
Proceedings of Machine Learning Research vol 99:1–18, 2019 32nd Annual Conference on Learning Theory

1

Reconstructing Trees from Traces

Sami Davies DAVIESS@UW.EDU
University of Washington

Miklos Z. Racz MRACZ@PRINCETON.EDU
Princeton University

Cyrus Rashtchian CRASHTCHIAN@ENG.UCSD.EDU

University of California, San Diego

Editors: Alina Beygelzimer and Daniel Hsu

Abstract
We study the problem of learning a node-labeled tree given independent traces from an appropri-
ately defined deletion channel. This problem, tree trace reconstruction, generalizes string trace
reconstruction, which corresponds to the tree being a path. For many classes of trees, including
complete trees and spiders, we provide algorithms that reconstruct the labels using only a polyno-
mial number of traces. This exhibits a stark contrast to known results on string trace reconstruction,
which require exponentially many traces, and where a central open problem is to determine whether
a polynomial number of traces suffice. Our techniques combine novel combinatorial and complex
analytic methods.
Keywords: Trace Reconstruction, Sample Complexity, Deletion Channel

1. Introduction

Statistical reconstruction problems aim to recover unknown objects given only noisy samples of the
data. In the string trace reconstruction problem, there is an unknown binary string, and we observe
noisy samples of this string after it has gone through a deletion channel. This deletion channel
independently deletes each bit with constant probability q and concatenates the remaining bits. The
channel preserves bit order, so we observe a sampled subsequence known as a trace. The goal is
to learn the original string with high probability using few traces. The string trace reconstruction
problem (with insertions and substitutions in addition to deletions) directly appears in the problem
of DNA Data Storage [Church et al. (2012); Organick et al. (2018)]. Here it is crucial to minimize
the sample complexity, as this directly impacts the cost of retrieving data stored in synthetic DNA.

We introduce a generalization of string trace reconstruction, called tree trace reconstruction.
Research on DNA nanotechnology has demonstrated that structures of DNA molecules that are
more complex than a line, such as lattices and trees, can be constructed. Also, recent work can
distinguish some molecular topologies, such as Y-structures (spiders with three arms), from line
DNA using nanopores [Karau and Tabard-Cossa (2018)]. We envision these results may open the
door for more complicated tree structures, which could be useful for applications. From a technical
perspective, tree trace reconstruction may aid in understanding the interplay of combinatorial and
analytic approaches to reconstruction problems and can be a springboard for new ideas.
∗ Full version appears as https://arxiv.org/abs/1902.05101.

c© 2019 S. Davies, M.Z. Racz & C. Rashtchian.

https://arxiv.org/abs/1902.05101

RECONSTRUCTING TREES FROM TRACES

(a) Original Tree (b) TED (c) Left-Propagation

Figure 1: Deletion models. Gray nodes deleted from original tree (a). Resulting trace in the TED
Model (b) and the Left-Propagation Model (c).

Let X be a rooted tree with unknown binary labels on its n non-root nodes. We assume X has a
canonical ordering of its nodes, and the children of a node v in X have a left-to-right ordering. The
goal of tree trace reconstruction is to learn the labels ofX with high probability, using the minimum
number of traces, knowing only q, the deletion model, and the structure of X . We consider two
deletion models. In both models, each non-root node v in X is deleted independently with constant
deletion probability q—the root is never deleted—and the resulting tree is called a trace. Also, in
both models, deletions are associative, so it suffices to define the behavior of a single deletion.

In the Tree Edit Distance model, deletions do not preserve the nodes’ degrees (see Figure 1).

• Tree Edit Distance (TED) model: When v is deleted, all children of v become children of
v’s parent. Equivalently, contract the edge between v and its parent, retaining the parent’s
label. The children of v take v’s place as a continuous subsequence in the left-to-right order.

A key motivation for the TED model is that deletions in the TED model correspond exactly to the
deletion operation in tree edit distance, which is a well-studied metric for pairs of labeled trees [Bille
(2005)]. This metric is relevant for applications, as well; for example, tree edit distance is often used
to compare secondary structures of RNA [Zhang and Shasha (1989)].

In contrast, our main motivation for the Left-Propagation model is more theoretical: it preserves
different structural properties—for instance, a node’s number of children does not increase—and
poses different challenges than the TED model. To describe this model, we define the left-only path
starting at v as the path that recursively goes from parent to left-most child, stopping at a leaf.

• Left-Propagation model: When v is deleted, recursively replace every node (together with
its label) in the left-only path starting at v with its child in the path. This results in the deletion
of the last node of the left-only path, with the remaining tree structure unchanged.1

Figure 1 depicts example traces in both the TED and the Left-Propagation models, for the same
original tree X and the same set of deleted nodes. Note that it may not be clear from a trace which
nodes were deleted. Also, observe that when X is a path (with first node as the root) or a star (with
center as the root), then both models coincide with the string deletion channel. In many places, we
defer to the full version of the paper.

1. Since the BFS order on X is arbitrary (but fixed), the choice of using the left-only path (as opposed to, say, the
right-only one) does not a priori bias certain nodes.

2

RECONSTRUCTING TREES FROM TRACES

1.1. Related Work

Introduced by Batu, Kannan, Khanna, and McGregor [Batu et al. (2004)], string trace reconstruction
has received a lot of attention, especially recently [De et al. (2017); Hartung et al. (2018); Holden
and Lyons (2018); Holenstein et al. (2008); Holden et al. (2018); McGregor et al. (2014); Nazarov
and Peres (2017); Viswanathan and Swaminathan (2008)]. Yet there is still an exponential gap
between the known upper and lower bounds for the number of traces needed to reconstruct an arbi-
trary string with high probability and constant deletion probability: it is known that exp(O

(
n1/3

)
)

traces are sufficient [De et al. (2017); Nazarov and Peres (2017)] and Ω̃(n5/4) traces are neces-
sary [Holden and Lyons (2018)]. Determining whether a polynomial number of traces suffice is a
challenging open problem in the area. A well-studied variant is reconstructing a string with random,
average-case labels, instead of arbitrary, worst-case labels [Batu et al. (2004); Holden et al. (2018)].

In a few of our algorithms, we reduce various subproblems to the string trace reconstruction
problem. Hence, we will use existing results as a black box, and we precisely state the previous
results now. Let T (n, δ) denote the minimum number of traces needed to reconstruct an n-bit string
with probability at least 1− δ, where the dependence on the deletion probability q is left implicit.

Theorem 1 (De et al. (2017); Nazarov and Peres (2017)) T (n, δ) 6 ln(1
δ) · eCn1/3

.

In terms of lower bounds, T (n, δ) = Ω̃(n1.25) for any δ bounded away from one [Holden and
Lyons (2018)]. We discuss related work on other graph reconstruction models in the full version,
noting that there are no formal or quantitative connections between these other models and ours.

1.2. Our Results

We provide algorithms for two main classes of trees: complete k-ary trees and spiders; some results
extend beyond these as well. In a complete k-ary tree, every non-leaf node has exactly k children,
and all leaves have the same depth. An (n, d)-spider consists of n/d paths of d+ 1 nodes, all start-
ing from the same root. We focus on these two classes because of their varying structure. Spiders
behave like a union of disjoint paths, except when some paths have all of their nodes deleted. This
allows us to extend methods from string trace reconstruction, with a slightly more complicated anal-
ysis. On the other hand, complete k-ary trees are so structured that we can use more combinatorial
algorithms, which have proven less successful for string trace reconstruction so far. We use with
high probability to mean with probability at least 1−O(1/n). Also, [t] := {1, 2, . . . , t}.

TED model for complete k-ary trees. LetX be a rooted complete k-ary tree along with unknown
binary labels on its n non-root nodes. We provide two algorithms to reconstruct X , depending on
whether the degree k is large or small. We state our theorems in terms of T (k, δ).

Theorem 2 In the TED model, there exist c, c′ > 0 depending only on q such that if k > c log2(n),
then it is possible to reconstruct a complete k-ary tree on n nodes with exp(c′ · logk n) ·T (k, 1/n2)
traces with high probability.

Theorem 1 implies that T (k, 1/n2) = exp
(
O(k1/3)

)
if k > c log2(n), so the trace complexity

in Theorem 2 is currently exp
(
O(logk(n) + k1/3)

)
. This is poly(n) as long as k = O(log3 n).

Theorem 3 In the TED model, there exists C > 0 depending only on q such that exp(Ck logk n)
traces suffice to reconstruct a complete k-ary tree on n nodes with high probability.

3

RECONSTRUCTING TREES FROM TRACES

In particular, when k is a constant, then the trace complexity of Theorem 3 is poly(n). Theo-
rem 3 makes no restrictions on k, but uses more traces than Theorem 2 for k > c log2 n.

Left-Propagation model for complete k-ary trees. We provide two reconstruction algorithms
for k-ary trees in the Left-Propagation model, leading to the following two theorems. Algorithms,
proofs, and details for this model appear in the full version.

Theorem 4 In the Left-Propagation model, there exists c > 0 depending only on q such that
if k > c log n, then T (d + k, 1/n2) traces suffice to reconstruct a complete k-ary tree of depth
d = O(logk n) with high probability.

When k > c log n, then d+ k = O(k), and we reconstruct an n-node complete k-ary tree with
exp(O(k1/3)) traces by using Theorem 1. We also provide an algorithm with no assumptions on k.

Theorem 5 In the Left-Propagation model, O(nγ log n) traces suffice to reconstruct an n-node
complete k-ary tree with high probability, where γ = ln

(
1

1−q

)(
c′k
lnn + 1

ln k

)
, for a constant c′ > 1.

Theorem 5 implies that poly(n) traces suffice to reconstruct a k-ary tree whenever k = O(log n)
and q is a constant. For small enough q and k, the algorithm needs only a sublinear number of traces
(for example, binary trees with q < 1/2 − ε). As q is a constant, the bound in Theorem 5 can be
more simply thought of as exp(C ′ · (d+ k)); and, in Theorem 4 as exp(C · (d+ k)1/3).

Spiders. The TED and Left-Propagation deletion models are the same for spiders. We provide
two reconstruction algorithms, depending on whether the depth d is large or small.

Theorem 6 Assume that d 6 log1/q n. For q < 0.7, there exists C > 0 depending only on q such
that exp(C · d(nqd)1/3) traces suffice to reconstruct an (n, d)-spider with high probability.

To understand the statement of this theorem, consider d = c log1/q n with c < 1. A black-
box reduction to the string case results in using exp(Ω̃(n1−c)) traces for reconstruction (see the
full version for details), whereas Theorem 6 improves this to exp(Õ(n(1−c)/3)). Our approach
extends previous results based on complex analysis [De et al. (2017); Nazarov and Peres (2017)].
In particular, we analyze a generating function that might be of independent interest, related to
Littlewood polynomials.

For large depth d > log1/q n, full paths of the spider are unlikely to be completely deleted, and
in the full version we derive the following result as a corollary of Theorem 1.

Proposition 7 For q < 1 and all n large enough, an (n, d)-spider with d > log1/q n can be
reconstructed with 2 · T

(
d, 1

2n2

)
traces with high probability.

1.3. Overview of TED Algorithms

Previous work on string trace reconstruction mostly utilizes two classes of algorithms: mean-based
methods, which use single-bit statistics for each position in the trace, and alignment-based methods,
which attempt to reposition subsequences in the traces to their true positions.

Although mean-based algorithms are currently quantitatively better for string reconstruction,
they seem difficult to extend to k-ary trees under the TED deletion model. Specifically, mean-based

4

RECONSTRUCTING TREES FROM TRACES

methods require a precise understanding of how the bit in position j′ of the original tree affects the
bit in position j of the trace. For strings, there is a global ordering of the nodes which enables this.
Unfortunately, for k-ary trees with k /∈ {1, n} under the TED model, nodes may shift to a variety of
locations, making it unclear how to characterize bit-wise statistics. To circumvent this challenge, we
provide two new algorithms, depending on whether or not the degree k is large (k > c log2(n)). The
main idea is to partition the original tree into small subtrees and learn their labels using a number
of traces parameterized primarily by k and logk n, which can be much smaller than n.

When k is large enough, we will be able to localize root-to-leaf paths, in the sense that we can
identify the location of their non-leaf nodes in the original tree with high probability. By covering
the internal nodes of the tree by such paths, we will directly learn the labels for all non-leaf nodes.
Then, we observe that the leaves can be naturally partitioned into stars of size k, and we can learn
their labels by reducing to string trace reconstruction (for strings on k bits).

When k is small, our localization method fails, and we resort to looking at traces which contain
even more structure (which requires more traces). We decompose the entire tree into certain subtrees
and recover their labels separately. We define a property which is easily detectable among traces
and show that when this property holds, we can extract labels for the subtrees that are correct with
probability at least 2/3. Then, we take a majority vote to get the correct labels with high probability.

1.4. Overview of Spider Techniques

When the paths of a spider are sufficiently long—if they have depth d > log1/q n—then with
probability close to 1, no path is fully deleted in a given trace. This allows us to trivially match
paths of the trace spider to paths of the original spider and then use string trace reconstruction
algorithms on the individual paths, leading to Proposition 7.

When the paths of a spider are shorter (d < log1/q n), almost all traces have paths fully deleted;
here it is unclear which paths were deleted, which forces us to align paths from different traces. We
bypass alignment-based methods and use a mean-based algorithm, building off methods introduced
in the proof of Theorem 1 by De et al. (2017); Nazarov and Peres (2017). In contrast to strings
which are one dimensional, we have the additional difficulty that spiders are two dimensional: one
representing which path a node is in, and the other representing where in a path a node is.

2. Preliminaries

In what follows, X denotes the (known) underlying tree, along with the (unknown) binary labels on
its n non-root nodes. See the full version for standard tree definitions (e.g., depth, ancestor, leaf).

k-ary Tree Algorithm Preliminaries. Let X be a rooted complete k-ary tree with depth d. We
index the non-root nodes according the BFS order on X (the root is not indexed; the children
of the root are {0, 1, . . . , k − 1}, etc.). We identify nodes of X with their index. For t ∈ [d],
let Jt be the nodes at depth t. Define I1 = J1 = {0, 1, . . . , k − 1}, and for t > 2, we set
It = {i ∈ Jt | i mod k 6= 0}. Define I =

⋃d−1
t=1 It. We define three unlabeled subtrees of X . Let

PX(i) be the path from the root to i in X . Define HX(i) as the union of the left-only path starting
at i, descending to a leaf `, and the k − 1 siblings of `. Finally, define GX(i) = PX(i) ∪HX(i).

Canonical subtrees of traces. We define certain subtrees of a trace, analogous to PX(i), HX(i),
and GX(i), and they only depend on the position of i in X . We will denote them as PY (i), HY (i),
and GY (i). Intuitively, they are subtrees in Y obtained by looking at nodes that should be in the

5

RECONSTRUCTING TREES FROM TRACES

Figure 2: Canonical subtrees for k-ary trees, in the original tree (left) and trace (right).

same position as the corresponding ones in X . However, the node i does not necessarily belong to
these subtrees (e.g., it may have been deleted in Y , or another node may be in its place). In what
follows, we refer to subtrees as sequences of nodes in the BFS order, since the edge structure will
be clear from context (i.e., the subtree is the induced subgraph on the relevant nodes).

We formally define PY (i), HY (i), andGY (i), which are also depicted in Figure 2. Fix i, and let
u0, u1, . . . , ud−1 be the internal nodes inGX(i), where ut has depth t, and let ud, . . . , ud+k−1 be the
leaf nodes, ordered left-to-right in the BFS order. Define πi : {0, 1, . . . , d− 1} → {0, 1, . . . , k− 1}
so that πi(t) is the position of ut+1 in X among its siblings (the children of its parent ut). Note
that πi is independent of the labels of X . Let ti be the depth of i in X . We define PY (i) as the path
v0, v1, . . . , vti in Y obtained from the following process. Set v0 to be the root. Then, for t ∈ [ti],
let vt be the node at depth t in Y that is in position πi(t−1) among the k children of vt−1, where we
abort and set PY (i) =⊥ if vt−1 does not have exactly k children. Similarly, letGY (i) be the subtree
v0, v1, . . . , vd+k−1, where vt is defined as follows. Set v0 to be the root in Y . Then, for t ∈ [d− 1],
let vt be the node at depth t in Y that is in position πi(t − 1) among the k children of vt−1, where
we abort and set GY (i) =⊥ if vt−1 does not have exactly k children. Finally, set vd, . . . , vd+k−1 to
be the k children of vd−1, and again we set GY (i) =⊥ if vd−1 does not have precisely k children.
If GY (i) 6=⊥, then set HY (i) = vti , . . . , vd+k−1, and otherwise, set HY (i) =⊥. Observe that if
GY (i) 6=⊥, then we have GY (i) = PY (i) ∪HY (i).

We remark that GY (i), HY (i), and PY (i) depend only on πi and Y , and therefore, they do not
use any label information from X . We also note that whether these subtrees are set to ⊥ will be
significant, since it implies certain structural properties of traces. If all nodes in GX(i) survive in a
trace Y , then we say that Y contains GX(i). We write GY (i) = GX(i) if the nodes and labels in
these subtrees are exactly the same (by construction, the edges will also be the same).

3. Reconstructing Trees, TED deletion Model

3.1. Proof of Theorem 2 concerning large degree trees

Our algorithm utilizes structure that occurs when k > c log2(n). Recall that for a node i in X , we
think of i’s children as being ordered consecutively, left-to-right, based on the BFS ordering of X .

Definition 8 Let Y be a trace of a tree X . We say that Y is b-balanced if, for every internal node i
in X , at most b consecutive children of i have been deleted in Y .

Claim 9 If X has n nodes, then a trace Y is b-balanced with probability at least 1− nqb.

6

RECONSTRUCTING TREES FROM TRACES

Proof Any set of b consecutive nodes is deleted with probability qb. Since there are at most n
starting nodes for a run of b nodes, a union bound proves the claim.

We reconstruct X using b-balanced traces Y . However, since we do not know how to detect
whether a trace is balanced or not, we set b large enough so that all traces are balanced with high
probability, b = O(

√
k). The balanced structure helps us to determine the position in X of all

internal nodes in Y that occur on some surviving root-to-leaf path. For the leaves, we will utilize
string trace reconstruction, which applies because the k children of a node at depth d− 1 are leaves,
and the deletion process for a star with k leaves is the same as for the string with k bits.

Lemma 10 Let c, c′ be large constants depending only on q. Assume that k > c log2(n). For a
node j ∈ Jd−1, if Y contains the path PX(j), then there is an algorithm to determine the original
position in X of every node of PX(j) in Y with probability at least 1− exp(−c′

√
k).

Proof Set b = 10
√
k/ log(1/q) = Ω(log n), so that a trace Y is b-balanced with probability at

least 1− exp(−C ′
√
k) by Claim 9. In what follows, we assume Y is b-balanced. In particular this

implies that Y contains some child of every internal node in X , because k > b for k large enough
(equivalently, n large enough, because k > c log2(n)). This property allows us to deduce the depth
in X of nodes in Y . To see this, let u be any node in Y , and let t be the original depth of u in X .
Then, Y contains a path from u to a leaf in Y with d − t + 1 nodes (including u). In other words,
depth t nodes in X have height d − t in Y , when not deleted. As a consequence, Y contains some
root-to-leaf path (u0, u1, . . . , ud) from X , and ut has depth t in both X and Y .

Let φ : Y → X be the injective function mapping nodes in Y to their positions in X . We will
determine φ(ut) for every ut ∈ PX(j) such that Y contains PX(j) and j ∈ Jd−1. Without loss of
generality, fix j and assume that PX(j) corresponds to the first d nodes (u0, . . . , ud−1). Our goal is
to verify this fact by determining φ(ut) for ut ∈ PX(j).

We know that u0 is the root in bothX and Y , so consider any depth t ∈ [d−1] and suppose that
we have already determined φ(ut−1). Among the children of ut−1 in Y , there is a subset that were
originally children of φ(ut−1) inX . Denote these surviving children asw1, . . . , wk′ , for 1 6 k′ 6 k,
where we order the wi from left-to-right in the BFS ordering. We can identify w1, . . . , wk′ in Y ,
because they will have height d− t in Y , while their siblings in Y will have height at most d− t−1,
which follows from our earlier discussion about consequences of being b-balanced. For some i′,
we have wi′ = ut, but we will more generally determine φ(wi) for all i ∈ [k′]. We will do this by
determining the original position of wi in X among the children of φ(ut−1).

Let ai be the (currently unknown) number of deleted children of ut−1 between wi and wi+1,
where we set a0 (resp. ak′) to be the number of deleted nodes before w1 (resp. after wk′) in Y .
Observe that wi has position i +

∑
06j<i aj in X among the children of φ(ut−1). Therefore, our

goal will be to determine a0, . . . , ak′ with high probability.
Let Ri be the total number of surviving descendants in Y of these ai deleted children. Let

mt =
∑d−t

`=1 k
` be the number of edges in a complete k-ary tree of depth d − t, and observe that

each of the ai deleted children hasmt descendants inX , each which survive with probability (1−q)
independently. In other words, Ri is a Binomial random variable with ai ·mt trials and probability
(1− q) of success, and E[Ri] = ai · (1− q)mt.

Consider the event that, for every i = 0, 1, . . . , k′, we have

|Ri − ai · (1− q) ·mt| 6
(1− q)mt

3
. (1)

7

RECONSTRUCTING TREES FROM TRACES

We claim that Eq. (1) holds with probability at least 1 − exp(−C
√
k) by a standard Chernoff

bound, since the Ri are Binomial random variables, where we use that ai 6 b = O(
√
k) to bound

the deviation of Ri. We now argue that if Eq. (1) holds, then we can determine the position of each
wi among the children of φ(ut−1), and so, we can determine φ(w1), . . . , φ(wk′). To achieve this,
set âi to be the unique integer satisfying âi − 1/2 6 Ri

(1−q)mt
< âi + 1/2. By Eq. (1), we have that

âi = ai for i = 0, 1, . . . , k′. We deduce that the node wi has position i +
∑

06j<i âj in X among
the children of φ(ut−1), for i = 0, 1, . . . , k′. Therefore, knowing φ(ut−1) and assuming Eq. (1)
allows us to determine φ(wi) as well. We now put everything together. Any trace Y is b-balanced
with probability 1− exp(−O(

√
k)). When Y is b-balanced and contains PX(j), we determine the

positions of the nodes in this path with probability 1 − exp(−O(
√
k)). Although Y may contain

PX(j) for many values of j ∈ Jd−1, there are at most n such paths. Since k > c log2 n, we can take
a union bound, and we succeed in determining the positions of every PX(j) in Y with probability
at least 1− exp(−c′

√
k) for some constant c′ > 0 depending only on q.

Lemma 11 Fix j ∈ Jd−1. Using T (k, 1/n2) traces that each contain PX(j), we can reconstruct
the labels for PX(j) and all children of j with probability at least 1− 2/n2.

Proof Consider a trace Y containing PX(j). Using Lemma 10, we can locate every node of PX(j)
in Y with probability at least 1 − exp(−c′

√
k). Finding the labels for PX(j) is trivial, since the

path from the root to j in Y will correspond to the nodes of PX(j), in order, and these will have the
correct labels. For the leaves, we will utilize the string trace reconstruction algorithm (Theorem 1).
Indeed, since we have assumed that each trace Y contains PX(j), we know that the children of j
in Y are a subset of the k children of j in X . Each one of these leaves is deleted with probability q
independently, and they are presented in the same order as a string of length k through the deletion
channel. Therefore, Theorem 1 applies, and the T (k, 1/n2) traces will suffice to reconstruct the
labels for the k children of j in X with probability at least 1− 1/n2 − exp(−c′

√
k). In conclusion,

with probability 1− 2/n2, we can reconstruct the labels for PX(j) and children of j.

Proof [Proof of Theorem 2] The path PX(j) for j ∈ Jd−1 consists of d nodes, so it survives in a
trace with probability (1− q)d. Sample C (1− q)−d T

(
k, 1/n2

)
traces, where C is a large enough

constant to guarantee that with probability at least 1 − O(1/n2), we will see at least T
(
k, 1/n2

)
traces that contain PX(j). Using Lemma 11, we can reconstruct PX(j) and all children of j using
some T (k, 1/n2) traces that contain PX(j) with probability 1−O(1/n2). Applying a union bound
over Jd−1 with |Jd−1| 6 n, we learn the labels for all nodes in X with probability 1−O(1/n).

3.2. Proof of Theorem 3 concerning arbitrary degree trees

We will recover the labels forGX(i) for each i ∈ I, which is sufficient because these subtrees cover
all of the non-root nodes in X . The challenge is that GX(i) may shift to an incorrect position, even
when GY (i) 6=⊥. This happens, for example, when the parent of i has children deleted in such a
way that i moves to the left or right, but i still has k − 1 siblings (some of which are new).

Let u be a node in GX(i) with child u′ that is not a leaf (so u and u′ both originally have k
children). If u and all of its k children survive in a trace, then we will be in good shape. However,
consider the situation when u survives and u′ is deleted. In the TED model, we expect (1 − q)k

8

RECONSTRUCTING TREES FROM TRACES

children of u′ to move up to become children of u. The bad case is when u has exactly k children
in a trace after some of its original children are deleted. This only happens when subtrees rooted at
children of u are completely deleted. If such a subtree is large (u is higher up in the tree), then this
is extremely unlikely. We use the following property to force the relevant subtrees to survive.

Definition 12 A trace Y is s-stable for i ∈ I if GY (i) 6=⊥, and for every internal node v in GY (i)
with height h 6 s in Y , each of the k children of v has height exactly h− 1 in Y .

An obvious way for Y to be s-stable is for it to contain GX(i) and enough relevant descendants
of nodes in GX(i). Let G+

X(i) be the union of GX(i) and the k children of every internal node
in GX(i). Then Y will be s-stable if it contains G+

X(i) and at least one path to a leaf (in X) from
every node inG+

X(i) with height at most s. In Lemma 13, we even argue that this happens with high
enough probability to achieve the bound in the theorem. Unfortunately, we cannot directly check
whether Y contains the exact nodes in G+

X(i). We can check if Y is s-stable for i by examining
the nodes of GY (i) and their descendants in Y . But if Y is s-stable, then it is still not necessarily
the case that GY (i) = GX(i), since the nodes in GX(i) may have shifted in Y or been deleted. To
get around this complication, we rely on the s-stable property of a trace. We argue in Lemma 14
that if s is large enough and a trace Y is s-stable for i, then with probability at least 2/3, we have
GY (i) = GX(i). Taking a majority vote ofGY (i) overO(log n) traces, we recoverGX(i) with high
probability. We fix s =

⌈
logk log1/q(3dk)

⌉
. The proofs of the next two lemmas are in Appendix A.

Lemma 13 For i ∈ I, a trace is s-stable for i with probability at least (1− q)dk+s2k.

Lemma 14 If Y is an s-stable trace for i, then GY (i) = GX(i) with probability at least 2/3.

Proof [Proof of Theorem 3] (sketch) LetA be a set of T = C log(n)/(1− q)dk+s2k traces with C a
large enough constant. By Lemma 13, each trace inA is s-stable for iwith probability (1−q)dk+s2k.
Therefore, by setting C large enough and taking a union bound over i ∈ I, we can ensure that with
probability at least 1 − 1/n2, there is Ai ⊆ A that of s-stable traces for i with |Ai| > C ′ log n,
for every i ∈ I. By Lemma 14, each trace Y ∈ Ai has the property that GY (i) = GX(i) with
probability at least 2/3. Let fi(Y) ∈ {0, 1}d+k−1 be the labels of GY (i) in Y . In expectation over
Y ∈ Ai, we have that at least a 2/3 fraction of Y satisfy fi(Y) = fi(X). Since |Ai| > C ′ log n
for a large enough constant C ′, we have by a Chernoff bound that the majority value of fi(Y) over
Y ∈ Ai is equal to fi(X), with probability at least 1 − 1/n2. For each i ∈ I, our reconstruction
algorithm will use this majority vote to deduce the labels for GX(i). Taking a union bound over i ∈
I, where |I| 6 n, we correctly label all nodes with probability at least 1 − 2/n. To show that
T = exp(O(dk)), where d = O(logk n), we simply plug in s =

⌈
logk log1/q(3dk)

⌉
.

4. Reconstructing Spiders

In the regime where spiders have short paths (d 6 log1/q n), we use mean-based algorithms that
generalize the methods of De et al. (2017); Nazarov and Peres (2017).

9

RECONSTRUCTING TREES FROM TRACES

Figure 3: DFS indexing and example trace (in both deletion models) for a (12, 3)-spider.

Spider Preliminaries. When a labeled (n, d)-spider, X , goes through the deletion channel, we
assume that its trace, Y , is an (n, d)-spider by inserting nodes labeled 0s after the remaining paths
and nodes. After this, all traces have n/d paths of length d. We define a left-to-right ordered DFS
index for (n, d)-spiders, illustrated in Figure 3. The labels increase along the length of the paths
from the root and increase left to right among the paths. Specifically, if node v is in the ith path
from the left and has depth j, then its label is (i − 1)d + j − 1. These labels will be used to
define appropriate generating functions. Since the root is not deleted, it is not considered as part of
the generating function. When d is constant, the reconstruction problem on (n, d)-spiders can be
reduced to string trace reconstruction (see the full version). In what follows, we assume that d > 20.

4.1. Proof of Theorem 6 concerning (n, d)-spiders with small d

We compute the expected generating function for an (n, d)-spider that has gone through a deletion
channel with parameter q. We denote this expected generating function by A(w), where w ∈ C.

Lemma 15 Let a = {ai}n−1
i=0 be the labels of an (n, d)-spider with labels ai ∈ R and let b =

{bj}n−1
j=0 be the labels of its trace from the deletion channel with deletion probability q. Then

A(w) := E

n−1∑
j=0

bjw
j

 = (1− q)
n−1∑
`=0

a`(q + (1− q)w)` (mod d) (qd + (1− qd)wd)b
`
d
c,

where the expectation is over the random labels b.

While A(w) is written as only a function of w, it implicitly depends on the labels a of the original
spider. We use this generating function to distinguish between two candidate (n, d)-spiders X1

and X2, which have labels a1 = {a1
j}
n−1
j=0 and a2 = {a2

j}
n−1
j=0 which are different (that is, there

exists j ∈ {0, 1, . . . , n − 1} such that a1
j 6= a2

j). Let Y 1 and Y 2 denote random traces with labels
b1 = {b1j}

n−1
j=0 and b2 = {b2j}

n−1
j=0 that arise from passing X1 and X2 through the deletion channel

with deletion probability q. Define a := a1 − a2 and let A (w) be the expected generating function
with input a. From Lemma 15 we have that

n−1∑
j=0

(
E
[
b1j
]
− E

[
b2j
])
wj = A(w). (2)

10

RECONSTRUCTING TREES FROM TRACES

Let `∗ := arg min`>0 {a` 6= 0} (note that `∗ 6 n−1). We can writeA(w) = (qd+(1−qd)wd)b
`∗
d
c ·

Ã(w), where we call Ã(w) the factored generating function. Taking absolute values in Eq. (2),

n−1∑
j=0

∣∣E [b1j]− E
[
b2j
]∣∣ |w|j > |A(w)| = (1− q)

∣∣∣(1− qd)wd + qd
∣∣∣b `∗d c ∣∣∣Ã(w)

∣∣∣ . (3)

Ultimately, we aim to bound from below maxj

∣∣∣E [b1j]− E
[
b2j

]∣∣∣ by choosing w ∈ C appropriately.

We consider points on the arc γL := {eiθ : −π/L 6 θ 6 π/L}, where L > 20. The following
lemmas are needed to bound the generating function (see the full version for the proof of Lemma 17
and Appendix B for the proofs of the other lemmas in this section).

Lemma 16 For w ∈ γL we have that
∣∣(1− qd)wd + qd

∣∣ > exp
(
−2π2 · qd(1− qd)d2/L2

)
.

Lemma 17 Let 0 < q < 0.7 be a constant. There exists ζ ∈ γL, as well as a constant C > 0
depending only on q, such that |Ã(ζ)| > exp (−C · dL).

Proof [Proof outline of Lemma 17] Let Ω ⊂ C be a bounded, open region, and let ∂Ω denote its
boundary. The harmonic measure of a subset γ ⊂ ∂Ω with respect to a point w0 ∈ Ω, will be
denoted by µw0

Ω (γ). Let f(w) denote an analytic function; we will choose f = Ã. We know that
log |f | satisfies the sub-mean value property: for all w0 ∈ Ω we have that

log |f(w0)| 6
∫
∂Ω

log |f(w)|dµw0
Ω (w). (4)

As in Eq. (4), we will define a region of integration where the value of log
∣∣Ã(w)

∣∣ is controlled
along the boundary, and the boundary will contain γL = {eiθ : −π/L 6 θ 6 π/L}. In fact,
the methods of Hartung et al. (2018) show a lower bound for supγL |f(w)| for an analytic function
f(w) satisfying the growth condition in Lemma 18, by using Eq. (4) and a particular choice of w0.

Lemma 18 For allw ∈ D and all deletion probabilities q ∈ (0, 1), we have
∣∣Ã(w)

∣∣ 6 1
(1−q)(1−|w|) .

The crucial insight is that Ã also satisfies the growth condition specified in Lemma 18, allowing
us to borrow methods from Hartung et al. (2018) to upper bound the right hand side of Eq. (4).
However, we have to work more to find an appropriate point w0 ∈ D in order to find a lower bound
for the left hand side of Eq. (4), so that we can also show a lower bound for supγL |Ã(w)|.

Proof [Proof of Theorem 6] Let ζ ∈ γL be the point guaranteed by Lemma 17. Substituting ζ into
Eq. (3) (and dropping the factor of 1− qd), we use Lemma 17 and Lemma 16 to see that

n−1∑
j=0

∣∣E [b1j]− E
[
b2j
]∣∣ > |A(ζ)| > (1− q) exp

(
−2π2 · qdnd/L2

)
exp (−C · dL) ,

for a constant C > 0 depending only on q. Setting L = max{
(
4π2nqd/C

)1/3
, 20} and plugging

into the display above, we find that there exists an index j such that∣∣E [b1j]− E
[
b2j
]∣∣ > 1

n
exp

(
−C ′ · d(nqd)1/3

)
(5)

11

RECONSTRUCTING TREES FROM TRACES

for some constant C ′ > 0 depending only on q. Therefore, we have shown that there is some index
j = j

(
X1, X2

)
where we expect the traces corresponding to X1 and X2 to differ significantly.

Suppose spider X1 goes through the deletion channel and we observe T samples, S1, . . . , ST

where sample St has labels {utj}
n−1
j=0 . Let η denote the right hand side of Eq. (5). We say that a

spider X2 is a better match than X1 for traces {St}t∈[T] if at the index j = j(X1, X2), X2 looks
closer to the traces than X1; that is, if∣∣∣∣∣ 1

T

T∑
t=1

utj − E
[
b2j
]∣∣∣∣∣ 6

∣∣∣∣∣ 1

T

T∑
t=1

utj − E
[
b1j
]∣∣∣∣∣ .

As before, the expectation is over the random labels b1 and b2. A Chernoff bound implies that if
the traces {St}t∈[T] came from spider X1, then the probability that X2 is a better match than X1

is at most exp(−Tη2/2). Repeating this for all pairs of binary labeled (n, d)-spiders, the algorithm
outputsX∗, the (n, d)-spider which is a better match than all others (the best match), if such a spider
exists. Otherwise, the algorithm outputs a random binary labeled (n, d)-spider.

We bound from above the probability that the algorithm does not find that X1 is the best match
by a combination of a union bound and a Chernoff bound (as discussed above). The probabilities
below are taken over the random traces {St}t∈[T]:

Pr[X∗ 6= X1] 6
∑

X2:X2 6=X1

Pr[X2 is a better match than X1] 6 2n · exp
(
−Tη2/2

)
= 2n exp

(
− T

2n2
exp

(
−C · d(nqd)1/3

))
for C > 0 depending only on q. This latter expression is at most 1/n if T > exp

(
cd
(
nqd
)1/3) for

a large enough constant c depending only on q.

5. Conclusions and Future Directions

We introduced the problem of tree trace reconstruction, and we demonstrated, for multiple classes of
trees, that we can utilize the structure of trees to develop more efficient algorithms than the current
state-of-the-art for string trace reconstruction.

Our paper leaves open many problems and initiates several directions for future work. For one,
can our existing sample complexity bounds be improved? Of particular interest are (1) the TED
model for complete k-ary trees with ω(1) 6 k 6 c log2 n and (2) spiders with depth d = c log1/q n,
c < 1; can we reconstruct with poly(n) traces in these cases? More generally, what is the sample
complexity for other classes of trees? What properties of the tree structure are most relevant for
reconstructing with fewest traces? Finally, we have focused on deletion channels, but insertions and
substitutions are well-defined and relevant for tree edit distance applications. It would be worthwhile
to understand the sample complexity for these edits as well.

5.1. Acknowledgments

We thank Nina Holden for helpful discussions relating to Lemma 17 and Bichlien Nguyen and Karin
Strauss for pointing us to connections on branched DNA and recent work in this area. We also thank
Alyshia Olsen for help designing the figures.

12

RECONSTRUCTING TREES FROM TRACES

References

Tugkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew McGregor. Reconstructing strings
from random traces. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 910–918, 2004. URL http://dl.acm.org/citation.cfm?
id=982792.982929.

Philip Bille. A survey on tree edit distance and related problems. Theor. Comput. Sci., 337(1-3):
217–239, 2005. doi: 10.1016/j.tcs.2004.12.030. URL https://doi.org/10.1016/j.
tcs.2004.12.030.

George M. Church, Yuan Gao, and Sriram Kosuri. Next-Generation Digital Information Storage in
DNA. Science, 337(6102):1628, 2012.

Anindya De, Ryan O’Donnell, and Rocco A. Servedio. Optimal mean-based algorithms for
trace reconstruction. In Proceedings of the 49th Annual ACM SIGACT Symposium on The-
ory of Computing (STOC), pages 1047–1056, 2017. doi: 10.1145/3055399.3055450. URL
http://doi.acm.org/10.1145/3055399.3055450.

Lisa Hartung, Nina Holden, and Yuval Peres. Trace reconstruction with varying deletion prob-
abilities. In Proceedings of the Fifteenth Workshop on Analytic Algorithmics and Combina-
torics (ANALCO), pages 54–61, 2018. doi: 10.1137/1.9781611975062.6. URL https:
//doi.org/10.1137/1.9781611975062.6.

Nina Holden and Russell Lyons. Lower bounds for trace reconstruction. Preprint available at
https://arxiv.org/abs/1808.02336, 2018.

Nina Holden, Robin Pemantle, and Yuval Peres. Subpolynomial trace reconstruction for random
strings and arbitrary deletion probability. In Proceedings of the 31st Conference On Learning
Theory (COLT), pages 1799–1840, 2018. URL http://proceedings.mlr.press/v75/
holden18a.html.

Thomas Holenstein, Michael Mitzenmacher, Rina Panigrahy, and Udi Wieder. Trace reconstruction
with constant deletion probability and related results. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 389–398, 2008. URL http:
//dl.acm.org/citation.cfm?id=1347082.1347125.

Phillip Karau and Vincent Tabard-Cossa. Capture and translocation characteristics of short
branched dna labels in solid-state nanopores. ACS Sensors, 3(7):1308–1315, 2018. doi:
10.1021/acssensors.8b00165.

Andrew McGregor, Eric Price, and Sofya Vorotnikova. Trace Reconstruction Revisited. In Euro-
pean Symposium on Algorithms (ESA), pages 689–700. Springer, 2014.

Fedor Nazarov and Yuval Peres. Trace reconstruction with exp(O(n1/3)) samples. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 1042–
1046, 2017. doi: 10.1145/3055399.3055494. URL http://doi.acm.org/10.1145/
3055399.3055494.

13

http://dl.acm.org/citation.cfm?id=982792.982929
http://dl.acm.org/citation.cfm?id=982792.982929
https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1016/j.tcs.2004.12.030
http://doi.acm.org/10.1145/3055399.3055450
https://doi.org/10.1137/1.9781611975062.6
https://doi.org/10.1137/1.9781611975062.6
https://arxiv.org/abs/1808.02336
http://proceedings.mlr.press/v75/holden18a.html
http://proceedings.mlr.press/v75/holden18a.html
http://dl.acm.org/citation.cfm?id=1347082.1347125
http://dl.acm.org/citation.cfm?id=1347082.1347125
http://doi.acm.org/10.1145/3055399.3055494
http://doi.acm.org/10.1145/3055399.3055494

RECONSTRUCTING TREES FROM TRACES

Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey Yekhanin, Konstantin
Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit Gopalan, Bichlien Nguyen, Christo-
pher N Takahashi, Sharon Newman, Hsing-Yeh Parker, Cyrus Rashtchian, Kendall Stewart,
Gagan Gupta, Robert Carlson, John Mulligan, Douglas Carmean, Georg Seelig, Luis Ceze, and
Karin Strauss. Random access in large-scale DNA data storage. Nature Biotechnology, 36:242–
248, 2018. URL https://www.nature.com/articles/nbt.4079.

Krishnamurthy Viswanathan and Ram Swaminathan. Improved String Reconstruction Over
Insertion-Deletion Channels. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 399–408, 2008.

Kaizhong Zhang and Dennis E. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comput., 18(6):1245–1262, 1989. doi: 10.1137/0218082.
URL https://doi.org/10.1137/0218082.

14

https://www.nature.com/articles/nbt.4079
https://doi.org/10.1137/0218082

RECONSTRUCTING TREES FROM TRACES

Appendix A. Missing proofs for k-ary trees

Proof [Proof of Lemma 13] Being s-stable has two conditions. First, we need GY (i) 6=⊥. Let
G+
X(i) be the union of GX(i) and the k children of every internal node in GX(i), where |G+

X(i)| =
dk+ 1. We will prove that if Y contains G+

X(i), then GY (i) 6=⊥, because in fact, GY (i) = GX(i).
Since the root is never deleted, all nodes in G+

X(i) survive in a trace with probability (1− q)dk, and
so GY (i) = GX(i) with at least this probability.

Assume that Y contains G+
X(i). Let GX(i) = u0, . . . , ud+k−1, and consider building GY (i) =

v0, . . . , vd+k−1 using πi. We argue recursively: For t ∈ [d − 1], we assume that vt′ = ut′ for all
t′ < t, and we prove that vt = ut as well. The base case t′ = 0 holds because the root v0 = u0 is
never deleted. Then, since Y contains G+

X(i), we know that vt′ = ut′ has exactly k children in Y ,
which are the children of ut′ in X . Moreover, the left-to-right order of these k children is preserved
in the deletion model. Therefore, the child of vt′ in position πi(t′) must indeed be ut′+1 for all t′ < t.
This establishes vt = ut for all t ∈ {0, 1, . . . , d− 1}. For the leaves of GX(i), when vd−1 = ud−1,
and vd−1 has k children in Y , then we must also have vd, . . . , vd+k−1 = ud, . . . , ud+k−1.

For the second condition of s-stable, consider an internal node ut inGX(i) with height h = d−t
satisfying 1 6 h 6 s. Let u′0, . . . , u

′
k−1 be the children of ut in X . Because u′j has height h − 1

in X , there is some path with h nodes from u′j to a leaf in X . Consider one such path for each
j = 0, . . . , k − 1 such that j 6= πi(t). Since there are k − 1 choices for j, let Pt be the union of
these k − 1 paths, where |Pt| = h(k − 1) 6 s(k − 1). The survival of Pt guarantees that u′j has
the correct height for Y to be s-stable. Since |

⋃d−1
t=d−s Pt| 6 s2(k − 1), and each node survives

independently with probability (1 − q), we have that Pd−s, . . . , Pd−1 survive with probability at
least (1− q)s2(k−1).

Combining these two conditions, Y is s-stable with probability at least (1− q)dk+s2k.

Proof [Proof of Lemma 14] Since Y is s-stable, GY (i) 6=⊥. Let GY (i) = v0, . . . , vd+k−1 and
GX(i) = u0, . . . , ud+k−1, where vt and ut have depth t ∈ {0, 1, . . . , d − 1}, and vd−1 and ud−1

have children vd, . . . , vd+k−1 and ud, . . . , ud+k−1, respectively. Our strategy is to define an event
E that happens with probability at least 2/3 and implies that vt = ut for t 6 d + k − 1. Consider
t ∈ [d], and let u′0, . . . , u

′
k−1 be the children of ut−1 in X . Define Et to be the event that, for every

j ∈ {0, 1, . . . , k − 1}, at least one node in the subtree rooted at u′j survives in Y . Then, define
E6m =

⋂m
t=1 Et and set E = E6d.

We first argue that when E6m holds, then vt = ut for all t 6 m. Because the root has not been
deleted, we have v0 = u0. Then, for t ∈ [m], we assume that vt′ = ut′ for t′ < t, and we prove that
vt = ut.

Because Y is s-stable, vt−1 has k children in Y . Denote them v′0, . . . , v
′
k−1. We need to show

that ut is in position πi(t − 1) among them, so that vt = v′πi(t−1) = ut. Since Et holds, there is
some surviving node in Y from the subtree rooted at each original child of ut−1 in X . Moreover,
since ut−1 = vt−1, this accounts for at least k children of vt−1 in Y . Because there are exactly k
children of vt−1, it must be the case that v′πi(t−1) is originally from the subtree rooted at ut in X . In
particular, v′πi(t−1) = ut if and only if ut survives in Y .

We claim that if ut were deleted, then it would contradict Y being s-stable, since we would have
GY (i) =⊥ instead. Indeed, the deletion of ut would cause v′πi(t−1) to have height less than d − t
in Y . This would imply that at some depth d′ with t < d′ < d, the node vd′ in GY (i) would be a

15

RECONSTRUCTING TREES FROM TRACES

leaf, leading to GY (i) =⊥. We conclude that ut survives in Y , and so that vt = v′πi(t−1) = ut, as
desired.

We have shown that E guarantees that vt = ut for all t 6 d − 1. In particular, vd−1 = ud−1,
and the k children of vd−1 in Y must be the children of ud−1 in X . This finishes the argument that
E implies that vt = ut for all t 6 d+ k − 1, that is, GY (i) = GX(i).

Now, we prove that E happens with probability at least 2/3 in an s-stable trace. We prove this
in two steps. First, we argue that E6d−s occurs with probability at least 2/3. Then, we show that
E6d−s implies E . Consider the node ut−1 in GX(i) for t ∈ [d − s], and let u′0, . . . , u

′
k−1 be the k

children of ut−1 in X . Since the height of u′j is at least s, the subtree rooted at u′j in X contains
at least

∑s
`=0 k

` > ks nodes. The probability that all of these nodes are deleted is at most qk
s
.

Because s =
⌈
logk log1/q(3dk)

⌉
, this is at most 1/(3dk). Taking a union bound over the k children

implies that Et occurs with probability at least 1−1/(3d), and taking a union bound over t ∈ [d−s]
implies that E6d−s holds with probability at least 2/3.

The final step is to prove that E happens with probability one, in an s-stable trace, assuming
that E6d−s holds. More precisely, we will show that E6d−s+` implies Ed−s+`+1 for ` = 0, 1 . . . , s−
1. We have already argued that E6d−s+` guarantees that vd−s+` = ud−s+`. We claim that the k
children v′0, . . . , v

′
k−1 of vd−s+` are the original children of ud−s+` in X (and this clearly implies

Ed−s+`+1). Since Y is s-stable, there is a path with s−`+1 nodes from v′j to a leaf in Y . If v′j were
not an original child of ud−s+`, then all such paths would have at most s − ` nodes. This implies
no children of ud−s+` = vd−s+` have been deleted in Y , and their existence witnesses the survival
of the subtrees needed for Ed−s+`+1. Since this holds for ` = 0, 1 . . . , s, we conclude that E = E6d
follows from E6d−s in an s-stable trace, and Pr[GY (i) = GX(i)] > Pr[E] = Pr[E6d−s] > 2/3.

Appendix B. Missing proofs for spiders

Proof [Proof of Lemma 15] We index the non-root nodes of the spider according to the DFS ordering
described in Section 4. We can uniquely write any j ∈ {0, 1, . . . , n− 1} as j = d · sj + rj with
sj ∈ {0, 1, . . . , n/d− 1} corresponding to a particular path of the spider and rj ∈ {0, 1, . . . , d− 1}
describing where along this path node j is. Consider two nodes, j = d · sj + rj and ` = d · s` + r`,
with j > `. After passing a through the deletion channel to get the trace b, b` comes from aj if and
only if aj is retained, exactly r` of the first rj nodes in the path of j are retained, and exactly s` of
the first sj paths are retained. This leads to the following generating function:

E

[
n−1∑
`=0

b`w
`

]
= (1− q)

n−1∑
`=0

w`
n−1∑
j=`

aj

(
rj
r`

)
(1− q)r`qrj−r`

(
sj
s`

)
qd(sj−s`)(1− qd)s`1{r`6rj}

= (1− q)
n−1∑
j=0

aj

j∑
`=0

(
rj
r`

)
(1− q)r`qrj−r`

(
sj
s`

)
qd(sj−s`)(1− qd)s`w`1{r`6rj}

= (1− q)
n/d−1∑
sj=0

d−1∑
rj=0

asjd+rj

sj∑
s`=0

rj∑
r`=0

(
rj
r`

)
(1− q)r`qrj−r`

(
sj
s`

)
qd(sj−s`)(1− qd)s`ws`d+r` ,

16

RECONSTRUCTING TREES FROM TRACES

where we used linearity of expectation and interchanged the order of summation. Observing that
the sums are binomial expansions we have that

E

(
n−1∑
`=0

b`w
`

)
= (1− q)

n/d−1∑
sj=0

d−1∑
rj=0

adsj+rj (q + (1− q)w)rj (qd + (1− qd)wd)sj

= (1− q)
n−1∑
j=0

aj(q + (1− q)w)j (mod d) (qd + (1− qd)wd)b
j
d
c,

which proves the claim.

Proof [Proof of Lemma 16] Writing w = cos(θ) + i sin(θ), we see that

|(1− qd)wd + qd|2

=
∣∣∣(1− qd)(cos(θ) + i sin(θ))d + qd

∣∣∣2 =
∣∣∣(1− qd)(cos(dθ) + i sin(dθ)) + qd

∣∣∣2
= ((1− qd) cos(dθ) + qd)2 + ((1− qd) sin(dθ))2

= (1− qd)2 cos2(dθ) + 2qd(1− qd) cos(dθ) + q2d + (1− qd)2 sin2(dθ)

= (1− qd)2 + 2qd(1− qd) cos(dθ) + q2d = 1− 2qd + 2q2d + 2qd(1− qd) cos(dθ)

= 1− 2qd(1− qd)(1− cos(dθ)).

Now using the fact that 1−cos(y) 6 y2/2, as well as the inequality 1−y > exp(−4y) which holds
for all y ∈ [0, 0.9] (in our case indeed qd(1− qd)d2θ2 ∈ [0, 0.9] for all possible parameter values),
we obtain that∣∣∣(1− qd)wd + qd

∣∣∣2 = 1− 2qd(1− qd)(1− cos(dθ)) > exp(−4qd(1− qd)d2θ2).

Taking a square root of the last line shows |(1 − qd)wd + qd| > exp(−2qd(1 − qd)d2θ2). Finally,
the assumption that w ∈ γL implies that θ2 6 π2/L2 and the claim follows.

Proof [Proof of Lemma 18] First, we show that qd+(1−qd)|w|d 6 (q+(1−q)|w|)d for all w ∈ D
and q ∈ (0, 1). This is because

(q + (1− q)|w|)d =

d∑
j=0

(
d

j

)
qj((1− q)|w|)d−j = qd +

d−1∑
j=0

(
d

j

)
qj((1− q)|w|)d−j

> qd + |w|d
d−1∑
j=0

(
d

j

)
qj(1− q)d−j = qd + |w|d(1− qd),

17

RECONSTRUCTING TREES FROM TRACES

where we used the inequality |w|−j > 1 which holds when |w| 6 1 and j > 0. Combining this
inequality with the triangle inequality, we can show the desired upper bound for

∣∣Ã(w)
∣∣:

∣∣∣Ã(w)
∣∣∣ 6 n−1∑

`=`∗

|a`| |q + (1− q)w|` (mod d)
∣∣∣qd + (1− qd)wd

∣∣∣b `dc−⌊ `∗
d

⌋

6
n−1∑
`=`∗

(q + (1− q) |w|)` (mod d)
(
qd + (1− qd) |w|d

)b `dc−⌊ `∗
d

⌋

6
n−1∑
`=`∗

(q + (1− q) |w|)` (mod d)+d
(
b `dc−

⌊
`∗
d

⌋)

= (q + (1− q) |w|)−d
⌊
`∗
d

⌋ n−1∑
`=`∗

(q + (1− q) |w|)`

6 (q + (1− q) |w|)−d
⌊
`∗
d

⌋
(q + (1− q) |w|)`

∗

1− (q + (1− q) |w|)

6
1

1− (q + (1− q) |w|)
=

1

(1− q)(1− |w|)
,

where we used that q + (1 − q)|w| < 1 and `∗ − db`∗/dc > 0. Note that the same upper bound
holds for |A(w)| as well, since |A(w)| 6

∣∣Ã(w)
∣∣ for all w ∈ D.

18

	Introduction
	Related Work
	Our Results
	Overview of TED Algorithms
	Overview of Spider Techniques

	Preliminaries
	Reconstructing Trees, TED deletion Model
	Proof of [theo:ted-large]Theorem 2 concerning large degree trees
	Proof of [theo:ted-small]Theorem 3 concerning arbitrary degree trees

	Reconstructing Spiders
	Proof of [theo:MainSpider]Theorem 6 concerning (n,d)-spiders with small d

	Conclusions and Future Directions
	Acknowledgments

	Missing proofs for k-ary trees
	Missing proofs for spiders

