
Proceedings of Machine Learning Research vol 99:1–21, 2019 32nd Annual Conference on Learning Theory

Artificial Constraints and Hints for Unbounded Online Learning

Ashok Cutkosky ASHOK@CUTKOSKY.COM

Google Research
Mountain View, CA, USA

Editors: Alina Beygelzimer and Daniel Hsu

Abstract
We provide algorithms that guarantees regret RT (u) ≤ Õ(G‖u‖3 +G(‖u‖+ 1)

√
T) or RT (u) ≤

Õ(G‖u‖3T 1/3 + GT 1/3 + G‖u‖
√
T) for online convex optimization with G-Lipschitz losses for

any comparison point u without prior knowledge of either G or ‖u‖. Previous algorithms dispense
with the O(‖u‖3) term at the expense of knowledge of one or both of these parameters, while
a lower bound shows that some additional penalty term over G‖u‖

√
T is necessary. Previous

penalties were exponential while our bounds are polynomial in all quantities. Further, given a
known bound ‖u‖ ≤ D, our same techniques allow us to design algorithms that adapt optimally to
the unknown value of ‖u‖ without requiring knowledge of G.

1. Unconstrained Online Convex Optimization

Online convex optimization (OCO) is a popular theoretical framework for designing algorithms
that operate on streams of input data (Shalev-Shwartz, 2011; Zinkevich, 2003). Such problems
abound in today’s world of extremely large datasets, and so many empirically successful algorithms
are analyzed in the OCO framework (e.g. (Duchi et al., 2010; Ross et al., 2013; McMahan et al.,
2013)). In detail, OCO is a game consisting of T rounds. In each round, the learning algorithm
first outputs a point wt in some Hilbert space W 1, and then the environment outputs a convex loss
function `t : W → R. The learner’s goal is to minimize the regret, which is the total loss suffered
by the learner in comparison to the loss suffered at some benchmark point ẘ ∈W :

RT (ẘ) =

T∑
t=1

`t(wt)− `t(ẘ)

Online learning algorithms can be naturally applied to stochastic optimization problems, in
which each `t is an i.i.d. random variable with E[`t] = L for some fixed loss functionL. In this case,
the online-to-batch conversion argument (Cesa-Bianchi et al., 2004) tells us that E[L(w)−L(ẘ)] ≤
E[RT (ẘ)]

T , where w =
∑T
t=1 wt
t . Thus, we refer to RT (ẘ)

T as the convergence rate. We wish to achieve
a convergence rate such that limT→∞

RT (ẘ)
T = 0, known as sublinear regret.

We can reduce OCO to online linear optimization (OLO) in which each loss `t must be linear
through the use of subgradients: if gt ∈ ∂`t(wt), we have

RT (ẘ) ≤
T∑
t=1

〈gt, wt − ẘ〉 (1)

1. Our results also apply in Banach spaces, but we focus our exposition on Hilbert spaces for simplicity

c© 2019 A. Cutkosky.

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

Thus by supplying the linear lossesw 7→ 〈gt, w〉 to an OLO algorithm, we obtain an OCO algorithm.
Because it is often easy to compute gradients, many of the popular OCO algorithms are in fact OLO
algorithms. We will also take this road, and consider exclusively the case that losses are linear
functions specified by the subgradients gt so that (1) is an equality.

Our goal is to design algorithms which take no data-dependent parameters as input and yet
nevertheless guarantee regret matching the minimax optimal regret for online linear optimization
algorithms, sometimes called “parameter-free” algorithms (Abernethy et al., 2008; McMahan and
Streeter, 2012; Orabona, 2013; Foster et al., 2015, 2017). Specifically, we want to obtain:

RT (ẘ) = O

‖ẘ‖
√√√√ T∑

t=1

‖gt‖2? log (GT + 1)


= O

(
‖ẘ‖G

√
T log (GT + 1)

)
(2)

for all ẘ simultaneously, where G = max ‖gt‖?, ‖ · ‖ is some norm and ‖ · ‖? is the dual norm.
Classical gradient-descent algorithms require learning rates that are tuned to the values of ‖ẘ‖ and
‖gt‖?, while parameter-free algorithms automatically adapt to these unknown parameters, and so
can largely dispense with tuning.

1.1. Previous Progress and Lower Bounds

Previous approaches to designing parameter-free algorithms typically relax the problem by assum-
ing either a bound D on ‖ẘ‖, or a bound G on G = maxt ‖gt‖?. In the case of known value for
D, classical approaches based on Follow-the-Regularized-Leader or Mirror Descent with strongly-

convex potentials can obtain regret O
(
D
√∑T

t=1 ‖gt‖2
)

(Duchi et al., 2010; Hazan et al., 2008;

Orabona and Pál, 2018). In the alternative when a bound G ≤ G is known, the problem seems
somewhat harder. Most prior work in this setting instead obtains the slightly-less-good regret bound

RT (ẘ) = Õ

(
‖ẘ‖

√
G
∑T

t=1 ‖gt‖?
)

(Orabona, 2014; Orabona and Tommasi, 2017; Cutkosky and

Boahen, 2017), and the better rate of Õ
(
‖ẘ‖

√
G2 +

∑T
t=1 ‖gt‖2?

)
has only recently been devel-

oped (Cutkosky and Orabona, 2018).
When neither ‖ẘ‖ nor G is known, prior lower bounds show that it is actually impossible to

obtain the desired result (Cutkosky and Boahen, 2016, 2017). Instead, there is a frontier of lower-
bounds trading off between the “ideal” Õ(‖ẘ‖G

√
T) term and an exponential penalty of up to

O(exp(T)/T), depending on how fast the gradients grow2.
We will improve upon this background in two ways. First, observe that there is a curious asym-

metry between the results for known D and known G. On the one hand, in the known D case the
algorithms do not adapt very well to the true value of ‖ẘ‖, instead obtaining a regret bound propor-
tional to DG

√
T . On the other hand, in the known G case, so long as G is not greater than G

√
T ,

the resulting bound depends on ‖ẘ‖G
√
T . So in a sense, the known G algorithms are more robust

than than the knownD ones. We close this gap by providing an algorithm that takes an upper bound

2. It is possible to sacrifice the near-linear dependence on ‖ẘ‖ to obtain a bound of ‖ẘ‖2G
√
T without any knowledge

(Orabona and Pál, 2018).

2

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

D but no bound G and maintains regret Õ(‖ẘ‖G
√
T +DG). The principal technique used in this

analysis will then allow us to improve in a second way: when neither G nor a boundD is known, we
design an algorithm that still guarantees sublinear regret and whose only T -dependent regret terms
are linear in ‖ẘ‖.

The lower bound makes it seem that there is no hope for this second goal - but it is not so!
The key observation is that the exponential lower bound applies only to algorithms which insist on
a regret bound whose dependence on ‖ẘ‖ is Õ(‖ẘ‖). However, in practice we suspect that it is
more important to maintain a T -dependence of

√
T . As a result, we will replace the aesthetically

unappealing exp(T)/T term with a more palatable penalty of G‖ẘ‖3. This new regret bound
is incomparable to the previous lower bound, in the sense that neither function is dominated by
the other: for very large ‖ẘ‖, ‖ẘ‖3 ≥ exp(T)/T . However, we note that our new penalty is
independent of T , and so as T becomes large compared to ‖ẘ‖, our asymptotic convergence rate is
guaranteed to match the optimal rate. To our knowledge, ours is the first guarantee of this kind in
online learning.

2. Overview of Techniques and Results

For any user-specified p and k, We will construct an online linear optimization algorithm, LEASHED,
that guarantees the regret bound:

RT (ẘ) ≤ Õ

‖ẘ‖
√√√√ T∑

t=1

‖gt‖2? +GTk

(
max
t

∑t
t′=1 ‖gt′‖?
Gt

)p

+GT min
q∈[0,1]

‖ẘ‖1+ 1−q
p

k
1−q
p

(∑T
t=1 ‖gt‖?
GT

)q]
(3)

where Gt = maxt′≤t ‖gt′‖? and ‖ẘ‖ are unknown to the algorithm ahead of time and Õ hides a
logarithmic factor. Using this result, we can apply p = 1/2 and q = 0 to obtain the bound:

RT (ẘ) ≤ Õ

‖ẘ‖
√√√√ T∑

t=1

‖gt‖2? +GTk

√
max
t

∑t
t′=1 ‖gt′‖?
Gt

+GT
‖ẘ‖3

k2


= Õ

(
(‖ẘ‖+ k)GT

√
T +GT

‖ẘ‖3

k2

)
Another interesting setting is p = 1/3, q = 1/3, k = 1, which yields Õ(G‖ẘ‖3T 1/3 + GT 1/3 +
‖ẘ‖G

√
T) and makes the dominant T -dependent term Õ(‖ẘ‖G

√
T) without any ‖ẘ‖+ k terms.

Finally, observe that setting p = 1, q = 0 in (3) yields an expression (up to logs) of the form
G‖ẘ‖2/k + GkT + ‖ẘ‖G

√
T , which is reminiscent of the results in FTRL or Mirror Descent

analysis with strongly-convex regularizers, in which one needs to tune the “learning rate” k to be
O
(

1√
T

)
in order to obtain O(

√
T) regret.

The term maxt

∑t
t′=1 ‖gt′‖?
Gt

may seem a little awkward. It appears for technical reasons and it is
very easy to replace it with C

∑T
t=1 ‖gt‖? for any user-specified constant C. We choose not to do

this simple because the stated expression has the appealing property that scaling all the gradients by

3

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

any constant scales the expression by the same constant (although the entire regret bound does not
maintain this property).

2.1. Outline and Proof Steps

First, we observe that it suffices to achieve our desired bounds in the one-dimensional case W = R,
as it is easy to convert any one-dimensional algorithm to a dimension-free algorithm via a recent
reduction argument (Cutkosky and Orabona, 2018) (see Section A for details). Our one-dimensional
algorithm is then constructed via three steps:

1. In step 1, we develop an online linear optimization algorithm for a modified setup in which
the algorithm tis given access to a sequence of “hints” h1 ≤ · · · ≤ hT such that |gt| ≤ ht and
ht is revealed before gt. The algorithm utilizes the hints to avoid suffering any penalty for a
priori unknown bounds on G. This step is the most technical step, although it is essentially
just a careful verification that prior analysis is completely unchanged when incorporating
these “just in time” bounds on |gt| (Section 3).

2. Although these hints aren’t actually available, we approximate them by ht = maxi<t |gi|. We
then analyze the error from this approximation, and show that it results in adding a penalty of
Gmaxt |wt| to the regret (Section 4).

3. From the previous step, it seems that we should try to control maxt |wt|. We do this by
enforcing an “artificial constraint”: we use the constraint set reduction in (Cutkosky and
Orabona, 2018) to ensure |wt| ≤

√
T for all t. This results in good regret for all |ẘ| ≤

√
T ,

but does not control regret for |ẘ| >
√
T . To address |ẘ| >

√
T , we then observe that

RT (ẘ) ≤ RT (0)+ |ẘ|GT ≤ RT (0)+G|ẘ|3 and use the fact thatRT (0) is constant (because
|0| ≤

√
T) to conclude the desired results (Section 5).

We point out that the second step of our proof actually gives a rather general way to convert
algorithms that require bounded losses into ones that do not require bounded losses, so long as the
domain W is itself bounded. Thus, it is our hope that it may have broader applicability.

3. Step 1: Unconstrained Optimization With Hints

Our overall approach can be viewed as a sequence of elaborate “tricks” designed to convert an
algorithm that requires a Lipschitz bound G into one that does not. Our first step in this section is to
consider a slightly easier OLO game in which the algorithm is given access to “hints” ht that bound
the next loss gt. Formally, each round of the OLO game now consists of:

1. Learner receives hint ht ∈ R, with ht ≥ ht−1.

2. Learner plays wt.

3. Learner receives loss gt with |gt| ≤ ht.

We will look for regret bounds that depend both on ẘ as well as the hints, taking the form:

T∑
t=1

gt(wt − ẘ) ≤ RT (ẘ, hT)

4

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

To accomplish this, we adapt the algorithm of (Cutkosky and Orabona, 2018) to this setting and
obtain an algorithm that guarantees regret

RT (ẘ) = Õ

|ẘ|max

hT ,
√√√√ T∑

t=1

g2
t


Previous algorithms (Orabona, 2014; Cutkosky and Boahen, 2017) can also be adapted to this set-
ting, but the dependencies on hT are worse.

The algorithm (Algorithm 1) operates in the coin-betting framework (Orabona and Pál, 2016).
A coin-betting algorithm achieves low regret by maintaining high wealth, defined by WealthT =
ε −

∑T
t=1 gtwt for some user-specified ε > 0. The wealth is increased by playing wt = vtWealtht

for some vt ∈ [−1, 1], which corresponds to “betting” a fraction vt of Wealtht on the value of the
“coin” gt, because Wealtht+1 = Wealtht − gtvtWealtht. Thus the problem of choosing wt reduces
to the problem of choosing vt. We solve this problem in the same way as (Cutkosky and Orabona,
2018) by recasting choosing vt as an online exp-concave optimization problem in 1 dimension, and
then use the Online Newton Step (ONS) algorithm (Hazan et al., 2007) to optimize vt.

This strategy can become nonsensical if the value of Wealtht ever becomes non-positive. To
avoid this, we wish to guarantee |vt| < 1/|gt| for all t, which implies Wealtht+1 = (1−vtgt)Wealtht >
0. Thus, we use our “hint” ht and restrict the value vt to the range [−1/2ht, 1/2ht] to achieve the
desired outcome.

Algorithm 1 Coin-Betting through ONS With Hints

Require: Initial wealth ε > 0, parameter α > 0
1: Initialize: Wealth0 = ε, initial betting fraction v1 = 0, initial hint h1

2: for t = 1 to T do
3: Bet wt = vt Wealtht−1

4: Receive gt ≤ ht
5: Receive ht+1 ≥ ht
6: Update Wealtht = Wealtht−1 − g̃twt
7: compute new betting fraction vt+1 ∈ [−1/2ht+1, 1/2ht+1] via ONS update on losses
− ln(1− g̃tv)

8: Set zt = d
dvt

(− ln(1− g̃tvt)) = g̃t
1−gtvt

9: Set At = 4α+
∑t

i=1 z
2
i

10: vt+1 = max
(

min
(
vt − 2

2−ln(3)
zt
At
, 1

2ht+1

)
,− 1

2ht+1

)
11: end for

The analysis of this algorithm is nearly identical to that in (Cutkosky and Orabona, 2018), al-
though we reproduce the main steps for completeness. The major deviation is that we are performing
ONS updates on shrinking domains [−1/2ht, 1/2ht], which we analyze carefully in appendix.

5

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

Theorem 1 The regret of Algorithm 1 is bounded by:

RT (ẘ, hT) ≤ ε+ |ẘ|max

8hT

ln
16|ẘ|hT exp(α/4h2

T)
(

1 +
∑T
t=1 g

2
t

α

)4.5

ε
− 1

 ,

2

√√√√√√ T∑
t=1

g2
t ln

4
(∑T

t=1 g
2
t

)10
exp(α/2h2

T)ẘ2

ε2
+ 1




4. Step 2: Without Hints, Regret is Small if ‖wt‖ is Small

In this section we remove the need for externally supplied hints used in Section 3. The technique
presented here may apply more generally than our present focus, so we state the technique in terms
of general norms, rather than restricting to a one-dimensional problem as we do in the other sections.
Specifically, we show how to convert any algorithm that uses hints ht and obtains regret RT (ẘ, hT)
into one that does not receive hints and obtains regret RT (ẘ, G) + Gmaxt ‖wt‖ (where again
G = maxt ‖gt‖?). The procedure is very simple: we run the algorithm using (incorrect!) hints
ht = maxi<t ‖gi‖?. Whenever we observe ‖gt‖ > ht (i.e. when the hint is wrong), we “lie” to the
algorithm: we replace gt with a “truncated gradient” gtrunc

t = ht
gt
‖gt‖ to make the hint correct, and

then bound the error produced by this truncation. Pseudocode is provided in Algorithm 2.

Algorithm 2 Algorithm Without Hints

Require: Algorithm A that takes hints ht, initial value g
1: Initialize: initialize h1 = g
2: for t = 1 to T do
3: Get wt from A, play wt
4: Receive gt
5: if |gt| ≥ ht then
6: gtrunc

t ← ht
gt
‖gt‖?

7: else
8: gtrunc

t ← gt
9: end if

10: ht+1 = max(ht, ‖gt‖?)
11: send gtrunc

t and ht+1 to A
12: end for

Theorem 2 Suppose A obtains RT (ẘ, hT) given hints h1 ≤ · · · ≤ hT . Then Algorithm 2 obtains

RT (ẘ) ≤ RT (ẘ,max(g, G)) +Gmax
t
‖wt‖+G‖ẘ‖

where G = maxt ‖gt‖?.

6

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

Proof First, we observe that the gradients gtrunc
t provided toA do indeed respect the hints, ‖gtrunc

t ‖? ≤
ht. Thus we have:

T∑
t=1

gtrunc
t · wt − gtrunc

t · ẘ ≤ RT (ẘ, hT)

Moving on to the true regret, we define Gt = maxi≤t ‖gi‖? for convenience, and then compute:

T∑
t=1

gt · wt − gt · ẘ =
T∑
t=1

gtrunc
t · (wt − ẘ) + (gt − gtrunc

t) · (wt − ẘ)

≤ RT (ẘ, hT) + (‖ẘ‖+ max
t
‖wt‖)

T∑
t=1

‖gt − gtrunc
t ‖?

≤ RT (ẘ, hT) + (‖ẘ‖+ max
t
‖wt‖)

∑
t|ht<Gt

Gt − ht

≤ RT (ẘ, hT) + (‖ẘ‖+ max
t
‖wt‖)

∑
t|ht<Gt

Gt −Gt−1

≤ RT (ẘ, hT) + (‖ẘ‖+ max
t
‖wt‖)G

where we have observed ht ≥ Gt−1 in the second-to-last line. Now we see that hT = max(g, G)
to complete the proof.

Combining this result with our Algorithm 1, we obtain a regret bound of

RT (ẘ) ≤ Õ

‖ẘ‖
√√√√ T∑

t=1

‖gt‖2? + max(g, G)‖ẘ‖+Gmax
t
‖wt‖+ ε


where we have temporarily suppressed all logarithmic factors for ease of exposition. Intuitively, we
obtain nearly the same regret guarantee as before, but suffer an additional penalty that is small so
long as the wts do not grow too much.

This reduction allows us to address the asymmetry between the prior algorithms with known
D versus known G. Specifically, when we operate within a setting with bounded diameter D,
then maxT ‖wt‖ ≤ D. We can construct an algorithm with domain W that takes hints and ob-
tains regret that adapts to ‖ẘ‖ by applying the one-dimensional-to-dimension-free reductions and
unconstrained-to-constrained reductions of (Cutkosky and Orabona, 2018) to Algorithm 1. Then by
appling the reduction of this section and leveraging maxT ‖ẘt‖ ≤ D, we obtain the regret bound:

RT (ẘ) ≤ Õ

‖ẘ‖
√√√√ T∑

t=1

‖gt‖2? +DG


Further, by applying these reductions to Algorithm 6 of (Cutkosky and Orabona, 2018) we can
obtain:

RT (ẘ) ≤ Õ


√√√√ T∑

t=1

‖wt − ẘ‖2‖gt‖2? +DG


7

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

The latter regret bound is of interest as it implies logarithmic regret on strongly-convex losses with-
out requiring any knowledge of the strong-convexity parameter or any Lipschitz bounds. We expect
that other algorithms involving bounded domains and Lipschitz bounds can also take advantage of
this technique to remove the Lipschitz bound requirement.

5. Step 3: Artificial Constraints

Returning to a one-dimensional problem, in this last step, we leverage the result of the previous
section by preventing our algorithm from choosing wts with overly-large magnitudes. To gain some
intuition for our strategy, suppose we can constrain the algorithm in the previous section to the

set
[
−
√∑T

t=1 |gt|,
√∑T

t=1 |gt|
]

, while still maintaining the same regret bound for any ẘ in this

interval3. This enforces maxt ‖wt‖ ≤
√∑T

t=1 ‖gt‖, so that intuitively we have a bound of

RT (ẘ) ≤ Õ

ε+G

√√√√ T∑
t=1

|gt|+ |ẘ|

√√√√ T∑
t=1

g2
t + ε

 .

for any ẘ with |ẘ| ≤
√∑T

t=1 |gt|. Thus it remains to address ẘ outside the constraining interval.
For ẘ outside the interval, we have

RT (ẘ) =
T∑
t=1

gtwt − gtẘ

≤ RT (0) + |ẘ|
T∑
t=1

|gt|

≤ RT (0) + |ẘ|3

Where in the last step we used |ẘ| ≥
√∑T

t=1 |gt|. Combining the two guarantees, with our result
from the previous section for which RT (0) ≤ ε, we have for all ẘ:

RT (ẘ) ≤ Õ

|ẘ|3 +G

√√√√ T∑
t=1

|gt|+G|ẘ|+ ε+ max(g, G)‖ẘ‖+ |ẘ|

√√√√ T∑
t=1

g2
t

 .

There are two issues with this intuition that need to be addressed. First, we need to show
how to restrict to the desired interval without affecting the regret bound for ẘ inside the interval,
and second we need to deal with the fact that we do not know the value of

∑T
t=1 |gt| apriori. We

address the first issue by appealing to the constraint-set reduction of (Cutkosky and Orabona, 2018),
which provides exactly the desired mechanism (full details are reproduced in our proof of Theorem
3). We address the second issue in greater generality by considering a t-varying constraint-set[
−k
(∑t−1

i=1 |gi|
)p
, k
(∑t−1

i=1 |gi|
)p]

for user-specified p and k.
We present the pseudo-code for the final algorithm in Algorithm 3, LEASHED below.

8

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

Algorithm 3 LEASHED

Require: Algorithm A that takes hints, parameters k, p, g
1: Initialize: initialize h1 = g, G0 = 0, B1 = 0
2: Send initial hint h1 to A
3: for t = 1 to T do
4: Get wt from A
5: if |wt| ≥ Bt then
6: //project to artificial constraint set [−Bt, Bt]
7: w̃t ← Bt

wt
|wt|

8: else
9: w̃t ← wt

10: end if
11: Play w̃t, receive gt
12: Gt ← max(Gt−1, |gt|).
13: ht+1 ← max(ht, |gt|).
14: //update artificial constraint
15: Bt+1 ← k

(∑t
i=1 |gt|/Gt

)p
16: //deal with increasing gradient sizes
17: if |gt| ≥ ht then
18: //replace gt with truncated version
19: gtrunc

t ← ht
gt
|gt|

20: else
21: //no need to modify gt
22: gtrunc

t ← gt
23: end if
24: //modify gradient to respect artificial constraint
25: Set ˜̀

t(w) = 1
2 (gtrunc

t w + |gtrunc
t |max(0, |w| −Bt))

26: Compute g̃t ∈ ∂ ˜̀
t(wt)

27: Send g̃t and ht+1 to A
28: end for

5.1. The Final Algorithm

Theorem 3 Suppose A guarantees regret RAT (ẘ, hT) given gradients g̃1, . . . , g̃T and hints h1 ≤
· · · ≤ hT such that |g̃t| ≤ ht. Then LEASHED obtains regret

RT (ẘ) ≤ 2RAT (ẘ,max(g, G)) +Gk

[
max
t≤T

(
t∑
t=i

|gi|/Gt

)p]
+ 2G|ẘ|

+ min
q∈[0,1]

G

[
|ẘ|1+ 1−q

p

k
1−q
p

(
T∑
t=1

|gt|/G

)q]

where G = maxt≤T |gt|.

3. Note that we don’t know this interval a priori - this is just a thought-experiment to gain intuition.

9

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

Proof The additional components of this proof over that of Theorem 2 are inspired by the proof of
the constraint-set reduction in (Cutkosky and Orabona, 2018) (Theorem 3), with some modification
to deal with the time-varying constraints.

First, we mirror the argument of Theorem 2:

T∑
t=1

gt(w̃t − ẘ) ≤
T∑
t=1

gtrunc
t (w̃t − ẘ) + (gt − gtrunc

t)(w̃t − ẘ)

≤
T∑
t=1

gtrunc
t (w̃t − ẘ) +

T∑
t=1

|gt − gtrunc
t |(max

t
|w̃t|+ |ẘ|)

≤
T∑
t=1

gtrunc
t (w̃t − ẘ) +G

[
max
t
Bt + |ẘ|

]
Now we deal with the first term. Let ˜̊wt be the projection of ẘ to [−Bt, Bt]. Then:

T∑
t=1

gtrunc
t (w̃t − ẘ) ≤

T∑
t=1

gtrunc
t wt + |gtrunc

t ||w̃t − wt| − (gtrunc
t ẘ + |gtrunc

t ||ẘ − ˜̊wt|) + |gtrunc
t ||ẘ − ˜̊wt|

= 2
T∑
t=1

˜̀
t(wt)− ˜̀

t(ẘ) +
T∑
t=1

|gtrunc
t ||ẘ − ˜̊wt|

≤ 2
T∑
t=1

g̃t(wt − ẘ) +
T∑
t=1

|gtrunc
t ||ẘ − ˜̊wt|

We will analyze these two sums separately. First, observe that ˜̀
t is |gtrunc

t |-Lipschitz, so that |g̃t| ≤
|gtrunc
t | ≤ |gt| ≤ ht for all t. Therefore we have

2
T∑
t=1

g̃t(wt − ẘ) ≤ 2RAT (ẘ, hT) = 2RAT (ẘ,max(g, G))

Where we have observed that wt is generated by running A on gradients g̃t (which satisfy |g̃t| ≤
|gt|). For the second sum, we have |gtrunc

t | ≤ |gt| and |ẘ − ˜̊wt| ≤ |ẘ| so that

T∑
t=1

|gtrunc
t ||ẘ − ˜̊wt| ≤

∑
t : ẘ 6= ˜̊wt

|gt||ẘ|

≤
∑

t : |ẘ|≥k(
∑t−1
i=1 |gi|/Gt)

p

|gt||ẘ|

10

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

Let T be the largest value in {1, . . . , T} such that |ẘ| ≥ BT = k
(∑T −1

i=1 |gt|/GT −1

)p
. Then

T∑
t=1

|gtrunc
t ||ẘ − ˜̊wt| ≤ GT |ẘ|+

T −1∑
t=1

|gt||ẘ|

≤ GT |ẘ|+ min
q∈[0,1]

(T −1∑
t=1

|gt|

)q (T −1∑
t=1

|gt|

)1−q

|ẘ|


≤ GT |ẘ|+ min

q∈[0,1]

[
|ẘ|1+ 1−q

p

k
1−q
p

G1−q
T −1

(T −1∑
t=1

|gt|

)q]

≤ GT |ẘ|+ min
q∈[0,1]

[
|ẘ|1+ 1−q

p

k
1−q
p

GT

(
T∑
t=1

|gt|/GT

)q]

where in the second step we used |ẘ| ≥ k
(∑T −1

i=1 |gt|
)p

.
Putting all this together, we have

RT (ẘ) ≤ 2RAT (ẘ,max(g, GT))

+GT

[
kmin
t≤T

(
t∑
i=1

|gi|/Gt

)p
+ 2|ẘ|

]
+ min
q∈[0,1]

[
GT
|ẘ|1+ 1−q

p

k
1−q
p

(
T∑
t=1

|gt|/GT

)q]

If we combine this reduction with our result from Section 3, we obtain the following:

Corollary 4 Applying the reduction of Algorithm 3 to Algorithm 1, we guarantee regret:

RT (ẘ) ≤ 2ε+ 2|ẘ|max

8hT ln

16|ẘ|hT exp(α/4h2
T)
(

1 +
∑T
t=1 g

2
t

α

)4.5

ε

− hT ,

2

√√√√√√ T∑
t=1

g2
t ln

4
(∑T

t=1 g
2
t

)10
exp(α/4h2

T)ẘ2

ε2
+ 1




+G

[
kmax
t≤T

(
t∑
i=1

|gi|/Gt

)p
+ 2|ẘ|

]
+ min
q∈[0,1]

[
G
|ẘ|1+ 1−q

p

k
1−q
p

(
T∑
t=1

|gt|/G

)q]
where G+ maxt |gt| and hT = max(g, G).

6. Discussion of Parameters

Although our algorithm does not need to know the data-dependent parameters ‖ẘ‖ and G, we nev-
ertheless retain dependence on several user-specified parameters which we discuss in this section.
In brief, the parameters are:

11

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

1. ε: The regret at the origin.

2. g: Initial hint value, ideally this should be set to an under-estimate of G.

3. α: Initial regularizer for ONS.

4. k and p: These control how fast the values of wt are allowed to grow.

5. q: This exists only for analysis purposes and controls the tradeoff between higher-order de-
pendence on |ẘ| and lower-order dependence on T .

Of these parameters, we observe that both ε and g appear only in logarithmic terms. As a result,
our algorithm is robust to these parameters. It remains to investigate k, p and q, which we do by
considering a few settings of interest already highlighted in the introduction.

1. With the setting p = 1/2, q = 0, our regret bound takes the form:

RT (ẘ) ≤ Õ
(

(|ẘ|+ k)G
√
T +G|ẘ|+G

|ẘ|3

k2
+ ε

)
2. With the setting p = q = 1/3, our regret bound takes the form:

RT (ẘ) ≤ Õ
(
|ẘ|G

√
T +G|ẘ|+

(
|ẘ|3

k2
+ k

)
GT 1/3

)
We note that in all cases it appears that the optimal value of k isO(|ẘ|), so that k is playing a similar
role to the scaling of a learning rate in gradient-descent style algorithms. However, the optimal k
does not depend on T and so we retain O(

√
T) regret no matter what value is chosen for k. The

second example above has the interesting property that for large enough T , the dominant term is
Õ(‖ẘ‖G

√
T) for any fixed ẘ 6= 0 for any choice of k (we remove the kG

√
T term), so that for

large T we obtain the optimal scaling with respect to |ẘ| even for very small |ẘ|.

7. Conclusion and Open Problems

We have presented a new online convex optimization algorithm, LEASHED, which adapts to both
unknown ‖ẘ‖ and G while guaranteeing sublinear regret. Although the only T -dependent term

in LEASHED’s regret bound matches the optimal bound of Õ
(
‖ẘ‖

√∑T
t=1 ‖gt‖2?

)
, we avoid ex-

ponential lower bounds by adding a T -independent penalty O(‖ẘ‖3). Our algorithm’s principle
hyperparameter is the value k, which “morally” should be an estimate of ‖ẘ‖. As a result, in the
large-T limit, our our regret grows as Õ(‖ẘ‖G

√
T) without knowledge of either ‖ẘ‖ or G.

There are a few natural open problems suggested by this work. First, our technique provides a
simple way to “sidestep” the lower-bound frontier of (Cutkosky and Boahen, 2017), and so naturally
suggests the question of whether there is an extension to this frontier that provides some guidance
into whether our regret bounds are optimal. Second, we point out that our dependence on values
such as g or ε is a bit undesirable and could hopefully be improved - both of these should ideally
be proportional to G, and when they are not the algorithm is not quite “scale-free”. Finally, our

regret bound maintains a dependence on
√∑T

t=1 ‖gt‖? rather than
√∑T

t=1 ‖gt‖2?. The latter bound
would provide much better behavior on smooth losses (Srebro et al., 2010), and so we hope future
work will yield such an improved algorithm.

12

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

References

Jacob Abernethy, Peter L Bartlett, Alexander Rakhlin, and Ambuj Tewari. Optimal strategies and
minimax lower bounds for online convex games. In Proc. of the nineteenth annual conference on
computational learning theory, 2008.

Nicolò Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line
learning algorithms. Information Theory, IEEE Transactions on, 50(9):2050–2057, 2004.

Ashok Cutkosky and Kwabena Boahen. Online learning without prior information. In Satyen
Kale and Ohad Shamir, editors, Proc. of the 2017 Conference on Learning Theory, volume 65 of
Proc. of Machine Learning Research, pages 643–677, Amsterdam, Netherlands, 07–10 Jul 2017.
PMLR.

Ashok Cutkosky and Kwabena A Boahen. Online convex optimization with unconstrained domains
and losses. In Advances in Neural Information Processing Systems 29, pages 748–756, 2016.

Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online learning
in banach spaces. arXiv preprint arXiv:1802.06293, 2018.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. In Conference on Learning Theory (COLT), 2010.

Dylan J Foster, Alexander Rakhlin, and Karthik Sridharan. Adaptive online learning. In Advances
in Neural Information Processing Systems 28, pages 3375–3383. 2015.

Dylan J Foster, Satyen Kale, Mehryar Mohri, and Karthik Sridharan. Parameter-free online learning
via model selection. In Advances in Neural Information Processing Systems, pages 6022–6032,
2017.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169–192, 2007.

Elad Hazan, Alexander Rakhlin, and Peter L Bartlett. Adaptive online gradient descent. In Advances
in Neural Information Processing Systems, pages 65–72, 2008.

Brendan McMahan and Matthew Streeter. No-regret algorithms for unconstrained online convex
optimization. In Advances in neural information processing systems, pages 2402–2410, 2012.

H. Brendan McMahan. A survey of algorithms and analysis for adaptive online learning. arXiv
preprint arXiv:1403.3465, 2014.

H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner, Julian Grady,
Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. Ad click prediction: a view from
the trenches. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1222–1230. ACM, 2013.

Francesco Orabona. Dimension-free exponentiated gradient. In Advances in Neural Information
Processing Systems, pages 1806–1814, 2013.

13

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

Francesco Orabona. Simultaneous model selection and optimization through parameter-free
stochastic learning. In Advances in Neural Information Processing Systems, pages 1116–1124,
2014.

Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning. In Advances in
Neural Information Processing Systems 29, pages 577–585, 2016.

Francesco Orabona and Dávid Pál. Scale-free online learning. Theoretical Computer Science, 716:
50–69, 2018.

Francesco Orabona and Tatiana Tommasi. Backprop without learning rates through coin betting.
CoRR, abs/1705.07795, 2017. URL http://arxiv.org/abs/1705.07795.

Stephane Ross, Paul Mineiro, and John Langford. Normalized online learning. In Proc. of the 29th
Conference on Uncertainty in Artificial Intelligence (UAI), 2013.

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in
Machine Learning, 4(2):107–194, 2011.

Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low noise and fast rates. In
Advances in Neural Information Processing Systems 23, pages 2199–2207, 2010.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proc. of the 20th International Conference on Machine Learning (ICML-03), pages 928–936,
2003.

Appendix A. Dimension-Free Bound in Banach Spaces

In this section, we observe that by use of the one-dimensional to dimension-free reduction pro-
posed by (Cutkosky and Orabona, 2018), we may seamlessly convert the result of Theorem 3 into a
dimension-free regret bound, resulting in Algorithm 4. We give pseudo-code for this reduction for
completeness below.

Algorithm 4 Dimension-Free LEASHED

Require: Parameters k, p, g, ε, τ , Banach space W .
1: Initialize: Instantiate LEASHED with Algorithm 1, k, p and g as A1D. Instantiate an adaptive

unit-ball algorithm AB
2: for t = 1 to T do
3: Get xt from A1D
4: Get yt from AB
5: Play wt = xtyt.
6: Receive gradient gt.
7: Send gt to AB .
8: Send 〈gt, yt〉 to A1D.
9: end for

14

http://arxiv.org/abs/1705.07795

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

Corollary 5 Suppose AB guarantees regret RABT (z) for any z in the unit ball. Then Dimension-
Free LEASHED guarantees regret:

RT (ẘ) ≤ 2ε+ 2‖ẘ‖max

8hT ln

16‖ẘ‖hT exp(α/4h2
T)
(

1 +
∑T
t=1 ‖gt‖2
α

)4.5

ε

− hT ,

2

√√√√√√ T∑
t=1

‖gt‖2? ln

4
(∑T

t=1 ‖gt‖2?
)10

exp(α/4h2
T)ẘ2

ε2
+ 1




+G

[
kmax
t≤T

(
t∑
i=1

‖gi‖?/Gt

)p
+ 2|ẘ|

]
+ min
q∈[0,1]

[
G
‖ẘ‖1+ 1−q

p

k
1−q
p

(
T∑
t=1

‖gt‖/G

)q]
+RABT (ẘ/‖ẘ‖)

where G = maxt ‖gt‖? and hT = max(g, G).

As an important special case, whenW is a Hilbert space we can obtainRABT (z) ≤ 23/2
√∑T

t=1 ‖gt‖2
via standard Adagrad-style analysis (which we reproduce in Section D for completeness).

Appendix B. Proof of Theorem 1

We restate Theorem 1 below for reference:

Theorem 1 The regret of Algorithm 1 is bounded by:

RT (ẘ, hT) ≤ ε+ |ẘ|max

8hT

ln
16|ẘ|hT exp(α/4h2

T)
(

1 +
∑T
t=1 g

2
t

α

)4.5

ε
− 1

 ,

2

√√√√√√ T∑
t=1

g2
t ln

4
(∑T

t=1 g
2
t

)10
exp(α/2h2

T)ẘ2

ε2
+ 1




Proof First, we recall the connection between wealth and regret. If we can prove WealthT ≥
f
(
−
∑T

t=1 gt

)
for some function f , then we have:

RT (ẘ) ≤ ε− ẘ
T∑
t=1

gt − f

(
−

T∑
t=1

gt

)
≤ sup

X
ε+Xẘ − f(X) = ε+ f?(ẘ)

where f? is the Fenchel conjugate of f . Thus it suffices to prove a lower-bound on the wealth of
our algorithm.

15

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

Define Wealth(̊v) as the wealth of an algorithm that uses betting fraction v̊ on every round. Then
we have the recursions:

log(WealthT) = log(ε) +

T∑
t=1

log(1− vtgt)

log(Wealth(̊v)) = log(ε) +

T∑
t=1

log(1− v̊gt)

Now suppose we choose vt via an online learning algorithm on the losses − log(1− vgt), obtaining
regret RvT (̊v). Subtracting the log-wealth equations and exponentiating, we have

WealthT ≥
Wealth(̊v)

exp(RvT (̊v))

Choose v̊ =
∑T
t=1 gt

2
∑T
t=1 g

2
t+2hT |

∑T
t=1 gt|

∈ [−1/2hT , 1/2hT]. Then, using log(1 + x) ≥ x − x2 for

|x| ≤ 1/2, we have

log(Wealth(̊v)) ≥ log(ε) +
|
∑T

t=1 gt|2

4
∑T

t=1 g
2
t + 4hT |

∑T
t=1 gt|

which implies

WealthT ≥ ε
exp

(
|
∑T
t=1 gt|2

4
∑T
t=1 g

2
t+4hT |

∑T
t=1 gt|

)
exp(RvT (̊v))

Now it remains to compute RvT (̊v). In the standard ONS bound, this is O(log(T)). However,
our setting is slightly more subtle because we have the shrinking domains St = [−1/2ht, 1/2ht]. It
turns out that this has essentially zero effect on the analysis, but we recapticulate the argument in
Section C for completeness (see Lemma 10). The final result is that

RvT (̊v) ≤ α

4h2
T

+ 4.5 log

(
α+

∑T
t=1 g

2
t

α

)
from which we obtain

WealthT ≥ ε
exp

(
|
∑T
t=1 gt|2

4
∑T
t=1 g

2
t+4hT |

∑T
t=1 gt|

)
exp(α/4h2

T)
(
α+
∑T
t=1 g

2
t

α

)4.5

Set a = ε

exp(1/4h2T)

(
α+

∑T
t=1 g

2
t

α

)4.5 , b = α
4hT

and c =
∑T
t=1 g

2
t

hT
. Then we can write

WealthT ≥ a exp

(
b

(
∑T

t=1 gt)
2

|
∑T

t=1 gt|+ c

)

16

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

Algorithm 5 ONS with shrinking domains

Require: τ, β > 0
1: Initialize: Interval S1 ⊂ R, v1 = 0 ∈ S1

2: for t = 1 to T do
3: Play vt
4: Receive zt
5: Receive interval St+1 ⊂ St
6: Set At = τ +

∑t
i=1 z

2
i

7: vt+1 = ΠSt+1

(
vt − zt

βAt

)
, where ΠSt+1(x) is the projection of x to St+1 (i.e. a truncation).

8: end for

so if we define f = a exp
(
b x2

|x|+c

)
, we have

RT (ẘ) ≤ ε+ f?(ẘ)

We recall the computation of f? in Lemma 11, to obtain:

RT (ẘ) ≤ ε+ |ẘ|max

(
2

b

(
ln

2|ẘ|
ab
− 1

)
,

√
c

b
ln

(
cẘ2

a2b
+ 1

)
− a

)

≤ ε+ |ẘ|max

8hT

ln
16|ẘ|hT exp(α/4h2

T)
(
α+
∑T
t=1 g

2
t

α

)4.5

ε
− 1

 ,

2

√√√√√√ T∑
t=1

g2
t ln

4
(∑T

t=1 g
2
t

)10
exp(α/2G2

T)ẘ2

ε2
+ 1




Appendix C. 1D ONS with shrinking domains

Essentially all of the analysis here is identical to the classical procedure (e.g. see (Hazan et al.,
2007)), but we recall it here to verify that the shrinking domains have little effect.

Theorem 6 For any v̊ ∈ ST ,

T∑
t=1

(
zt(vt − v̊)− β

2
[zt(vt − v̊)]2

)
≤ βτ

2
v̊2 +

2

β

T∑
t=1

z2
t

At
.

Proof Define xt+1 = vt − zt
βAt

so that vt+1 = ΠSt+1(xt+1) for t < T . We make the definition
vT+1 = xT+1 for ease of analysis later. Then, we have

xt+1 − v̊ = vt − v̊ −
zt
βAt

,

17

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

that implies

At(xt+1 − v̊) = At(vt − v̊ −
zt
βAt

) = At(vt − v̊)− 1

β
zt,

and

At(xt+1 − v̊)2 = (At(vt − v̊)− 1

β
zt)(xt+1 − v̊)

= At(vt − v̊)(xt+1 − v̊)− 1

β
zt(xt+1 − v̊)

= At(vt − v̊)(xt+1 − v̊)− 1

β
zt(vt − v̊ −

zt
βAt

)

= At(vt − v̊)(xt+1 − v̊)− 1

β
zt(vt − v̊) +

z2
t

β2At

= At(vt − v̊)(vt − v̊ −
zt
βAt

)− 1

β
zt(vt − v̊) +

z2
t

β2At

= At(vt − v̊)2 − 2

β
(vt − v̊)zt +

z2
t

β2At

We now use the definition of ΠSt+1 , and the assumption that v̊ ∈ ST ⊂ St+1 to have:

(xt+1 − v̊)2 ≥ (vt+1 − v̊)2

from which we conclude:

zt(vt − v̊) ≤ βAt
2

(vt − v̊)2 − β

2
At(vt+1 − v̊)2 +

2z2
t

βAt

Summing over t = 1, · · · , T , we have

T∑
t=1

zt(vt − v̊) ≤ β

2
A1(v1 − v̊)2 +

β

2

T∑
t=2

(At −At−1)(vt − v̊)2

− β(vT+1 − v̊)2

2AT
+

T∑
t=1

2z2
t

βAt

≤ β

2
A1(v1 − v̊)2 +

β

2

T∑
t=2

z2
t (vt − v)2 +

T∑
t=1

2z2
t

βAt

=
β

2
τ v̊2 +

β

2

T∑
t=1

[zt(vt − v̊)]2 +
T∑
t=1

2z2
t

βAt

Next we need to bound the sum
∑T

t=1
2z2t
βAt

, which is easy thanks to the concavity of log:

Lemma 7
T∑
t=1

z2
t

At
≤ log

(
1 +

∑T
t=1 z

2
t

τ

)

18

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

Proof Since log(x) is concave and d
dx log(x) = 1

x , we have log(a+ b)− log(a) ≥ b
a+b . Therefore

for any K we have

log

(
τ +

∑K+1
t=1 z2

t

τ

)
− log

(
τ +

∑K
t=1 z

2
t

τ

)
≥

z2
K+1

τ +
∑K+1

t=1 z2
t

=
z2
K+1

AK+1

Summing this identity over all K < T proves the result.

Here are three lemmas copied over (with occasional mild modification) from (Cutkosky and
Orabona, 2018):

Lemma 8 For −1 < x ≤ 2, we have

ln(1 + x) ≤ x− 2− ln(3)

4
x2 .

Lemma 9 Define `t(v) = − ln(1− gtv). Let |̊v|, |v| ≤ 1
2Gt

and |gt| ≤ Gt. Then

`t(v)− `t(̊v) ≤ `′t(v)(v − v̊)− 2− ln(3)

2

1

2
[`′t(v)(v − v̊)]2 .

Proof We have

ln(1− gtv̊) = ln(1− gtv + gt(v − v̊)) = ln(1− gtv) + ln

(
1 +

gt(v − v̊)

1− gtv

)
.

Now, observe that since 1−gtv̊ ≥ 0 and 1−gtv ≥ 0, 1+ gt(v−v̊)
1−gtv ≥ 0 as well so that gt(v−v̊)

1−gtve ≥ −1.

Further, since |̊v − v| ≤ 1
Gt

and 1− gtv ≥ 1/2, gt(v−v̊)
1−gtv ≤ 2. Therefore, by Lemma 8 we have

ln(1− gtv̊) ≤ ln(1− gtv) +
gt(v − v̊)

1− gtv
− 2− ln(3)

4

[gt(v − v̊)]2

(1− gtv)2
.

Using the fact that `′t(v) = gt
1−gtv finishes the proof.

Lemma 10 Define `t(v) : [−1/2ht, 1/2ht]→ R as `t(v) = − ln(1− gtv), where |gt| ≤ ht. If we
run ONS in Algorithm 5 with β = 2−ln(3)

2 , τ = 4α, and St = [−1/2ht, 1/2ht], then for all v̊ ∈ ST ,

T∑
t=1

`t(vt)− `t(̊v) ≤ α

4h2
T

+ 4.5 log

(
α+

∑T
t=1 g

2
t

α

)

Proof By Lemma 9, we have:

T∑
t=1

`t(vt)− `t(̊v) ≤
T∑
t=1

`′t(vt)(v − v̊)− 2− ln(3)

2

1

2
[`′t(vt)(vt − v̊)]2

19

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

Algorithm 6 Adaptive Gradient Descent

1: Initialize: Unit ball B in some Hilbert space, w1 = 0 ∈ B, λ =
√

2
2: for t = 1 to T do
3: Play wt
4: Receive gt
5: Set ηt = λ√∑T

t=1 ‖gt‖2

6: Set wt+1 =
∏
B(wt − ηtgt) //

∏
B(x) = argminy∈B ‖y − x‖.

7: end for

Then set zt = `′t(vt) and use Theorem 6 to obtain

T∑
t=1

`t(vt)− `t(̊v) ≤ 2βαv̊2 +
2

β

T∑
t=1

z2
t

At
.

Next, apply Lemma 7:

T∑
t=1

`t(vt)− `t(̊v) ≤ βα

2h2
T

+
2

β
log

(
1 +

∑T
t=1 z

2
t

4α

)

Now we observe that |zt| =
∣∣∣ gt

1−gtvt

∣∣∣ ≤ 2|gt| so that
∑T

t=1 z
2
t ≤ 4

∑t
t=1 g

2
t , yielding

T∑
t=1

`t(vt)− `t(̊v) ≤ βα

2h2
T

+
2

β
log

(
α+

∑T
t=1 g

2
t

α

)
Finally, numerically evaluate β to conclude the bound.

Lemma 11 (Lemma 19 of (Cutkosky and Orabona, 2018)) Let f(x) = a exp(b x2

|x|+c), where
a, b > 0 and c ≥ 0. Then

f?(θ) ≤ |θ|max

(
2

b

(
ln

2|θ|
ab
− 1

)
,

√
c

b
ln

(
cθ2

a2b
+ 1

)
− a

)
.

Appendix D. Adaptive Unit-Ball Algorithm in Hilbert Spaces

Here we briefly recall some classic analysis of adaptive mirror descent algorithms. For simplicity,
we only consider the Hilbert space case, rather than a more general smooth Banach space. More
details and more generality can be found in (Duchi et al., 2010; McMahan, 2014; Hazan et al.,
2008).

Theorem 12 Algorithm 6 guarantees

RT (ẘ) ≤ 23/2

√√√√ T∑
t=1

‖gt‖2

for all ẘ ∈ B.

20

ARTIFICIAL CONSTRAINTS AND HINTS FOR UNBOUNDED ONLINE LEARNING

Proof

‖wt+1 − ẘ‖2 ≤ ‖wt − ηtgt − ẘ‖2

= ‖wt − ẘ‖2 + 2ηt〈gt, wt − ẘ〉+ η2
t ‖gt‖2

〈gt, wt − ẘ〉 ≤
‖wt − ẘ‖2 − ‖wt+1 − ẘ‖2

2ηt
+
ηt
2
‖gt‖2

RT (ẘ) ≤ ‖w1 − ẘ‖2

2η1
− ‖ẘT+1 − ẘ‖2

ηT
+

T∑
t=2

‖wt − ẘ‖2

2
(η−1
t − η

−1
t−1) +

T∑
t=1

ηt
2
‖gt‖2

≤ 2

ηT
+ λ

√√√√ T∑
t=1

‖gt‖2

≤
(

2

λ
+ λ

)√√√√ T∑
t=1

‖gt‖2

= 23/2

√√√√ T∑
t=1

‖gt‖2

where we have used the identity
∑T

t=1
‖gt‖2√∑T
i=1 ‖gi‖2

≤ 2
√∑T

t=1 ‖gt‖2, which holds by concavity

of the square root.

21

	Unconstrained Online Convex Optimization
	Previous Progress and Lower Bounds

	Overview of Techniques and Results
	Outline and Proof Steps

	Step 1: Unconstrained Optimization With Hints
	Step 2: Without Hints, Regret is Small if "026B30D wt"026B30D is Small
	Step 3: Artificial Constraints
	The Final Algorithm

	Discussion of Parameters
	Conclusion and Open Problems
	Dimension-Free Bound in Banach Spaces
	Proof of Theorem 1
	1D ONS with shrinking domains
	Adaptive Unit-Ball Algorithm in Hilbert Spaces

