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1. Overview

We consider learning in distributed systems where each client ¢ (or user) holds a data point z; € Z
drawn i.i.d. from some unknown distribution P and the goal of the server is to solve some sta-
tistical learning problem using the data stored at the clients. In addition, the communication from
the client to the server has to satisfy the guarantees of local differential privacy (LDP) (Warner,
1965; Evfimievski et al., 2003; Kasiviswanathan et al., 2011). In this model each user ¢ applies a
differentially-private algorithm to their point z; and then sends the result to the server. The specific
algorithm applied by each user is determined by the server. In the general version of the model
the server can determine which LDP algorithm the user should apply on the basis of all the previ-
ous communications the server has received. Yet multi-round protocols are prohibitively slow in
practice due to network latency and, as a result, currently deployed large-scale systems are limi-
ted to non-interactive protocols (Erlingsson et al., 2014; Apple’s Differential Privacy Team, 2017;
Ding et al., 2017). Despite the major practical importance of LDP and significant interest in the
research community, very little is known about which learning problems can be solved by such non-
interactive systems. In particular, it is unknown whether many standard learning algorithms have
private and non-interactive counterparts.

The power of interaction in distributed private learning was first addressed by Kasiviswana-
than et al. (2011) who demonstrated existence of an artificial class of Boolean functions C' over
{0,1}% with the following property. C' can be PAC learned efficiently relative to the uniform dis-
tribution over {0, 1}¢ by an interactive LDP protocol but requires 29Ud) samples to learn by any
non-interactive learning algorithm. Their techniques does not extend to learning without distributi-
onal assumptions. Deriving a technique that applies to distribution independent learning was one of
the main open problems in this area (Kasiviswanathan et al., 2011).

Recent work by the authors (Daniely and Feldman, 2018) demonstrates that sample complexity
of non-interactive LDP learning of a class of functions C' in the distribution independent PAC model
is lower bounded by the margin complexity of C. In particular, classes such as decision lists and
linear classifiers over {0, 1}¢ require an exponential number of samples to learn non-interactively
even though they are known to be learnable efficiently by interactive algorithms. Here we ask
whether every class that has polynomial margin complexity can be learned efficiently by a non-
interactive LDP algorithm. Learning of large-margin classifiers is a classical learning problem and
various algorithms for the problem are widely used in practice. Hence answering our open problem
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will elucidate the feasibility of solving this problem with differential privacy in practice. Partial
progress towards answering this question is given by the authors (Daniely and Feldman, 2018) who
show that there exists an efficient LDP learning algorithm for large-margin linear classifiers whose
interactive queries only use unlabeled samples.

Other related work: Smith et al. (2017) address the question of the power of non-interactive
LDP algorithms in the closely related setting of stochastic convex optimization. They derive new
non-interactive LDP algorithms for the problem albeit requiring an exponential dependence in the
dimension number of samples. They also give a strong lower bound for non-interactive algorithms
that are further restricted to obtain only local information about the optimized function. Subse-
quently, upper and lower bounds on the number of queries to the gradient/second-order oracles
for algorithms with few rounds of interaction have been studied by several groups. Acharya et al.
(2018) implicitly give a separation between interactive and non-interactive protocols for the pro-
blem of identity testing for a discrete distribution over k elements, albeit a relatively weak one
(O(k) vs Q(k3/?) samples). A very recent work of Joseph et al. (2019) explores a different aspect
of interactivity in LDP. Specifically, they distinguish between two types of interactive protocols:
fully-interactive and sequentially-interactive ones. Fully-interactive protocols place no restrictions
on interaction whereas sequentially-interactive ones only allows asking one query per user. They
give a separation showing that sequentially-interactive protocols may require more samples than
fully interactive ones (although only by a polynomial factor). This separation is not relevant to the
open problem as we are interested in the power of completely non-interactive protocols. There are
also a number of lower bounds on the sample complexity of LDP algorithms demonstrating that
LDP is less efficient than the central model of differential privacy (e.g. Duchi et al. (2013); Duchi
and Rogers (2019)).

2. Formal definitions and problem statement

Local Differential Privacy: In the local differential privacy (LDP) model (Warner, 1965; Evfi-
mievski et al., 2003; Kasiviswanathan et al., 2011) it is assumed that each data sample obtained by
the server is randomized in a differentially private way. This is modeled by assuming that the server
running the learning algorithm accesses the dataset via an oracle defined below.

Definition 2.1 An e-local randomizer R : Z — W is a randomized algorithm that satisfiesVz1, zo €
Z and w € W, Pr[R(z1) = w] < e“Pr[R(22) = w]. For adataset S € Z", an LRg oracle ta-
kes as an input an index i and a local randomizer R and outputs a random value w obtained by
applying R(z;). An algorithm is e-LDP if it accesses S only via the LR g oracle with the following
restriction: for all i € [n], if LRs(i, Ry),...,LRg(i, Ry) are the algorithm’s invocations of LRg
on index i where each R is an €j-randomizer then Zje[k] € < e

For a non-interactive LDP algorithm one can assume without loss of generality that each sample
is queried only once since the application of k fixed local randomizers with jelk € < € can be
seen as an execution of a single e-randomizer. This model can be contrasted with the standard,
or central, model of differential privacy where the entire dataset is held by the learning algorithm
whose output needs to satisfy differential privacy (Dwork et al., 2006). This is a stronger model and
an e-LPD algorithm also satisfies e-differential privacy. For an algorithm in this model we say that
the algorithm is non-interactive (or non-adaptive) if all its queries are determined before observing
any of the oracle’s responses.
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PAC Learning and margin complexity: Our results are for the standard realizable PAC model
of learning (Valiant, 1984).

Definition 2.2 Ler X be a domain and C' be a class of Boolean functions over X. An algorithm
A is said to PAC learn C with error « if for every distribution D over X and f € C, given access
(via oracle or samples) to the input distribution over examples (x, f(x)) for x ~ D, the algorithm
outputs a function h such that Prp(f(z) # h(z)] < a with probability at least 2/3.

We say that the learning algorithm is efficient if its running time is polynomial in log | X|, log |C|
and 1/e.

We say that a class of Boolean ({—1, 1}-valued) functions C'is closed under negation if for
every f € C, —f € C. For dimension d, we denote by B%(1) the unit ball in /3 norm in R?.

Definition 2.3 Let X be a domain and C be a class of Boolean functions over X. The margin
complexity of C, denoted MC(C'), is the minimal number M > 0 such that for some d, there is an
embedding ¥ : X — BY(1) for which the following holds: for every f € C there is w € B%(1)

such that
1

i : g > —.
min{f(z) - (w, ¥(2))} = 7;
The authors prove the following lower bound for non-interactive LDP learning of any class of
Boolean functions closed under negation (Daniely and Feldman, 2018).

Theorem 2.4 Let C be a class of Boolean functions closed under negation. Assume that there
exists a non-interactive 1-LDP algorithm A that, with success probability at least 2/3, PAC le-
arns C' distribution-independently with error less than 1/2 using at most n examples. Then n =

QMC(C)?/3).
Our open problem asks whether the converse of Thm. 2.4 is true (up to a polynomial).

Open Problem 2.5 Let C be a class of Boolean functions over some domain X. Does there exists
a non-interactive 1-LDP algorithm that PAC learns C distribution-independently with error o and
success-probability at least 2/3 using n = poly(MC(C)/«a) examples.

Equivalence to statistical queries: For completeness we mention that the key tool for understan-
ding the power of LDP protocols is the statistical query model of Kearns (1998) that is defined by
having access to STAT p(7) oracle, where P is the unknown data distribution.

Definition 2.6 Let P be a distribution over a domain Z and T > 0. A statistical query oracle
STATp(7) is an oracle that given as input any function ¢: Z — [—1,1|, returns some value v such
that |v — E.~plp(2)]| < 7.

To solve a learning problem in this model an algorithm needs to succeed for any valid (that is
satisfying the guarantees on the tolerance) oracle’s responses. In other words, the guarantees of the
algorithm should hold in the worst case over the responses of the oracle.

Kasiviswanathan et al. (2011) show that one can simulate STAT p(7) oracle with success pro-
bability 1 — by an e-LDP algorithm using LR oracle for S containing n = O(log(1/8)/(e7)?)
ii.d. samples from P. They also prove the converse of this simulation. Specifically, any query
of an e-LPD algorithm can be simulated (within total variation distance J) using O(1) queries to
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STAT p(7) for 7 = ©(3/e%¢). These simulations are interactive if and only if the original algorithm
was interactive. Hence one can equivalently formulate our open problem as a problem about the
power of non-adaptive SQ algorithms. This formulations also allows to derive corollaries for ot-
her models that are known to be equivalent to the SQ model (see (Daniely and Feldman, 2018) for
additional details).
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