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1Abstract
We provide a computationally and statistically efficient estimator for the classical problem of trun-
cated linear regression, where the dependent variable y = wTx+ε and its corresponding vector of
covariates x ∈ Rk are only revealed if the dependent variable falls in some subset S ⊆ R; otherwise
the existence of the pair (x, y) is hidden. This problem has remained a challenge since the early
works of Tobin (1958); Amemiya (1973); Hausman and Wise (1977); Breen et al. (1996), its appli-
cations are abundant, and its history dates back even further to the work of Galton, Pearson, Lee,
and Fisher Galton (1897); Pearson and Lee (1908); Lee (1914); Fisher (1931). While consistent es-
timators of the regression coefficients have been identified, the error rates are not well-understood,
especially in high-dimensional settings.

Under a “thickness assumption” about the average covariate covariance matrix in the revealed
sample, we provide a computationally efficient estimator for the coefficient vector w from n re-
vealed samples that attains `2 error Õ(

√
k/n), almost recovering the guarantees of least squares

in the standard (untruncated) linear regression setting. Our estimator uses Projected Stochastic
Gradient Descent (PSGD) on the negative log-likelihood of the truncated sample, and only needs
oracle access to the set S, which may otherwise be arbitrary, and in particular may be non-convex.
PSGD must be restricted to an appropriately defined convex set to guarantee that the negative
log-likelihood is strongly convex, which in turn is established using concentration of matrices on
variables with sub-exponential tails. We perform experiments on simulated data to illustrate the
accuracy of our estimator.

As a corollary of our work, we show that SGD provably learns the parameters of single-layer
neural networks with noisy Relu activation functions Nair and Hinton (2010); Bengio et al. (2013);
Gulcehre et al. (2016), given linearly many, in the number of network parameters, input-output
pairs in the realizable setting.
Keywords: linear regression, truncated statistics, truncated regression, stochastic gradient descent

1. Introduction

A central challenge in statistics is estimation from truncated samples. Truncation occurs whenever
samples that do not belong in some set S are not observed. For example, a clinical study of obesity
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will not contain samples with weight smaller than a threshold set by the study. The related notion
of censoring is similar except that part of the sample may be observed even if it does not belong
to S. For example, the values that an insurance adjuster observes are right-censored as clients
report their loss as equal to the policy limit when their actual loss exceeds the policy limit. In this
case, samples below the policy limit are shown, and only the count of the samples that are above
the limit is provided. Truncation and censoring have myriad manifestations in business, economics,
manufacturing, engineering, quality control, medical and biological sciences, management sciences,
social sciences, and all areas of the physical sciences. As such they have received extensive study.

In this paper, we revisit the classical problem of truncated linear regression, which has been
a challenge since the early works of Tobin (1958); Amemiya (1973); Hausman and Wise (1977);
Breen et al. (1996). Like standard linear regression, the dependent variable y ∈ R is assumed to
satisfy a linear relationship y = wTx+ε with the vector of covariates x ∈ Rk, where ε ∼ N (0, 1),
and w ∈ Rk is some unknown vector of regression coefficients. Unlike standard linear regression,
however, neither x nor y are observed, unless the latter belongs to some set S ⊆ R. Given a
collection (x(i), y(i))i=1,...,n of samples that survived truncation, the goal is to estimate w. In the
closely related and easier setting of censored linear regression, we are also given the set of covariates
resulting in a truncated response.

Applications of truncated and censored linear regression are abundant, as in many cases obser-
vations are systematically filtered out during data collection, if the response variable lies below or
above certain thresholds. An interesting example of truncated regression is discussed in Hausman
and Wise (1977) where the effect of education and intelligence on the earnings of workers in “low
level” jobs is studied, based on a data collected by surveying families whose incomes, during the
year preceding the experiment, were smaller than one and one-half times the 1967 poverty line.

Truncated and censored linear regression have a long history, dating back to at least Tobin
(1958), and the work of Amemiya (1973) and Hausman and Wise (1977). Amemiya (1973) studies
censored regression, when the truncation set S is a half-line and shows consistency and asymptotic
normality of the maximum likelihood estimator. He also proposes a two-step Newton method to
compute a consistent and asymptotically normal estimator. Hausman and Wise study the harder
problem of truncated regression also establishing consistency of the maximum likelihood estimator.
An overview of existing work on the topic can be found in Breen et al. (1996). While known
estimators achieve asymptotic rate of Ok(

1√
n
), at least for sets S that are half-lines, the dependence

of Ok(·) on the dimension k is not well-understood. Moreover, while these weaker guarantees can
be attained for censored regression, no efficient algorithm is known at all for truncated regression.

Our goal in this work is to obtain computationally and statistically efficient estimators for trun-
cated linear regression. We make no assumptions about the set S that is used for truncation, except
that we are given oracle access to this set, namely, given a point x the oracle outputs 1x∈S . We also
make a couple of assumptions about the covariates of the observable samples:

Assumption I: the probability, conditionally on x(i), that the response variable y(i) = w>x(i) +
ε(i) corresponding to a covariate x(i) in our sample is not truncated is lower bounded by
some absolute constant, say 1%, with respect to the choice of ε(i) ∼ N (0, 1); we can relax
this assumption slightly, but an assumption of this type is necessary was shown in Daskalakis
et al. (2018) for the special case of our problem, pertaining to truncated Gaussian estimation;

Assumption II: the average 1
n

∑
i x

(i)x(i)T of the outer-products of the covariates in our sample
has some absolute lower bound on its minimum singular value; this is the same thickness
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assumption, that is also commonly made in some standard (untruncated) linear regression
settings.

Under Assumptions I and II, we provide the first time and sample efficient estimation algorithm

for truncated linear regression, whose estimation error of the coefficient vector w decays as Õ(
√

k
n),

almost recovering the error rate of the least-squares estimator in the standard (untruncated) linear
regression setting. For a formal statement see the full version of the paper. Our algorithm is the first
computationally efficient estimator for truncated linear regression. It is also the first, to the best of
our knowledge, estimator that can accommodate arbitrary truncation sets S. This, in turn, enables
statistical estimation in settings where set S is determined by a complex set of rules, as it happens
in many important applications.

Learning Single-Layer Neural Networks with Noisy Activation Functions. Our main result
implies as an immediate corollary the learnability, via SGD, of single-layer neural networks with
noisy Relu activation functions Nair and Hinton (2010); Bengio et al. (2013); Gulcehre et al. (2016).
The noisy Relu activations, considered in these papers for the purposes of improving the stability
of gradient descent, are similar to the standard Relu activations, except that noise is added to their
inputs before the application of the non-linearity. In particular, if z is the input to a noisy Relu
activation, its output is max{0, z + ε}, where ε ∼ N (0, 1). In turn, a single-layer neural network
with noisy Relu activations is a random mapping, fw : x 7→ max{0,wTx+ε}, where ε ∼ N (0, 1).

We consider the learnability of single-layer neural networks of this type in the realizable setting.
In particular, given a neural network fw of the above form, and a sequence of inputs x(1), . . . ,x(n),
suppose that y(1), . . . , y(n) are the (random) outputs of the network on these inputs. Given the
collection (x(i), y(i))ni=1 our goal is to recover w. This problem can be trivially reduced to the
main learning problem studied in this paper as a special case where: (i) the truncation set is very
simple, namely the half open interval [0,+∞); and (ii) the identities of the inputs x(i) resulting
in truncation are also revealed to us, namely we are in a censoring setting rather than a truncation
setting. As such, our more general results are directly applicable to this setting.

1.1. Overview of the Techniques.

We present a high-level overview of our time- and statistically-efficient algorithm for truncated
linear regression. Our algorithm is Projected Stochastic Gradient Descent (PSGD) on the negative
log-likelihood of the truncated samples. Notice that we cannot write a closed-form expression for
the negative log-likelihood, as the set S is arbitrary and unknown to us. Indeed, we only have
oracle access to this set and can thus not write down a formula for the measure of S under different
estimates of the coefficient vector w and its xi. While we cannot write a closed-form expression for
the negative log-likelihood, we still show that it is convex with respect to w for arbitrary truncation
sets S ⊆ R.

To effectively run Gradient Descent on the negative log-likelihood, we need however to ensure
that Gradient Descent remains within a region where it is strongly convex. To accomplish this we
define a convex set Dr of vectors (w) and show that the negative log-likelihood is strongly convex
on that set. We also show that this set contains the true coefficient vector, using the matrix Bernstein
inequality. Finally, we show that we can efficiently project on this set.

Thus we run our Projected Stochastic Gradient Descent procedure on this set. As we have
already noted, we have no closed-form expression for the negative log-likelihood or its gradient.
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Nevertheless, we show that, given oracle access to set S, we can get an un-biased sample of the
gradient. If (xt, yt) is a (randomly chosen) sample processed by PSGD at step t, and wt the current
iterate, we perform rejection sampling to obtain a sample from the Gaussian N (wT

t xt, 1) condi-
tioned on the truncation set S, in order to compute an unbiased estimate of the gradient. Because
we use rejection sampling, it is important to maintain that PSGD remains within a region where the
rejection sampling will succeed with constant probability with respect to a random choice of xt,
and this is guaranteed by our analysis.

1.2. Further Related Work

We have already surveyed work on truncated and censored linear regression since the 1950s. Early
precursors of this literature can be found in the simpler, non-regression version of our problem,
where the x(i)’s are single-dimensional and equal, which corresponds to estimating a truncated
Normal distribution. This problem goes back to at least Galton (1897), Pearson (1902), Pearson
and Lee (1908), and Fisher (1931). Following these early works, there has been a large volume
of research devoted to estimating truncated Gaussians or other truncated distributions in one or
multiple dimensions; see e.g. Hotelling (1948); Tukey (1949), and Schneider (1986); Cohen (2016);
Balakrishnan and Cramer (2014) for an overview of this work. There do exist consistent estimators
for estimating the parameters of truncated distributions, but, as in the case of truncated and censored
regression, the optimal estimation rates are mostly not well-understood. Only very recentwork
of Daskalakis et al. (2018) provides computationally and statistically efficient estimators for the
parameters of truncated high-dimensional Gaussians. Similar to the present work, Daskalakis et al.
(2018) we use PSGD to optimize the negative log-likelihood of the truncated samples. Showing
that the negative log-likelihood is convex in the truncated Gaussian setting follows immediately
from the fact that a truncated Gaussian belongs to the exponential family. In our setting it is non-
standard; see also discussion in Amemiya (1973). Moreover, identifying the set where the negative
log-likelihood is strongly convex and establishing its strong convexity are also simpler tasks in the
truncated Gaussian setting compared to the truncated regression setting, due to the shifting of the
mean of the samples induced by the different covariate vectors x(i).

Last but not least, our work is related, albeit more loosely, to the literature on robust Statistics,
which has recently been revived by a strand of fantastic works Xu et al. (2010); Candès et al. (2011);
Diakonikolas et al. (2016); Lai et al. (2016); Diakonikolas et al. (2017, 2018); Bhatia et al. (2015);
Diakonikolas et al. (2019). For the most part, these works assume that an adversary perturbs a
small fraction of the samples arbitrarily. Compared to truncation and censoring, these perturbations
are harder to handle. As such only small amounts of perturbation can be accommodated, and the
parameters cannot be estimated to arbitrary precision. In contrast, in our setting the truncation set
S may very well have an ex ante probability of obliterating most of the observations, say 99% of
them, yet the parameters of the model can still be estimated to arbitrary precision.
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