing SVD of an n × r matrix in time Õ(nk4). Also,
Anari et al. (2016) proposed to use a fast-mixing MCMC algorithm whose stationary distribution is
a k-DPP, where preprocessing cost isO(nd ·poly(k)) for matrix X, andO(n ·poly(k)) for matrix L
(sampling time is similar). Other approximation techniques such as Nystrom (Affandi et al., 2013)
and coresets (Li et al., 2016) yield approximate DPP distributions however their accuracy is data-
dependent. Table 1 compares the preprocessing costs for the approximate k-DPP methods offering
data-independent accuracy guarantees with that of our DPP algorithm. Note that our approach is
specifically designed for sampling from a full DPP, not a k-DPP. Also, unlike these approximate
methods our algorithm samples exactly from DPP(ρX) for some ρ ≈ 1, which is a much more
precise guarantee.

2.2. Sampling a DPP as a mixture of volume samples

Any DPP is a mixture of so-called elementary DPPs (see Hough et al., 2006; Kulesza and Taskar,
2012). These elementary DPPs have been independently studied in the context of volume sampling
(Avron and Boutsidis, 2013). For X ∈ Rn×d, volume sampling is given by

S ∼ VS(X) : Pr(S) =
det(XS)2

det(X>X)
for S s.t. |S| = d.
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The mixture decomposition shown by Hough et al. (2006) implies that DPP sampling can be di-
vided into two steps: first sample one element from the mixture, then generate a sample from that
elementary DPP. Specifically, consider the eigendecompositions L =

∑d
i=1 λiviv

>
i and X>X =∑d

i=1 λiv̂iv̂
>
i . For convenience, let us put the eigenvectors of L into a matrix V = [v1, . . . ,vd] ∈

Rn×d. Then S ∼ DPP(X) can be produced by sampling a subset T of eigenvector indices (step 1)
and performing volume sampling w.r.t. the n× |T | matrix constructed from those vectors (step 2):

S ∼ VS
(
V∗,T

)
, where for each i ∈ {1..d}, independently, Pr(i ∈ T ) =

λi
1 + λi

.

Here, V∗,T denotes the submatrix of V consisting of the columns indexed by T . We used vectors
from the decomposition of L, but this can be easily obtained from the decomposition of X>X
during preprocessing, since vi = 1√

λi
Xv̂i. So given the eigendecomposition we can sample the set

T easily, and it remains to perform the volume sampling step.

Algorithm 1 Bottom-up volume sampling

input: V ∈ Rn×k, s.t. V>V = I
output: S ∼ VS(V)
for i = 1..k

Sample σi ∼
(
‖V1,∗‖2, . . ., ‖Vn,∗‖2

)
V← V

(
I− (Vσi,∗)

>Vσi,∗
‖Vσi,∗‖2

)
end for
return S = {σ1, . . . , σk}

In Table 2 we review the running times for dif-
ferent approaches of sampling S ∼ VS

(
V∗,T

)
,

compared to a different MCMC-based DPP sampler
(Anari et al., 2016) and our algorithm. The classical
approach from DPP literature (Hough et al., 2006)
samples “bottom-up”, adding one point at a time and
at each step projecting the remaining points onto the
subspace orthogonal to that point (see Algorithm 1).
Curiously, a diametrically opposed “top-down” ap-
proach of Dereziński and Warmuth (2018), which
eliminates points one at a time instead of adding them, achieves the same asymptotic runtime with
high probability. The volume sampling algorithm of Dereziński et al. (2018) further improves on
this downsampling strategy by introducing an intermediate i.i.d. oversampling step, which is what
inspired our approach. Note that we are the first to apply the “top-down” algorithms to DPP sam-
pling (they were previously known only in the context of volume sampling). Unfortunately, in all of
these methods sampling time is linear1 in n (they have to read the matrix V∗,T for each sampled set)
which may not be acceptable when n � d and we need to perform the sampling repeatedly. Our
algorithm, which uses the mixture decomposition only as a subroutine, samples in time independent
of n.

3. Main result

As discussed in Section 1, the high level strategy of our algorithm is to design an “intermediate”
sampling distribution, which reduces the size of the matrix X from n× d to poly(d)× d while pre-
serving the “target” distribution (here, a DPP). Another key property of the intermediate distribution
is that it has be close to i.i.d., so that we can implement it efficiently. Thus, our algorithm will use
an i.i.d. sampling distribution defined by a vector l = (l1, . . . , ln) of importance weights assigned
to each row of X, and use it as a proposal for rejection sampling from the intermediate distribution.
Overall, the three main components of our method are:

1. A different strategy was proposed by Li et al. (2016), which uses coreset construction to approximately sample from
a DPP in time independent of n, however the sampling accuracy is data-dependent.
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σ∼ intermediate(X)︷ ︸︸ ︷
(1) i.i.d. sampling (2) rejection sampling

S∼ target(Xσ)︷ ︸︸ ︷
(3) downsampling .

In Section 4 we define a regularized determinantal point process (R-DPP) and use it as the inter-
mediate distribution. For the i.i.d. sampling weights we use a particular variant of so-called ridge
leverage scores (Alaoui and Mahoney, 2015). Let x>i denote the ith row of X and w.l.o.g. assume
that all rows are non-zero.

Algorithm 2 Fast determinantal point process sampling

1: input: X ∈ Rn×d, A ∈ Rd×d, sampling oracle for i ∼ l̃ = (l̃1, . . . , l̃n)

2: repeat
3: sample K ∼ Poisson(q), for q = d2ds̃e, s̃ = tr

(
A(I + A)−1

)
4: sample σ1, . . ., σK

i.i.d.∼ (l1, . . ., ln), for li = x>i (I+A)−1xi, rejection sampling via l̃

5: sample Acc ∼Bernoulli
(

det(I+X̃>σ X̃σ)
CK det(I+A)

)
, for X̃ =

[√
s̃

li(q−s̃) x
>
i

]
, CK = ( q

q−s̃)
K+de−s̃

6: until Acc = true (if Acc = true, then σ1, . . . , σK is distributed as an R-DPP)
7: return σ

S̃
, where S̃ ∼ DPP

(
X̃σ

)
Other than matrix X, the algorithm takes additional inputs: matrix A ≈ X>X and a sampling

oracle for l̃ which approximates l. The inputs A and l̃ are computed in the preprocessing step, which
can be easily performed in time O(nd2), but standard sketching techniques can be used to achieve
input sparsity time preprocessing. In line 7 of the algorithm we invoke a different DPP sampling
procedure for a matrix of reduced size. This can be for example the classical algorithm discussed
in Section 2.2 with the volume sampling part implemented by Algorithm 1 and SVD performed
exactly. Our main result shows that Algorithm 2 runs in time independent of n and samples from
a determinantal point process. The only trade-off coming from approximate preprocessing is that
it samples from DPP(ρX) instead of DPP(X), for some ρ ≈ 1. This rescaling only affects the
distribution of sample size |σ

S̃
| (and not the conditional probability given the size), and it also

implies a weaker (but more standard) approximation guarantee based on total variation distance.

Definition 1 (total variation) A distribution on a finite domain Ω with probability mass function q
is an ε-approximation of a distribution on Ω with probability mass function p if

1

2

∑
x∈Ω

∣∣q(x)− p(x)
∣∣ ≤ ε.

Theorem 2 Suppose that ε ∈ [0, 1], C ≥ 0 and X ∈ Rn×d, A ∈ Rd×d, l̃ = (l̃1, . . . , l̃n) satisfy:

(1− η)X>X � A � (1 + η)X>X, for η =
ε

4s̄+ C ln 9/ε
, (2)

1

2
x>i (I + A)−1xi ≤ l̃i ≤

3

2
x>i (I + A)−1xi, for all i ∈ {1..n}, (3)

where s̄ = max{1, E[|S|]} ≤ d for S ∼ DPP(X). The following are true for Algorithm 2:

1. It returns σ
S̃
∼ DPP(ρX), where |ρ− 1| ≤ η and

∣∣E[|σ
S̃
|]− E[|S|]

∣∣ ≤ ε;
6
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2. There is C = O(1) for which this distribution is an ε-approximation of DPP(X);

3. The algorithm has time complexity O(d3s̄ log21/δ) w.p. at least 1− δ.

Note that both X>X and the distribution l can be computed in O(nd2) time, thereby satisfying
conditions (2) and (3) with η = ε = 0. In this case, Algorithm 2 is an exact DPP sampler that
runs in time independent of n. However, if preprocessing cost of O(nd2) is not acceptable, then the
following result offers input sparsity time preprocessing for ε > 0.

Proposition 3 Matrix A and distribution l̃ satisfying conditions (2) and (3) can be obtained from
matrix X in time O(nnz(X) log n+ d3 log d · (s̄+ log 1/ε)2/ε2).

The proof of Theorem 2 is spread out across Sections 5, 6 and the appendices. In Section 4 and
Appendix A we define regularized determinantal point processes and show how they can be used
for sampling DPPs. Then, in Section 5 and Appendix B we show that Algorithm 2 indeed samples
from DPP(ρX) (ε-approximation is proven in Appendix C). Finally, in Section 6 we present the
key steps in proving the time bounds, with the details (including the proof of Proposition 3) given
in Appendix D.

Application: row-based low-rank matrix reconstruction

One application of DPPs aims to find a small subset S ⊆ {1..n} of rows of matrix X ∈ Rn×d such
that the subspace spanned by those rows captures the full matrix nearly as well as the best rank-k
approximation in terms of the Frobenius norm ‖ · ‖F . Let PS = (XS)+XS be the projection matrix
onto the span of vectors {xi}i∈S . Guruswami and Sinop (2012) showed that if S ∼ DPP(X) then
for any k ≤ s ≤ d,

E
[∥∥X−XPS

∥∥2

F

∣∣ |S|=s
]
≤ s+ 1

s+ 1− k
‖X−X(k)‖2F where X(k) = argmin

Y: rank(Y)=k
‖X−Y‖F ,

and that for any s = o(n) the bound is tight up to lower order terms.2 In particular, for the ratio
s+1

s+1−k to become 1 + ε, we need sk,ε = k/ε + k − 1 rows sampled from a DPP. Even though it
is most natural to use fixed-size DPPs in this context, the sample size |S| for a standard DPP is
sufficiently concentrated around its mean to offer near-optimal guarantees for this task. In fact, as
shown by Pemantle and Peres (2014) (see Lemma 14 in Appendix C), for S ∼ DPP(X), w.p. ≥ 1

2
we have

∣∣|S| − s̄∣∣ ≤ c
√
s̄ for some absolute constant c, where s̄ = max{1, E[|S|]}. The expected

sample size is derived as:

E
[
|S|
]

=

d∑
i=1

λi
1 + λi

, where λ1, . . . , λd are the eigenvalues of X>X. (4)

Since s̄ is monotonic w.r.t. the eigenvalues we can use a simple binary search to find a rescaling
αX for which s̄ − c

√
s̄ ≈ sk,ε. Thus, if S ∼ DPP(αX), then for ∆k,ε = [sk,ε, sk,ε + δk,ε], where

δk,ε = 2c
√
s̄ = O

(√
sk,ε
)
, we have:

2. Other methods are known for this and related tasks which achieve near-optimal bounds (e.g., see Deshpande et al.,
2006; Boutsidis et al., 2011; Boutsidis and Woodruff, 2017).
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E
[∥∥X−XPS

∥∥2

F

∣∣ |S| ∈ ∆k,ε

]
≤ (1 + ε) ‖X−X(k)‖2F and Pr

(
|S| ∈ ∆k,ε

)
≥ 1

2
.

We can obtain the same guarantee if we replace the eigenvalues of X>X in (4) with those of
matrix A satisfying condition (2) with η = 1

4sk,ε
, so by Theorem 2 the total cost of obtaining such a

sample would be3 O(nnz(X) log n+ d3 log d · s2
k,ε). Note that we needed the fact that Algorithm 2

returns DPP(ρX) rather than just an approximation of DPP(X). This raises the following natural
question: can our techniques be extended to sampling from fixed-size DPPs, so that the optimal
sample size sk,ε can be achieved exactly and in time O(nnz(X) log n+ poly(d))? We leave this as
a new direction for future work.

4. Regularized determinantal point processes (R-DPP)

We propose a new family of determinantal sampling distributions which will be used in Sections 5
and 6 to prove Theorem 2. The crucial property of this family is that the determinantal sampling
probabilities can be regularized by adding an arbitrary fixed positive semi-definite (p.s.d.) matrix
inside of the determinant, while maintaining many of the natural properties of a DPP, such as a
simple normalization constant. This is achieved by controlling the size of the sample with a Poisson
random variable. In the proofs that follow we will use the shorthand [n]

def
= {1..n}.

Definition 4 Given matrix X ∈ Rn×d, distribution p = (p1, . . . , pn), p.s.d. matrix A ∈ Rd×d and
r > 0, we define R-DPPrp(X,A) as a distribution over all index sequences σ̃ ∈

⋃∞
k=0{1..n}k, s.t.

Pr(σ̃) =
det(A + X>σ̃Xσ̃)

det
(
A + rEj∼p[xjx>j ]

) rke−r

k!

k∏
i=1

pσ̃i , for σ̃ ∈ {1..n}k. (5)

Whenever p is uniform, we will write R-DPPr(X,A). Of course, we need to establish that this is
in fact a valid distribution, i.e. that it sums to one. We achieve this by showing a new variant of the
classical Cauchy-Binet formula (the classical formula is stated in (6) below).

Lemma 5 Given X∈Rn×d and p.s.d. A∈Rd×d, if σ = (σ1, . . . , σK)
i.i.d.∼ p = (p1, . . . , pn), then

for K ∼ Poisson(r), E
[

det
(
A + X>σXσ

)]
= det

(
A + E

[
X>σXσ

])
.

Remark 6 The classical Cauchy-Binet formula states that for a matrix X ∈ Rn×d, we have∑
S⊆[n]: |S|=d

det(XS)2 = det(X>X). (6)

Probabilistic extensions of the formula previously appeared in the context of volume sampling
(Dereziński et al., 2019), and also much earlier in a different context (van der Vaart, 1965). In
these cases A = 0 and K is fixed.

3. If we forgo exact DPP sampling, then projection-cost preserving sketches (Cohen et al., 2015) may offer further
speed-ups.
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Proof Previously shown identities for fixed size K do not generalize naturally to the regularized
setting unless randomness in K is introduced. We start the proof by applying the Cauchy-Binet
formula (6) to the term under the expectation. Let A = B>B be any decomposition of A s.t. B ∈
Rb×d where b = rank(A). To apply the Cauchy-Binet formula, we sum over all d-element subsets
of the union of rows of matrices B and Xσ:

det
(
A + X>σXσ

)
=

∑
S⊆[b]
|S|≥d−K

∑
T⊆[K]:
|T |=d−|S|

det

([
BS
XσT

])2

.

Applying the law of total expectation w.r.t. the Poisson variable K, we obtain

E
[

det
(
A + X>σXσ

)]
=

∞∑
k=0

rke−r

k!

∑
S⊆[b]
|S|≥d−k

∑
T⊆[k]:
|T |=d−|S|

E
[

det

([
BS
XσT

])2 ∣∣K=k

]

(a)
=
∑
S⊆[b]

∞∑
k=d−|S|

rke−r

k!

(
k

d−|S|

)
E
[

det

([
BS
Xσ

])2 ∣∣K=d−|S|
]

(b)
=
∑
S⊆[b]

(d−|S|)!
∑
T⊆[n]:
|T |=d−|S|

det

([
BS
XT

])2(∏
i∈T

pi

) ∞∑
k=d−|S|

rke−r

k!

(
k

d−|S|

)

(c)
=
∑
S⊆[b]

∑
T⊆[n]:
|T |=d−|S|

det

([
BS[√

rpi x
>
i

]
i∈T

])2 ∞∑
k=d−|S|

rk−d+|S|e−r

(k−d+|S|)!︸ ︷︷ ︸
1

(d)
= det

(
B>B + r

n∑
i=1

pixix
>
i

)
,

where (a) follows from the exchangeability of sequence σ (so that the value of the expectation is
the same for any subset T ), in (b) we expand the expectation and note that only unique sequences
σ will have a non-zero determinant (hence the switch to subsets and the term (d − |S|)!) and in
(c) we absorb the factors rd−|S| and pi into the determinant by treating the product of pi’s as the
determinant of a d× d diagonal matrix with 1’s at diagonal entries corresponding to the rows of BS

and
√
rpi at the entries corresponding to XT , and then using that det(VW) = det(V) det(W).

Finally, (d) is the classical Cauchy-Binet. It was crucial that we were able to absorb the subset size
|S| into the Poisson series, which allowed the formula to collapse to a single determinant. This
completes the proof because E[X>σXσ] = E[K]E[xσ1x

>
σ1

] = r
∑

i pixix
>
i .

In what sense is R-DPP a natural extension of a determinantal point process? Naively, we might say
that setting the matrix A to an all-zeros matrix would recover the classical distribution, however this
is not the case because when A=0 only samples of size d or larger will have non-zero probability.
Instead, we can demonstrate a connection to both DPP and volume sampling distributions in a
different way: we show that they can be obtained as the limiting distributions of R-DPP when
the regularization and sample size parameter r converge to zero (in two separate ways), which is
remarkable as the two distributions in most cases produce vastly different samples.

9
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Theorem 7 For X ∈ Rn×d, ignoring the ordering in the sequences sampled with R-DPP, we have

R-DPPr
(
X,

r

n
I
)

r→0−→ DPP(X) (pointwise),

whereas R-DPPr(X,0)
r→0−→ VS(X) (pointwise).

Theorem 7 suggests that R-DPPs are likely to be of independent interest as an extension of DPPs.
However, it does not say how to use them algorithmically. To that end, we make a second ob-
servation, which essentially states that DPPs are preserved under subsampling with R-DPPs. See
Appendix A for proofs of Theorems 7 and 8.

Theorem 8 For any X ∈ Rn×d, α > 0 and distribution p over {1..n} s.t. pi > 0, let X̃ denote
matrix X with ith row rescaled by 1√

αpi
for every i ∈ {1..n}. It follows that for any r > 0,

if σ̃ ∼ R-DPPrp
(
X̃, I

)
and S ∼ DPP

(
X̃σ̃

)
, then σ̃S ∼ DPP

(√
r

α
X
)
.

5. Correctness of Algorithm 2

We present the first part of the proof of Theorem 2 by establishing that Algorithm 2 produces a
sample from a determinantal point process. In fact, we will prove the following more precise claim:

Lemma 9 Given X ∈ Rn×d and a non-zero p.s.d. matrix A ∈ Rd×d, Algorithm 2 returns S ∼
DPP(ρX), with ρ2 = s̃

ŝ where s̃=tr(A(I + A)−1) and ŝ=
∑n

i=1 x
>
i (I + A)−1xi.

Proof The general idea of the proof is to show that the main repeat loop is implementing an
R-DPP, so that we can invoke Theorem 8. Central to this fact is the choice of numerical factor
appearing in the denominator of Bernoulli sampling probability in line 5, which we denote here as
CK = ( q

q−s̃)
K+de−s̃. This factor has to depend on K because otherwise the determinantal term

will always dominate it for large enough K. This means that CK needed to be carefully chosen so
that:

1. the acceptance probability of line 5 is always bounded by 1,

2. we have control over how the presence of CK changes the distribution of K,

3. and CK is not too large so that we may have a good chance of accepting the sample.

We start by showing that the Bernoulli sampling probability in line 5 is in fact bounded by 1. We
will use the following simple inequality (proven in Appendix B):

Lemma 10 For any d ≥ 1, ε ∈ [0, 1], and non-negative integers k, q s.t. q ≥ εd we have((
1− ε

)
+
ε k

q

)d
≤
( q

q − εd

)k
e−εd.

Let X̃ ∈ Rn×d be the matrix X where for each i ∈ {1..n} the ith row is rescaled by
√
| s̃
li(q−s̃) ,

with li = x>i (I + A)−1xi (same as in line 5 of the algorithm), and let σ = (σ1, . . . , σK). We use

10
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arithmetic-geometric mean inequality for the eigenvalues of matrix (I+ X̃>σX̃σ)(I+A)−1 and the
fact that tr

(
(I + A)−1

)
= d− s̃, obtaining:

det(I + X̃>σX̃σ)

det(I + A)
= det

(
(I + X̃>σX̃σ)(I + A)−1

)
≤
(

1

d
tr
(
(I + X̃>σX̃σ)(I + A)−1

))d
=

(
d−s̃
d

+
1

d
tr
(
X̃>σX̃σ(I + A)−1

))d

=

(
1− s̃

d
+

s̃

d(q−s̃)

K∑
i=1

1︷ ︸︸ ︷
1

lσi
x>σi(I + A)−1xσi

)d
=

(
1− s̃

d
+
s̃

d

K

q − s̃

)d
≤
(

1− s̃
d

+
s̃

d

K

q

)d( q

q − s̃

)d
(∗)
≤
(

q

q − s̃

)K+d

e−s̃ = CK ,

where (∗) follows from Lemma 10 invoked with ε = s̃
d and k = K. Having established the

validity of the rejection sampling in Algorithm 2, we now compute the distribution of sample σ at
the point of exiting the repeat loop. Denoting r = q− s̃ as the desired Poisson mean parameter and
ŝ =

∑
i li = tr(X>X(I + A)−1) as the normalization for the sampling probabilities in line 4,

Pr(σ |Acc) ∝

Pr(Acc |σ)︷ ︸︸ ︷
det(I + X̃>σX̃σ)

( qr )K+de−s̃ det(I + A)

Pr(K)︷ ︸︸ ︷
qKe−q

K!

Pr(σ |K)︷ ︸︸ ︷∏
i

lσi
ŝ
∝ det

(
I + X̃>σX̃σ

)rKe−r

K!

K∏
i=1

lσi
ŝ
,

where in the above we omitted the normalization for the sake of clarity. Comparing the obtained
unnormalized probability to the one given in (5), we conclude that the sample is distributed ac-
cording to R-DPPrl

(
X̃, I

)
. Note how the factor CK interplays with Pr(K) to “transform” the

variable from being Poisson(q) to Poisson(r). Invoking Theorem 8 for the matrix X, α = ŝ
s̃r and

distribution
(
l1
ŝ , . . . ,

ln
ŝ

)
we conclude that Algorithm 2 returns σ

S̃
∼ DPP(ρX) where ρ2 = s̃/ŝ.

To bound the rescaling factor ρ we use condition (2) of Theorem 2 which ensures that A = (1 ±
η)X>X, implying that

s̃ = tr
(
A(I + A)−1

)
≤ (1 + η) tr

(
X>X(I + A)−1

)
= (1 + η) ŝ,

and similarly s̃ ≥ (1−η)ŝ. We obtain ρ2 = s̃/ŝ ∈ [1−η, 1+η] implying that |ρ−1| ≤ η, as claimed
in Theorem 2. Having established this, we use formula (4) to similarly show that:

E
[
|σ
S̃
|
]

= tr
(
ρ2X>X(I + ρ2X>X)−1

)
≤
(

1 +
ε

4s̄

)
· E
[
|S|
]
≤ E

[
|S|
]

+ ε/4, (7)

(lower bound follows identically). The total variation bound (restated below) is proven in Ap-
pendix C.

Lemma 11 There is C > 0 s.t. for any matrix X and ε ≤ 1, if |ρ2 − 1| ≤ ε
4s̄+C ln 9/ε , where

s̄ = max{1, E[|S|]} for S ∼ DPP(X), then DPP(ρX) is an ε-approximation of DPP(X).
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6. Efficiency of rejection sampling

We complete the proof of Theorem 2 by bounding the time complexity of Algorithm 2 and that of
preprocessing. The key step is to lower bound the probability of exiting the repeat loop in lines 2-6.
In the following lemma we show that if matrix A is a sufficiently good approximation of X>X,
then the acceptance probability Pr(Acc = true) is lower bounded by a constant, thus ensuring that
the algorithm will leave the loop after only a few iterations.

Lemma 12 If matrix A satisfies
(
1− 1

4s̄

)
X>X � A �

(
1+ 1

4s̄

)
X>X, then at the end of each

iteration of the repeat loop in Algorithm 2, we have Pr(Acc=true) ≥ 1
6 .

Proof As in lines 3 and 4 of Algorithm 2, let σ = (σ1, . . . , σK)
i.i.d.∼ l and K ∼ Poisson(q), where

q = d2ds̃e. Recall that at the end of the proof of Lemma 9 we noted how the presence of constant
CK = ( qr )K+de−s̃, where r = q− s̃, appears to transform the distribution of the sample size K into
K̃ ∼ Poisson(r). This can be seen even more clearly as we compute the acceptance probability
after one iteration of the loop:

E
[

det(I + X̃>σX̃σ)

( qr )K+de−s̃ det(I + A)

]
=

∞∑
k=0

qke−q

k!
E
[

det(I + X̃>σX̃σ)

( qr )k+de−s̃ det(I + A)

∣∣∣K = k

]

=
1

( qr )d

∞∑
k=0

rke−r

k!
E
[

det(I + X̃>σX̃σ)

det(I + A)

∣∣∣K = k

]

=

(
q − s̃
q

)d E
[

det
(
I +

∑K̃
i=1 x̃σi x̃

>
σi

)]
det(I + A)

(∗)
=

(
1− s̃

q

)d det
(
I + rE

[
x̃σ1 x̃σ1

])
det(I + A)

,

where (∗) follows from Lemma 5 applied to X̃, distribution l and sample size K̃. Bernoulli’s
inequality shows that (1− s̃

q )d ≥ 1− ds̃
q ≥

1
2 . Furthermore, it is easy to verify that rE[x̃σ1 x̃

>
σ1

] =

s̃ E[ 1
lσ1

xσ1x
>
σ1

] = ρ2X>X, where ρ2 = s̃/ŝ. To lower bound the ratio of determinants we use the
following lemma shown in Appendix C.

Lemma 13 For p.s.d. matrices B, C such that (1− γ)C � B � (1 + γ)C with γ ∈ (0, 1),

e−
γ

1−γ s det(I + C) ≤ det(I + B) ≤ eγs det(I + C), where s = tr
(
C(I + C)−1

)
.

Setting B = A and C = ρ2X>X, we have B � (1 + η)X>X � 1+η
1−ηC and similar lower bound

follows, so applying Lemma 13 with γ = 2η
1−η and s = tr(C(I + C)−1) ≤ 5

4 s̄ (see (7)):

det(I + ρ2X>X)

det(I + A)
≥ e−

2η
1−η

5
4
s̄ ≥ e−

1
2s̄

4
3

5
4
s̄ = e−

5
6 ≥ 1

3
,

where we used the fact that η ≤ 1
4s̄ . Thus the acceptance probability is at least 1

2 ·
1
3 = 1

6 .

The remaining steps in proving the time complexity bound for Algorithm 2 are standard, and so
they were relegated to Appendix D along with the proof of Proposition 3.
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Rémi Bardenet and Adrien Hardy. Monte Carlo with Determinantal Point Processes. work-
ing paper or preprint, May 2016. URL https://hal.archives-ouvertes.fr/
hal-01311263.
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cal applications of determinantal point processes. ESAIM: Procs, 60:180–202, 2017. doi:
10.1051/proc/201760180. URL https://doi.org/10.1051/proc/201760180.

Christos Boutsidis and David P. Woodruff. Optimal cur matrix decompositions. SIAM Journal on
Computing, 46(2):543–589, 2017. doi: 10.1137/140977898. URL https://doi.org/10.
1137/140977898.

Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near optimal column-based matrix
reconstruction. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science,
pages 305–314, Oct 2011. doi: 10.1109/FOCS.2011.21.

Clément Canonne. A short note on poisson tail bounds. Technical report, Columbia University,
2017.

Kenneth L. Clarkson and David P. Woodruff. Low-rank approximation and regression in input
sparsity time. J. ACM, 63(6):54:1–54:45, January 2017. ISSN 0004-5411. doi: 10.1145/3019134.
URL http://doi.acm.org/10.1145/3019134.

13

http://proceedings.mlr.press/v31/affandi13a.html
http://proceedings.mlr.press/v31/affandi13a.html
http://proceedings.mlr.press/v49/anari16.html
http://proceedings.mlr.press/v49/anari16.html
https://hal.archives-ouvertes.fr/hal-01311263
https://hal.archives-ouvertes.fr/hal-01311263
https://doi.org/10.1051/proc/201760180
https://doi.org/10.1137/140977898
https://doi.org/10.1137/140977898
http://doi.acm.org/10.1145/3019134


FAST DETERMINANTAL POINT PROCESSES

Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Dimen-
sionality reduction for k-means clustering and low rank approximation. In Proceedings of the
Forty-seventh Annual ACM Symposium on Theory of Computing, STOC ’15, pages 163–172,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3536-2. doi: 10.1145/2746539.2746569.
URL http://doi.acm.org/10.1145/2746539.2746569.
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Appendix A. Properties of regularized determinantal point processes

We give the proofs omitted from Section 4.

Theorem 7 For X ∈ Rn×d, ignoring the ordering in the sequences sampled with R-DPP, we have

R-DPPr
(
X,

r

n
I
)

r→0−→ DPP(X) (pointwise), (8)

whereas R-DPPr(X,0)
r→0−→ VS(X) (pointwise). (9)

Proof To show (8) we use a fact which is a simple consequence of the Sylvester’s theorem, namely
that det( rnI + X>SXS) = ( rn)d−k det( rnI + XSX

>
S) for a set S of size k. It follows that

Pr(σ̃=S) = k!
det( rnI + X>SXS)

det( rnI + r
nX

>X)

rke−r

k!nk
=

( rn)d−k det( rnI + XSX
>
S)

( rn)d det(I + X>X)

( r
n

)k
e−r

=
det( rnI + XSX

>
S)

det(I + XX>)
e−r r→0−→

det(XSX
>
S)

det(I + XX>)
,

where σ̃ = S should be interpreted as if σ̃ was an unordered multiset. Next, we prove (9):

Pr(σ̃=S) = k!
det(X>SXS)

det( rnX
>X)

rke−r

k!nk
=

det(X>SXS)

det(X>X)

( r
n

)k−d
e−r r→0−→ 1[k=d]

det(X>SXS)

det(X>X)
,

because det(X>SXS) = 0 whenever k < d.

Theorem 8 For any X ∈ Rn×d, α > 0 and distribution p over {1..n} s.t. pi > 0, let X̃ denote
matrix X with ith row rescaled by 1√

αpi
for every i ∈ {1..n}. It follows that for any r > 0,

if σ̃ ∼ R-DPPrp
(
X̃, I

)
and S ∼ DPP

(
X̃σ̃

)
, then σ̃S ∼ DPP

(√
r

α
X
)
.

Proof Using the law of total probability we compute the probability of sampling set T of size t:

Pr(σ̃S =T ) =
∑
σ̃

Pr(σ̃S =T | σ̃) Pr(σ̃)

(a)
=
∞∑
k=t

∑
S⊆[k]

∑
σ̃: |σ̃|=k

1[σ̃S=T ]

Pr(S | σ̃)︷ ︸︸ ︷
det(X̃σ̃SX̃

>
σ̃S

)

((((((((
det(I + X̃σ̃X̃

>
σ̃ )

Pr(σ̃)︷ ︸︸ ︷
((((((((
det(I + X̃>σ̃X̃σ̃)

det
(
I + r

∑
i
pi
αpi

xix>i
) rke−r

k!

k∏
i=1

pσ̃i

(b)
=
∞∑
k=t

(
k

t

)
t!

det(X̃T X̃
>
T )

det(I + r
αX

>X)

rke−r

k!

∏
i∈T

pi

=
det(X̃T X̃

>
T )

det(I + r
αX

>X)

(∏
i∈T

pi

) ∞∑
k=t

k!

(k − t)!
rke−r

k!

=
det( rαXTX

>
T )
(∏

i∈T
1
pi

)
det(I + r

αX
>X)

(∏
i∈T

pi

) ∞∑
k=t

rk−te−r

(k − t)!
=

det( rαXTX
>
T )

det(I + r
αXX>)

,

where the cancellation in (a) follows from Sylvester’s Theorem, and in (b) we use the exchange-
ability of sequence σ̃ to observe that for any subset S of size t the value of the proceeding sum is
the same (the factor

(
k
t

)
counts the number of such subsets S and t! counts the number of sequences

of length t that correspond to set T ).
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Appendix B. Proof of Lemma 10

We present the omitted proof of the inequality from Lemma 10, stated here again.

Lemma 10 For any d ≥ 1, ε ∈ [0, 1], and non-negative integers k, q s.t. q ≥ εd we have((
1− ε

)
+
ε k

q

)d
≤
( q

q − εd

)k
e−εd. (10)

Proof We start with the case of d = 1. Denote the left hand side of (10) as Lk and the right hand
side as Rk. If k = q then

Rq =

(
q

q − ε

)q
e−ε =

e−ε(
1− ε

q

)q ≥ 1 = 1− ε+ ε
q

q
= Lq.

Let us now consider the multiplicative change in Lk as we increase or decrease k by one:

Lk
Lk+1

=
Lk+1 − ε

q

Lk+1
= 1− ε

q Lk+1

{
≤ 1− ε

q for k ≤ q − 1 because Lk+1 ≤ 1,

≥ 1− ε
q for k ≥ q because Lk+1 ≥ 1.

Observe that Rk
Rk+1

= 1− ε
q for any k, so by induction over decreasing k ≤ q − 1,

Lk = Lk+1
Lk
Lk+1

≤ Rk+1

(
1− ε

q

)
= Rk+1

Rk
Rk+1

= Rk+1,

and for increasing k ≥ q similar induction shows thatLk+1 = Lk
Lk+1

Lk
≤ Rk Rk+1

Rk
= Rk+1. Finally,

we use the case d = 1 to show the inequality for arbitrary d ≥ 1:(
1− ε+ ε

k

q

)d (a)

≤
((

1− ε

q

)−k
e−ε
)d

=

(
1

(1− ε
q )d

)k
e−εd

(b)

≤
(

1

1− εd
q

)k
e−εd =

( q

q − εd

)k
e−εd,

where (a) follows from (10) applied for d = 1 and (b) is Bernoulli’s inequality.

Appendix C. Total variation bound for Algorithm 2

We start by showing an approximation lemma about determinants which was earlier given in Section
5 (we restate it here).

Lemma 13 For p.s.d. matrices B, C such that (1− γ)C � B � (1 + γ)C with γ ∈ (0, 1),

e−
γ

1−γ s det(I + C) ≤ det(I + B) ≤ eγs det(I + C), where s = tr
(
C(I + C)−1

)
.
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Proof Let λ1, . . . , λd denote the eigenvalues of C(I + C)−1. Then,

det(I + B)

det(I + C)
= det

(
I + (B−C)(I + C)−1

)
≤ det

(
I + γC(I + C)−1

)
=

d∏
i=1

(1 + γλi) ≤
d∏
i=1

eγλi = eγ tr(C(I+C)−1),

which gives the upper bound. Similarly, we have

det(I + C)

det(I + B)
= det

(
I + (C−B)(I + B)−1

)
≤ det

(
I + γC(I + (1− γ)C)−1

)
≤ det

(
I +

γ

1− γ
C(I + C)−1

)
≤ e

γ
1−γ tr(C(I+C)−1)

,

so by inverting both sides we obtain the lower bound.

We are ready to prove that DPP(ρX) is an approximation of DPP(X) in terms of total variation
distance (restated here).

Lemma 11 There is C > 0 s.t. for any matrix X and ε ≤ 1, if |ρ2 − 1| ≤ ε
4s̄+C ln 9/ε , where

s̄ = max{1, E[|S|]} for S ∼ DPP(X), then DPP(ρX) is an ε-approximation of DPP(X).

Proof The larger the size of subset S the harder it is to control its approximate probability because
it is defined via the determinant of a larger matrix. To overcome this we use the following standard
concentration bound for determinantal point processes which shows that the probability of sampling
a large subset is negligibly small. For simplicity, we state only a special case of the cited result.

Lemma 14 (based on Pemantle and Peres, 2014, Theorem 3.5) Given any X, if S ∼ DPP(X),
then for any a > 0 we have:

Pr
(
|S| − E[|S|] ≥ a

)
≤ 3 exp

(
− a2

16(a+ 2E[|S|])

)
.

In (7) we showed that the expected subset size |S| for both DPP(X) and DPP(ρX) is bounded by
s̄+ ε/4 ≤ (1 + 1

4)s̄, so setting a = (3/4)s̄+ 80 ln 9/ε in Lemma 14 (applied to either distribution),

Pr
(
|S| ≥ 2s̄+ 80 ln 9/ε

)
≤ Pr

(
|S| − E[|S|] ≥ a

)
≤ 3 exp

(
− ((3/4)s̄+ 80 ln 9/ε)2

16((13/4)s̄+ 80 ln 9/ε)

)
≤ 3 exp

(
− (3/4)s̄+ 80 ln 9/ε

5 · 16

)
≤ ε

3
.
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So letting k = 2s̄ + 80 ln 9/ε and C = 160 we have |ρ2 − 1| ≤ ε
2k . We can now bound the total

variation distance between the distributions p(S) =
det(XSX

>
S )

det(I+XX>)
and q(S) =

det(ρ2XSX
>
S )

det(I+ρ2XX>)
.

1

2

∑
S⊆{1..n}

|p(S)− q(S)|
(a)

≤ ε

3
+

1

2

∑
S:|S|≤k

∣∣∣∣ det(XSX
>
S)

det(I + XX>)
−
ρ2|S| det(XSX

>
S)

det(I + ρ2XX>)

∣∣∣∣
=
ε

3
+

1

2

∑
S:|S|≤k

p(S) ·
∣∣∣∣1− ρ2|S| det(I + XX>)

det(I + ρ2XX>)

∣∣∣∣
(b)

≤ ε

3
+

(1 + ε
2k )k e

ε
4s̄
·s̄ − 1

2

∑
S:|S|≤k

p(S)

≤ ε

3
+

e(3/4)ε − 1

2
≤ ε,

where (a) uses Lemma 14 and in (b) we used Lemma 13 and the fact that |ρ2 − 1| ≤ ε
2k .

Appendix D. Time complexity proofs

In this Section we show the runtime bounds for both Algorithm 2 and the preprocessing.

D.1. Sampling cost (proof of Theorem 2, part 3)

Lemma 12 implies that with probability at least 1 − δ Algorithm 2 will perform ln(1
δ )/ ln(6

5) it-
erations of the loop. We next analyze the cost of one such iteration. Note that in line 4 we are
supposed to sample exactly from the distribution l = (l1, . . . , ln) even though we are only given its
approximation l̃ with condition (3) stating that 1

2 li ≤ l̃i ≤
3
2 li for all i ∈ {1..n}. We can do this via

simple rejection sampling performed for each t ∈ {1..K}:

Sample i ∼ l̃, a ∼ Bernoulli
(
li
2l̃i

)
, if a = true, then σt = i, else repeat.

From the approximation guarantee it follows that the Bernoulli probability is bounded by 1 and
never less than 1

3 . One such probability requires computing li = x>i (I+A)−1xi which takesO(d2)
if the matrix inverse (I+A)−1 was precomputed (in time O(d3)). How many times will we need to
compute li? Letm denote the total number of i.i.d. samples from l needed throughout the algorithm,
i.e. the sum of all of the Poisson variables K. Conditioned on m, with probability at least 1 − δ
the total cost of sampling from line 4 over the course of the algorithm is O(md2 ln(1

δ )). The total
cost of computing the determinants from line 5 as well as the cost of sampling from DPP(X̃σ) is
O(md2) so they do not add to the asymptotic runtime. Since the number of iterations of the repeat
loop is w.p. ≥ 1 − δ bounded by c = dln(1

δ )/ ln(6
5)e, let variable m̂ be the sum of c independent

copies of K. Then m̂ ∼ Poisson(c q) and a Poisson tail bound (Canonne, 2017) for any α > 0
yields

Pr
(
m̂ ≥ c (q + α)

)
≤ e−

(c α)2

c α+c q ≤ e2 ln(δ) α2

α+q = δ
2α2

α+q ,

which is less than δ for α = q. Thus, with probability at least 1 − 2δ we have m ≤ m̂ ≤ 2cq =
O(d(s̃ + 1) log 1

δ ), and the overall time complexity of Algorithm 2 becomes O(d3(s̃ + 1) log2 1
δ ).

Since s̃ = tr(A(I + A)−1) ≤ 1+1/(4s̄)
1−1/(4s̄) · s̄ ≤ s̄+ 1, we obtain the bound in Theorem 2.
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D.2. Preprocessing cost (proof of Proposition 3)

Matrix A ∈ Rd×d and estimate distribution l̃ satisfying approximation guarantees (2) and (3) can
be computed efficiently using standard sketching and/or sampling techniques. Here, we outline the
basic steps needed to obtain this, and discuss the time complexity achievable for each step:

1. Compute 1
2 -approximate leverage score distribution p = (p1, . . . , pn), i.e. such that the prob-

abilities pi satify (here “(·)+” is the Moore-Penrose pseudo-inverse):

pi ≥
x>i (X>X)+xi

2 rank(X)
.

2. Sample r(η) row indices σ1, . . . , σr(η)
i.i.d.∼ p, so that with high probability

(1− η)X>X �

A︷ ︸︸ ︷
1

r(η)

∑
i

1

pσi
xσix

>
σi � (1 + η)X>X. (11)

3. Having found matrix A we compute the approximate distribution l̃ satisfying

1

2
x>i (I + A)−1xi ≤ l̃i ≤

3

2
x>i (I + A)−1xi,

which is similar to the leverage scores, except with matrix X>X replaced by I + A.

Step 1 can be performed in time O(nnz(X) log n + d3 log2 d + d2 log n) by employing the sparse
subspace embedding technique developed by Clarkson and Woodruff (2017). Similar running times
are offered by embeddings proposed by Nelson and Nguyên (2013); Meng and Mahoney (2013).
Step 2 is an application of the standard matrix concentration bounds due to Tropp (2012), which
show that it suffices to sample r(η) = O(dη−2 log d) rows from distribution p to satisfy (11) with
high probability. The computation of matrix A then takes O(r(η)d2) = O(d3η−2 log d). Finally,
step 3 is very similar to step 1, except we are estimating ridge leverage score type values. A standard
approach of doing this is to observe that x>i (I+A)−1xi is the squared norm of the ith row in matrix
X(I+A)−

1
2 . All of the row norms of this matrix can be estimated in time O(nnz(X) log n+ d3 +

d2 log n) using the Johnson-Lindenstraus tranform as described by Drineas et al. (2012). Thus,
the overall time complexity is O(nnz(X) log n+ d3η−2 log d+ d2 log n), where recall that η−1 =
O((s̄ + log 1/ε)/ε). Note that the term d2 log n can be omitted from the time complexity, because
if log n = Ω(d), then nnz(X) log n = Ω(nnz(X) d) and we can compute both X>X and l exactly
in time O(nnz(X) d+ d3). Also, our procedure requires a constant factor estimate of s̄ to compute
η. In fact, we can first use η0 = 1

2 and let max{1, tr(A(I + A)−1)} be the estimate for s̄ and then
perform a second more accurate estimation.
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