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Abstract

Statistical learning theory has largely focused on learning and generalization given independent
and identically distributed (i.i.d.) samples. Motivated by applications involving time-series data,
there has been a growing literature on learning and generalization in settings where data is sampled
from an ergodic process. This work has also developed complexity measures, which appropriately
extend the notion of Rademacher complexity to bound the generalization error and learning rates
of hypothesis classes in this setting. Rather than time-series data, our work is motivated by settings
where data is sampled on a network or a spatial domain, and thus do not fit well within the frame-
work of prior work. We provide learning and generalization bounds for data that are complexly
dependent, yet their distribution satisfies the standard Dobrushin’s condition. Indeed, we show that
the standard complexity measures of Gaussian and Rademacher complexities and VC dimension
are sufficient measures of complexity for the purposes of bounding the generalization error and
learning rates of hypothesis classes in our setting. Moreover, our generalization bounds only de-
grade by constant factors compared to their i.i.d. analogs, and our learnability bounds degrade by
log factors in the size of the training set.

1. Introduction

A main goal in statistical learning theory is understanding whether observations of some phe-
nomenon of interest can be used to make confident predictions about future observations. Usu-
ally this question is studied in the setting where a training set S = (x;,y;);",, comprising pairs
of covariate vectors x; € X and response variables y; € ), are drawn independently from some
unknown distribution D, and the goal is to make predictions about a future sample (x,y) drawn
independently from the same distribution D. That is, we wish to predict y given .

Given some hypothesis class H C )}, comprising predictors that map X’ to ) and a loss func-
tion £ : Y2 — R whose values £(7), %) express how bad it is to predict 7 instead of 3, a wealth of
results characterize the relationship between the size m of the training set S and the approxima-
tion accuracy that is attainable for choosing some predictor h € H whose expected loss, Lp(h) =
E(z,y)~pf(h(x),y), on a future sample, is as small as possible. A related question is understand-
ing how well the training set S “generalizes,” in the sense of minimizing supycq, |Ls(h) — Lp(h)],
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LEARNING FROM WEAKLY DEPENDENT DATA

where Lg(h) is the average loss of h on the training set S. To characterize the learnability and gen-
eralization properties of hypotheses classes, standard complexity measures of function classes, such
as the VC dimension (Vapnik and Chervonenkis, 2015) and the Rademacher complexity (Bartlett
and Mendelson, 2002), have been developed.

The assumption that the training examples (€1, Y1), - . ., (€n, yn) as well as the future test sam-
ple (x,y) are all independently and identically distributed (i.i.d.) is, however, too strong in many
applications. Often, training data points are observed on nodes of a network, or some spatial or tem-
poral domain, and are dependent both with respect to each other and with respect to future obser-
vations. Examples abound in financial and meteorological applications, and dependencies naturally
arise in social networks through peer effects, whose study has recently exploded in topics as diverse
as criminal activity (see e.g. Glaeser et al., 1996), welfare participation (see e.g. Bertrand et al.,
2000), school achievement (see e.g. Sacerdote, 2001), participation in retirement plans (see Duflo
and Saez, 2003), and obesity (see e.g. Trogdon et al., 2008; Christakis and Fowler, 2013). A promi-
nent dataset where network effects are studied was collected by the National Longitudinal Study of
Adolescent Health, a.k.a. AddHealth study (Harris et al., 2009). This was a major national study of
students in grades 7-12, who were asked to name their friends—up to 10, so that friendship networks
can be constructed, and answer hundreds of questions about their personal and school life, and it
also recorded information such as the age, gender, race, socio-economic background, and health of
the students. Disentangling individual effects from network effects in such settings is a recognized
challenge (see e.g. the discussion by Manski 1993 and Bramoull€ et al. 2009, and the discussion of
prediction models for network-linked data by Li et al. 2016).

Motivated by such applications, a growing literature has studied learning and generalization in
settings where data is non-i.i.d. This work goes back to at least Yu (1994), and has grown quite
significantly in the past decade. A central motivation has been settings involving time-series data.
As such, this literature has focused on data sampled from an ergodic process. For this type of data,
generalization and learnability bounds have been obtained whose quality depends on the mixing
properties of the data generation process as well as the complexity of the hypothesis class under
consideration, through appropriate generalizations of the Rademacher complexity. We discuss this
literature in Section 1.3, and present precise generalization bounds derived from this literature in
Section 1.4.

In contrast to prior work, our main motivation is the study of networked data, due to their
significance in economy and society, including in the applications discussed above. The starting
point of our investigation is that data observed on a network does not fit well the statistical learning
frameworks proposed for non-i.i.d. data in prior work, which targets time-series data. In particular,
there is no natural ordering of observations collected on a network with respect to which one may
postulate a fast-mixing/correlation-decay property, which may be exploited for statistical power. We
thus propose a different statistical learning framework that is better suited to networked data.

We propose to study generalization and learnability when the training samples S = (x;, y;)
are complexly dependent but their joint distribution satisfies Dobrushin’s condition; see Defini-
tion 4. Dobrushin’s condition was introduced by Dobrushin (1968) in the study of Gibbs measures,
originally in the context of identifying conditions under which the Gibbs distribution has a unique
equilibrium / stationary state and has since been well-studied in statistical physics and probability
literature (see e.g. Dobrushin and Shlosman, 1987; Stroock and Zegarlinski, 1992) as it implies a
number of desirable properties, such as fast mixing of Glauber dynamics (Kiilske, 2003), concen-
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tration of measure (Marton et al., 1996; Kiilske, 2003; Chatterjee, 2005b; Daskalakis et al., 2018;
Gheissari et al., 2017), and correlation decay (Kiinsch, 1982). For a survey of properties resulting
from Dobrushin’s condition see Weitz (2005).

1.1. Our Results

Setting: Assuming that our training set .S and test sample (x,y) are drawn from a distribution
D(™) satisfying Dobrushin’s condition, as described above, we establish a number of learnability
and generalization results. We make the assumption that every example in our training set (x;, y;)
comes from the same marginal distribution D which is also the distribution from which we draw the
test sample. This assumption is made to provide a uniform benchmark to measure the performance
of our learning algorithms against.

Our first main result, presented as Theorem 10, provides an agnostic learnability bound for any
hypothesis class that is learnable in the i.i.d. setting, for instance, classes of finite VC dimension
(Corollary 11). We provide an informal statement here.

Informal Theorem 1 (Learnability under Dobrushin Dependent Data) Ler H be a hypothesis
class such that VC(H) = d, and let Lp be the expected 0/1 loss function evaluated on a sample
from D. Given a training sample 8 ~ D) where D) satisfies Dobrushin’s condition, there
exists a learning algorithm A such that

. ~(d
Pr|Lp(A(S)) < égf_[LD(h) +e| >99/100, for m =0 (€2> .

Our second main result, presented as Theorem 16, provides a generalization bound for hy-
pothesis classes, under stronger conditions on the distribution of S, which we term bounded log-
coefficient, and define in Section 5. We bound the maximal deviation supy,cy, |Lp(h) — Ls(h)| in
terms of the Gaussian complexity of H, a value which is closely related to the Rademacher com-
plexity. We obtain a bound which is nearly as tight as if the training set S was drawn i.i.d.

Informal Theorem 2 (Uniform Convergence under High Temperature Data) Let H be a hy-
pothesis class, and let Lp(h) and Ls(h) denote the training and expected loss, respectively, of a
hypothesis h with respect to some arbitrary loss function. Given a training sample S ~ D"™) where
D(™) pgs log-coefficient bounded by 1, the following holds:

E |sup |Lp(h) — Ls(h)|| < O(& pom (H)), (D
heH

where & ) (H) is the Gaussian complexity of H. In particular, if VC(H) = d, then the left hand
side of (1) is bounded by +/d/n.

1.2. Organization

In Section 1.3 we discuss the related studies along the direction of non i.i.d. generalization and
learnability. In Section 1.4 we provide a comparison between our proposed framework and that
of prior work on ergodic processes, and the benefits from our framework in terms of sharpness of
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generalization bounds. In particular, we show an example setting where our bounds are a signifi-
cant improvement over the bounds implied by prior work. In Section 2 we state some preliminary
notation and definitions and some Lemmas from prior work we use throughout the paper. Section 4
contains our learnability results for data satisfying the weaker Dobrushin’s condition. Section 5
contains our uniform convergence bound for data satisfying the high temperature condition.

1.3. Related Work

Rademacher and Gaussian compexities for obtaining uniform convergence bounds on generalization
of learning algorithms were first introduced in the work of Bartlett and Mendelson (2002) and
have since been extensively studied in the literature on learning theory to characterize the sample
complexity of learning for a wide range of problems. Extending them beyond i.i.d. settings was
mainly studied in the context of ergodic processes and exchangeable sequences. The bounds in
the literature on ergodic processes typically depend on the « or S mixing coefficients of these
processes. The work on studying learnability for stationary mixing empirical processes started with
seminal work of Yu (1994) and was continued by Mohri and Rostamizadeh (2009); Kuznetsov
and Mohri (2015); Mohri and Rostamizadeh (2010) and the references therein. Kuznetsov and
Mohri (2015) studies non-stationary and non-mixing time series, Kuznetsov and Mohri (2014) and
Kuznetsov and Mohri (2017) study non-stationary and mixing time series, McDonald and Shalizi
(2017) studies stationary and non-mixing time series, and Mohri and Rostamizadeh (2009) studies
stationary mixing time series. Of these works, Mohri and Rostamizadeh (2009) is most relevant to
ours, since McDonald and Shalizi (2017)’s work on non-mixing time series solves the forecasting
problem, i.e. predicting z,,+1 given previous data {z;}!",, rather than on predicting y,,,+1 given
Tm+1 as in our setting. Moreover, since our work focuses on distributions with identical marginals,
the most closely related time-series setting to ours is one where the series is stationary. Hence, we
compare our results to previous work on stationary time series in Section 1.4.

Agarwal and Duchi (2013) study the generalization properties of online algorithms in the con-
text of stationary and mixing time series. Another direction in which dependent data have been
considered is the setting of exchangeable sequences studied in the works of Berti et al. (2009);
Pestov (2010) and references therein. Apart from the above extensions to non i.i.d. data, notions of
sequential Rademacher complexity were considered in the literature on online learning (see Rakhlin
et al. (2010)). None of these settings capture the type of dependences we handle in our work which
can have long-range correlations and no spatial mixing behavior in general.

1.4. Comparison to Related Work on Time Series

Much of the work on non-iid Rademacher complexity has focused on time series. Here, we compare
our results with the work most closely related to our setting and show that in certain cases our
bounds improve significantly over those implied by prior work. The uniform convergence sample
complexity bounds of Mohri and Rostamizadeh (2009) for stationary mixing time series are the
most relevant to our setting. Mohri et. al.’s approach takes a ‘thinning’ approach to argue that a
sub-sample consisting of well-separated samples is close to being independent. When the time series
distributions are pairwise-potential MRFs or satisfy Dobrushin’s condition, our sample complexity
bounds can be much tighter since we do not need the thinning approach and hence are less wasteful.

To get a generalization gap of at most £ with probability at least 1 — ¢ on a class of hypotheses
with VC-dimension d for a specific time series which (a) is stationary and fast-mixing and (b)
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satisfies Dobrushin’s condition.:

- [ d? d+log &
mprior_work(s, 5) =0 <5€4> mthis-paper(ga 5) =0 < 2 g 6)

e

The quadratic improvement quantifies the ineffciency of the thinning method in this context.

2. Preliminaries

Notational Conventions Random variables will be written in a bold font (say x), as opposed
to elements from the domain set, which are in a normal font (say, ). We will use the notation
C,C",Cy,¢,d etc. to denote positive universal constants without explicitly stating it. Given a
vector x = (21,...,%m,) and i € {1,...,m}, x_; denotes the vector = after omitting coordinate
i. Given a random variables z,w over (2, F) and z,w € €, denote by P,(z) the probability that
z = zif z is discrete and the density of z at z if z is continuous. Additionally, define by P,,,(z | w)

the probability Pr[z = z | w = w] if z and w are discrete and analogously if they are continuous.'

2.1. Learning

Fix some feature set X, label set ), and a class of hypotheses H, containing functions from X" to
). Assume a loss function /: ? — R, where £(}, y) is the loss of predicting 7 when the true label
is 9. The simplest example of a loss function is the 0-1 loss, /21 (3, y) = 14y. For any hypothesis
h € H, one can define the loss function ¢: (X x ) — R by taking ¢,(z,y) = L(h(x),y).
Given some distribution D over X' x ), one can define the expected loss of h, namely, Lp(h) :=
E(z,y)~D tn(z, ).

Let S = (s1,...,8m) € (X x))™ be a training set of m examples. Usually the coordinates of
S are assumed independent and identically distributed (iid) according to D, but we consider more
general measures; this will be discussed shortly. The goal of a learning algorithm is to choose a
hypothesis heM given a sample S to (approximately) minimize the test error, L D(h) A common
approach for doing so is taking the empirical risk minimizer (ERM), namely,

. 1 &
- inLg(h); where Lg(h) = — Y 5(s;).
pry = argmin Ls(h) ;- where Ls(h) mz n(si)

We say that S is e-representative if for all h € H, |Lp(h) — Lg(h)| < e. From the triangle
inequality, it follows that if .S is e-representative, then

Lp(h < inf Lp(h) + 2e.
Dl ERM)_}%H p(h) + 2¢

Thus, to prove learnability, it suffices to show that S is e-representative. Note that represen-
tativeness is stronger than learnability: it implies that any algorithm generalizes, namely, that the
difference between the training and test errors, Lp(-) and Lg(-), is small point-wise.

1. For general random variables, one can define P, = dyu where z ~ u, however, we will ignore this here. Additionally,
we will assume that the density is properly defined on all the space (rather than being defined almost everywhere.
Also, we assume that the conditional distributions are properly defined.
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Learning from dependent samples. Instead of assuming that the samples are iid, we assume that
they are drawn from a dependent (joint) distribution D(™) over (X x V)™, where all marginals
are distributed according to the same distribution D over X x ). Given 8 ~ D™, the goal is to

~

(approximately) minimize the test error Lp(h).

Rademacher, Gaussian and T complexities. Given a sample S = (s1,...,5y,) € Z™, a family
F of functions from Z to R, and a random variable 7 = (74,...,Ty) over R™, define the 7-
complexity of F with respect to the sample S by:

sup L > Tif(si)] :

OL(F) =E
° ferm

T

Define the Rademacher complexity of F by Rg (F) = 55%(.7-" ) where o is uniform over {—1,1}"™,
and the Gaussian complexity of F by &g(F) = O%(F) where g ~ N(0, I,;,). Given a distribu-
tion D™ over R™, define OT ) (F) = Egpim {f)g(]:)} , and similarly define R ;,m) (F) and
B pom) (F)-

2.2. Weakly dependent distributions

We define two conditions classifying weakly dependent distributions: Dobrushin’s condition and
high temperature in Markov Random Fields, the first being the weakest and the last being the
strongest.

2.2.1. DOBRUSHIN’S CONDITION (DOBRUSHIN, 1968)

First, one defines influences between coordinates of a random variable z = (z1,...,2;,). The
influence from z; to z; captures how strong the value of z; affects the conditional distribution of z;
when all other coordinates are fixed. Formally:

Definition 3 (Influence in high dimensional distributions) Let z = (z1,..., zy,) be a random
variable over Z™. Fori # j € {1,...,m}, define the influence of variable z; on variable z; as

Loil2) = | max  dry (oo (| 2mimiy): Prgoni( ] 2202539))
ZZJ‘?Z‘;-EZ

where dpy denotes the total variation distance.

Dobrushin’s condition as defined next, certifies that a weakly dependent random vector behaves
as i.i.d with respect to some important properties.

Definition 4 (Dobrushin’s Uniqueness Condition) Consider a random variable z over Z™. De-
fine the Dobrushin coefficient of z as « (z) = maxi<ij<m » ot I;—i(z). The variable z is said to
satisfy Dobrushin’s uniqueness condition if a (z) < 1.

Note that the constant 1 is important, and for € > 0 there are examples of vectors which deviate
from the bound by ¢ and are extremely dependent. Distributions satisfying the above condition
satisfy McDiarmid-like inequalities and are O(1/(1 — «))-subGaussians, as presented next.
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The following result builds upon the seminal studies on concentration of measure phenomenon
for contracting Markov chains by Marton et al. (1996) which is one of the first results on concen-
tration of measure for non-product, non-Haar measures. Theorem 5 is from Kiilske (2003) and
Chatterjee (2005a).

Theorem 5 (Concentration of Measure under Dobrushin’s Condition) Ler P (M) be a distribu-
tion defined over Z™ satisfying Dobrushin’s condition with coefficient . Let z = (21, ..., 2m) ~
P and let f : Z™ — R be a real-valued function with the following property,

vz?'zl €zZm: ‘f(z) - f(zl)‘ < i ]lziiz;)‘i‘
Then, forall t > 0,
—a)t?
Pr() - B/ > 1 < 200 (- fx ).

2.2.2. MARKOV RANDOM FIELDS (MRFS) WITH PAIRWISE POTENTIALS

A common way to define a random vector is by a Markov Random Field (MRF). They are defined
by potential functions, which are define the correlations between the vector entries. We will be
using the definition of an MRF with pairwise potentials, as defined below:

Definition 6 (Markov Random Field (MRF) with pairwise potentials) The random vector z =
(21,...,2m) over Z™ is an MRF with pairwise potentials if there exist functions p;: Z — R and
Vi Z2 = Rfori#j € {1,...,m} such that for all z € Z™,

m

Pr [z=2] = Hewi(zi) H eVii(7i:25)

~p(m)
zP i=1 1<i<j<m

The functions p; are called as element-wise potentials and 1);; are pairwise potentials.

Analogous to Dobrushin’s coefficient, one can define the inverse temperature of an MRF with
pairwise potentials, where low inverse temperature implies weak correlations.

Definition 7 (High Temperature MRFs) Given an MRF z with potentials {cpz} and {1;;}, define

Bij(z) = sup |vy(zi25)]; = max Zﬂza

2i,2;€Z 1<i<m
We say that z is high temperature if the inverse temperature, z, is less than 1.

The inverse temperature is bounded by Dobrushin’s coefficient, as presented below. The proof is a
simple calculation that can be found in Chatterjee (2005a) after the statement of Theorem 3.8.

Lemma 8 Given an MRF z with pairwise potentials, for any i # j, I;—;(z) < B;(z). Hence,
a(z) < B(=).

Lemma 8 implies that if the inverse temperature is less than 1, then the random variable has i.i.d-
like properties. Similarly to the case with Dobrushin’s condition, the smallest excess in the inverse
temperature over the threshold of 1 may cause the vector to be extremely correlated.
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3. Motivation and Examples

In this section, we present some tangible networked data models that would benefit from the learn-
ability results that we prove. Consider the problem of predicting which of many possible choices a
person in a social network will make: who will she vote for in a presidential election? what brand of
smart phone will he buy? or what major will she study in college? Each individual’s choice would,
of course, be dependent on her own features; but realistically it would also depend on the choices
of her friends and acquaintances. These situations are well studied, and often modeled as opinion
dynamics (Montanari and Saberi, 2010), and as autoregressive models (Sacerdote, 2001). The sta-
tionary distribution of these dynamics is often a pairwise graphical model, and thus our learnability
and generalization results would apply to the model if the influences are not too high.

In addition to the above, our results can potentially be applied to meteorological sensor data,
since values from sensors that are geographically close are likely to be correlated. In contexts
where the influences are observed to be small enough, there is scope to leverage our results. The
AddHealth example cited in the introduction provides another setting of networked data where if
certain covariates are weakly correlated across students, our results can be applied.

4. Agnostic Learnability of Dobrushin Dependent Data

In this Section, we study learnability under data which is weakly dependent according to Do-
brushin’s condition (4). We first characterize what properties of the joint distribution of our samples
suffice in order to achieve learnability. Then we show that these properties hold under Dobrushin’s
condition.

Learnability implies the existence of a learning algorithm .4 (not necessarily efficient) such that:
(a) Given a training set S, A achieves a small training error on the training set, i.e. Lg(A(S)) <
infe9 Ls(h)+0O(e) and (b) the hypothesis output by A generalizes, i.e. |Lg(A(S)) — Lp(.A(S))]
O(e) where lim,,, - £ = 0. Here we show that we can achieve the same rates of convergence (up
to log factors) for the error of the learning algorithm and the confidence bounds as in the i.i.d. set-
ting. We employ the technique of sample compression to show learnability. For simplifying the
exposition of our proof, we focus on the setting where our loss function is 0/1. Our learnability
result can be extended to more general loss functions as well.

A sample compression scheme is a specific type of learner which works by first carefully se-
lecting a small subset of the training samples and then returning a hypothesis which depends only
on this subset but performs well on the entire training set. The careful selection is to ensure the
existence of a hypothesis which depends only on the selected small subset whole loss is minimized
over the whole training set. And if the selected subset is of size o(m), then we can show that any
hypothesis chosen based solely on this subset will necessarily have a small generalization error. To-
gether we get learnability. In the i.i.d. setting, for multiclass hypotheses and the 0/1 loss function,
Littlestone and Warmuth (1986); David et al. (2016) show that agnostic learnability is equivalent to
the existence of a sublinear size sample compression scheme. We extend this result to the setting of
Dobrushin dependent data achieving nearly the same asymptotic rates as in the i.i.d. setting.

Definition 9 (Agnostic Sample Compression Scheme) Fix a hypothesis class H, integers 0 <
k < m and functions r: (X x V)™ = (X x V)¥ and p: (X x Y)F — Y*. We say that (k, p) is
an agnostic sample compression scheme for H of size k with respect to a sample-size m if:

e For all samples S, k(S) C S and |k(9)| < k.
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e For all samples S, Ls(p(k(S))) < infrey Ls(h).

To understand what hypothesis classes H have small sample compression schemes one can look
at the instructive setting of binary hypothesis classes, i.e. ) = {0, 1}. For these classes, it is known
that having a small VC-dimension is equivalent to having a small compression scheme Moran and
Yehudayoff (2016).

Our main result of this Section is Theorem 10 which states that hypothesis classes with sample
compression schemes of size k are agnostic PAC-learnable to error ¢ from O(k/e?) samples.

Theorem 10 (Agnostic PAC-Learning for Compressible Hypothesis Classes) Let H be a hy-
pothesis class with a sample compression scheme (k, p) of size k and let ¢ denote the 0/1 loss func-
tion. Given a sample S = {(x1,91), ..., (@m,Ym)} ~ D" where D™ satisfies Dobrushin’s
condition with coefficient o, there exists a constant C' such that,

_ Cklog(k/e?) + log(1/9)
e (1—a)e? '

Pr |Lp(p(k(S))) > hnelil Lp(h)+e| <6, for

Due to the VC dimension characterizing compressibility for binary hypothesis classes, we get
Corollary 11 from Theorem 10.

Corollary 11 (Agnostic PAC-Learning for Finite VC-Dimension Classes) Let H be a binary hy-
pothesis class with VC(H) = d, and let { be the 0/1 loss function. Given a sample

S = {(x1,91), - (T, Ym)} ~ D™ where D™ satisfies Dobrushin’s condition with Do-
brushin coefficient a, we have for some constant C' and for k = min (d log m, d2(d+1)),

_ Cklog(k/e?) + log(1/0)
N (1—a)e? '

Pr | Lp(p(k(S))) > ggyf{LD(h) +e| <6, for

The proof of Theorem 10 proceeds in two steps. The first step is showing that any compres-
sion scheme of size k = o(m) will generalize, i.e. Ls(p(k(S))) — Lp(p(k(S))) is small. This is
the crucial part of the proof which differs significantly from the i.i.d. case. The second step fol-
lows from the definition of a valid compression scheme that it must achieve optimal training error:
Ls(p(k(S))) < infrey Ls(h) combined with a tail bound on infj,cy Lg(h) — infrey Lp(h).

To show the first step, we first present a general Lemma 12 which states conditions on the data
distribution which are sufficient to show that sample compression schemes generalize.

Lemma 12 (Conditions for Generalization of Sample Compression Schemes) Consider a sam-
ple S = {(x1,41),. .., (Tm,Ym)} ~ D" and any loss function £ bounded by R > 0. For any
subset of indices I C [m], let S = {(x;,y;): @ € I}. If we have that for any I C [m], and for
constants C1 and Cy,

t2m

CoR|I|
201R2 m ’

1. Pr[|Ls(h) = Lp(h)| = t | Si] < 2exp (— ) 2. [E[Ls(h)] ~ E[Ls(h)|Sq] <

then, for any agnostic sample compression scheme (k, p) of size k on S, for some constant C,

(klogm + 10g(1/6))] -

Pr||Ls(p(k(S))) = Lp(p(x(S5)))] = CR\/

m



LEARNING FROM WEAKLY DEPENDENT DATA

Then, we have Lemma 13 which shows that if the data distribution is Dobrushin, the conditions
of Lemma 12 are satisfied.

Lemma 13 Ler D™ be a distribution over m variables which satisfies Dobrushin’s condition
with coefficient o such that the marginal of eveey variable is D. Let 8 ~ D™ Then we have

t2m(1 —
1. Pr([|Ls(h) — Lp(h)| >t | Si] < 2exp <—mQ(R2a)> )
aR|I|

2. [E[Ls(h)] - E[Ls(h)|S1]| < A—aym’

Lemmas 12 and 13 together with the property of an agnostic sample compression scheme imply
Theorem 10.

5. Uniform Convergence for Weakly Dependent Data

In this section, we obtain uniform convergence bounds for weakly dependent distributions. We
could not derive such bounds for distributions satisfying Dobruhsin’s condition and we do not know
if such bounds apply for all classes of finite VC dimension. Instead, we present such bounds for a
smaller family of distributions, which contains high temperature Markov Random Fields with pair-
wise potentials. Moreover this family allows for an arbitrary structure of correlations (as long as
they are sufficiently weak). We define the log-influences I;?ig, a notion stronger than Dobrushin’s in-
fluences I;_,;, which replaces the total variation distance appearing in the definition with a stronger
bound on the maximal log-ratio of probabilities. Analogously, we obtain the log-coefficient c,g, as
defined below:

Definition 14 (Log-influence and log-coefficient) Let z = (z1,...,2,,) be a random variable
over Q™ and let P, denote either its probability distribution if discrete or its density if continuous.
Assume that P, > 0 on all Q™. For anyi # j € [m), define the log-influence between j and i as*

Pz [Ziijfifj]Pz [Z<Z <Z7i7]’]

1
I%(z)==>  sup log )
]’Z( ) Z—q',—jEQ"L_Z Pz[zgzjz,i,j]Pz[zizz,i,j]

/ /
2332437257 €N

Define the log-coefficient of z as c1og(2) = MaX;cm) 24 Ijl.?ig(z).

log _ 7log
Ij' = ¢

Note that the log influence is symmetric: [ ; i

The following relation holds:

Lemma 15 For any random variable z and i, j € [m|, I;;(z) < Ijl%g(z) < Bj.i(2).

The main result of this section shows that uniform convergence holds whenever the log-coefficient is
less than a half. In that regime, the maximal generalization error of hypotheses from H, sup;, ¢ | Ls(h)—
Lp(h)], is bounded in terms of the Gaussian complexity of H:

2. To be more formal, one can define P, = du where z ~ p and replace the supremum with an essential supremum.

10
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Theorem 16 Let H be a hypothesis class, let £: V2 - [—L, L] be a loss function, and let L =
{,: h € H}. Let D) be a distribution over (X x Y™, with all m marginals equaling D and
oqog(D(m)) < 1/2. Then, forall t > 0,

Lt 9
P Lo(h) — Lp()| > C (& om (La) + —2) | < =272,
Seopm) Zgg| s(h) — Lp(h)] ( pom) (L) \/ﬁ)] <e

(where C'is a universal constant whenever 1/2 — Qlog (D(m)) is bounded away from zero).

The proof of Theorem 16 is a direct corollary of Theorem 17 which is presented below. Note that
Lemma 15 implies that Theorem 16 also holds whenever D(™ is an MRF with pairwise potentials
and B(D(™) < 1/2. Since the condition 5(D(™)) < 1 sufficient for concentration inequalities to
hold, we suspect that Theorem 16 may hold as well in this regime. However,

Applying Theorem 16 on any hypothesis class H with finite VC, one obtains the same sample
complexity bounds of i.i.d data up to constant factors:

o <VC(H) + log(1/5)> |

£2

2

This follows from the fact that the Gaussian complexity of L is bounded by O <\/ VC(H)/ m)
The proof is almost identical to the proof bounding the Rademacher complexity by the same quantity
(see, for instance, Shalev-Shwartz and Ben-David, 2014, Chapter 27).

Although the Rademacher and Gaussian complexities are not identical, they are almost equiva-
lent. Tomczak-Jaegermann (1989) proved the following for some universal constants ¢, C' > 0.

NRs(F) < B5(F) < Clnm Rg(F),

Theorem 16 is based on a more general result, bounding the expected suprema of empirical
processes with respect to the corresponding Gaussian complexity. Here, the supremum is taken
over an arbitrary family of unbounded functions, rather than bounded loss functions.

Theorem 17 Let D™ be a random vector over some domain Z™ and let F be a class of functions
from Z to R. If cnog(D'™) < 1/2, then

i=1 — 2006 (DM)

;if(si)]) < w%“’”)(f L )

where C' > 0 is a universal constant.

The proof outline appears in Section 6. Theorem 16 follows from Theorem 17 simply by applying
a McDiarmind-like inequality for weakly correlated data (Theorem 5).

6. Proof Outline: Uniform Convergence

First, we bound the left hand side of (3) by the o-complexity of F (Eq. (5)), where o does not consist
of i.i.d random signs, but rather it is a subGaussian distribution with zero mean. Furthermore, this
o-complexity is not with respect to D(™) but rather with respect to a different distribution. Then,

11
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we bound this o-complexity by the Gaussian complexity of F, with respect to D" (Lemma 18
and Lemma 19).

Assume that § = (8;)ic[m] ~ D™ and 8’ = (87)ic[m) is another i.i.d. random variable drawn
from D™ . The following holds:

Esup< Zfsz %;Zf@)) < ESUP<;Z]((32‘)_;LZ]0(3;))- (4)
i=1 L=

S feF S,8" feF

We randomly shuffle S and S’, to create samples T" and T". Formally, m i.i.d and uniform random
signs are drawn, o = (01,...,0p) € {—1,1}"™. Then, T = (¢1,...,ty,) and T' = (t},...,¢t,,)
are defined as functions of S, S’ and o, as follows: forany i € {1,...,m},ifo; = 1 thent; = s;
and t; = s, and otherwise, t; = s} and t; = s;.

For any T' and 7" denote by o7,/ a random variable sampled from Pypg: (- | T,T"), the
conditional distribution of o, conditioned on T' = T and T" = T". We bound the right hand side of
(4), substituting S and S’ with T" and T”, in a change of measure argument:

Sllig i)

feF
sup — Z o f(t;

m
feFr i—1

<
TT’

m
feF =1

where the equality (%) follows from the fact that the joint distribution of T" and o equals the joint
distribution of T" and —o". Note that o7 7~ is generally not a product distribution, however, we can
show that it is a zero mean subGaussian.

If follows from Lemmal5 that a(or7/) < ol8(ar) < 2a°8(DU™). From Theorem 5
it follows that o7+ is a C/(1 — a(or7))-subGaussian, hence it is a C/(1 — 2a/°8(D(™))-
subGaussian. We use this to show that the o7+ complexity of F can be bounded in terms of the
Gaussian complexity. This will bound the right hand side of (5). The proof follows from Fernique-
Talagrand Majorizing measure theory.

Lemma 18 Fix z € Z™. If T is a K> subgausszan then, DT(}') < CK®,(F), (for some
universal constant C' > 0). In particular, O7 "' (F) < C’Qi F)/\/1 = 2alog(Dm)),

Lemma 18 implies that the right hand side of (5) is bounded as follows:

UTT’ C -~ o C
TIEEF,D (F) < LI )TIE%W@T(]:)— 1—2B(D(m))®T(f)' (6)

We will bound this last term by the Gaussian complexity of D),
Lemma 19 The following holds: &1 (F) < 26 pm) (F).

The proof concludes by equations (4), (5), (6) and Lemma 19.

12
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