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“Strictly competitive games constitute one of the few areas in game theory, and indeed
in social sciences, where a fairly sharp, unique prediction is made. . . . Early experi-
ments failed miserably to confirm the theory . . . A determined effort to design experi-
mental test of minimax that . . . (succeeds) . . . was recently made. . . ” – Aumann (1987).

Abstract
We establish that algorithmic experiments in zero-sum games “fail miserably” to confirm the
unique, sharp prediction of maxmin equilibration. Contradicting nearly a century of economic
thought that treats zero-sum games nearly axiomatically as the exemplar symbol of economic sta-
bility, we prove that no meaningful prediction can be made about the day-to-day behavior of online
learning dynamics in zero-sum games. Concretely, Multiplicative Weights Updates (MWU) with
constant step-size is Lyapunov chaotic in the dual (payoff) space. Simply put, let’s assume that
an observer asks the agents playing Matching-Pennies whether they prefer Heads or Tails (and by
how much in terms of aggregate payoff so far). The range of possible answers consistent with any
arbitrary small set of initial conditions blows up exponentially with time everywhere in the payoff
space (Figure 1). This result is robust both algorithmically as well as game theoretically. Algo-
rithmic robustness: Chaos is robust to agents using any of a general sub-family of Follow-the-
Regularized-Leader (FTRL) algorithms, the well known regret-minimizing dynamics, even when
agents mix-and-match dynamics, use different or slowly decreasing step-sizes. Game theoretic
robustness: Chaos is robust to all affine variants of zero-sum games (strictly competitive games),
network variants with arbitrary large number of agents and even to competitive settings beyond
these. Our result is in stark contrast with the time-average convergence of online learning to (ap-
proximate) Nash equilibrium, a result widely reported as “(weak) convergence to equilibrium”.

Figure 1: The von Neumann vortex: Volume expansion and chaos of MWU in Matching-Pennies.
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1. Introduction

Von Neumann’s seminal work on zero-sum games (von Neumann (1928); von Neumann and Mor-
genstern (1944)) set the formal foundations of game theory, the mathematical theory of coupled
strategic behavior. The crowning jewel of his theory is the celebrated minimax theorem that states
that in zero-sum competitions each agent can in isolation compute a safety strategy, the one that
guarantees her, her maxmin payoff and moreover no possible improvement over this minimal guar-
antee is possible given that the other agent also plays such a defensive, safety minded strategy.

A cornerstone of economic theory, arguably its most resolute thesis, is that this prescribed so-
lution is indeed the only meaningful behavior in such a setting. Any rational self-interested learn-
ing/adaptive behavior is bound to gravitate to this benign, static behavioral snapshot with both agents
being deadlocked at their maxmin strategies, or, minimally even if the system does not equilibrate
all of the necessary information needed to understand the system is represented by these efficiently
computable, effectively unique, system states.

The number of research threads that follow this kind of reasoning is too numerous to enumerate
here, but they effectively span all disciplines that study the subject, be it economics, (algorithmic)
game theory, online optimization, multi-agent systems, etc. In fact, the whole sub-field of studying
learning dynamics in games started with the work of Brown (1951) and Robinson (1951) on ficti-
tious play in zero-sum games, which showed that the time-average of the agent behavior converges
to their maxmin equilibria. Ever since that first result a stream of followup works argue conver-
gence of the time-average behavior (strategies/payoffs) of online (e.g., regret-minimizing) learning
dynamics in zero-sum games (Freund and Schapire (1996)). This line of results represents the main
frontier of our understanding of the effects of rational, self-interested behavior in strictly compet-
itive settings (see e.g., recent books Young (2004); Cesa-Bianchi and Lugoisi (2006); Nisan et al.
(2007); Roughgarden (2016)).

As such, the time-average notion has been widely adopted from an algorithmic perspective. Fo-
cusing on time-averages alone, however, can be rather misleading from a behavioral perspective.
For example, in a two-political-party competition, while the time-average of the political attitude
might be moderate which is widely interpreted as good, at different times it might swing between
extremes of the political spectrum which are all often interpreted as bad. In this context, where
such competition can be modelled as zero-sum game, the theoretical results in Bailey and Piliouras
(2018); Cheung (2018) suggest that online learning are non-equilibrating, and pushing parties’ po-
litical attitude towards extremes. Instability of equilibrium is also a major issue for Generative
Adversarial Networks (GANs) (Goodfellow et al. (2014)), a key application of zero-sum games
in AI (see Related Work). These examples illuminate the importance of developing a better un-
derstanding of the actual behavior of game dynamics, instead of the time-averaged ones. As we
shall see, our results showcase the possibility of a more unpleasant phenomenon: online learning in
games can be chaotic, impossible to predict, at the polar opposite of the picture suggested by the
celebrated minimax theorem.
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Methodology — Volume Analysis. Our approach is a new methodology in the study of learning
in games: we analyze the volume changes of the learning algorithm. More precisely, given a set of
starting points with positive volume (Lebesgue measure), we analyze the change of the volume as
the set is evolved according to the learning algorithm. In Figure 1 we plot how a small neighbour-
hood around the Nash Equilibrium (NE) (left figure) and one around a non-NE (right figure) are
evolved over time by the MWU algorithm; see Appendix A for more details on how the plots are
produced.

We show in Sections 3 and 4 that the volume in the dual (payoff) space increases exponentially,
and as a result in the primal space (probability distributions over strategies) are moving away from
Nash and towards the boundary. Intuitively, let’s assume that an observer asks the agents playing
Matching-Pennies whether they prefer Heads or Tails (and by how much in terms of aggregate
payoff so far). The range of possible answers consistent with any arbitrary small set of initial
conditions blows up exponentially with time everywhere in the payoff space (Figure 1). Since
the diameter of a set is polynomially lower-bounded by its volume, our result formally implies
Lyapunov chaos, a classical notion to measure how chaotic a system is. It is measured by Lyapunov
time, which can be informally defined as: when the starting point is perturbed by a distance of tiny
amount of δ, for how long will the trajectories of the two starting points remain within a distance of
at most 2δ. Clearly, the shorter the Lyapunov time, the more chaotic the system is. We show that
the Lyapunov time of MWU in zero-sum game is O(1/ε2), where ε is the step-size of the learning
algorithm.

This result is robust both algorithmically as well as game theoretically.

• Algorithmic robustness: Chaos is robust to agents using any of a general sub-family of
Follow-the-Regularized-Leader (FTRL) algorithms, the well known regret-minimizing dy-
namics, even when agents mix-and-match dynamics, use different or slowly decreasing step-
sizes (Appendix D).

• Game theoretic robustness: Chaos is robust to all affine network variants of zero-sum games
with arbitrary large number of agents (Appendix E), and even to competitive settings beyond
these (Generalized Rock-Paper-Scissors (RPS) games in Appendix F, and general 2 × 2 bi-
matrix game in Appendix G).

A Note About Human Behavior in Zero-sum Games. Our results are in stark contrast with the
standard interpretation of the behavior of regret minimizing dynamics in zero-sum games, which
is typically referred to as “converging to equilibrium”. Naturally, we cannot without careful be-
havioral studies make a claim that human agents in practice adapt their beliefs according to MWU,
gradient descent, FTRL, or any other classic first-order optimization method. However, we can con-
fidently deduce a statement in the inverse direction. If as economic theory postulates (and Aumann’s
quote neatly summarizes) Nash equilibria in zero-sum games are indeed stable and moreover exper-
imentally verifiable, then this implies that human agents in practice must deviate robustly from the
axiomatic perspective of purely optimization driven dynamics as captured by gradient descent and
variants and apply carefully tailored equilibrium-seeking behavioral dynamics. Moreover, this is a
cross-cultural behavioral universal.

Related Work. Eshel and Akin (1983) were the first to point out that replicator dynamics are
volume-preserving after a transformation. In this paper, we will mostly use a slightly different
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transformation, except for general 2 × 2 bimatrix games we use their transformation. Recent work
on continuous time dynamics in (variants of) zero-sum games has established that such dynam-
ics exhibit recurrent, cycle-like behavior, e.g., replicator in network zero-sum games Piliouras and
Shamma (2014), periodic orbits in team zero-sum games Piliouras and Schulman (2018) and finally
recurrence for all FTRL dynamics in affine variants of network zero-sum games Mertikopoulos et al.
(2018). Progress in discrete-time dynamics has been much slower but recently based on the above
results, Bailey and Piliouras (2018) and Cheung (2018) independently developed non-equilibration
analysis for all FTRL dynamics and MWU dynamics respectively in zero-sum games.

Bailey and Piliouras and Cheung showed that in a zero-sum game, MWU dynamic diverges from
any fully-mixed NE; more precisely, they showed that the KL-divergence between the current point
and the fully-mixed NE strictly increases. Consequently, the ω-set for any starting point which is
not NE must be a subset of the boundary of the strategy space. The main concern of the prior work
is instability of the dynamics, while our current work focuses on chaos and unpredictability — these
provide an entirely new, rather intuitive and convincing argument against not only Nash equilibria
but the misconception that zero-sum games are “easy”. “Predictability” is a general target in any
branch of science, and particularly so in dynamical systems. To clarify that “unpredictability”
is conceptually different from instability, we use the classical example of weather forecast. It is
common sense that weather changes day-to-day, so saying it is unstable is nothing but a tautology.
What is more surprising is its unpredictability (butterfly effect), namely a small change in initial
conditions and environmental factors can lead to significant difference in the outcomes. Our work
is able to spot out and utilise the (geometric) volume measure, which can be viewed as a summary
measure on capturing the effects of perturbation in all dimensions. In contrast, the analyses in the
two prior work can be viewed as focusing on an one-dimensional projection (the KL-divergence) of
the dynamics, and clearly had not exploited the richer geometric structures of the dynamics.

By showing that the volumes increase exponentially, a result similar to the ω-set-inside-boundary
result in the two prior work can be derived. One advantage of our approach is it does not need to
distinguish between cases on whether a fully-mixed NE exists or not; however, the statement we
can make here will be slightly weaker1. A more compelling advantage is that this approach leads to
a global instability result of NE in RPS games (see Theorem 13).

There have been work reporting observations of chaos even in simple games. Sato et al. (2002)
focused on a class of RPS games which contains some zero-sum games; the two players employ the
continuous-time replicator dynamics. They ran numerical simulations to find that for those zero-
sum games, the dynamics are chaotic with finite Lyapunov time. Galla and Farmer (2013) focused
on random two-player games where the payoffs to the two players can be positively or negatively
correlated; zero-sum games belong to the negatively correlated regime. They considered a spec-
trum of discrete reinforcement learning dynamics, which includes MWU. Their simulations suggest
experimentally that for negatively correlated games MWU exhibit chaos. We provide a theoretical
underpinning for these phenomena for a wide spectrum of dynamics and games. Palaiopanos et al.
(2017) and Chotibut et al. (2018) studied MWU and its variant in congestion games. While MWU
with very small constant step-size converges to equilibrium in such games, they showed if we in-
crease the step-size MWU becomes chaotic in a notion first defined by Li and Yorke (1975). Hence
chaotic behavior may be provably verifiable even outside strictly competitive games.

1. The statement is: in every open subset in the primal space, there exists a starting point which will eventually get close
to the boundary. See Corollaries 5 and 6.
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A stream of recent papers proves positive results about convergence to equilibria in (mostly bi-
linear, unconstrained) zero-sum games for suitably adapted variants of first-order methods and then
apply these techniques to Generative Adversarial Networks (GANs), showing improved perfor-
mance. One such adapted dynamics are extra-gradient lookahead “optimistic” methods (Daskalakis
et al. (2018)). Constrained zero-sum game optimization (e.g. simplex constrained strategies, normal
form games) are much harder to address theoretically and only recent work has addressed even the
special case of optimistic MWU (Daskalakis and Panageas (2019)). Balduzzi et al. (2018) exploit
conservation laws of learning dynamics in zero-sum games (e.g., Piliouras and Shamma (2014);
Mertikopoulos et al. (2018)) to develop new algorithms for training GANs that add a new compo-
nent to the dynamic that aims at minimising this energy function. Different energy shrinking tech-
niques for convergence even in non-convex saddle point problems exploit connections to variational
inequalities and employ mirror descent techniques with an extra gradient step (Mertikopoulos et al.
(2018)). Time-averaging seems to work well in practice for a wide range of architectures, although
without necessarily leading to convergence (Yazıcı et al. (2018)). Finally, Gidel et al. (2019) pro-
vide negative momentum adapted dynamics that add friction to the dynamics. To re-quote Aumann
(1987), determined efforts are being made once again to make zero-sum games fit their historically
prescribed roles as equilibrium generators, however, zero-sum games are fighting back. For exam-
ple, optimistic gradient methods as they pressure the system towards stability can end up stabilising
even points that are not local min-max solutions, i.e., non-Nash solutions (Daskalakis and Panageas
(2018)). Our paper showing universal chaos for first order methods in bilinear zero-sum games
should be seen as a cautionary tale about the true unpredictability and hardness of training GANs.
Not only do we have a long road ahead of us before we have a correct understanding of the be-
havior of training algorithms for GANs but more distressingly a thorough understanding might be
downright impossible due to emergence of chaos.

2. Preliminary

In this paper, all vectors are denoted by bold lower-case alphabets, and all matrices are denoted by
bold upper-case alphabets. We write 1n for the all-one vector in Rn, or we simply write 1 if the
dimension is clear from context. Given a vector z = (z1, z2, · · · , zn), if ‖z‖1 =

∑n
j=1 zj 6= 0, we

say the normalization of z is the vector z/‖z‖1. Let spani∈I(zi) := maxi∈I(zi)−mini∈I(zi). Let

∆n :=
{

(z1, z2, · · · , zn)
∣∣∣ ∀j ∈ [n], zj ≥ 0, and

∑n
j=1 zj = 1

}
. For any positive integer a, [a]

denotes the set {1, 2, · · · , a}.

Dynamical System, System of Differential Equations and Jacobian. A dynamical system is
typically described by a system of differential equations over time in Rd, governed by d differ-
ential equations on the variables z1, z2, · · · , zd, which are of the form dzj

dt = Fj(z1, z2, · · · , zd),
for j ∈ [d]. Given a starting point (z◦1 , z

◦
2 , · · · , z◦d), the values of the variables at any time t ≥ 0

are typically uniquely determined; precisely, given the starting point, for each j ∈ [d], there is
a function zj : R+ → R such that altogether they satisfy the system of differential equations,
with (z1(0), z2(0), · · · , zd(0)) being the starting point. The collection of such functions is called
the trajectory of the given starting point. The flow of a given starting point at time t is simply
(z1(t), z2(t), · · · , zd(t)). In this paper, we assume that the functions Fj are smooth everywhere.
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Given a measurable set S and a system of differential equations, the flow of S at time t is the
collection of the flows of all starting points in S at time t; when the underlying dynamical system
is clear from context, we denote it by S(t). Let volume(S) denote the Lebesgue volume of a
measurable set S. In the rest of this paper, all sets S are assumed to be measurable and bounded.

The Jacobian of the system is a d× d-matrix, with the entry in the i-row and j-column be ∂Fi
∂zj

.

Lyapunov Chaos. In the study of dynamical systems, Lyapunov chaos refer generally to following
phenomenon in some systems: a tiny difference in the starting points can yield widely diverging
outcomes quickly. A classical measure of chaos is Lyapunov time, which can be defined as: when
the starting point is perturbed by a distance of tiny δ, for how long will the trajectories of the two
starting points remain within a distance of at most 2δ.

Replicator Dynamics. In game setting, Replicator Dynamic (RD) is a continuous-time update rule
on a probability distribution over strategies. Such distribution can be naturally denoted by a strategy
vector. Briefly speaking, in RD, the relative change of a probability density in a strategy vector is
same as the payoff from that strategy minus the average payoff at the current probability distribution.

In two-person bimatrix game setting, where the payoffs of the two players are given by matrices
A,B respectively, let the strategy set of Players 1 and 2 be J and K respectively, and let n = |J |,
m = |K|. We denote a strategy vector of Players 1 and 2 be x ∈ ∆n and y ∈ ∆m respectively.

Then RD is governed by the following system of differential equations:

dxj
dt

= xj

[
(Ay)j −

∑
`∈J

x
`
· (Ay)

`

]
dyk
dt

= yk

[
(BTx)k −

∑
`∈K

y
`
· (BTx)

`

]
. (1)

We follow convention by assuming that every entry in A,B is within the interval ±1.

2.1. A Transformation of Replicator Dynamics

Next, we discuss a crucial transformation of RD system (1). This transformation is motivated by
the standard implementation of the discrete analogue of RD, the MWU algorithm.

In MWU, for Player 1 and each of her strategies j, there is an initial weight W ◦j ∈ R. There
is no constraint on the initial and subsequent weights. At time t, the weights (W t

1,W
t
2, · · · ,W t

n)
correspond to a strategy vector xt, which is the normalization of the vector ( exp(ε ·W t

1) , exp(ε ·
W t

2) , · · · , exp(ε ·W t
n) ). For Player 2, the strategy vector yt is defined similarly.

After each round, the weight of each strategy j is updated by incrementing the value of the
payoff to strategy j in that round. In two-player bimatrix game setting, the update rule is

W t+1
j := W t

j + [Ayt]j . (2)

Observe that (W T
j −W ◦j ) is the cumulative payoff of Player 1 if she were to choose strategy j with

certainty in the first t time steps, while Player 2 were assumed to stick with the choices {yt}t=1···T .
The weights of Player 2 are updated similarly.

Now we are ready to describe the transformation. The resulting space has dimension n + m,
which we call the dual space or the cumulative payoff space. The space before transformation will
be called the primal space. Let pj for j ∈ [n], and let qk for k ∈ [m] be the variables in the

6



CHAOS AND BUTTERFLY EFFECTS OF ONLINE LEARNING IN ZERO-SUM GAMES

dual space; p and q are analogous to the weight vectors of Players 1 and 2 in the MWU algorithm
respectively. We will write r = (p,q).

The transformation from the dual space to the primal space is done via the map

G : r = (p,q) → concatenation of normalizations of (e
p1
, e

p2
, · · · , epn ) and (e

q1
, e

q2
, · · · , eqm ).

Observe that G is not one-to-one, but it is easy to see that G(p1,q1) = G(p2,q2) if and only if
p1 − p2 = c1 · 1 and q1 − q2 = c2 · 1 for some real numbers c1, c2. Then consider the system

dpj
dt

=
∑
`∈S2

Aj` ·
e
q
`∑

z∈S2
eqz

dqk
dt

=
∑
`∈S1

B`k ·
e
p
`∑

z∈S1
epz

. (3)

We note the similarity between the above system and the MWU update rule (2). It is easy to show
that system (3) is equivalent to the system (1), as stated precisely in the following proposition.

Proposition 1 Let (p1,q1) and (p2,q2) be two vectors in Rn+m such that p1 − p2 = c1 · 1 and
q1−q2 = c2 ·1 for some real numbers c1, c2. Then the two trajectories obtained from the system (3)
with starting points (p1,q1) and (p2,q2) are identical after transformation G, which is identical
to the trajectory of the RD system (1) with starting point G(p1,q1) = G(p2,q2).

The system (3) is useful since all diagonal entries in its Jacobian are always zero, a property that
leads to volume preservation, which we discuss next.

2.2. Liouville’s Formula and Volume Preservation

Determinant. Given a d × d squared-matrix M, its determinant is given by the Leibniz formula
det(M) =

∑
σ∈Perm([d]) sgn(σ) ·

∏d
s=1Ms,σ(s), where Perm([d]) is the collection of all per-

mutations on [d], and sgn(σ) is the sign of the permutation σ. Recall from college calculus that
determinant computes the signed volume of the parallelepiped spanned by its d column vectors.

The following fact, which follows easily from the Leibniz formula, will be useful. Suppose that
the rows and columns of M are indexed by union of two sets J,K, and M can be written as

M = I + Z, such that ∀j1, j2 ∈ J, Zj1j2 = 0 and ∀k1, k2 ∈ K, Zk1k2 = 0.

Furthermore, for any j ∈ J, k ∈ K, Zjk = Cjkε for some Cjk ∈ R, and Zkj = Ckjε for some
Ckj ∈ R. Then det(M) is a polynomial of ε of degree at most 2 ·min{|J |, |K|}, and

det(M) = 1 −

 ∑
j∈J, k∈K

Cjk · Ckj

 ε2 + O(ε4); (4)

we note that the coefficient of any odd power of ε is zero.

Liouville’s Formula. Here, we discuss the necessary ingredient for this paper about Liouville’s
Formula, and refer readers to Owren (2015) for a more elaborate discussion. Any dynamical system
with sum of diagonal entries in its Jacobian always zero is called a divergence-free system.
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Theorem 2 Let ḣ = E(h) be a system of differential equations on Rd. Let S ≡ S(0) ⊂ Rd

be a bounded and measurable set. ∂E
∂h is the Jacobian of the system. Then d volume(S(t))

dt =∫
S trace

(
∂E
∂h

)
dV . In particular, if the system is divergence-free, then volume is preserved.

We will need some elements in a proof of Theorem 2 to proceed. The proof uses integration for
substitution for multi-variables and Taylor expansion. To apply the former, we need to make sure
that for discrete updates, the flow from S(t) to S(t + 1) is injective2. In Appendix B, we prove
that ε < 1/4 suffices to guarantee this for MWU in two-person general-sum game; indeed, the
proof covers graphical polymatrix games too, with a smaller upper bound on ε. The proof uses an
appropriate variant of the inverse function theorem.

At time 0, the solution to the system of ODEs can be locally written as

h(t) = φt(h(0)) = h(0) + t · E(h(0)) + O(t2), (5)

while volume at time t can be computed by

v(t) =

∫
S

det

(
∂φt
∂h

)
dV =

∫
S

det

(
I + t · ∂E

∂h
+O(t2)

)
dV,

in which I is the identity matrix. By expanding the determinant in the RHS, we have

v(t)− volume(S) =

∫
S

(
1 + t · trace

(
∂E

∂h

)
+O(t2)

)
dV −

∫
S

1 dV

=

∫
S

(
t · trace

(
∂E

∂h

)
+O(t2)

)
dV.

Dividing both sides by t, and taking the appropriate limit as t↘ 0 completes the proof.

Exponentially Increasing Volume. Here we focus on MWU discrete-time updates with step-size ε.
We may view a MWU update as equivalent to a continuous-time dynamic in the time interval [0, ε],
with the function valueE unchanged during the updates within this time interval. Consequently, the
O(t2) term in (5), which was to account for the changes in E, disappears. By following the above
computations, given a measurable set S, and let S′ be the flow of S after one time step, we have

volume(S′) =

∫
s∈S

det

(
I + ε · ∂E(s)

∂h

)
dV. (6)

If one can show that there exists a δ > 0 such that for all s ∈ S, the integrand is at least 1 + δ,
then we have volume(S′) ≥ (1 + δ) · volume(S). If this holds in every time step, then the volume
increases exponentially at a rate of at least (1 + δ)t.

Interpreting Chaos from Volume Increase. Here, we discuss how analyzing volume can be related
to chaos and Lyapunov time. In Rd for some fixed d ∈ N, the volume of a ball with radius r is strictly
less than 2drd. Thus, if the volume of a set S is v, then the following holds: for any s ∈ S, there is
an s′ ∈ S such that ‖s− s′‖ > v1/d/2.

2. This holds automatically for continuous updates for the flow from S(t) to S(t + ∆t) for a sufficiently small ∆t,
when E is continuously differentiable and S(t) is bounded.
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If in a dynamical system on Rd, a set S evolves over time with exponentially increasing volume,
and suppose the rate of increase is at least (1 + δ)t. Then the following holds: for any starting point
s0 ∈ S, let its flow at time t be st, and let r̄(s0, t) denote the `2 distance from st to the furthest
point in the set S(t). Then r̄(d0, t) = Ω((1 + δ)t/d) = Ω((1 + δ/d)t), which is again exponential
of t. Consequently, the Lyapunov time is at most O(d/δ). In all of our results, δ = Θ(ε2), so the
Lyapunov time is at most O(1/ε2) by considering the dimension d as a fixed constant.

3. Volume Change of Discrete Multiplicative Weights Updates

Next, we consider the discrete analogue of the system (3), which is exactly the MWU algorithm
with step-size ε. Our calculations in this section are for two-person general-sum games.

Following the notation in Theorem 2, we rewrite the system (3) as ṙ = E(r), where r = (p,q).
MWU algorithm is then equivalent to the vector-form update rule φ(r) = r + ε ·E(r). By (6), we
are interested in the determinant of the following matrix: M ≡ M(r) := I+ ε · ∂E∂r . Observe that
∂E
∂r has the properties of the matrix Z appeared in Section 2.2. Thus, det(M), which is the integrand
in (6), is of the form 1+C(r) ·ε2 +O(ε4), where C(r) can be computed using (4). Hence, when ε is
sufficiently small, the value of C(r) will be decisive for volume change. Clearly, C(r) is a function
of r, but we shall see that it is actually a function of G(r), the corresponding primal variables.

Next, we compute C(r) explicitly for two-person general-sum games. Recall that M is a (J ∪
K)× (J ∪K) squared matrix. Let (x,y) = G(r). Due to the structure of ∂E

∂r , all diagonal entries
of M are 1. For any distinct j1, j2 ∈ J and distinct k1, k2 ∈ K, Mj1j2 ,Mk1,k2 = 0. For j ∈ J and
k ∈ K, we have

Mjk = ε · ∂

∂qk

(∑
`∈K Aj` · e

q`∑
z∈K e

qz

)
= εyk · (Ajk − [Ay]j). (7)

Analogously, Mkj = εxj · (Bjk − [BTx]k). By (4), C(r) = −
∑

j∈J, k∈K xjyk · (Ajk − [Ay]j) ·
(Bjk − [BTx]k). As promised, C(r) eventually depends on (x,y) = G(r) only, but not explicitly
on r = (p,q). Expanding the RHS yields:

C(r) = −
∑

j∈J, k∈K
xjykAjkBjk +

∑
j∈J

xj · [Ay]j ·
∑
k∈K

ykBjk

+
∑
k∈K

yk · [BTx]k ·
∑
j∈J

xjAjk −

∑
j∈J

xj · [Ay]j

(∑
k∈K

yk · [BTx]k

)
. (8)

4. Exponentially Increasing Volume in Two-Person Zero-sum Games

Lemma 3 In any two-person zero-sum game (A,−A), at any point r in which each entry is a
finite number, C(r) ≥ 0. Furthermore, the equality holds if and only if the game matrix A can be
written in the following form for some real numbers a1, a2, · · · , an, b1, b2, · · · , bm:

A =

a1 − b1 a1 − b2 · · · a1 − bm
...

...
. . .

...
an − b1 an − b2 · · · an − bm

 . (9)

9
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Before proving the lemma, we point out that a zero-sum game with matrix (9) is “trivial”, since
both players have a dominant strategy: for Player 1, the dominant strategy is arg maxj∈J aj , while
the dominant strategy of Player 2 is arg maxk∈K bk. In this case, the limit behaviour of MWU is
easy to derive: eventually, each player will play exclusively on her own dominant strategy.

Proof For a two-person zero-sum game, Bjk = −Ajk. By (8), C(r) equals to

∑
j∈J, k∈K

xjyk(Ajk)
2 −

∑
j∈J

xj ·([Ay]j)
2 −

∑
k∈K

yk·([BTx]k)
2 −

∑
j∈J

xj · [Ay]j

(∑
k∈K

yk · [BTx]k

)
.

We consider an underlying probability distribution where the tuple (j, k) is chosen with probability
xjyk. Then we can writeC(r) = E

[
(Ajk)

2 − ([Ay]j)
2 − ([BTx]k)

2
]
− E

[
[Ay]j

]
·E
[
[BTx]k

]
.

Next, note that E
[
[Ay]j

]
=
∑

j∈J xj ·[Ay]j is the expected payoff to Player 1, while E
[
[BTx]k

]
is the expected payoff to Player 2. In a two-person zero-sum game, the two values are negative to
each other. Let v := E

[
[Ay]j

]
. Then C(r) = E

[
(Ajk)

2 − ([Ay]j)
2 − ([BTx]k)

2
]

+ v2. On the
other hand, note that

E [Ajk] =
∑
j∈J

xj
∑
k∈K

ykAjk =
∑
j∈J

xj · [Ay]j = v.

Then by the Cauchy-Schwarz inequality,

v2 = E
[
Ajk − [Ay]j + [BTx]k

]2
≤ E

[(
Ajk − [Ay]j + [BTx]k

)2
]
.

The RHS is expanded as below:

E
[
(Ajk)

2
]
+E

[
([Ay]j)

2
]
+E

[
([BTx]k)

2
]
−2·E [Ajk · [Ay]j ]+2·E

[
Ajk · [BTx]k

]
−2·E

[
[Ay]j · [BTx]k

]
.

Next, we simplify the last three terms in the RHS.

E [Ajk · [Ay]j ] =
∑
j∈J

xj · [Ay]j ·
∑
k∈K

ykAjk =
∑
j∈J

xj · ([Ay]j)
2 = E

[
([Ay]j)

2
]

;

E
[
Ajk · [BTx]k

]
=
∑
k∈K

yk · [BTx]k ·
∑
j∈J

xjAjk = −
∑
k∈K

yk · ([BTx]k)
2 = − E

[
([BTx]k)

2
]
.

Since the underlying distribution is the product distribution induced by x and y, we also have

E
[
[Ay]j · [BTx]k

]
= E [[Ay]j ] · E

[
[BTx]k

]
= − v2.

Combining all above yields v2 ≤ E
[
(Ajk)

2
]
− E

[
([Ay]j)

2
]
− E

[
([BTx]k)

2
]

+ 2v2 = C(r)+
v2, completing the proof of the first part of the lemma. The proof of the second part is deferred to
Appendix C.1.
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4.1. Substantial Exponential Factor of Volume Increment

Our next target is to show that the second-order coefficient C(r) is bounded away from zero under
suitable conditions. To begin, we first let

R(δ) := { r | every entry in G(r) is at least δ } .

Observe that for any r ∈ R(δ), (x,y) = G(r) are fully-mixed, and every product xjyk ≥ δ2.

Recall that C(r) can be zero only when the underlying zero-sum game is trivial. Thus, naturally,
a lower bound on C(r) will depend on the distance between the game matrix A and the family of
those trivial matrices. Accordingly, we consider the parameter

c(A) := min
a1,a2,··· ,an,b1,b2,··· ,bm∈R

span
j∈J,k∈K

(Ajk − aj + bk) .

When applying the Cauchy-Schwarz inequality in the proof of Lemma 3, observe that the gap be-
tween the inequality, which is

(
E
[(
Ajk − [Ay]j + [BTx]k

)2]− E
[
Ajk − [Ay]j + [BTx]k

]2),

is the variance of the random variable (Ajk − [Ay]j + [BTx]k), and is known to be identical to

E
[(
Ajk − [Ay]j + [BTx]k − E

[
Ajk − [Ay]j + [BTx]k

])2
]
.

Thus, by the definition of c(A), in R(δ), the gap is at least δ2 · (c(A)/2)2 = δ2 · c(A)2/4.

After having a concrete lower bound on C(r), we will still need to bound the higher order terms.
This will be done in Appendix C.2.

Theorem 4 For a fixed δ > 0, let S ≡ S(0) ⊂ Rm+n be a measurable set in R(δ). Suppose that
MWU algorithm is used by both players to play a non-trivial two-person zero-sum game, with

ε ≤ min
{

1/(32n2m2) , δ2c(A)2/8
}

=: ε̄(δ).

Let T be a time such that for all t ∈ {0} ∪ [T − 1], S(t) ⊂ R(δ). Then for any t ∈ [T ],

volume(S(t)) ≥
(

1 +
δ2 · c(A)2

8
· ε2
)t
· volume(S).

Consequently, the Lyapunov time of the system before reaching R(δ) is at mostO(1/(δ2ε2)), where
the hidden constant depends on the game matrix A only.

The interpretation of the above theorem is: as long as the MWU algorithm with some sufficiently
small step-size remains in some strict interior of the primal space, the volume of the flow of MWU
in the dual space increases exponentially with a rate of at least (1 + Θ(ε2))t.

4.2. Reaching Boundary: Exponential Lower Bound vs. Polynomial Upper Bound on Volume

Theorem 4 leaves one question: for how long will S(t) stay within R(δ). To answer this question,
a key observation is that in the dual space, in every time step of the MWU flow, each entry of p,q

11
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will change within the interval ±ε. Hence, unconditionally (not only for zero-sum games, but also
for general-sum games), S(t) must be a subset of the following rectangular hyper-box:{

(p,q) | ∀j ∈ J, min
p∈S

p0
j − εt ≤ pj ≤ max

p∈S
p0
j + εt and ∀k ∈ K, min

q∈S
q0
k − εt ≤ qk ≤ max

q∈S
q0
k + εt

}
.

Consequently, the volume of S(t) is unconditionally upper bounded by O((εt)m+n); note that this
bound is O(poly(t)) by viewing m,n, ε as fixed parameters.

However, the volume lower bound in Theorem 4 is exponential in t. Thus, the upper and lower
bounds are incompatible when t gets large, implying that S(t) can only stay withinR(δ) for at most
the first positive root t of the following equation:(

1 +
δ2 · c(A)2

8
· ε2
)t
· volume(S) =

[
2εt + max

{
span

p∈S,j∈J
p0
j , span

q∈S,k∈K
q0
k

}]m+n

. (10)

Corollary 5 For a fixed δ, let S ≡ S(0) ∈ Rm+n be a measurable subset in R(δ). Suppose that
MWU are used by both players to play a zero-sum game which is non-trivial, with step-size ε ≤ ε̄(δ).
Then there exists a starting point in S such that before the time of first positive root of (10), its flow
reaches the outside ofR(δ). Consequently, there is a dense set of starting points inR(δ) which their
flows will eventually reach the outside of R(δ).

Indeed, the same argument holds so long as the volume lower bound on the LHS of (10) is
ω(tm+n). This allows us to generalize to MWU algorithm with diminishing step-sizes. We present
the analogous corollary here, and defer the details to Appendix C.3.

Corollary 6 For a fixed δ, let S ≡ S(0) ∈ Rm+n be a bounded measurable set in the dual space.
Suppose that MWU are used by both players to play a zero-sum game which is not uninteresting,

with diminishing step-size {εt} satisfying ε1 < 1
4 , limt→∞ εt < ε̄(δ) and lim supt→∞

∑t
τ=1(ετ )2

log t >
16(m+n)
δ2·c(A)2

. Then there exists a starting point in S such that its flow will eventually reach the outside
of R(δ); consequently, there is a dense set of starting points which their flows will eventually reach
the outside of R(δ).

The conditions on {εt} can be satisfied by a step-size sequence which is asymptotically like those
used in regret minimization: εt = min

{
1

4+κ1
, 4
√
m+n+κ2
δ·c(A) · 1√

t

}
= Θ

(
1√
t

)
, where κ1, κ2 > 0.

We note that while Theorem 4 is a novel type of result, Corollaries 5 and 6 are weaker than
the main results in Bailey and Piliouras (2018); Cheung (2018). However, the proofs presented here
avoids the need to distinguish between games with fully-mixed NE or not. Corollary 5 also provides
an explicit time bound (the first positive root of (10)) for reaching the boundary. More importantly,
in Appendix F, we will see that the technique (exponential lower bound vs. polynomial upper bound)
used for proving the two corollaries can be generalized to prove some novel and interesting results
about some generalized Rock-Paper-Scissors games (see Theorem 13).
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Appendix A. Figure 1

The game used is a classical zero-sum game called Matching-Pennies. The payoff matrix for Player
1 is

A =

[
1 0
0 1

]
We use the transformation of Eshel and Akin (1983); see Appendix G.

In the dual space, the Nash equilibrium point is at (0, 0), the origin. We consider two neighbour-
hoods of starting points. In the left figure, the neighbourhood is centred at the Nash equilibrium
with `∞-radius being 0.05. In the right figure, the neighbourhood is centred at the point (0.2, 0.15),
and again the `∞-radius is 0.05.

In both cases, we use MWU algorithm with step-size ε = 0.1. The evolved sets are coloured
dark-green, orange, purple, lime, pink, blue and red in chronological order. In the left figure, the
evolved sets are captured at times 0, 500, 1000, 1500, 2000, 2500, 3000 respectively. In the right
figure, the evolved sets are captured at times 0, 300, 600, 900, 1200, 1500, 1800 respectively.

In the left figure, an outer region strictly contains an inner region, so it shows that the volume
expands. Also, as time goes, the shape of the region goes from square-like to tornado-like.

In the right figure, the regions move in clockwise direction around the origin. Their shapes get
thinner, while their diameters grow quickly, indicating that chaos are happening.

Appendix B. MWU Algorithm is Injective in Graphical Polymatrix Games

All norms we used here are `∞ norms.

Recall that d̄ is the maximum degree of the graph underlying the graphical polymatrix game. For
two-person general-sum game, d̄ = 1.

Suppose the contrary that there are two points r1 and r2 such that they map to the same point
r′ after one round of MWU. Since the payoff received by each player is within the interval of ±d̄,
we have ‖r1 − r′‖, ‖r2 − r′‖ ≤ d̄ε, and hence ‖r1 − r2‖ ≤ 2d̄ε. Our target is then to derive a
contradiction by showing that within the ball B(r1+r2

2 , d̄ε), MWU is injective; observe that this ball
includes both r1, r2. We will use the following version of inverse function theorem (Howard, 1997,
Theorem 3.1):

Theorem 7 Let X,Y be Banach spaces equipped with norms ‖ · ‖X, ‖ · ‖Y respectively. Let
B(x0, r0) be a closed ball in X. Let f : B(x0, r0) → Y be a function so that for some invertible
linear map L : X→ Y and some ρ < 1,

‖L−1 · f(x2)− L−1 · f(x1)− (x2 − x1)‖X ≤ ρ · ‖x2 − x1‖X.

Then f is injective on B(x0, r0).

For our purpose, X,Y are identical Euclidean space, both equipped with `∞ norm. Take L to
be the identity map. Then for any ra, rb in the ball B(r1+r2

2 , d̄ε), we have

‖L−1 · f(rb)− L−1 · f(ra)− (rb − ra)‖ = ‖rb + ε · E(rb)− ra + ε · E(ra)− (rb − ra)‖
= ε‖E(rb)− E(ra)‖.
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Suppose that ‖ra − rb‖ = κ. Then observe that when mapped back to the primal space, every
entry in x(ra) will be within a multiplicative factor of e2κ of the corresponding entry in x(rb). Thus,
when we focus on the entry of E that corresponds to Player i and her strategy j, we have

|Eij(rb)− Eij(ra)| =

∣∣∣∣∣∣
∑

(i,`)∈EH

∑
k∈S`

Ai`jk · [x`k(rb)− x`k(ra)]

∣∣∣∣∣∣
≤

∑
(i,`)∈EH

∑
k∈S`

1 · (e2κ − 1)x`k(rb)

≤
∑

(i,`)∈EH

(e2κ − 1)

≤ d̄(e2κ − 1) ≤ 4d̄κ,

where the final inequality holds when we assume d̄ε < 1/4, so that 2κ ≤ 4d̄ε < 1 and hence
e2κ − 1 ≤ 4κ.

Consequently, ε‖E(rb) − E(ra)‖ ≤ 4d̄εκ. For the condition required in the above theorem to
hold, it suffices to restrict that 4d̄ε < 1, i.e., ε < 1/(4d̄).

Appendix C. Two-person Zero-sum Games

C.1. Proof of the Second Part of Lemma 3

First note that since the entries in r are all finite numbers, (x,y) = G(r) are fully-mixed. Thus,
in the application of the Cauchy-Schwarz inequality above, it is tight if and only if Ajk − [Ay]j +
[BTx]k are identical for all j ∈ J and k ∈ K. Next, we prove that the latter condition holds if and
only if A has the form of (9):

(⇐) By a direction computation, we have Ajk − [Ay]j + [BTx]k =
∑

`∈K b`y` −
∑

`∈J a`x` ,
which is identical for all j ∈ J, k ∈ K.

(⇒) Suppose that at some r we have Ajk − [Ay]j + [BTx]k = d for all j ∈ J, k ∈ K. Then each
Ajk can be written as d+[Ay]j− [BTx]k. We are done by setting aj = d+[Ay]j and bk = [BTx]k
in (9).

C.2. Bounding Higher Order Terms (in Section 4.1)

Recall that det(M) can be written in the form 1 +Cε2 +O(ε4). We need a more explicit expansion
using the Leibniz formula to bound the higher-order terms.

For each min{n,m} ≥ i ≥ 2, there are at most
(
n
i

)
·
(
m
i

)
· (i!)2 terms in the summation of the

Leibniz formula with factor ε2i. Each of such terms is a product of 2i off-diagonal entries of M,
while the absolute value of each such entry of M can be bounded by 2ε. Overall, the sum of all
terms with factor ε2i is bounded by

(
n
i

)
·
(
m
i

)
· (i!)2 · (2ε)2i ≤ (2ε

√
nm)2i. Thus,

det(M)−1 ≥ C(r)·ε2−
∞∑
i=2

(2ε
√
nm)2i ≥ δ2 · c(A)2

4
·ε2 − ε3

[
(2
√
nm)4ε+ (2

√
nm)6ε3 + · · ·

]
16
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When ε ≤ 1/(32n2m2), we have (2
√
nm)4ε+ (2

√
nm)6ε3 + · · · ≤ 1. Consequently, when

ε ≤ min{1/(32n2m2) , δ2 · c(A)2/8}, we have det(M) ≥ 1 + δ2·c(A)2

8 · ε2.

C.3. Diminishing Step-Sizes (in Section 4.2)

Here, we consider the case when the step-sizes used by both players are not constants. For simplic-
ity, we here assume that both players use the same diminishing step-sizes {εt}. Also, we assume
that ε1 < 1/4 and limt→∞ εt = 0. Let t0 be the first time such that εt ≤ ε̄(δ). Then the inequality
in Theorem 4 can be replaced by: for any t ≥ t0,

volume(S(t)) ≥

[
t∏

τ=t0+1

(
1 +

δ2 · c(A)2

8
· (ετ )2

)]
· volume(S(t0)).

To proceed, we need to argue that if volume(S(0)) is strictly positive, then volume(S(t0)) is also
strictly positive. In Appendix C.4, we will prove that when ε < 1/4, the matrix M is strictly
diagonally dominant; then by a use of Levy-Desplanques theorem, we can show that det(M) is
strictly positive. Thus, when S(0) has positive measure, volume(S(1)) =

∫
S(0) det(M) dV remains

strictly positive. Inductively, we arrive at the conclusion that volume(S(t0)) remains strictly positive
for any finite t0.

Next, note that

log

[
t∏

τ=t0

(
1 +

δ2 · c(A)2

8
· (ετ )2

)]
≥ δ2 · c(A)2

16
·

t∑
τ=t0

(ετ )2.

If the summation is ω(log t), then volume(S(t)) = ω(poly(t)). By the logic identical to that
in Section 4.2, the conclusion in Corollary 5 applies when the step-sizes are diminishing gently,
leading to Corollary 6.

C.4. M is Strictly Diagonally Dominant

For each j ∈ J , Mjj = 1, for any j′ ∈ J and j′ 6= j, Mjj′ = 0, and

∑
k∈K

Mjk =
∑
k∈K

εyk(Ajk − [Ay]j) = ε
∑
k∈K

ykAjk − ε[Ay]j = ε[Ay]j − ε[Ay]j = 0.

Thus,∑
j′∈J, j′ 6=j

|Mjj′ | +
∑
k∈K
|Mjk| = 2

∑
k∈K,Mjk>0

Mjk

= 2
∑

k∈K,Mjk>0

εyk(Ajk − [Ay]j) ≤ 2
∑

k∈K,Mjk>0

ε · yk · 2 ≤ 4ε.

Consequently, when ε < 1/4, the matrix M is strictly diagonally dominant.

By Levy-Desplanques theorem, M = M(ε) is non-singular for any ε ∈ [0, 1/4). Thus, det(M(ε))
is non-zero for any ε ∈ [0, 1/4).
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Now, suppose the contrary that det(M(ε′)) ≤ 0 for some ε′ ∈ [0, 1/4). Since det(M(ε)) is a
continuous function w.r.t. ε, by the intermediate value theorem, there exists an ε′′ ∈ [0, ε′] such that
det(M(ε′′)) = 0, a contradiction.

Appendix D. Generalization to the Follow-The-Regularized-Leader Algorithm

Recall that in the dual space, the vectors p,q can be viewed as the cumulative payoffs in a two-
person game. Here, we use pi ∈ Rni to denote the cumulative payoff vector of Player i. The Follow-
The-Regularized-Leader (FTRL) dynamic with step-size ε is determined by a convex regularizer
function hi : ∆ni → R. In each round, the payoff vector pi is converted to probability distribution
by:

xti ← arg max
xi∈∆ni

{ 〈
pti , xi

〉
− 1

ε
· hi(xi)

}
.

We note that MWU is a special case of FTRL, by setting hi(xi) =
∑

`∈Si xi` · lnxi`.
Using this more general update rule, the results presented in this section can extend to settings

where

• players use MWU with different step-sizes: we just need to scale up or down the players’
regularizer functions by constant factors;

• different players using different diminishing-step-sizes, since our volume analysis can actu-
ally permit the regularizer functions be changed over time (so long as they do not violate
the requirements we will impose soon); recall that Bailey and Piliouras (2018) imposed a
requirement on the step-size sequences used by different players;

• different players mix-and-match dynamics, i.e., the players can use entirely different types of
regularizers.

In zero-sum games, we want to reproduce an analysis for general FTRL as in Section 4. In full
generality it is rather clumsy. Thus, we focus on the special cases when

• hi(xi) =
∑

j∈Si hij(xij) is separable and second-continuously-differentiable in the relative
interior of the primal space;

• for all xij > 0, h′′ij(xij) is strictly positive, i.e., hij is strictly convex; and

• the corresponding FTRL dynamic guarantees xi stays full-mixed.3

In Appendix D.1, we show that by letting x̄i` = 1/h′′(xi`) and H :=
∑

`∈Si x̄i`, we have

∂xij
∂pij

= x̄ij −
[x̄ij ]

2

H
and ∀` ∈ Si \ {j},

∂xi`
∂pij

= − x̄ij x̄i`
H

. (11)

Next, we explain how the previous analyses in this paper can be generalized to FTRL algorithm
in two-person zero-sum games.

3. This condition holds if limxij↘0 h
′
ij(xij) = −∞ for all i, j.
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Two-person Zero-sum Game. Again, we focus on showing C(r) ≥ 0, and defer all other details
and result statements to Appendix D.1. Recall the system (3), which we rewrite here:

dpj
dt

=
∑
`∈K

Aj` · y` and
dqk
dt

=
∑
`∈J

B`k · x` .

Keep in mind that here x is a function of p while y is a function of q, which we do not write out
explicitly for two reasons: first, the explicit formula might be complicated, and second, for the need
of computing the Jacobian of the system, knowing (11) suffices. As in Section 3, in the matrix M,
the diagonal entries are all 1, and Mj1j2 = Mk1k2 = 0 for any distinct j1, j2 ∈ J and distinct
k1, k2 ∈ K. For j ∈ J, k ∈ K, by (11),

Mjk = ε ·
∂(
∑

`∈K Aj` · y`)
∂qk

= ε ·

(
Ajkȳk − ȳk ·

∑
`∈K

Aj` ·
ȳ
`∑

z∈K ȳz

)

= εȳk

(
Ajk −

∑
`∈K

Aj` ·
ȳ
`∑

z∈K ȳz

)
.

By comparing the above equality with (7), the summation in the RHS of above equality is analogous
to [Ay]j . Similarly, Mkj = εx̄j(Bjk −

∑
`∈J B`k ·

x̄
`∑

z∈J x̄z
), with the summation here analogous

to [BTx]k in the MWU case.

To proceed, we consider C(r)
/[(∑

j∈J x̄j

) (∑
k∈K ȳk

)]
. This quantity is identical to the

one given in (8), except that each xj is replaced by x̄j/
(∑

j∈J x̄j

)
and each yk is replaced by

ȳk/
(∑

k∈K ȳk
)
. Note that coincidentally, the replaced values form two probability distributions

over J and K respectively, which we call them the shadow distributions of their corresponding
FTRL update rule (see formal definition below). Therefore, all the arithmetic using expectations that
leads to Lemma 3 carries through smoothly to prove that C(r)

/[(∑
j∈J x̄j

) (∑
k∈K ȳk

)]
≥ 0

and hence C(r) ≥ 0, while equality holds if and only if A has the form (9).

Definition 8 Given a FTRL update rule with hi(xi) =
∑

j∈Si hij(xij) are separable and second-
differentiable in the relative interior of the primal space, such that the update guarantees xi stays
full-mixed. The shadow distribution of the FTRL update rule at xi is the distribution in which each
j ∈ Si is realized with probability

1/h′′ij(xij)∑
`∈Si 1/h′′i`(xi`)

.

The remaining analyses are spiritually identical to those presented in Sections 4.1 and 4.2, al-
though some details (e.g., conditions for guaranteeing that a FTRL algorithm is injective) are dif-
ferent. We defer them to Appendices D.2 and D.3, but present the results here. Let

H(δ) := max
r∈R(δ)

max

∑
j∈J

x̄j ,
∑
k∈K

ȳk

 .

Also, let ∆(δ) denote the minimum possible value in the shadow distributions of any (x,y) = G(r),
where r ∈ R(δ). We note that ∆(δ) is strictly positive for any δ.
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Theorem 9 For a fixed δ > 0, let S ≡ S(0) ∈ Rm+n be a measurable subset in R(δ). Suppose
that MWU algorithm is used by both players to play a non-trivial two-person zero-sum game, with
step-size

ε ≤ min


1

2 ·max{2, H(δ)}4 · n2m2
,

∆(δ)2 · c(A)2

8
,

1

4 ·H(δ/2)
,
δ

9
· min
z≥δ/2
i∈{1,2}
j∈Si

h′′ij(z)

 .

Let T be a time such that for all t ∈ {0} ∪ [T − 1], S(t) ⊂ R(δ). Then for any t ∈ [T ],

volume(S(t)) ≥
(

1 +
∆(δ)2 · c(A)2

8
· ε2
)t
· volume(S).

Consequently, the Lyapunov time of the system before reaching R(δ) is at most O(1/(∆(δ)2 · ε2)),
where the hidden constant depends on the game matrix A only.

Corollary 10 For a fixed δ, let S ≡ S(0) ∈ Rm+n be a measurable subset in R(δ). Suppose that
MWU are used by both players to play a zero-sum game which is non-trivial, with either

• constant step-size satisfying the bound in Theorem 9; or

• diminishing step-sizes satisfying limt→∞ εt = 0 and

ε1 < min

 1

4 ·H(δ/2)
,
δ

9
· min

z≥δ/2
i and j∈Si

h′′ij(z)

 and lim sup
t→∞

∑t
τ=1(ετ )2

log t
>

16(m+ n)

∆(δ)2 · c(A)2

Then there exists a starting point in S such that its flow will eventually reach the outside of R(δ);
consequently, there is a dense set of starting points which their flows will eventually reach the
outside of R(δ).

D.1. Deriving (11)

By standard calculus, we have

∃ v ∈ R such that ∀j ∈ Si, ptij − h′ij(xij) = v.

Suppose we increment ptij by a tiny amount ∆, and we want to see how xi changes. Suppose that
xi is changed to x∗i , and for each ` ∈ Si, x∗i` − xi` =: δ`. In the first order arithmetic, we have

∀` ∈ Si \ {j}, ∆− h′′ij(xij) · δj = −h′′i`(xi`) · δ` and
∑
`∈Si

δ` = 0.

Note that the above equalities form a linear system with variables {δ`}. It can be solved easily. Let
H :=

∑
`∈Si 1/h′′(xi`). We have

δj =
(H − 1/h′′(xij))

H · h′′(xij)
·∆ and ∀` ∈ Si \ {j}, δ` = − 1

H · h′′(xij) · h′′(xi`)
·∆.

Consequently, we have

∂xij
∂pj

=
(H − 1/h′′(xij))

H · h′′(xij)
and ∀` ∈ Si \ {j},

∂xi`
∂pj

= − 1

H · h′′(xij) · h′′(xi`)
.
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D.2. FTRL Algorithm is Injective in Two-Person General-Sum Games

As was done in Appendix B, to show that the algorithm is injective, it suffices to show that FTRL
algorithm is injective inside the ball we introduced in Appendix B. Here d̄ = 1. Recall that notation
r = (p,q) for two-person general-sum games.

To use Theorem 7, again we take X,Y be identical Euclidean space, both equipped with `∞
norm. This time, L is set to be u−1I, for some u > 0 which we determine later. Then we have

‖L−1 · f(rb)− L−1 · f(ra)− (rb − ra)‖ ≤ εu‖E(rb)− E(ra)‖+ (1− u)‖rb − ra‖.

Suppose that ‖rb − ra‖ = κ. To bound the term in RHS, we consider the line segment from ra

to rb, which is parametrized by [0, 1]. Recall the matrix M which we computed in Section D. For
any j ∈ J , k ∈ K, Mjk is actually ε · ∂Ej∂qk

. Then we have

u
∣∣∣Eij(rb)− Eij(ra)∣∣∣ = u ·

∫ 1

0

(∑
k∈K

∂Ej
∂qk
· (qbk − qak)

)
dz

≤ κu ·
∫ 1

0

∣∣∣∣∣∑
k∈K

∂Ej
∂qk

∣∣∣∣∣ dz (since ‖ra − rb‖∞ ≤ κ)

≤ κu ·
∫ 1

0

∑
k∈K

∣∣∣∣∣ȳk ·
(
Ajk −

∑
`∈K

Aj` ·
ȳ
`∑

z∈K ȳz

)∣∣∣∣∣ dz
≤ 2κu ·

∫ 1

0

∑
k∈K

ȳk dz.

Thus, by setting u to be the inverse of the maximum value of
∑

k∈K ȳk in the ball, we have

u
∣∣∣Eij(rb)− Eij(ra)∣∣∣ ≤ 2κ, and hence u‖E(rb)− E(ra)‖ ≤ 2κ.

Then by restricting ε ≤ u/4, we have

εu‖E(rb)− E(ra)‖+ (1− h)‖rb − ra‖ < uκ/2 + (1− u)κ = (1− u/2)κ.

Thus, we can set the parameter ρ in Theorem 7 to be 1− u/2.

We still need to provide a concrete value of u. Towards this, for any δ > 0, we define

H(δ) := max
r∈R(δ)

max

∑
j∈J

x̄j ,
∑
k∈K

ȳk

 .

Suppose that ra, rb ∈ R(δ). It is actually possible that the line segment between ra and rb does
not fully lie within R(δ), i.e., R(δ) is not convex. Therefore, u might need to be strictly smaller
than 1/H(δ).

By (11), to minimize xij , pij should be pushed to as small as possible, while pi` for ` 6= j should
be pushed to as large as possible. Therefore, for a fixed j, we consider the line segment L between
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the two points ra and rc := ra − 2εeij + 2ε
∑

`∈J\{j} ei`, and parametrized the segment by [0, 1].
Since ra ∈ R(δ), xaij ≥ δ. Then by (11), for any rd on the line segment, the value of xdij can be
lower bounded using the following integral for some τ ∈ [0, 1]:

δ−
∫ τ

0

2εx̄ij − 2ε
[x̄ij ]

2

H
+ 2ε

∑
`∈J\{j}

x̄ij x̄i`
H

 dz ≥ δ−4ε·max
r∈L

x̄ij(r) = δ−4ε·max
r∈L

1

h′′ij(xij)
.

By imposing that

ε ≤ δ

9
· min
z≥δ/2

h′′ij(z),

the above inequality guarantees that all points in L has xij value at least δ/2.

By assumptions on h, the upper bound on ε is strictly positive, yet it can be arbitrarily close to
zero, since there is nothing to prohibit that h′′ij(z) being tiny (but positive) for a particular z ≥ δ/2.
For instance, one may construct a regularizer hij such that h′′ij(z) ≈ 0 for all z ≥ α, but when
z < α the value h′′ij(z) gets much larger so that limz↘0 h

′
ij(z) = −∞. Then all three conditions on

h which we stated in Section D hold.

Of course, the above constructed regularizer is quite unnatural, so one should be able to improve
our bounds for a more natural regularizer. Our key concern here, however, is just to provide a strictly
positive upper bound on ε, for any δ > 0. (The upper bound can depend on δ.)

Anyway, by having the restriction on ε, we can set u to be H(δ/2). In sum, we need the restric-
tion

ε ≤ min

 1

4 ·H(δ/2)
,
δ

9
· min

z≥δ/2
i and j∈Si

h′′ij(z)

 .

D.3. Analysis for Two-person Zero-sum Games

Again, we need to bound the higher order terms. As in Appendix C.2, for each min{n,m} ≥ i ≥ 2,
there are at most

(
n
i

)
·
(
m
i

)
·(i!)2 terms in the summation of the Leibniz formula with factor ε2i. Each

of such terms is a product of 2i off-diagonal entries of M, and its absolute value can be bounded as∣∣∣∣∣
i∏

a=1

i∏
b=1

MjakbMkbja

∣∣∣∣∣ ≤
(

i∏
a=1

x̄ja

)
·

(
i∏

b=1

ȳkb

)
· (2ε)2i.

Note that all ja’s are distinct, while all kb’s are also distinct.

By the AM-GM inequality, the RHS of the above inequality can be bounded by(∑i
a=1 x̄ja

)i (∑i
b=1 ȳkb

)i
i2i

· (2ε)2i ≤
(
H(δ) · ε

)2i
.

Overall, the sum of all terms with factor ε2i is bounded by(
n

i

)
·
(
m

i

)
· (i!)2 · (H(δ) · ε)2i ≤ (H(δ) · ε

√
nm)2i.
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Following the calculations in Appendix C.2, we impose an upper bound of

ε ≤ 1

2 ·max{2, H(δ)}4 · n2m2
.

We will also need the following quantity to bound the gap when applied the Cauchy-Schwarz
inequality. Let ∆(δ) denote the minimum possible value in the shadow distributions of any (x,y) =
G(r), where r ∈ R(δ). We note that ∆(δ) is strictly positive for any δ. Then in R(δ), we have

C ≥ ∆(δ)2c(A)2

4
.

Thus, Theorem 4 holds for FTRL too, after replacing the upper bound on ε appropriately. This
yields Theorem 9.

In Appendix C.3, we concern MWU with diminishing step-sizes. For FTRL with diminishing
step-sizes, the analysis is essentially the same, except that we need a slightly different argument to
show that volume(S(t0)) is strictly positive.

Consider a matrix M′ obtained from M by the following operations: for each j ∈ J , divide all
entries in the j-column by

(∑
`∈J x̄`

)
, and for each k ∈ K, divide all entries in the k-column by(∑

`∈K ȳ`
)
. Note that

det(M′) =

(∑
`∈J

x̄`

)−|J |(∑
`∈K

ȳ`

)−|K|
· det(M).

So for showing that det(M) is strictly positive, it suffices to show that det(M′) is strictly positive.

The advantage of using M′ is that it allows us to reuse the calculations in Appendix C.4 (by
appropriately replacing x,y with x̄, ȳ) to show that when ε < 1/(4 ·H(δ)), M′ is strictly diagonally
dominant and hence det(M′), det(M) are both strictly positive. Thus, Corollary 6 holds for FTRL
too, by replacing the upper bound on ε1 with appropriately, yielding Corollary 10.

Appendix E. Generalization to Graphical Constant-sum Games

Graphical Constant-sum Games. Next, we consider a striking generalization of two-person zero-
sum game, in which there can be many players. We use i or i• to denote a player, and j or j• to
denote a strategy. In a game with m players, we number the players by 1, 2, · · · ,m, and let Si
denote the strategy set of Player i, and ni := |Si|. All variables in the primal space are now denoted
by xij , and hence we denote the concatenation of all variables by x. Again, we denote the variables
in the dual space by r.

A game with m players is a graphical polymatrix game if the game is defined as follows: on
an undirected graph H = ([m], EH), each edge (i1, i2) ∈ EH corresponds to a bimatrix game
between Players i1 and i2 with strategy sets Si1 and Si2 respectively. It is worth noting that the
strategy set of a Player i in different bimatrix games is the same, and every time she plays the game,
she must choose the same mixed strategy for all these bimatrix games. The payoff of a Player i is
the sum of payoffs she received from the bimatrix games she involves. Such a game is a graphical
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constant-sum game if the bimatrix game corresponded by every edge (i1, i2) ∈ E is a two-person
constant-sum game (different bimatrix games may have different constants). WLOG, we assume
that each bimatrix game is indeed zero-sum.

Analysis. As we have already seen in Section 4, the key is to show that the value of second-order
coefficient C(r) is above zero. The rest of the analysis amounts to bounding ε to make sure that the
effects of higher order terms are insignificant and det(M) is strictly positive.

For each zero-sum game corresponding to edge (i1, i2), let Mi1,i2 denote the M-matrix as if
there were only these two players playing this zero-sum game. A crucial observation is:

since the payoffs of a player is simply
the sum of all her payoffs in the bimatrix games which she involves,

if we focus on the sub-squared-matrix of M corresponding to Players i1 and i2,
it is exactly Mi1i2 .

By (4), the above observation leads to the following:

the second-order coefficient in det(M) is
exactly equal to the second-order coefficient in

∑
(i1,i2)∈EH det(Mi1i2).

Recall that in Lemma 3, we have already shown that the second-order coefficient in each det(Mi1i2)
is non-negative. Thus, we have proved that C(r) ≥ 0, while equality holds if and only if every edge
corresponds to a trivial zero-sum game of the form (9).

Accordingly, we say a graphical constant-sum game is non-trivial if at least one of the two-person
constant-sum games corresponded by an edge is non-trivial.

We can define R(δ) in a similar manner as in Section 4.1. Same as in Section 4.1, a strictly
positive lower bound on C(r) in R(δ) can be derived for non-trivial game. For simplicity, we
denote this lower bound by C̄(δ).

However, unlike in a two-person zero-sum game, the coefficients of ε3 and other odd powers
of ε in det(M) can be non-zero. So we need to derive a new bound on higher-order terms. Let
n =

∑m
i=1 ni. By expanding the determinant using the Leibniz formula, we have

det(M)−1 ≥ C̄(δ)·ε2−
∞∑
i=3

(
n

i

)
i!(2ε)i ≥ C̄(δ)·ε2−ε2.5

[
(2n)3ε0.5 + (2n)4ε1.5 + (2n)5ε2.5 + · · ·

]
.

When ε ≤ 1/(64n6), we have (2n)3ε0.5 + (2n)4ε1.5 + (2n)5ε2.5 + · · · ≤
√

2. Consequently, when
ε ≤ min{1/(64n6) , C̄(δ)2/8}, we have det(M) ≥ 1 + C̄(δ)

2 · ε2.
The analysis for diminishing step-sizes can also be extended easily. Indeed, the only modification

needed is to replace the upper bound 1/4 on ε to 1/(4d̄), where d̄ is the maximum degree of the
graph underlying the game, so as to guarantee that MWU is injective and M is strictly diagonally
dominant (see Appendices B and C.3).

Theorem 11 For a fixed δ, let S ≡ S(0) ∈ Rn be a measurable subset in R(δ). Suppose that the
underlying graphical constant-sum game is non-trivial. Then C̄(δ) > 0.
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Suppose that MWU are used by all players with step-size satisfying

ε ≤ min

{
1

64n6
,
C̄(δ)2

8

}
.

Let T be a time such that for all t ∈ {0} ∪ [T − 1], S(t) ⊂ R(δ). Then for any t ∈ [T ],

volume(S(t)) ≥
(

1 +
C̄(δ)

2
· ε2
)t
· volume(S).

Corollary 12 For a fixed δ, let S ≡ S(0) ⊂ Rn be a measurable subset in R(δ). Suppose that
MWU are used by all players in a non-trivial graphical constant-sum game, with either

• constant step-size ε ≤ min{1/(64n6) , C̄(δ)2/8}; or

• diminishing step-size satisfying

ε1 <
1

4d̄
and lim

t→∞
εt = 0 and lim sup

t→∞

∑t
τ=1(ετ )2

log t
>

4n

C̄(δ)
,

where d̄ is the maximum degree of the graph H .

Then there exists a starting point in S such that before some finite time, its flow reaches the outside of
R(δ). Consequently, there is a dense set of starting points in R(δ) which their flows will eventually
reach the outside of R(δ).

Appendix F. Non-Zero-Sum Games: Generalized Rock-Paper-Scissors Games

Consider the Rock-Paper-Scissors (RPS) game with payoff matrices (A,AT), where

A =

 0 P −Q
−Q 0 P
P −Q 0

 , with P,Q ≥ 0. (12)

This family of games are neither zero-sum nor strictly competitive when P 6= Q.4

Suppose both players employ MWU to play the game. Since the dimension is small, computing
det(M) explicitly is easy (say, by using math software). Let C1 := 2P 2 + 2Q2 + 5PQ and
C2 := (P −Q)2. Let a = e

p1 , b = e
p2 , c = e

p3 , d = e
q1 , e = e

q2 and f = e
q3 . We have

det(M) = 1+ε2·
[
C1(abdf + abef + acde+ acef + bcde+ bcdf)− C2(abde+ acdf + bcef)

(a+ b+ c)2(d+ e+ f)2

]
+O(ε4).

4. To see why, assume P < Q. Suppose x = y = (1/3, 1/3, 1/3), then the expected payoffs of both players are
(P −Q)/3. However, if both players switch to (1− 2κ, κ, κ) for some tiny κ, the expected payoffs of both players
will be (4κ− 2κ2)(P −Q), which is strictly larger than (P −Q)/3 when κ is sufficiently small. The case P > Q
is symmetric.
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Recall that after transformation G, x1 = a/(a + b + c), y1 = d/(d + e + f), and other xj and yk
can be computed similarly. Thus, we can rewrite the second-order coefficient C(r) in two different
forms:[
C1

(
x3

x2
+
x3

x1

)
− C2

]
x1x2y1y2 +

[
C1

(
x2

x1
+
x2

x3

)
− C2

]
x1x3y1y3 +

[
C1

(
x1

x2
+
x1

x3

)
− C2

]
x2x3y2y3[

C1

(
y3

y1
+
y3

y2

)
− C2

]
x1x2y1y2 +

[
C1

(
y2

y1
+
y2

y3

)
− C2

]
x1x3y1y3 +

[
C1

(
y1

y2
+
y1

y3

)
− C2

]
x2x3y2y3.

A necessary (but not sufficient) condition for C(r) ≤ 0 is both of the followings hold:

(A) one of x1x2 ,
x2
x3
, x3x1 or their reciprocals is less than C2

2C1
= (1−r)2

4+10r+4r2
, where r := Q/P ;

(B) one of y1y2 ,
y2
y3
, y3y1 or their reciprocals is less than C2

2C1
.

Accordingly, let W denote the collection of all points (p,q) in the dual space such that the
corresponding (x,y) satisfy the negations of both (A) and (B).5 Then x1 ≥ 1/(1 + 4C1/C2);6 the
same lower bound holds for other xj , yk too. Thus, in W , we can lower bound C by the AM-GM
inequality:

1

(1 + 4C1/C2)4
·
[
C1

(
x3

x2
+
x3

x1
+
x2

x1
+
x2

x3
+
x1

x2
+
x1

x3

)
− 3C2

]
≥ 6C1 − 3C2

(1 + 4C1/C2)4
.

Note that this bound is strictly positive as 6C1 > 3C2 always.

By observing that outside W , at least one of x1, x2, x3, y1, y2, y3 must be strictly less than
C2

2C1+C2
,7 and by bounding the higher order terms in det(M) appropriately, we can use the proof

technique behind Corollaries 5 and 6 to derive the theorem below.

Theorem 13 Suppose two players employ MWU to play RPS game (12). Let w be an interior point
inW , letN(w) ⊂W be a neighbourhood around w with positive volume. If both players use either

• constant step-size ε satisfying ε ≤ min
{

1
2592 ,

6C1−3C2
2(1+4C1/C2)4

}
; or

• a sequence of diminishing step-sizes {εt} satisfying

ε1 <
1

4
and lim

t→∞
εt = 0 and lim sup

t→∞

∑t
τ=1(ετ )2

log t
>

8(1 + 4C1/C2)4

2C1 − C2
,

then there exists a finite time T such that the flow of N(w) at time T does not lie entirely within W .

Consequently, there is a dense subset of starting points in W , such that the flow of each of them
will eventually reach a point such that one of x1, x2, x3, y1, y2, y3 is strictly less than C2

2C1+C2
.

5. Some readers might feel uncomfortable that we require the negations of both (A) and (B) to hold, since this seems
stronger than needed. Our choice is conscious, as we will need both conditions for giving a good lower bound on
C(r).

6. This follows from x1 + 2C1
C2

x1 + 2C1
C2

x1 ≥ x1 + x2 + x3 = 1.
7. For instance, say x1/x2 < C2

2C1
, then we have x1/(1− x1) < C2

2C1
, which leads to x1 < C2

2C1+C2
.
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We discuss an interpretation of Theorem 13. Take w be the NE. The table below lists some
concrete values of C2

2C1+C2
= (1−r)2

5+8r+5r2
for different values of r = Q/P . Note that all the values

are significantly below 1
3 ≈ 0.333, the value in all entries of the NE. Theorem 13 implies that

the flow of a dense set of starting points in any open neighbourhood of the NE will eventually get
quite far away from the NE. This is a global instability result, in contrast with the classical local
instability analysis which linearise the dynamic near the NE locally and compute the unstable and
stable manifolds.

r 0.5 0.7 0.8 0.9 1.0 1.1 1.2 1.3 2
C2

2C1+C2
0.0244 0.00690 0.00274 0.000615 0 0.000504 0.00183 0.00377 0.0244

Next, we present a slightly stronger version of the above theorem.

F.1. A Stronger Theorem for the Generalized Rock-Paper-Scissors Games

Here, we only present the result for diminishing step-sizes.

For any κ, δ > 0, let Wκ,δ denote the collection of all points (p,q) in the dual space such that
the corresponding (x,y) satisfy either of the following two conditions:

• all of x1
x2
, x2x3 ,

x3
x1

and their reciprocals are larger than or equal to C2
2C1

+ κ, and at least two of
the three entries in y are larger than or equal to δ; or

• all of y1
y2
, y2y3 ,

y3
y1

and their reciprocals are larger than or equal to C2
2C1

+ κ, and at least two of
the three entries in x are larger than or equal to δ.

To understand whyWκ,δ is defined as above, we suppose the first condition above holds. WLOG,
assume y1, y2 ≥ δ. Then in the first form of C, the second and third terms are non-negative, while
the first term satisfies[

C1

(
x3

x2
+
x3

x1

)
− C2

]
x1x2y1y2 ≥ 2C2κ ·

1

(1 + 4C1/C2)2
· δ2.

Thus, the RHS of the above inequality can serve as a lower bound for C. Similarly, the same lower
bound for C holds if the second condition holds. Therefore, whenever one of the two conditions
hold, we have a strictly positive lower bound for C. Following the logic behind Theorem 13, we
have the following theorem.

Theorem 14 Suppose two players employ MWU to play the RPS game (12). For any κ, δ > 0,
let w be an interior point in Wκ,δ, let N(w) ⊂ Wκ,δ be a neighbourhood around w with strictly
positive volume. If both players use a sequence of diminishing step-sizes {εt} satisfying

ε1 <
1

4
and lim

t→∞
εt = 0 and lim sup

t→∞

∑t
τ=1(ετ )2

log t
>

12(1 + 4C1/C2)2

C2κδ2
,

then there exists a finite time T such that the flow of N(w) at time T does not lie entirely within
Wκ,δ. Consequently, there is a dense subset of starting points in Wκ,δ, such that the flow of each of
them will eventually reach a point such that one of the following holds:
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• one of x1, x2, x3 is strictly less than C2
2C1+C2

+ κ, and one of y1, y2, y3 is strictly less than
C2

2C1+C2
+ κ; or

• two of x1, x2, x3 are strictly less than δ; or

• two of y1, y2, y3 are strictly less than δ.

Appendix G. Non-Zero-Sum Games: 2× 2 Bimatrix Games

We consider general 2 × 2 bimatrix game here. It is well-known that after a reduction of game
matrices, we can consider the following games only:

A =

[
0 R1

R2 0

]
B =

[
0 R3

R4 0

]
In this case, it is more convenient to use a transformation of RD by Eshel and Akin (1983), as it

will eliminate all O(ε3) terms. We describe this transformation for two-person general-sum games.

Number the strategies of Player 1 by {1, 2 · · · , n} and those of Player 2 by {1, 2, · · · ,m}, where
n,m ≥ 2. Let fj := lnxj − lnxn for j ∈ [n − 1], and let gk = ln yk − ln ym for k ∈ [m − 1].
Let f = (f1, f2, · · · , fn−1) and g = (g1, g2, · · · , gm−1) denote the dual variables. The dimension
of the dual space is n+m− 2. We also let fn, gm ≡ 0, but keep in mind that they are not variables
in the dual space. Note that the variables x,y before transformation can be recovered from f ,g as
follows:

xj =
e
fj∑n

`=1 e
f`

yk =
e
gk∑m

`=1 e
g`

Then we have the following form of RD:

dfj
dt

=

m∑
`=1

(Aj` −An`) ·
e
g`∑m

z=1 e
gz

dgk
dt

=

n∑
`=1

(B`k −B`m) · e
f`∑n

z=1 e
fz
.

The Jacobian of the system is an (n+m−2)×(n+m−2)-squared matrix with all diagonal entries
zero.

Back to 2 × 2 bimatrix game. The Jacobian is a 2 × 2 matrix for which we can compute its
determinant directly:

det(M) = 1− ef1eg1 (R1 +R2)(R3 +R4)ε2.

In other words, the volume is globally strictly increasing if and only if (R1 + R2)(R3 + R4) < 0.
When R1 = −R2 or R3 = −R4, the volume is preserved even with the discrete updates.

One should note that, however, while globally strictly increasing volume implies reaching bound-
ary, globally strictly decreasing volume does not imply the opposite. When R1 > −R2 > 0, and
R3+R4 > 0, the volume is decreasing, but since the first strategy of Player 1 is a strictly dominating
strategy of her, it follows that f1 ↗∞.

The only scenarios when the game has a unique NE which is fully mixed is when R1, R2 have
the same sign, R3, R4 have the same sign, and R1, R3 have different signs. In this case, volume is
globally strictly increasing, indicating the fully mixed NE is globally unstable.
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